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1. Introduction

In order to reach the requirement of LTE-Advanced, CoMP is proposed as a method to mitigate inter-cell interference (ICI). In general, ICI reduces cell-edge UE performance in multi-cell environment with frequency reuse factor 1. Therefore, a simple ICI mitigation technique (i.e., fractional frequency reuse (FFR) with UE specific power control) is employed in LTE system in order to provide reasonable performance for a cell-edge UE under the interference-limited environment. However, such a simple technique sacrifices the performance of the UEs in a neighboring cell by reducing the transmission power, which may lead to severe reduction of the average sector throughput. Thus, in LTE-Advanced system, a more sophisticated ICI control scheme such as CoMP seems necessary to improve the cell-edge UE performance without sacrificing the average sector throughput substantially or even with an increased sector throughput.

One of main concepts for CoMP is that multiple eNBs collaborate to mitigate ICI or even change the interfering signal into desired signal in downlink. These collaboration levels could be different according to the data and the channel state information (CSI) sharing scenarios as discussed in [1]. Trade off between performance and control overhead can be exploited by employing different collaboration levels.
In this contribution, we discuss a CoMP scheme called multi-layered rate control (MLRC) which falls in the category of minimal information sharing among eNBs. In MLRC, an eNB controls the transmission rate of a part of its data layers such that the controlled part becomes decodable by the cell-edge UE located in the neighboring cell. Then, by canceling the interference caused by the controlled part, the ICI to the cell-edge UE can be mitigated without reducing the transmission power, which contrasts to FFR. This scheme requires minimal level of information sharing because only scheduling and interference-to-signal-plus-noise power ratio (ISNR) information are shared (i.e., no data sharing).
______________________________________________________________________
2. MLRC Operation
In this section, we describe the operation of MLRC in Nr x Nt MIMO antenna configuration, where Nt and Nr are the number of transmit antenna and receive antenna, respectively. For the simplicity of explanation, we assume that two neighboring cells are involved in the collaboration as shown in Figure 1. In order to mitigate interference to cell edge user UE1, eNB2 splits DL data for UE2 into 2 parts: private data and common data. The rate of the common data, as opposed to that of the private data, is determined at the level UE1 can decode it as well as UE2 does. By doing successive interference cancellation at UE1 for the common data before decoding its DL data, it can be partially free from the interference caused by the neighboring cell except the interference from the private data. We also note that a relay node located near the cell boundary can operate as UE1 to improve its backhaul link quality.
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Figure 1. Two neighboring cells.

In Figure 1, the received signal of UE1 and UE2 is written as follows.
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 are the Nr x 1 received signal vector at UE
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is the L1 x 1 data vector eNB1 transmitting, where 
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is the L2 x 1  data vector eNB2 transmitting, where 
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First, UE1 decodes 
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UE2 also decodes the common data first and then decodes the private data without interference from the common data. SINR of the common data 
[image: image41.wmf]c

i

x

 denoted by 
[image: image42.wmf])

(

2

i

SINR

c

 and that of the private data 
[image: image43.wmf]p

k

x

 denoted by 
[image: image44.wmf])

(

2

k

SINR

p

 at UE2 are calculated as follows.  


[image: image45.wmf],

)

(

1

1

2

22

2

1

2

22

2

1

2

12

2

2

22

2

2

2

1

o

i

j

c

j

c

j

c

i

L

j

p

j

p

j

c

i

L

j

j

j

c

i

c

i

c

i

c

i

c

N

p

p

p

p

i

SINR

p

+

+

+

=

å

å

å

-

=

=

=

v

H

u

v

H

u

v

H

u

v

H

u



[image: image46.wmf],

)

(

2

1

2

22

1

2

12

2

22

2

o

L

k

j

p

j

p

j

p

k

L

j

j

j

p

k

p

k

p

k

p

k

p

N

p

p

p

k

SINR

p

+

+

=

å

å

¹

=

v

H

u

v

H

u

v

H

u


where 
[image: image47.wmf]c

L

i

2

1

<

£

, 
[image: image48.wmf]p

L

k

2

1

<

£

 and 
[image: image49.wmf]p

i

c

i

u

u

,

2

 are the receive beamforming vector for 
[image: image50.wmf]p

i

c

i

x

x

,

at UE2, respectively.

The rate of the 
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 is determined by the minimum SINR as shown below so that it can be decodable at both UEs.
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 is a function that returns an achievable rate without decoding error for arbitrary SINR.
The overall operation is illustrated in Figure 2.
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Figure 2. Illustration of MLRC in DL.

Now, let us focus on the transmit beamforming matrix 
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. According to whether UE feeds the information related to the transmit beamforming matrix back to eNB, two cases are defined: open loop approach and closed loop approach. In the case of open loop, various methods to multiplex the common and private data over multiple transmit antennas are provided in [4]. In the closed loop case where the transmit beamforming matrix is selected from codebook based on feedback PMIs, the PMI used for common data may be different from that used for private data. Here, we assume that UE1 reports 
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, the set of bad PMIs which would cause strong ICI if used at eNB2 [2]. Then, we have several options in selecting precoding matrix at eNB2 as summarized in Table 1 where 
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A bad PMI (i.e., a PMI in 
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) may be preferable to common data as the received signal strength at UE1 can be improved and the transmission rate of common data can be increased. So, one option is to restrict the PMI for common data to bad PMIs. On the other hand, a good PMI (i.e., a PMI in 
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) may also be used for common data for the purpose of ICI mitigation at UE1. In this case, the received power of common data is maintained at a low level and, as a result, the original objective of MLRC – removal of a part of ICI – can be achieved without SIC operation; applying SIC to common data with good PMI would bring negligible performance gain. So, another option is to restrict the PMI for common data to good PMIs if UE1 is not equipped with SIC capability.

For private data of eNB2, restricting its PMI to bad ones does not bring forth any advantage as private data of eNB2 is not decoded at UE1. So, we have two options; one is to select PMI for private data without any restriction and the other is to restrict the PMI for private data to good PMIs. The former allows free PMI selection for private data which contributes to increasing its data rate, and the latter provides additional ICI mitigation effect.
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	High rate of common data and low ICI from private data
	Equivalent to the conventional beam avoidance technique


Table 1. Precoding matrix selection for common and private data.
______________________________________________________________________
3. Signal Flow and Requirements of MLRC
In this section, we describe the signal flow of MLRC and summarize its requirements. Figure 3 depicts the signals exchanged among the collaborating cells. We note that 
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 in Figure 3 denotes the power ratio between sum power of the private data and that of the common data, i.e., 
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Figure 3. Signal flow of MLRC.
UE1 estimates the channels from eNB1 and eNB2, and it feeds back the information related to the common data to eNB1. Then, eNB1 shares its scheduling information and the common-data-related information with eNB2. UE2 calculates channel information after receiving 
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, then, that is delivered to eNB2, and finally, both eNBs transmit their data to the UEs.
Based on this description, we can summarize the requirements of MLRC as follows:

· Scheduling information needs to be shared among eNBs to indicate the location of RBs over which MLRC is applied.

· It is required for UE1 to be able to determine the power fraction and SINR of the common information (i.e., 
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 and 
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). Note that SINR of the common information can be interpreted as the interference-to-signal-plus-noise ratio (ISNR) in view of UE1 since the common information is actually UE2’s data, i.e., a part of inter-cell interference.

· The information determined by UE1 should be delivered to eNB2 via X2 or air interface.

· Each of UE1 and UE2 is required to be equipped with an advanced receiver such as ML and SIC.

· UE1 should have the information such as MCS, transmit power fraction, and precoding vector that are required to decode the common information from eNB2. The required information may be obtained by decoding PDCCH of eNB2 at UE1 or it may be delivered to UE1 by appropriate signaling forwarded by eNB1. Otherwise, eNB1 may restrict MCS, transmit power fraction, and precoding vector of eNB2 over the RBs scheduled for UE1. This restricting message can be sent to eNB2 along with the scheduling information.
· 
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 determined by UE1 can be delivered to eNB2 via X2 or air interface in order to support closed loop mode.
______________________________________________________________________
4. Simulations
We have conducted some preliminary simulations to evaluate the performance of MLRC. The simulation environment is described in Table 2 [3]. We assume that there are two transmit antennas in each eNB and two receive antennas in each UE. Independent Rayleigh fading is assumed for each antenna channel, MMSE-SIC receiver is employed. Figure 4 depicts the location of the UEs involved in the collaboration. Here, we varied 
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	Parameter
	Value

	Cell radius
	1 km

	Number of cells
	19 cells (2 tier)

	Transmission power
	46 dBm @ 10 MHz

	Noise power @ UE
	-103.8 dBm @ 10 MHz

	Noise figure @ UE
	9 dB

	Path loss @ d km
	128.1+37.6*log10(d)


Table 2. Parameters for simulation.
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Figure 4. Location of the UEs involved in the collaboration.

Figures 5 and 6 depict the achievable rate region for 
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 set to 0.4 km and 0.6 km, respectively. Two types of collaborative methods are considered; one is FFR with power control and the other is MLRC with the data multiplexing option described in Figure 4 in [4]. Each rate region is depicted by varying 
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, the fraction of the removed ICI. In FFR, eNB2 turns off the fraction 
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 of its transmission power to reduce ICI to UE1. In MLRC, the fraction 
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 of eNB2’s transmission power is allocated to the common data. Note that the two collaboration methods with the same 
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 results in the same 
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, the rate of UE1. This is because the fraction 
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 of eNB2’s transmission power is not seen by UE1 as ICI in both methods.
We observe in the two figures that MLRC outperforms FFR. This is because MLRC can utilize the transmission power that is turned off in the FFR without causing additional inter-cell interference. We also observe that the performance gap between the two methods gets larger as the UE2 moves to the cell edge. This can be explained as follows: An increased 
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 reduces the transmission rate of the private data which is governed by the signal strength seen by UE2, but the common data rate remains almost the same as it is limited by the signal strength seen by UE1 which is smaller than that seen by UE2 in most cases. As a result, the common data, which brings forth the performance gain over FFR, contributes relatively more to the UE2’s data rate as UE2 moves to the cell edge.
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Figure 5. Achievable rate region for 
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Figure 6. Achievable rate region for 
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______________________________________________________________________
5. Conclusion
In this contribution, we discussed a CoMP scheme named multi-layered rate control (MLRC). We can make conclusions on MLRC as follows:

· MLRC requires no data sharing among eNBs.

· It is required to deliver scheduling information, ISNR, and potentially, power fraction for common data to the other collaborating eNBs.

· An advanced receiver is required at each UE for interference cancellation. DL control information may be required to decode and cancel the signal from the interfering cells.

· MLRC outperforms FFR since it can utilize the transmission power that is turned off in the FFR without causing additional inter-cell interference.

· MLRC can take advantage of high-rank transmissions (including the full rank) which could be limited in a CoMP scheme based on precoding vector restriction.
______________________________________________________________________
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