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1 Introduction

As identified in [1], an important aspect of support for advanced MIMO and COMP in LTE-A is the design of the Channel State Information (CSI) feedback (consisting of CQI and PMI). 

In order to make progress towards the necessary evaluation of LTE-A, [1] addresses some basic principles for the CSI feedback and makes the following proposals:

Proposal 1: New CSI feedback codebooks are specified for LTE-A. The Rel-8 feedback codebooks could be a subset of the available codebooks for LTE-A.

Proposal 2: The CSI feedback reporting should be capable of exploiting time and/or frequency correlation.

Proposal 3: The use of coding techniques like different codebooks in different reporting subframes, or other non-self-contained feedback techniques, may be considered as means to enhance CSI accuracy. 

The details of the exact scheme(s) can be agreed at a later date for the Stage 3 work for LTE-A, but we present here a possible technique for information and discussion in order to facilitate the work.

2 Outline of proposed technique

In general, CSI feedback consists of an encoded representation of a vector of channel measurements, plus a channel quality indicator (CQI) indicating a corresponding MCS.
In LTE Rel-8, the CSI  is quantised by means of a PMI codebook, which is known to both the eNodeB and the UEs, such that each UE feeds back an index corresponding to the codebook vector that is closest to the channel vector by some metric. This is basically a vector quantisation operation, for example based on minimising the chordal distance [2-4].

The feedback reports typically show some level of correlation, which increases as the channel variations in time and frequency become slower. Therefore it makes sense to try and exploit this correlation in order to reduce the overhead of the CSI feedback and/or increase the accuracy of the CSI reports. This allows the problem to be described as an application of the Wyner-Ziv problem [5, 6]. Several papers address the problem of practical construction of transmission schemes based on the Wyner-Ziv theorem, for example [7, 8] and references therein.
In this contribution (based on [9]) we describe a method for encoding the channel vector in multiple steps with accuracy which increases over multiple reporting subframes, automatically exploiting any available  time correlation of the channel. The method uses several codebooks, the number depending on the desired maximum number of refinement steps. 
At the initial step of the quantisation process a codebook of dimension M is used, where M is the number of transmit antennas at the eNodeB. At each successive refinement step, the codebook dimensionality is reduced by one, as we encode the quantisation error vector produced by the previous step. This is possible because the quantisation error vector lies in the vector space orthogonal to the quantisation vector. This space has one dimension less than the space the quantisation vector belongs to. One advantage of this construction is that each of the codebooks can be optimised for its own dimension and the codebooks are independent from each other. Moreover, as the dimension diminishes, the codebook size can also be reduced whilst keeping the same average distortion. In fact, for a given target quantisation distortion, any refinement step requires less bits for the encoding operation than the previous step as the quantisation is carried out in a space of one less dimension. Equivalently, by keeping the codebook size the same at each step, the distortion associated with each quantisation operation decreases.

1) The first step of the encoding process is an ordinary vector quantisation operation with the M-dimensional codebook. Let us call this refinement step 0.

2) In the next encoding operation, the channel vector, which may have changed from the previous step, is quantised again with the M-dimensional codebook. If the quantisation results in a different vector index from the previous step, then this new index is taken as the new vector representation.

If, however, the quantisation vector index from codebook M is the same as in the previous operation, then we carry on with a refinement step: the quantisation error produced by codebook M is itself quantised by using codebook M-1. Let us call this step “refinement step 1”. This is possible because the quantisation error lies in the vector space orthogonal to the quantisation vector, which has dimensionality M-1.

3) In the next encoding operation the channel vector is again quantised with codebooks M and M-1 in order to check that the previous quantisations remain valid. If either of these operations returns a different index from the previous steps, than the new representation of the vector is given by this new index. Otherwise, if both operations return the same indices as before, this means that we can proceed with a further refinement step, and the error vector associated with refinement step 1 is quantised with codebook M-2. This yields refinement step 2.

4) The iterative procedure continues in subsequent reporting subframes by further refining the vector representation if codebooks are provided for further refinement steps.

As an example we consider a real-valued 3-dimensional vector a, and we illustrate the quantisation operation carried out with a 3-dimensional codebook at refinement step 0 and with a 2-dimensional codebook at refinement step 1. The quantisation metric is chordal distance. The procedure can be generalised to complex vectors in M dimensions with refinement depth up to M steps.

We note that this quantization scheme is used to efficiently quantize the direction of the normalized channel vector. The amplitude information (i.e. CQI) can be encoded separately by using e.g. a scalar quantiser.
In Fig. 1 refinement step 0 is depicted. The quantization vector 
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 is the codebook vector at minimum chordal distance, i.e.
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where C0 is the codebook and c0,i  is one particular codebook vector, < a,c0,i > is the scalar product between the two vectors, and (i is the angle between the vector a and c0,i. Without loss of generality let us drop the index ‘i’ and call ( the angle between vectors a and â1, as shown in Fig. 1.  The error vector e belongs to the vector space ( orthogonal to the quantization vector, eT â1 = 0, and |e| = sin (.  
The approximate representation of a, at refinement step 0 is simply given by 
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In refinement step 1 the quantisation error vector e from step 0 is itself quantised by using a 2-dimensional codebook C1 with a collection of  (M-1)-dimensional unit norm vectors C1=[c1,0, c1,1, ….. c1,N2].  This codebook is used in order to quantize the vector 
[image: image4.wmf]e

e

e

=

~

, i.e the normalized error vector. The vectors of C1 are rotated with a unitary transformation such that the rotated vectors belong to the plane (. (The transformation is provided in Appendix A). This transformation depends only on the vector â1 from step 0. Hence it is known at the UE and the eNodeB, and it can be computed without ambiguity.

The vector e can be quantized by approximating it to the vector at minimum chordal distance, 
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The refined representation of vector a has now become, Fig. 2: 
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Fig. 3 shows the complete picture of the two-step quantisation procedure. 

It can be shown that under very mild conditions on the minimum chordal distances of the two codebooks, the amplitude of the error vector 
[image: image9.wmf]γ

after refinement step 1 is always smaller than the amplitude of the error vector e at step 0. This is shown in Appendix B.
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Figure 1. Representation of the quantization at step 0.
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Figure 2. Representation of the quantization at step 1.
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Figure 3. Complete picture of the quantization scheme.

A possible implementation of the scheme could utilise 6-bit reports, comprised of 4 bits representing the quantised vector (as in Rel-8) and 2 bits indicating the codebook level used in that subframe. This would allow an initial quantisation and up to 3 refinement steps. 

Alternatively, to reduce the overhead slightly while also reducing the amount of refinement possible, 5-bit reports would allow a single refinement step. With such an approach, after 2 reports a 256-level quantised CSI report would have been transmitted, using 10 bits of overhead, compared to CSI in Rel-8 which would be constrained to 16-level CSI with 8 bits of overhead. 

Thus even a single refinement step has scope for significant improvement in the reliability of the CSI, which is especially useful for MU-MIMO where the system capacity depends on the availability of accurate CSI at the eNodeB. 

3 Conclusion

In this contribution we have presented a vector quantization method with successive refinements that is based on rotation of codebooks of decreasing dimensionality. The method allows the correlation between instances of channel vectors to be exploited when encoding the PMI part of the CSI for feedback in consecutive reporting subframes. The same approach may be applied in the frequency domain for correlated resource blocks. 
This technique allows compatibility with the codebook-based feedback of Rel-8 to be retained. Moreover, this kind of approach naturally adapts to varying coherence times of the channel without requiring a reconfiguration of the CSI feedback reporting cycle (in the case of periodic CSI reporting on the PUCCH). If the rate of change of the channel is so high that it is not possible to refine the CSI from one reporting subframe to the next, the technique naturally falls back to the Rel-8 approach.  The specification requirements would therefore be straightforward. 
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5 Appendix A: Transformation

The vectors of C1 are rotated with a unitary transformation, such that the rotated codebook vectors belong to the plane (. This rotation operation preserves the chordal distance between vectors. The transformation is defined by the following matrix chain
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Where B is a basis-change matrix with the vector b0=[0,…0,1]T in the first column, the vector b1 s.t. b1Tb0 = 0 and b1 belonging to the plane created by b0 and â1. The other column vectors to complete the basis are found by applying Gram-Schmidt.

Call ( the angle created by the vector â1 on the plane orthogonal to b0, then G is the Givens matrix with parameters (1,2, (-(/2), [9] i.e.
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6 Appendix B: Distortion

Let us call ( the error vector after the two-step quantisation (see Fig. 3), such that  (T 
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= 0 and |(| = sin((), where (= arccos(<a, 
[image: image16.wmf]2

ˆ

a

>). From Fig. 3 it follows that


[image: image17.wmf](

)

(

)

(

)

2

2

2

2

2

2

2

2

2

2

2

2

2

2

sin

sin

2

1

1

2

sin

2

1

cos

2

sin

2

cos

1

2

sin

2

sin

÷

÷

ø

ö

ç

ç

è

æ

÷

ø

ö

ç

è

æ

-

-

=

Þ

÷

÷

ø

ö

ç

ç

è

æ

÷

ø

ö

ç

è

æ

-

=

Þ

÷

ø

ö

ç

è

æ

=

-

Þ

÷

ø

ö

ç

è

æ

=

÷

ø

ö

ç

è

æ

q

j

g

q

a

q

a

q

a

e

e

e


We want to find the conditions such that
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This inequality can be solved by


[image: image20.wmf](

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

j

j

q

j

j

q

j

j

j

j

q

2

2

2

2

sin

2

cos

1

2

sin

,

sin

2

cos

1

2

sin

sin

2

cos

1

,

sin

2

cos

1

2

sin

+

³

÷

ø

ö

ç

è

æ

-

£

÷

ø

ö

ç

è

æ

£

-

-

+

-

£

÷

ø

ö

ç

è

æ


We are primarily interested in the critical case when φ is small because we want to find the most restrictive conditions under which the refinement step 1 improves on step 0. Sufficient conditions in this case are given by
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These conditions are shown in Fig. 4. The condition is respected if 
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, i.e. the feasibility region lies below the curve of Fig. 4.

It is interesting to note that for ((0 
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after refinement step 1 is always smaller than the amplitude of the error vector e at step 0.
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 Figure 4. Sufficient conditions to reduce the distortion. 
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