3GPP TSG RAN WG1 51bis
 R1-080531
Sevilla, Spain, 14 – 18 January, 2008
Source:

Texas Instruments
Title:
Details on Block Coding for PUCCH
Agenda Item:

6.1.4, 6.2
Document for:
Discussion and Decision
1. Introduction
It was decided in RAN1 #51 that Reed-Muller or Golay code is used for CQI-related reporting on PUCCH [1]. The exact set of rates and construction, however, are still FFS. Since multiple PUCCH payload sizes are expected, a flexible-rate construction is desirable. This issue is addressed in this contribution. In particular, a simple construction based on the Reed-Muller block code is given.
We follow the following requirements to construct the block code for PUCCH:
1. 10 QPSK-modulated symbols are available from Format 2 PUCCH [2]. This translates to codeword length of 20 bits. Depending on the transmission mode (e.g. SIMO, 2-Tx MIMO, 4-Tx MIMO) and CQI multiplexing scheme (e.g. joint and separate encoding of CQI+PMI and rank), the codeword length of interest is either 16 or 20 (see, e.g. [3-4]).
2. A 4-bit CQI table was greed upon [5]. However, the length of spatial delta CQI (for MIMO codeword 2) and rank reporting scheme have not been decided. Hence, it is desirable to choose a construction method which accommodates a range of payload sizes such as from 4 to 14.
2. Reed-Muller Construction
The Reed-Muller code has been well-known from the channel coding literature. It is also used for WCDMA/HSDPA. A basic Reed-Muller code is characterized by 2 parameters:
[image: image1.wmf]r

and
[image: image2.wmf]m

, hence written as
[image: image3.wmf](

)

m

r

RM

,

 where:

[image: image4.wmf]å

=

÷

÷

ø

ö

ç

ç

è

æ

+

=

r

k

IN

k

m

L

1

1

 ,

[image: image5.wmf]m

OUT

L

2

=

For codeword length of 16 and 20,
[image: image6.wmf]4

=

m

 is appropriate. The RM(r,4) is depicted in Figure 1.
[image: image7.png]- =
- o~ T = =
3 g
s I d¢ 3
s = z
z 2 A
PO
Jocoolocccccocoos|o
clocorfocccococooolo
cloorolocccoccoooole
cloorrfoccooroooole
cloroolcccocccooole
clororloccoroooosle
clorrolocorooooosle
clorvrfocorrrooor|o
lrocoolocccoocooooo|e
lroorfoorocooooolo
lrorolorcocooooolo
clrocrorcooroorolo
lcoorococcoooole
frorfrororooroole
lerofrroroorooolo
-
o T e X
caoann XXX Xg
PSP S R h i Befofiagia
SXN RS oo nra NNRRG
XX X X X X oy oy X
ERRAN
=

Figure 1. Length-16 (m=4) Reed-Muller code

Codeword length 20 can be obtained by a simple extension as illustrated in Figure 2. The starting Reed-Muller code is chosen such that
[image: image8.wmf]IN

IN

M

L

³

 and
[image: image9.wmf]OUT

OUT

M

L

£

. After extending the codeword length (this is skipped if the desired codeword length is 16), select
[image: image10.wmf]IN

M

 out of the
[image: image11.wmf]IN

L

 available codewords based on a certain optimality criterion. In this contribution, the construction maximizes the minimum Hamming distance in conjunction with maximizing the mean Hamming distance. It amounts to selecting
[image: image12.wmf]IN

M

 out of
[image: image13.wmf]IN

L

 rows and forms an
[image: image14.wmf]OUT

IN

M

M

´

 generator matrix.
[image: image15.png]Starting block code:

L,y codewords,
length-Loyy

L,

xL,

w X bour

Extend codeword length
from Loy 10 Moy
Extension is a function of
the starting block code

I‘IN X MOuT

Select M, out of L,
codewords

MIN X MDUT

EXT

Figure 2. Extension from length LOUT=16 to MOUT=20 (LEXT=4).
Note that RM(r – 1,m) is a subset of RM(r,m). Hence, to maximize the distance property, RM(r – 1,m) is included by default in the codeword selection when the starting block code is RM(r,m). RM(0,4) is a generic repetition code. This results in the following possible starting payload sizes:
Table 1. Starting payload sizes
	
[image: image16.wmf]r

	
[image: image17.wmf]IN

L

	0
	1

	1
	5

	2
	11

	3
	15

	4
	16

To perform codeword length extension for either of the above embodiments, we consider 2 possible schemes as depicted in Figure 3. For each codeword
[image: image18.wmf]n

g

, the extension originates from the codeword itself.

1. Codeword-common extension: The same extension function is used for all the N codewords:
[image: image19.wmf](

)

n

n

g

f

e

=

 where
[image: image20.wmf](

)

·

f

 operates on GF(2).

2. Codeword-specific extension: The extension function of each of the N codewords is codeword-specific:
[image: image21.wmf](

)

n

n

n

g

f

e

=

.

We consider the following simple function:

[image: image22.wmf](

)

)

(

)

1

(

)

2

(

)

1

(

,

,

,

,

)

(

EXT

n

EXT

n

n

n

L

i

L

i

i

i

n

x

x

x

x

x

f

-

=

L

where
[image: image23.wmf](

)

1

1

)

(

+

-

=

p

c

p

i

n

 with
[image: image24.wmf](

)

1

1

-

£

-

OUT

EXT

M

L

c

.
Here,
[image: image25.wmf])

(

p

i

n

is an index between 1 and
[image: image26.wmf]OUT

M

. The above function simply selects a subset of bits from the original codeword
[image: image27.wmf]x

. In particular, it selects one every c bits. Note that cyclic extension can be obtained with c=1.

[image: image28.png]Scheme 1: Codeword-specific extension

e,)

Scheme 2: Codeword-common extension

Extension: Lg,.;

-

- -

out

Figure 3. 2 schemes for codeword length extension: 1) codeword-specific 2) codeword-common

The construction for different payload sizes are given in Appendix A and B for codeword length 16 and 20, respectively.
3. Simulation Results
To assess the performance of the proposed code design in Section 2.1, the performance is simulated with different payload sizes (the number of codewords) assuming AWGN channels. “Code 1” and “Code 2” indicate the codeword-common and codeword-specific extensions, respectively. The results are depicted in Figure 4.
[image: image29.emf]0 2 4 6 8

10

-3

10

-2

10

-1

10

0

Code 1, RM(x, 16)

SNR (dB)

CQI BLER

RM(4, 16)

RM(5, 16)

RM(6, 16)

RM(7, 16)

RM(8, 16)

RM(9, 16)

RM(10, 16)

RM(11, 16)

RM(12, 16)

RM(13, 16)

RM(14, 16)

[image: image30.emf]0 2 4 6 8

10

-3

10

-2

10

-1

10

0

Code 2, RM(x, 16)

SNR (dB)

CQI BLER

RM(4, 16)

RM(5, 16)

RM(6, 16)

RM(7, 16)

RM(8, 16)

RM(9, 16)

RM(10, 16)

RM(11, 16)

RM(12, 16)

RM(13, 16)

RM(14, 16)

[image: image31.emf]0 2 4 6 8

10

-3

10

-2

10

-1

10

0

Code 1, RM(x, 20)

SNR (dB)

CQI BLER

RM(4, 20)

RM(5, 20)

RM(6, 20)

RM(7, 20)

RM(8, 20)

RM(9, 20)

RM(10, 20)

RM(11, 20)

RM(12, 20)

RM(13, 20)

RM(14, 20)

RM(15, 20)

RM(16, 20)

[image: image32.emf]0 2 4 6 8

10

-3

10

-2

10

-1

10

0

Code 2, RM(x, 20)

SNR (dB)

CQI BLER

RM(4, 20)

RM(5, 20)

RM(6, 20)

RM(7, 20)

RM(8, 20)

RM(9, 20)

RM(10, 20)

RM(11, 20)

RM(12, 20)

RM(13, 20)

RM(14, 20)

RM(15, 20)

RM(16, 20)

Figure 4. AWGN performance for various payload sizes for RM code design
It is also informative to compare the RM-based construction with well-selected punctured tail biting convolutional codes assuming AWGN channels. The results are depicted in Figures 5 and 6. As evident, the proposed code design performs very well and is superior to punctured tail biting convolutional codes. Notice also that the codeword-specific extension performs almost the same as codeword-common extension except for the payload size 12 with codeword length 20.
4. Conclusion

In this contribution, a simple Reed-Muller based construction for format 2 PUCCH channel coding was given. The construction accommodates different payload sizes (from 4 to 16) for codeword length 16 and 20. For each given format (payload size and codeword length), the resulting code jointly maximizes the minimum and mean Hamming distances. We demonstrated that the constructed block codes attain competitive performance. We therefore recommend the RM-based construction given in this contribution to finalize the remaining details for format 2 PUCCH channel coding.
[image: image33.emf]0 2 4 6 8

10

-4

10

-3

10

-2

10

-1

10

0

Rate (8, 16)

SNR (dB)

BLER

RM code 1

RM code 2

CC

[image: image34.emf]0 2 4 6 8

10

-4

10

-3

10

-2

10

-1

10

0

Rate (9, 16)

SNR (dB)

BLER

RM code 1

RM code 2

CC

[image: image35.emf]0 2 4 6 8

10

-4

10

-3

10

-2

10

-1

10

0

Rate (10, 16)

SNR (dB)

BLER

RM code 1

RM code 2

CC

[image: image36.emf]0 2 4 6 8

10

-4

10

-3

10

-2

10

-1

10

0

Rate (12, 16)

SNR (dB)

BLER

RM code 1

RM code 2

CC

Figure 5. Codeword length = 16

[image: image37.emf]0 2 4 6 8

10

-4

10

-3

10

-2

10

-1

10

0

Rate (8, 20)

SNR (dB)

BLER

RM code 1

RM code 2

CC

[image: image38.emf]0 2 4 6 8

10

-4

10

-3

10

-2

10

-1

10

0

Rate (9, 20)

SNR (dB)

BLER

RM code 1

RM code 2

CC

[image: image39.emf]0 2 4 6 8

10

-4

10

-3

10

-2

10

-1

10

0

Rate (10, 20)

SNR (dB)

BLER

RM code 1

RM code 2

CC

[image: image40.emf]0 2 4 6 8

10

-4

10

-3

10

-2

10

-1

10

0

Rate (11, 20)

SNR (dB)

BLER

RM code 1

RM code 2

CC

[image: image41.emf]0 2 4 6 8

10

-4

10

-3

10

-2

10

-1

10

0

Rate (12, 20)

SNR (dB)

BLER

RM code 1

RM code 2

CC

[image: image42.emf]0 2 4 6 8

10

-4

10

-3

10

-2

10

-1

10

0

Rate (14, 20)

SNR (dB)

BLER

RM code 1

RM code 2

CC

Figure 6. Codeword length = 20

Appendix A – Design for Codeword Length = 16
For
[image: image43.wmf]16

=

=

OUT

OUT

L

M

, there is no need for codeword length extension. Hence, the construction involves choosing a set of columns from the RM(r,4) generator matrix such that
[image: image44.wmf]IN

IN

L

M

£

. Using the Hamming distance spectrum as the design criteria (maximize the mean Hamming distance after maximizing the minimum Hamming distance), the following design is obtained:

Table 2. Length-16 design
	
[image: image45.wmf](

)

OUT

IN

M

M

,

	Starting block code
	Codeword selection from starting block code

	(4,16)
	RM(1,4): LIN=5
	1, 2,3,4

	(5,16)
	RM(1,4): LIN=5 (*)
	1, 2,3,4,5

	(6,16)
	RM(2,4): LIN=11
	1, 2,3,4,5, 6

	(7,16)
	RM(2,4): LIN=11
	1, 2,3,4,5, 6,11

	(8,16)
	RM(2,4): LIN=11
	1, 2,3,4,5, 6,7,10

	(9,16)
	RM(2,4): LIN=11
	1, 2,3,4,5, 6,7,10,11

	(10,16)
	RM(2,4): LIN=11
	1, 2,3,4,5, 6,7,8,9,10

	(11,16)
	RM(2,4): LIN=11 (*)
	1, 2,3,4,5, 6,7,8,9,10,11

	(12,16)
	RM(3,4): LIN=15
	1, 2,3,4,5, 6,7,8,9,10,11, 12

	(13,16)
	RM(3,4): LIN=15
	1, 2,3,4,5, 6,7,8,9,10,11, 12,13

	(14,16)
	RM(3,4): LIN=15
	1, 2,3,4,5, 6,7,8,9,10,11, 12,13,14

	(15,16)
	RM(3,4): LIN=15 (*)
	1, 2,3,4,5, 6,7,8,9,10,11, 12,13,14,15

	(16,16)
	RM(4,4): LIN=16 (*)
	1, 2,3,4,5, 6,7,8,9,10,11, 12,13,14,15, 16

(*) Standard Reed-Muller codes

Appendix B – Design for Codeword Length = 20
Both extension schemes are considered where the second extension scheme (codeword-specific) uses the following index selection:
[image: image46.wmf](

)

1

1

)

(

+

-

=

p

c

p

i

n

. The same Hamming-based design criteria are used. The resulting designs are given as follows.
Scheme 1: Codeword-common extension

	
[image: image47.wmf](

)

OUT

IN

M

M

,

	Starting block code
	Codeword selection from starting block code
	c for all codewords (*)

	(4,20)
	RM(1,4): LIN=5
	1, 2,4,5
	2

	(5,20)
	RM(1,4): LIN=5
	1, 2,3,4,5
	2

	(6,20)
	RM(2,4): LIN=11
	1, 2,3,4,5, 8
	4

	(7,20)
	RM(2,4): LIN=11
	1, 2,3,4,5, 8,10
	4

	(8,20)
	RM(2,4): LIN=11
	1, 2,3,4,5, 7,8,10
	4

	(9,20)
	RM(2,4): LIN=11
	1, 2,3,4,5, 7,8,9,10
	4

	(10,20)
	RM(2,4): LIN=11
	1, 2,3,4,5, 6,7,8,9,10
	4

	(11,20)
	RM(2,4): LIN=11
	1, 2,3,4,5, 6,7,8,9,10,11
	4

	(12,20)
	RM(3,4): LIN=15
	1, 2,3,4,5, 6,7,8,9,10,11, 13
	4

	(13,20)
	RM(3,4): LIN=15
	1, 2,3,4,5, 6,7,8,9,10,11, 12,13
	4

	(14,20)
	RM(3,4): LIN=15
	1, 2,3,4,5, 6,7,8,9,10,11, 12,13,14
	4

	(15,20)
	RM(3,4): LIN=15
	1, 2,3,4,5, 6,7,8,9,10,11, 12,13,14,15
	4

	(16,20)
	RM(4,4): LIN=16
	1, 2,3,4,5, 6,7,8,9,10,11, 12,13,14,15, 16
	4

(*) Since codeword 1 is repetition, all c values result in the same repetitive extension.

Scheme 2: Codeword-specific extension

	
[image: image48.wmf](

)

OUT

IN

M

M

,

	Starting block code
	Codeword selection from starting block code
	c for codewords 1,2, …, LIN (*)

	(4,20)
	RM(1,4): LIN=5
	1, 2,3,5
	For LIN=15:

1,1,4,2,2

	(5,20)
	RM(1,4): LIN=5
	1, 2,3,4,5
	

	(6,20)
	RM(2,4): LIN=11
	1, 2,3,4,5, 7
	For LIN=11:

1,1,1,1,4,1,4,1,4,2,1

	(7,20)
	RM(2,4): LIN=11
	1, 2,3,4,5, 7,10
	

	(8,20)
	RM(2,4): LIN=11
	1, 2,3,4,5, 6,8,9
	

	(9,20)
	RM(2,4): LIN=11
	1, 2,3,4,5, 6,8,9,11
	

	(10,20)
	RM(2,4): LIN=11
	1, 2,3,4,5, 6,7,8,9,10
	

	(11,20)
	RM(2,4): LIN=11
	1, 2,3,4,5, 6,7,8,9,10,11
	

	(12,20)
	RM(3,4): LIN=15
	1, 2,3,4,5, 6,7,8,9,10,11, 12
	For LIN=15:

1,1,1,1,1,2,4,1,2,2,1,1,1,1,1

	(13,20)
	RM(3,4): LIN=15
	1, 2,3,4,5, 6,7,8,9,10,11, 12,15
	

	(14,20)
	RM(3,4): LIN=15
	1, 2,3,4,5, 6,7,8,9,10,11, 12,14,15
	

	(15,20)
	RM(3,4): LIN=15
	1, 2,3,4,5, 6,7,8,9,10,11, 12,13,14,15
	

	(16,20)
	RM(4,4): LIN=16
	1, 2,3,4,5, 6,7,8,9,10,11, 12,13,14,15, 16
	For LIN=16:

1,1,1,1,4,2,4,1,2,2,1,1,1,1,1,1

(*) Since codeword 1 is repetition, all c values result in the same repetitive extension.
A matlab (v6.5) file containing the generator matrices is attached below for convenience.
References
[1] 3GPP, “Draft Report of 3GPP TSG RAN WG1 #51”
[2] 3GPP, TS36.211 v8.0.0

[3] 3GPP, R1-080192, Texas Instruments, “Separate Rank and CQI Feedback in PUCCH”

[4] 3GPP, R1-080190, Texas Instruments, “Embedding ACK/NAK in CQI Reference Signals and Receiver Structures”
[5] 3GPP Email Reflector Discussion on CQI Table, November – December 2007

[image: image49.emf]C:\Documents and Settings\a0216230\My Documents\Work Related\3GPP\LTE Works\2008-01 Seville\RMCodes.zip

- 1/7 -

_1259417685.unknown

_1259418588.unknown

_1259420674.unknown

_1259422814.unknown

_1260655493.unknown

_1261293527/Rmcodes.zip

RM20CodeBook.mat

GenMatrix:[1x11 cell array]

NumOfInputBits:[1x11 double array]

RM16CodeBook.mat

GenMatrix:[1x9 cell array]

NumOfInputBits:[1x9 double array]

_1259422862.unknown

_1259422784.unknown

_1259422790.unknown

_1259421310.unknown

_1259420421.unknown

_1259420529.unknown

_1259418596.unknown

_1259417974.unknown

_1259418254.unknown

_1259418469.unknown

_1259418097.unknown

_1259417745.unknown

_1259413930.unknown

_1259416401.unknown

_1259416688.unknown

_1259417672.unknown

_1259416864.unknown

_1259416474.unknown

_1259415025.unknown

_1259398193.unknown

_1259413689.unknown

_1259398152.unknown

