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1. Introduction
It was decided in RAN1 #51 that Reed-Muller or Golay code is used for CQI-related reporting on PUCCH [1]. The exact set of rates and construction, however, are still FFS. Since multiple PUCCH payload sizes are expected, a flexible-rate construction is desirable. This issue is addressed in this contribution. In particular, a simple construction based on the Reed-Muller block code is given. 
We follow the following requirements to construct the block code for PUCCH:
1. 10 QPSK-modulated symbols are available from Format 2 PUCCH [2]. This translates to codeword length of 20 bits. Depending on the transmission mode (e.g. SIMO, 2-Tx MIMO, 4-Tx MIMO) and CQI multiplexing scheme (e.g. joint and separate encoding of CQI+PMI and rank), the codeword length of interest is either 16 or 20 (see, e.g. [3-4]). 
2. A 4-bit CQI table was greed upon [5]. However, the length of spatial delta CQI (for MIMO codeword 2) and rank reporting scheme have not been decided. Hence, it is desirable to choose a construction method which accommodates a range of payload sizes such as from 4 to 14. 
2. Reed-Muller Construction
The Reed-Muller code has been well-known from the channel coding literature. It is also used for WCDMA/HSDPA.  A basic Reed-Muller code is characterized by 2 parameters: 
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For codeword length of 16 and 20, 
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 is appropriate. The RM(r,4) is depicted in Figure 1. 
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Figure 1. Length-16 (m=4) Reed-Muller code 

Codeword length 20 can be obtained by a simple extension as illustrated in Figure 2. The starting Reed-Muller code is chosen such that 
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. After extending the codeword length (this is skipped if the desired codeword length is 16), select 
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 available codewords based on a certain optimality criterion. In this contribution, the construction maximizes the minimum Hamming distance in conjunction with maximizing the mean Hamming distance. It amounts to selecting 
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 generator matrix. 
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Figure 2. Extension from length LOUT=16 to MOUT=20 (LEXT=4). 
Note that RM(r – 1,m) is a subset of RM(r,m). Hence, to maximize the distance property, RM(r – 1,m) is included by default in the codeword selection when the starting block code is RM(r,m). RM(0,4) is a generic repetition code. This results in the following possible starting payload sizes:
Table 1.  Starting payload sizes
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	0
	1

	1
	5

	2
	11

	3
	15

	4
	16


To perform codeword length extension for either of the above embodiments, we consider 2 possible schemes as depicted in Figure 3. For each codeword
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, the extension originates from the codeword itself. 

1. Codeword-common extension: The same extension function is used for all the N codewords: 
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2. Codeword-specific extension: The extension function of each of the N codewords is codeword-specific: 
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We consider the following simple function:
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is an index between 1 and
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. The above function simply selects a subset of bits from the original codeword
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. In particular, it selects one every c bits. Note that cyclic extension can be obtained with c=1. 
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Figure 3. 2 schemes for codeword length extension: 1) codeword-specific 2) codeword-common

The construction for different payload sizes are given in Appendix A and B for codeword length 16 and 20, respectively. 
3. Simulation Results
To assess the performance of the proposed code design in Section 2.1, the performance is simulated with different payload sizes (the number of codewords) assuming AWGN channels. “Code 1” and “Code 2” indicate the codeword-common and codeword-specific extensions, respectively. The results are depicted in Figure 4.
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Figure 4. AWGN performance for various payload sizes for RM code design
It is also informative to compare the RM-based construction with well-selected punctured tail biting convolutional codes assuming AWGN channels. The results are depicted in Figures 5 and 6. As evident, the proposed code design performs very well and is superior to punctured tail biting convolutional codes. Notice also that the codeword-specific extension performs almost the same as codeword-common extension except for the payload size 12 with codeword length 20.
4. Conclusion

In this contribution, a simple Reed-Muller based construction for format 2 PUCCH channel coding was given. The construction accommodates different payload sizes (from 4 to 16) for codeword length 16 and 20. For each given format (payload size and codeword length), the resulting code jointly maximizes the minimum and mean Hamming distances. We demonstrated that the constructed block codes attain competitive performance. We therefore recommend the RM-based construction given in this contribution to finalize the remaining details for format 2 PUCCH channel coding.
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Figure 5. Codeword length = 16
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Figure 6. Codeword length = 20

Appendix A – Design for Codeword Length = 16
For
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, there is no need for codeword length extension. Hence, the construction involves choosing a set of columns from the RM(r,4) generator matrix such that 
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. Using the Hamming distance spectrum as the design criteria (maximize the mean Hamming distance after maximizing the minimum Hamming distance), the following design is obtained:

Table 2.  Length-16 design
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	Starting block code
	Codeword selection from starting block code

	(4,16)
	RM(1,4): LIN=5
	1,  2,3,4

	(5,16)
	RM(1,4): LIN=5  (*)
	1,  2,3,4,5

	(6,16)
	RM(2,4): LIN=11
	1,  2,3,4,5,  6

	(7,16)
	RM(2,4): LIN=11
	1,  2,3,4,5,  6,11

	(8,16)
	RM(2,4): LIN=11
	1,  2,3,4,5,  6,7,10

	(9,16)
	RM(2,4): LIN=11
	1,  2,3,4,5,  6,7,10,11

	(10,16)
	RM(2,4): LIN=11
	1,  2,3,4,5,  6,7,8,9,10

	(11,16)
	RM(2,4): LIN=11 (*)
	1,  2,3,4,5,  6,7,8,9,10,11

	(12,16)
	RM(3,4): LIN=15
	1,  2,3,4,5,  6,7,8,9,10,11,  12

	(13,16)
	RM(3,4): LIN=15
	1,  2,3,4,5,  6,7,8,9,10,11,  12,13

	(14,16)
	RM(3,4): LIN=15
	1,  2,3,4,5,  6,7,8,9,10,11,  12,13,14

	(15,16)
	RM(3,4): LIN=15 (*)
	1,  2,3,4,5,  6,7,8,9,10,11,  12,13,14,15

	(16,16)
	RM(4,4): LIN=16 (*)
	1,  2,3,4,5,  6,7,8,9,10,11,  12,13,14,15,  16


(*) Standard Reed-Muller codes

Appendix B – Design for Codeword Length = 20
Both extension schemes are considered where the second extension scheme (codeword-specific) uses the following index selection: 
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. The same Hamming-based design criteria are used. The resulting designs are given as follows.
Scheme 1: Codeword-common extension 
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	Starting block code
	Codeword selection from starting block code
	c for all codewords  (*)

	(4,20)
	RM(1,4): LIN=5
	1,  2,4,5
	2

	(5,20)
	RM(1,4): LIN=5
	1,  2,3,4,5
	2

	(6,20)
	RM(2,4): LIN=11
	1,  2,3,4,5,  8
	4

	(7,20)
	RM(2,4): LIN=11
	1,  2,3,4,5,  8,10
	4

	(8,20)
	RM(2,4): LIN=11
	1,  2,3,4,5,  7,8,10
	4

	(9,20)
	RM(2,4): LIN=11
	1,  2,3,4,5,  7,8,9,10
	4

	(10,20)
	RM(2,4): LIN=11
	1,  2,3,4,5,  6,7,8,9,10
	4

	(11,20)
	RM(2,4): LIN=11
	1,  2,3,4,5,  6,7,8,9,10,11
	4

	(12,20)
	RM(3,4): LIN=15
	1,  2,3,4,5,  6,7,8,9,10,11,  13
	4

	(13,20)
	RM(3,4): LIN=15
	1,  2,3,4,5,  6,7,8,9,10,11,  12,13
	4

	(14,20)
	RM(3,4): LIN=15
	1,  2,3,4,5,  6,7,8,9,10,11,  12,13,14
	4

	(15,20)
	RM(3,4): LIN=15
	1,  2,3,4,5,  6,7,8,9,10,11,  12,13,14,15
	4

	(16,20)
	RM(4,4): LIN=16
	1,  2,3,4,5,  6,7,8,9,10,11,  12,13,14,15,  16
	4


(*) Since codeword 1 is repetition, all c values result in the same repetitive extension.

Scheme 2: Codeword-specific extension 
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	Starting block code
	Codeword selection from starting block code
	c for codewords 1,2, …, LIN  (*)

	(4,20)
	RM(1,4): LIN=5
	1,  2,3,5
	For LIN=15: 

1,1,4,2,2

	(5,20)
	RM(1,4): LIN=5
	1,  2,3,4,5
	

	(6,20)
	RM(2,4): LIN=11
	1,  2,3,4,5,  7
	For LIN=11: 

1,1,1,1,4,1,4,1,4,2,1

	(7,20)
	RM(2,4): LIN=11
	1,  2,3,4,5,  7,10
	

	(8,20)
	RM(2,4): LIN=11
	1,  2,3,4,5,  6,8,9
	

	(9,20)
	RM(2,4): LIN=11
	1,  2,3,4,5,  6,8,9,11
	

	(10,20)
	RM(2,4): LIN=11
	1,  2,3,4,5,  6,7,8,9,10
	

	(11,20)
	RM(2,4): LIN=11
	1,  2,3,4,5,  6,7,8,9,10,11
	

	(12,20)
	RM(3,4): LIN=15
	1,  2,3,4,5,  6,7,8,9,10,11,  12
	For LIN=15: 

1,1,1,1,1,2,4,1,2,2,1,1,1,1,1

	(13,20)
	RM(3,4): LIN=15
	1,  2,3,4,5,  6,7,8,9,10,11,  12,15
	

	(14,20)
	RM(3,4): LIN=15
	1,  2,3,4,5,  6,7,8,9,10,11,  12,14,15
	

	(15,20)
	RM(3,4): LIN=15
	1,  2,3,4,5,  6,7,8,9,10,11,  12,13,14,15
	

	(16,20)
	RM(4,4): LIN=16
	1,  2,3,4,5,  6,7,8,9,10,11,  12,13,14,15,  16
	For LIN=16:   

1,1,1,1,4,2,4,1,2,2,1,1,1,1,1,1


(*) Since codeword 1 is repetition, all c values result in the same repetitive extension.
A matlab (v6.5) file containing the generator matrices is attached below for convenience.
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RM20CodeBook.mat

GenMatrix:[1x11  cell array]


NumOfInputBits:[1x11  double array]






RM16CodeBook.mat

GenMatrix:[1x9  cell array]


NumOfInputBits:[1x9  double array]
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