

3GPP TSG RAN1 #51bis
R1-080468
January 14th-18th, 2008
Sevilla, Spain
Agenda item:
6.1.2
Source:
Qualcomm Europe
Title:
Hopping of UL DM-RS and Other Details
Document for:

Discussion
1
Introduction
This contribution provides proposals on various UL sequence hopping aspects. The following design criteria was targeted:

· Simple arithmetic to compute PUCCH and PUSCH allocation parameters in every symbol
· Flexible PUCCH cyclic shift – orthogonal cover allocation. The hopping pattern is independent of the overall allocation strategy (CS-OC map). The UE needs to know only its own initial parameter set; it doesn’t need to know what strategy was used to optimize the cyclic shift and orthogonal cover allocation.
· A single set of rules for either the cell specific hopping or the resource specific hopping case
2 Sequence Index Hopping
For both the PUCCH and PUSCH, a set of possible RS sequences denoted by their sequence index are defined for each possible RB allocation case. In the case of the PUCCH, the same set of sequences is also used to convey control information.

We assume the following:

· For
[image: image1.wmf]5

£

RB

N

, there are 30 sequence indices available. There are 30 sequence groups, with one sequence in each group

· For
[image: image2.wmf]5

>

RB

N

, there are 60 sequence indices available. There are 30 sequence groups with two sequences in each group

We also assume that there is a single DL signalling bit informing the UE about whether sequence hopping should be used or not. In the following, we discuss the sequence hopping and no hopping cases separately
2.2 Sequence Hopping Disabled
2.2.1 PUSCH

With sequence hopping disabled, the UE uses the PUSCH RS sequence index(es) corresponding to the signalled sequence group.

· For
[image: image3.wmf]5

£

RB

N

, the UE uses a single sequence index (one of 30).

· For
[image: image4.wmf]5

>

RB

N

, the UE uses the first sequence index in the signalled sequence group in the first slot of the subframe and it uses the second sequence index in the signalled sequence group in the second slot of the subframe. Therefore the UE alternates between the two sequences defined for the sequence group.
If it is desired to have more sequences (i.e. more than two) per sequence group for some
[image: image5.wmf]5

>

RB

N

 then the UE cycles through the sequence indices in a similar fashion. If there are m indices per sequence group, i.e. the set of indexes is
[image: image6.wmf]{

}

1

1

0

,...,

,

-

m

k

k

k

 in a given sequence group, then in the ith slot of a frame, the UE would use the sequence with index
[image: image7.wmf]m

i

k

mod

. In the first slot of a frame,
[image: image8.wmf]0

k

 would be always used.

2.2.2 PUCCH

When sequence hopping is disabled, the UE uses a single sequence based on the signalled sequence group for both the RS and the control data modulation.
2.3 Sequence Hopping Enabled

We propose using the generic scrambling sequence generator (Gold sequence) in order to generate the index hopping sequence. The generator was described in [1][2].
2.3.1 PUSCH

With sequence hopping enabled, the UE uses the PUSCH RS sequence index as determined by the scrambling sequence generator output. The sequence generator is initialized at every subframe boundary and clocked once in every slot. At initialization, the 33-bit seed sequence is constructed according to the following:
	Initializer Bit
	
[image: image9.wmf]30

32

...

b

b

	
[image: image10.wmf]27

29

...

b

b

	
[image: image11.wmf]13

26

...

b

b

	
[image: image12.wmf]9

12

...

b

b

	
[image: image13.wmf]0

8

...

b

b

	Value
	
[image: image14.wmf]0

,

0

,

0

	
[image: image15.wmf]1

,

0

,

0

	
[image: image16.wmf]0

,...,

0

,

0

	Subframe_ID
	Cell_ID

Note that because the subframe ID is part of the initialization bits, the resulting sequence period is one frame (10ms).

Suppose the scrambling generator output is
[image: image17.wmf]u

s

s

s

×

8

1

0

,...,

,

 where u is the number of slots per frame, then the PUSCH sequence index
[image: image18.wmf]i

k

 in slot i is determined as

[image: image19.wmf]

 EMBED Equation.3 [image: image20.wmf])

30

mod(

2

7

0

8

×

÷

ø

ö

ç

è

æ

×

=

å

=

+

×

m

s

k

l

l

l

i

i

(i.e. taking consecutive bytes of the scrambling sequence, one for each slot and take the corresponding integer value modulo the total number of sequence indices)

where m is the number of sequences indices per sequence group. Note that we propose

[image: image21.wmf]î

í

ì

>

£

=

5

2

5

1

RB

RB

N

N

m

2.3.2 PUCCH

With sequence hopping enabled, the UE uses the PUCCH RS and control sequence index as determined by the scrambling sequence generator output. The sequence generator is initialized at every subframe boundary and clocked once for every symbol. At initialization, the 33-bit seed sequence is constructed according to the following:

	Initializer Bit
	
[image: image22.wmf]30

32

...

b

b

	
[image: image23.wmf]27

29

...

b

b

	
[image: image24.wmf]13

26

...

b

b

	
[image: image25.wmf]9

12

...

b

b

	
[image: image26.wmf]0

8

...

b

b

	Value
	
[image: image27.wmf]0

,

0

,

0

	
[image: image28.wmf]1

,

0

,

0

	
[image: image29.wmf]0

,...,

0

,

0

	Subframe_ID
	Cell_ID

Note that because the subframe ID is part of the initialization bits, the resulting sequence period is one frame (10ms).

Suppose the scrambling generator output is
[image: image30.wmf]v

s

s

s

×

8

1

0

,...,

,

 where v is the number of symbols per frame, then the PUCCH CGS sequence index
[image: image31.wmf]i

k

 in symbol i is determined as

[image: image32.wmf]
[image: image33.wmf]30

mod

2

7

0

8

÷

ø

ö

ç

è

æ

×

=

å

=

+

×

l

l

l

i

i

s

k

Note that from the sequence index generation purposes, the RS and control symbols within the PUCCH are not distinguished.
3 Cell Specific Cyclic Shift Hopping
3.1 PUSCH

We propose no cyclic shift hopping for the PUSCH RS. The cyclic shift is either explicitly signalled in the assignment or otherwise it is set to a static value conveyed by higher layer signalling.
3.2 PUCCH

For the purpose of inter-cell interference randomization, a cell specific cyclic shift offset sequence was proposed. In order to simplify implantation, we assume that for the cell specific cyclic shift application purposes, the RS and control symbols within the PUCCH are not distinguished.

Let
[image: image34.wmf]i

l

 be the cyclic shift offset in symbol i. We assume

[image: image35.wmf]{

}

11

,...,

2

,

1

,

0

Î

i

l

And if the cyclic shift in a symbol is
[image: image36.wmf]i

u

 before applying the cell specific cyclic shift offset then it will be
[image: image37.wmf]12

mod

)

(

i

i

u

l

+

 after applying the cell specific cyclic shift offset.

We propose two options for generating the
[image: image38.wmf]i

l

, described next.
3.2.1 Uncoordinated Cyclic Shift Offset Generation
In this case, the cyclic shift offset pattern depends on the Cell_ID. The cell specific cyclic shift offset is determined by the scrambling sequence generator output. The sequence generator is initialized at every subframe boundary and clocked once in every symbol. At initialization, the 33-bit seed sequence is constructed according to the following:

	Initializer Bit
	
[image: image39.wmf]30

32

...

b

b

	
[image: image40.wmf]27

29

...

b

b

	
[image: image41.wmf]13

26

...

b

b

	
[image: image42.wmf]9

12

...

b

b

	
[image: image43.wmf]0

8

...

b

b

	Value
	
[image: image44.wmf]0

,

0

,

0

	
[image: image45.wmf]0

,

1

,

0

	
[image: image46.wmf]0

,...,

0

,

0

	Subframe_ID
	Cell_ID

Note that because the subframe ID is part of the initialization bits, the resulting sequence period is one frame (10ms).

Suppose the scrambling generator output is
[image: image47.wmf]v

s

s

s

×

8

1

0

,...,

,

 where v is the number of symbols per frame, then the cell specific cyclic shift offset
[image: image48.wmf]i

l

 in symbol i is determined as

[image: image49.wmf]

 EMBED Equation.3 [image: image50.wmf]12

mod

2

7

0

8

÷

ø

ö

ç

è

æ

×

=

å

=

+

×

b

b

b

i

i

s

l

i.e. taking consecutive bytes of the scrambling sequence, one for each symbol and take the corresponding integer value modulo 12.

3.2.2 Cell-Coordinated Cyclic Shift Offset Generation

In this case, the cyclic shift offset is the sum of two components; the first is a pseudo-random sequence dependent on the SSC_ID, while the second is a deterministic sequence dependent on the PSC_ID. The purpose of this construction is to minimize the cyclic shift alignments in cells with the same SSC_ID.
The pseudorandom cyclic shift offset component,
[image: image51.wmf]i

t

 is determined by the scrambling sequence generator output. The sequence generator is initialized at every subframe boundary and clocked once in every symbol. At initialization, the 33-bit seed sequence is constructed according to the following:

	Initializer Bit
	
[image: image52.wmf]30

32

...

b

b

	
[image: image53.wmf]27

29

...

b

b

	
[image: image54.wmf]13

26

...

b

b

	
[image: image55.wmf]9

12

...

b

b

	
[image: image56.wmf]0

8

...

b

b

	Value
	
[image: image57.wmf]0

,

0

,

0

	
[image: image58.wmf]1

,

1

,

0

	
[image: image59.wmf]0

,...,

0

,

0

	Subframe_ID
	SSC_ID

Note that because the subframe ID is part of the initialization bits, the resulting sequence period is one frame (10ms).

Suppose the scrambling generator output is
[image: image60.wmf]v

s

s

s

×

8

1

0

,...,

,

 where v is the number of symbols per frame, then the cell specific cyclic shift offset
[image: image61.wmf]i

t

 in symbol i is determined as

[image: image62.wmf]

 EMBED Equation.3 [image: image63.wmf]12

mod

2

7

0

8

÷

ø

ö

ç

è

æ

×

=

å

=

+

×

b

b

b

i

i

s

t

i.e. taking consecutive bytes of the scrambling sequence, one for each symbol and take the corresponding integer value modulo 12.

The PSC_ID dependent deterministic cyclic shift offset value
[image: image64.wmf]j

r

[image: image65.wmf]12

0

<

£

j

 is defined as

[image: image66.wmf](

)

(

)

(

)

(

)

ï

î

ï

í

ì

=

=

=

=

2

_

7

,

4

,

9

,

5

,

3

,

2

,

8

,

11

,

6

,

10

,

12

,

0

1

_

6

,

9

,

4

,

8

,

10

,

11

,

5

,

2

,

7

,

3

,

1

,

0

0

_

0

,

0

,

0

,

0

,

0

,

0

,

0

,

0

,

0

,

0

,

0

,

0

,...,

,

11

1

0

ID

PSC

if

ID

PSC

if

ID

PSC

if

r

r

r

Note that a single formula exists for generating the sequences above. Also note that the sum of
[image: image67.wmf]j

r

 for PSC_ID=1 and PSC_ID=2 is always zero modulo 13.

For any pair of PSC_IDs, the element-wise shift differences are always distinct.

The cell specific cyclic shift offset
[image: image68.wmf]i

l

 in symbol i is determined as

[image: image69.wmf](

)

12

mod

6

mod

i

i

i

r

t

l

+

=

4 PUCCH Resource Specific Cyclic Shift Hopping
The resource specific cyclic shift hopping is performed on a per symbol basis. The hopping pattern is based on a factor 3 decimation.
The resource specific cyclic shift
[image: image70.wmf]j

c

 in control data symbol j is determined as

[image: image71.wmf]ë

û

2

mod

7

mod

)

3

)

1

2

/

((

2

0

2

mod

0

0

c

c

c

c

j

j

+

×

+

×

=

+

In the first symbol of every frame, j=0. After that, j is incremented by one for every control symbol but it is not incremented for RS symbols.

The resource specific cyclic shift
[image: image72.wmf]k

c

 in RS symbol k is determined as

[image: image73.wmf]ë

û

2

mod

7

mod

)

3

)

1

2

/

((

2

0

2

mod

0

0

c

c

c

c

k

k

+

×

+

×

=

+

In the first RS symbol of every frame, k=0. After that, k is incremented by one for every RS symbol but it is not incremented for control data symbols.

5 PUCCH Resource Hopping
At every slot boundary, the cyclic shift allocation is offset according to a deterministic pattern. The purpose of this is to maximize the distance in a new slot between resources that were sharing the same cyclic shift resource in the previous slot.
Resource hopping is achieved by adding a slot and resource dependent cyclic shift offset
[image: image74.wmf]j

i

d

 for slot i and orthogonal cover index j.
3.3 PUCCH Data Resource Hopping

The cyclic shift offset
[image: image75.wmf]j

i

d

 for slot i and orthogonal cover index j is determined as

[image: image76.wmf]î

í

ì

>

+

×

×

=

=

0

12

mod

))

1

(

2

(

0

0

j

if

j

i

j

if

d

j

i

For which the orthogonal cover index j is mapped to spreading sequences as shown below

[image: image77.wmf]ï

ï

î

ï

ï

í

ì

+

-

-

+

=

-

-

+

+

=

-

+

-

+

=

+

+

+

+

=

1

1

1

1

3

1

1

1

1

2

1

1

1

1

1

1

1

1

1

0

j

j

j

j

3.4 PUCCH RS Resource Hopping
The cyclic shift offset
[image: image78.wmf]j

i

d

 for slot i and orthogonal cover index j is determined as

[image: image79.wmf]12

mod

)

4

(

j

i

d

j

i

×

×

=

For which the orthogonal cover index j is mapped to spreading sequences as shown below

[image: image80.wmf]ï

î

ï

í

ì

=

=

=

×

×

-

×

-

×

3

/

2

3

/

2

3

/

2

3

/

2

1

2

1

1

1

1

1

0

p

p

p

p

i

i

i

i

e

e

j

e

e

j

j

6 Orthogonal Cover Hopping
The orthogonal cover is changed at every slot boundary. The relationship between the orthogonal cover functions associated with a pair of PUCCH resources is the same across slot boundaries, however, a cell dependent linear offset is applied to each orthogonal cover function. The offset means that a cell specific cover function is added (element-wise multiply) to each orthogonal cove function used in the cell. This approach preserves the optimum distribution of orthogonal covers that may have been used.

The cell specific orthogonal cover offset index is determined by the scrambling sequence generator output. The sequence generator is initialized at every subframe boundary and clocked once in every slot. At initialization, the [33]-bit seed sequence is constructed according to the following:

	Initializer Bit
	
[image: image81.wmf]30

32

...

b

b

	
[image: image82.wmf]27

29

...

b

b

	
[image: image83.wmf]13

26

...

b

b

	
[image: image84.wmf]9

12

...

b

b

	
[image: image85.wmf]0

8

...

b

b

	Value
	
[image: image86.wmf]0

,

0

,

0

	
[image: image87.wmf]0

,

0

,

1

	
[image: image88.wmf]0

,...,

0

,

0

	Subframe_ID
	Cell_ID

Note that because the subframe ID is part of the initialization bits, the resulting sequence period is one frame (10ms).

Suppose the scrambling generator output is
[image: image89.wmf]u

s

s

s

×

8

1

0

,...,

,

 where u is the number of slots per frame, then the cell specific orthogonal cover offset index
[image: image90.wmf]i

d

 for the ACK data in slot i is determined as

[image: image91.wmf]

 EMBED Equation.3 [image: image92.wmf]4

mod

2

7

0

8

÷

ø

ö

ç

è

æ

×

=

å

=

+

×

b

b

b

i

i

s

d

while the cell specific orthogonal cover offset index
[image: image93.wmf]i

e

 for the RS in slot i is determined as

[image: image94.wmf]3

mod

2

7

0

8

÷

ø

ö

ç

è

æ

×

=

å

=

+

×

b

b

b

i

i

s

e

Then the actual applied orthogonal cover is the sum (element-wise product) of the initial assigned orthogonal cover and the orthogonal cover function indicated by
[image: image95.wmf]i

d

 and
[image: image96.wmf]i

e

 for the ACK data and ACK RS, respectively.
7 Pseudorandom Sequence Generator
For various purposes, pseudorandom sequences are used in the sequence hopping pattern generation. For this purpose, the structure shown in Figure 1 can be used. Shorter sequence generator could be used as well. The advantage of the structure shown in Figure 1 is that a single generator can be used to generate all pseudorandom sequences.

[image: image97.emf]M

o

d

u

l

o

-

2

a

d

d

i

t

i

o

n

M

o

d

u

l

o

-

2

a

d

d

i

t

i

o

n

g

32

g

31

g

30

g

2

g

1

m

0

m

29

m

1

m

30

m

31

m

32

m

0

… m

49

Sequence selector

Scrambling

sequence

M

o

d

u

l

o

-

2

a

d

d

i

t

i

o

n

h

32

h

31

h

30

h

2

h

1

Figure 1 Pseudo-random Sequence Generator
Note that shorter sequence generator could be used as well.
3
Conclusions

Proposals were given for the various UL sequence hopping applications. In summary, we propose:

· A solution for both cell-specific and resource specific cyclic shift hopping

· Sequence index hopping pattern details

· Cell-coordinated cyclic shift hopping pattern

· A cell-specific orthogonal cover offset index hopping pattern

· Simple arithmetic to compute PUCCH and PUSCH allocation parameters in every symbol

· Use of a scrambling generator for various pseudo-random sequences

· Flexible PUCCH cyclic shift – orthogonal cover allocation. The hopping pattern is independent of the overall allocation strategy. The UE needs to know only its own initial parameter set; it doesn’t need to know what strategy was used to optimize the cyclic shift and orthogonal cover allocation.

· A single set of rules for either the cell specific hopping or the resource specific hopping case

We recommend considering these aspects in finalizing the UL DM RS and PUCCH randomization specification.
References
[1]

R1-075089 “LTE Scrambling Codes”, Ericsson, Qualcomm, Nokia, NSN

[2]

R1-080487 “Details on Scrambling”, Qualcomm Europe

7/7

_1261350906.unknown

_1261454644.unknown

_1261565907.unknown

_1261776343.unknown

_1261776364.unknown

_1261776379.unknown

_1261776355.unknown

_1261776330.unknown

_1261491294.unknown

_1261564157.unknown

_1261564407.unknown

_1261565655.unknown

_1261564329.unknown

_1261564292.unknown

_1261564053.unknown

_1261564075.unknown

_1261491342.unknown

_1261455051.unknown

_1261490347.unknown

_1261490944.unknown

_1261455075.unknown

_1261465930.unknown

_1261454665.unknown

_1261398150.unknown

_1261398246.unknown

_1261398275.unknown

_1261398208.unknown

_1261353132.unknown

_1261353661.unknown

_1261355445.unknown

_1261355574.unknown

_1261353674.unknown

_1261353142.unknown

_1261352185.unknown

_1261352802.unknown

_1261352830.unknown

_1261352220.unknown

_1261351992.unknown

_1261345368.unknown

_1261349532.unknown

_1261350523.unknown

_1261350797.unknown

_1261349419.unknown

_1261344548.unknown

_1261345360.unknown

_1261345260.unknown

_1261345295.unknown

_1261345323.unknown

_1261345271.unknown

_1261345183.unknown

_1261345154.unknown

_1261343664.unknown

_1261343763.unknown

_1261343623.unknown

_1261167066.vsd
Modulo-2 addition

Modulo-2 addition

g2

g1

g32

g31

g30

m0

m29

m1

m30

m31

m32

m0 … m49

Sequence selector

Scrambling sequence

Modulo-2 addition

h32

h31

h30

h2

h1

