3GPP TSG-RAN Working Group 1 #51bis
Tdoc R1-080318
Sevilla, Spain, 14th—18th January 2008
Source:
Nokia Siemens Networks, Nokia
Title:
Scrambling Sequence Generation
Agenda Item:
6.1.6 Bit scrambling
(also relevant to 6.2 Finalization of 36.212)
Document for:
Discussion and Decision
1. Introduction
In this contribution, we discuss register initialization for scrambling sequence generation in LTE.
Based on the discussion, we put forward the following specific proposals:

· Reusing the initialization space (i.e. allowing the same set of scrambling sequences) between unicast and MBSFN transmissions.
· Reducing the length of the constituent shift registers to L=31 from L=33 to ease implementation.

· Continuing to use Gold sequences (with L=31) for scrambling sequence generation.

· If Gold sequences with L=31 were believed by RAN1 not to provide a sufficient number of distinct scrambling sequences, we propose using extended Gold sequences with L=31 instead of Gold sequences with L=33.
In meeting #51, RAN1 decided to use Gold sequences for all scrambling purposes occurring in E-UTRA. A method of generating cyclically distinct sequences within a family was identified: initialize one participating shift register with a known non-zero pattern of bits, whence we are free to initialize the other shift register any which way we want, and can base the initialization on e.g. the UE or Cell ID, and other information identifying the use case. Thus, when two L bit shift registers are used, we get 2^L sequences (of period 2^L‑1). In meeting #51, it was further realized that the shift registers defined in UTRAN [25.213] with L=25 are insufficient, as a field of 25 bits is too small given that UE_ID already consumes 16 bits and CELL_ID 9. Thus, it was agreed that longer shift registers of length L=33 are to be used instead.
In the first part of this contribution, we discuss the required length of the initialization field for scrambling code generation for LTE, concluding that 33 bits are not required and 31 bits would be sufficient.

In the latter part, we want to bring two drawbacks of L=33 to the attention of RAN1. The most pressing concern is that shift registers of 33 bits are cumbersome to handle with HW based on the 32 bit architecture. A minor concern is that the period length of the scrambling sequences is now unnecessarily high, and the known bounds on partial period correlations of Gold sequences have become nearly trivial considering the expected length of the segment of the generated sequence.
2. Initialization for the Scrambling Code Generator

2.1
 Discussion

Based on the latest agreed version of 36.211 as well as recent RAN1 contributions on this topic [2][3], we summarize our view on the initialization requirements in table 1 and add the following comments:
· Re-initializing with subframe (or code block, where applicable) periodicity is preferred. Re-initializing with e.g. radio frame periodicity could lead to synchronization loss between eNB and UE e.g. as a result of UE missing the DL grant.

· For UL-SCH, PCH, MCH and DL-SCH it is preferred to perform the scrambling in 36.212, otherwise individual code blocks cannot be distinguished in 36.211. Also, TTI based scrambling of the BCH is easiest accomplished in 36.212.

· Scrambling in 36.212 should be performed immediately after rate matching.

· UL-SCH, DL-SCH, PCH, MCH: Either the same scrambling sequence is applied to each CB, or code block index is used to initialize the sequence. The underlying principle is that the scrambling of any code block can commence independently of the scrambling of any other code block within the same transport block.
· It is not required to reserve a separate initialization space (effectively a different set of scrambling sequences) for MBSFN and unicast transmissions (MCH vs. DL-SCH, unicast RS vs. MBSFN RS), for reasons outlined below. Reusing the same initialization spaces helps keep the initialization field short (saving 1 bit).

· The unicast and MBSFN frame structures (RS placement, PMCH and PDSCH RE locations) are different.

· If a carrier is reserved for MBSFN in an entire network or its large part (likely scenario) then interference between unicast cells and MBSFN areas will not be present.

· The longest essential initialization field is the one for the DL-SCH and includes 26 bits (= 9 for CELL_ID, 16 for UE_ID and 1 for stream_ID). Up to 10 further less important initialization bits were identified: 2 (SFN LSBs) + 4 (subframe number) + 4 (code block number).

According to the above discussion, a 26-bit initializer field could in principle be sufficient for LTE. However, for additional flexibility, it seems reasonable to increase the length to 31 bits.

Table 1. Scrambling initialization requirements.

	channel
	essential
initializers [bit]
	non-essential
initializers [bit]
	re-initialization period
	comment

	PUCCH
	16 (UE_ID)
	9 (CELL_ID)
2 (SFN LSBs)
4 (subframe number)
	subframe
	In 36.211 or 36.212.

	UL-SCH (PUSCH)
	16 (UE_ID)
	9 (CELL_ID)
1 (stream ID)
2 (SFN LSBs)
4 (subframe number)

4 (code block number)
	code block
	In 36.212.

	BCH (PBCH)
	9 (CELL_ID)
	
	TTI (40ms)
(=code block)
	In 36.212.

	PDCCH
PCFICH
PHICH
	9 (CELL_ID)
	2 (SFN LSBs)
4 (subframe number)
	subframe
	In 36.211.

	PCH,

DL-SCH (PDSCH)
	9 (CELL_ID)
16 (UE_ID)
1 (stream ID)
	2 (SFN LSBs)
4 (subframe number)
4 (code block number)
	code block
	In 36.212.
For PCH and BCCH over DL-SCH, UE_ID is replaced with PCH and BCH RNTI, respectively.

	MCH (PMCH)
	9
(MBSFN_AREA_ID)
	1 (stream ID)
2 (SFN LSBs)
4 (subframe number)
4 (code block number)
	code block
	In 36.212.

	RS
	9 (CELL_ID or
MBSFN_AREA_ID)
4 (subframe number)
	
	subframe
	In 36.211.
In the case of normal CP and unicast, there are only NPRS = 168 states.

2.2
 Initialization Proposal

PUCCH
9 (CELL_ID) + 16 (UE_ID) + + 2 (SFN LSBs)
UL-SCH
9 (CELL_ID) + 16 (UE_ID) + 1 (stream ID) + 2 (SFN LSBs) + 2 (CB index LSBs)
BCH

9 (CELL_ID)
PDCCH,

PCFICH,

PHICH
9 (CELL_ID) + + 2 (SFN LSBs)
PCH,

DL-SCH
9 (CELL_ID) + 16 (UE_ID) + 1 (stream ID) + 2 (SFN LSBs) + 2 (CB index LSBs)
MCH

9 (MBSFN_AREA_ID) + + 1 (stream ID) + 2 (SFN LSBs) + 2 (CB index LSBs)
RS

9 (CELL_ID or MBSFN_AREA_ID) + 4 (subframe #)
The essential initializers were marked in bold.
For the group of transport channels: UL-SCH, DL-SCH, PCH, MCH it is reasonable to always include the 1-bit stream_ID for commonality. Whenever SU-MIMO is not applicable, this bit is simply set to 0.
For PCH and BCCH over DL-SCH, UE_ID is replaced with PCH and BCH RNTI, respectively. For initializer commonality, it may be worth using a dummy 16-bit all-zero UE_ID field for MCH as well.
The specification will need to be unequivocal about the initialization, for example in the following manner:

[image: image1.wmf]28

26

25

9

2

SBs

CB_INDEX_L

2

SFN_LSBs

2

STREAM_ID

2

UE_ID

CELL_ID

×

+

×

+

×

+

×

+

=

ini

n

3. Scrambling Sequence Generation Proposal
3.1 Gold Sequence Generation with L=31

In the light of the above discussion, we propose modifying the current working assumption on Gold codes based on L=33 [1] to Gold codes based on L=31 for easier implementation. The following generator polynomials can be used [6][4]:
· D31+D3+1 for the top register, generating the sequence x(i)

· D31+D3+D2+D+1 for the lower register, generating the sequence y(i)

The registers are to be initialized as follows:

· Fill one (e.g. top) register with a fixed pattern containing at least one 1, such as x(0)=1, and x(1)=…=x(30)=x(31)=0.

· Fill the other register as described in section 2.2.

3.2 Extended Gold Sequence Generation

If Gold sequence generation with L=31 is considered insufficient, we propose the following well-known extension of Gold sequences [5]. The extension requires three shift registers. Assuming the 32-bit architecture, such extension is considered advantageous compared to a Gold sequence with L=33 as the latter effectively requires four 32-bit registers and additional control logic.
The Gold sequences are often constructed as (modulo 2) sums of two m-sequences of the same period chosen in such a way that the latter m-sequence is a decimation of the former. Here three is the most common decimation exponent. E.g. in the following figure the upper shift register generates an m-sequence with the feedback polynomial 1+D3+D25. If α is a root of this primitive polynomial, then β=α3 is a root of the other primitive polynomial 1+D+D2+D3+D25 used in the lower half that then generates a third decimation of a cyclic shift of the m-sequence generated by the other half (or, alternatively the all zero sequence, when initialized with the all zero pattern).

[image: image2.wmf]

Scrambling

code

MSB

LSB

Figure 1. Gold sequence generation, L=25.

A well studied extension of this idea (see e.g. [5]) is to add a third shift register defined by the minimal polynomial of γ=α5. This third register then generates a cyclic shift of the fifth decimation of the m-sequence. This generalization is available for any odd size L of the shift register, and we get (see [5] for these properties) 22L sequences with period 2L-1 and maximum non-trivial periodic correlation 1+2(L+3)/2 (as opposed to the maximum of 1+2(L+1)/2 that we get with the Gold family). These sequences could be referred to as the dual BCH-sequences as they are exactly the non-zero words in the dual code of the triple-error correcting BCH-code.

The generator polynomials are

· D25+D3+1 for the top register, generating the sequence x(i)

· D25+D3+D2+D+1 for the middle register, generating the sequence y(i)

· D25+D20+D5+D3+1 for the bottom register, generating the sequence z(i)

[image: image3.emf]

MSB LSB

Scrambling

code

[image: image4.emf]

MSB LSB

Scrambling

code

Figure 2. Extended Gold sequence generation, L=25 and L=31.

There are alternative constructions leading to sets of similar parameters as well. Another viable candidate is to use the reciprocal of the first feedback polynomial (or, what amounts to the same thing, a cyclic shift of a reverse order m-sequence) in the bottom register, i.e. D25+D22+1. That set of sequences saves a few gates at the cost of marginally worse correlation properties given that the maximum correlation value will then be 4*2L/2. Anyway, the reader immediately realizes that this is nothing but an extension of the Gold set into a larger family given that the Gold family is recovered by initializing the third shift register with all zeros.
If shift registers of length L=31 (and hence initializer length of 32...62 bits) are desired instead, then the corresponding generator polynomials could be chosen as follows [6]
· D31+D3+1 for the top register, generating the sequence x(i)

· D31+D3+D2+D+1 for the middle register, generating the sequence y(i)

· D31+D13+D8+D3+1 for the bottom register, generating the sequence z(i)

The registers are to be initialized as follows:

· Fill one (e.g. top) register with a fixed pattern containing at least one 1, such as x(0)=1, and x(1)=…=x(30)=x(31)=0.

· Fill the middle register with the UE_ID.
· Fill the bottom register with any remaining initializers (other than UE_ID).
References

[1]

R1-075089 “LTE Scrambling Codes”, Ericsson, Qualcomm, Nokia, NSN

[2]

R1-074837 “Scrambling sequences”, Ericsson

[3]

R1-074967 “Details on Scrambling”, Qualcomm Europe
[4]

R1-075063 “Scrambling Sequence Generation”, Nokia, NSN

[5]

Handbook of Coding Theory, vol. II, chapter 21, eds. Huffman & Pless, North-Holland, 1998

[6]

http://www.neng.usu.edu/ece/faculty/tmoon/eccbook/FILES/primitive.txt

_1259651053.doc
		

		DOCUMENTTYPE

		

		1 (1)

		

		

		

		

		TypeUnitOrDepartmentHere

		

		

		

		TypeYourNameHere

		TypeDateHere

		

		

[image: image1]

MSB

LSB

Scrambling code

_935227290.doc

_1259665096.unknown

_1259651310.doc
		

		DOCUMENTTYPE

		

		1 (1)

		

		

		

		

		TypeUnitOrDepartmentHere

		

		

		

		TypeYourNameHere

		TypeDateHere

		

		

[image: image1]

MSB

LSB

Scrambling code

_935227290.doc

_1254212699.doc

LSB

MSB

Scrambling code

