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1. Introduction
System level simulations indicate that E-UTRA with two Node-B antennas offers 2-3x gains in average throughput over Rel ‘6 WCDMA deployments (see, e.g. [1]). A significant portion of these gains come from frequency domain scheduling (FDS) of UEs on resource blocks (RBs) where they have high SINR and AMC to maximize the throughput to each UE. To enable such adaptive FDS, it is essential for each UE to accurately feed back the channel quality indicator (CQI) with sufficiently fine frequency granularity. At the same time, it is extremely important to keep the UL feedback overhead for CQI feedback to a minimum. Consequently, techniques that efficiently compress the CQI information are of particular significance.
In this document, we compare some CQI feedback mechanisms in terms of their throughput and feedback overhead. We focus on the single-antenna transmission. The extension for MIMO is discussed in the companion contribution [6]. 
2. CQI Feedback Methods
The UE uses the common reference signals (RS) in each sub-frame to estimate the DL channel. It also estimates the noise variance and uses it to compute the SINR on each cluster of adjacent frequency sub-carriers. The CQI in each cluster reflects the SINR on a dB scale. Each cluster is assumed to consist of an integer number of 180 kHz RBs (e.g. 2 RBs). The cluster size, or the number of RBs per cluster, is configured by the Node B for each UE, using higher layer signaling.  We now present different schemes to feed back the CQI.

Baseline: Independent CQI Quantization

The baseline method is to feed back CQI independently on each cluster. Assuming 5-bit precision for each CQI to be fed back, this entails 5 * 25 = 125 bits of feedback for 10 MHz. Clearly, this feedback overhead is excessive and needs to be cut down. Some methods for doing so are subsequently presented.

Best-M CQI Feedback

With FDS at the Node B, each UE is likely to get scheduled in RBs where it has high CQI. Based on this observation, it was proposed in [2] to feed back the CQI on its best M clusters, along with an indication of which clusters are the best. Thus, the required feedback overhead is 5 * M + 25 bits—5 bits each for M CQIs and 25 one-bit flags indicating whether or not a cluster belongs to the best-M. 
This contribution considers a variant of the best-M method, as described in [2]. Here, a maximum difference threshold is set. The CQIs with the difference to the maximum CQI is less than the threshold are separated out. The mean of these CQIs is fed back to the Node B. In addition, a one-bit indicator is sent to indicate which of the CQIs cross the threshold. In terms of feedback requirement, this corresponds to M = 1.
The disadvantage of best-M methods is that they reduce Node-B flexibility since the Node-B has accurate CQI information only for the best few clusters from each UE and cannot reliably schedule on RBs outside this set.
Base & Delta CQI 

Independent CQI feedback ignores the fact that CQIs on different RBs are correlated. One primary source of correlation is that the CQIs are largely determined by the geometry of the UE. Thus, the individual CQIs are densely concentrated around the mean CQI. To exploit this, the following procedure has been proposed: 

1. Feed back one full-precision (5-bit) baseline CQI S0. This can be either the mean of the individual CQI [3, 4] or the CQI of a specific cluster [5].

2. Suppose there are N clusters. For each cluster, feedback the difference i = Si − S0 between the cluster CQI and the quantized baseline CQI. The delta CQI has a lower dynamic range, and can be fed back with lower precision than the baseline CQI. As simulation results show, a 3-level quantization of delta CQI suffices to reduce quantization losses.
CQI Feedback By Hierarchical Granularity Refinement (HGR)
The base + delta CQI method exploits the mutual correlation of all CQIs due to the geometry. However, it does not exploit the fact that CQIs on neighboring clusters are often strongly correlated. One way to exploit that fact while keeping the general (base + delta) structure is proposed here. 
The basic idea is to successively refine the frequency granularity. For illustration, we start with the simplest case of two clusters. In base + delta CQI feedback, first S0 = (S1 + S2) / 2 is computed. Then, 1 = S1 − S0 and 2 = S2 − S0 are computed. However, note that there is redundancy in this feedback because 1 = −2. Thus, it is sufficient to feed back only S0 and 1. Then, the two CQIs can be reconstructed as S0 + 1 and S0 − 1 respectively. This can be viewed as a two-step process, as shown in Figure 1. In stage 0, the mean CQI across the band is computed, and the frequency granularity is two clusters. In stage 1, the granularity is refined to one cluster. Note that the multi-stage structure is purely for the quantization and reconstruction process. All information, namely S0 and 1, is fed back simultaneously. 
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Figure 1. Hierarchical Structure for Two Clusters
The basic hierarchical structure can be extended to more clusters. The example of 12 clusters is shown in Figure 2. For convenience, the CQI of cluster i is labeled by the cluster index itself. In stage 0, the base CQI that is given by the mean of all cluster CQIs is computed. In subsequent stages, the mean CQI is computed over smaller and smaller sub-bands by simply adding a delta to the mean CQI over the larger sub-band. In Figure 2, for every branching out, it is sufficient to feed back one delta term. 

[image: image2]
Figure 2. Hierarchical CQI Feedback Structure for Twelve Clusters

Some features of the above hierarchical granularity refinement (HGR) method are listed below:
· Low Overhead: For N clusters, one base CQI (namely the mean CQI across all clusters) and (N − 1) deltas are fed back. Here again, the base CQI is quantized with full precision, while the delta CQIs have less precision. Simulation results indicate that 3-level delta CQI quantization suffices to reduce quantization error.  Note that the (base + delta CQI) of Section 2.3 requires N delta CQI terms. Thus, the HGR method requires one less delta CQI term to be fed back.
· Complete CQI Feedback: Unlike the best-M method, the HGR method does offer a full CQI report for all clusters and not just those with large CQI.
· Flexibility and Configurability: As mentioned earlier, the CQI granularity should be configurable by the Node B to efficiently account for network load and traffic models. The HGR method offers a natural way to do so. To limit the granularity, the network can just specify the stage at which quantization must stop. Thus, if quantization is stopped in stage 2 of Figure 2, the UE implicitly feeds back CQI over a three-cluster granularity. This specification can be done either through higher layer signaling, or during the (semi-static) CQICH grant. In addition, it allows a simple mechanism for the Node B to reduce the CQI granularity to any level for a given CQI granularity report (e.g. from 2-RB granularity to 8-RB granularity in case the Node B feels that the CQI report is not sufficiently accurate for the given frequency granularity). 
3. Link-level Simulation Results
In this section, we present link level simulation results to evaluate the CQI feedback mechanisms of Section 2. System level simulation results will be presented in later contributions. 
The algorithms are evaluated by simulations of a 5 MHz deployment with 180 kHz clusters. Thus, twenty five CQIs are fed back. The number of clusters over which a UE is scheduled depends on the traffic conditions. Under high traffic conditions, the UE is scheduled over only a few RBs. Under low traffic conditions, one UE might get the entire bandwidth. To reflect this, two cases are considered: 

1. The scheduling bandwidth per codeword is 5 RBs. Thus, in the entire bandwidth, there are 25 / 5 = 5 CQIs. In other words, the Node B combines the CQI reports on 5 clusters (5 RBs) to obtain the average CQI and chooses the MCS accordingly. 

2. In the second case, the scheduling bandwidth is the entire 5 MHz bandwidth. This case reflects the low traffic situation. The MCS is fixed across the entire bandwidth.
Other simulation assumptions are listed in Table 1 in the Appendix. Simulation results are presented for two channel profiles: Pedestrian-A with low frequency selectivity, and TU6 with high frequency selectivity. 
Three CQI compression schemes: (mean + delta), best-M and hierarchical granularity refinement. For the bandwidth under consideration, the overhead of the three schemes are tabulated in Table 1.

TABLE 1 : Feedback Required For Schemes Under consideration
	CQI Compression Scheme
	# bits required to feed back twelve CQIs

	Mean + delta
	5 + 12 * log2(3) = 24.1 ( 25 bits

	Best-M
	5 + 12 = 17 bits

	Hierarchical Granularity Refinement
	5 + 11 * log2(3) = 22.4 ( 24 bits


As seen from the table, the best-M method requires least feedback of 17 bits, while the mean + delta scheme requires most feedback of 25 bits. As expected, the performance trend is exactly the reverse. Figures 1 and 2 show the percentage throughput of the three schemes when compared to unquantized CQI feedback. Figure 1 deals with the Pedestrian A channel, while figure 2 deals with the TU6 channel. As seen from the figures,
· As expected, compression losses are higher for the more frequency selective TU6 channel. Also, compression losses are higher for the narrower scheduling bandwidth. With the broader scheduling bandwidth, CQI errors tend to even out across different clusters, hence the impact is less severe.
· For a scheduling bandwidth of 5 RBs (left side plots of Figures 1 and 2)
· The best-M performs about 2-6% worse than the other two schemes although it incurs lower feedback requirement. In particular, for the TU6 channel, it suffers up to 16% quantization loss at low geometries. 
· The HGR and mean + delta schemes perform similarly. Quantization losses are highest at intermediate geometries and reach up to 10% 
· For a scheduling bandwidth of 25 RBs, 

· For the Ped-A channel, all three schemes perform similarly and well because of the low frequency selectivity.  Quantization errors tend to average out across the band, so the throughput loss is low when compared to the narrow scheduling bandwidth.

· For TU6, the best-M scheme suffers high performance losses because it is tuned to be scheduled only in RBs of high CQI. In the other RBs, it has significant CQI estimation error due to the high frequency selectivity of the channel. However, the other two schemes give relatively granular CQI information and hence they perform well. 
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FIGURE 1: Percentage Throughput Loss Of Various CQI Compression Schemes For Ped-A Channel
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FIGURE 2: Percentage Throughput Loss Of Various CQI Compression Schemes For TU6 Channel

4. Conclusions
In this document, we evaluated the performance of various CQI compression schemes. Specifically, three schemes were compared in increasing order of feedback overhead and decreasing order of throughput: best-M, hierarchical granularity refinement and mean + delta. Link level simulation results indicate that the best-M scheme (with the least feedback overhead) incurs higher throughput losses for frequency selective channels. In these cases, the other two schemes are robust. 
The HGR scheme approaches the mean + delta scheme quite closely with a slight reduction in feedback overhead.  Further, it allows the Node B to seamlessly configure the CQI granularity and hence control the feedback overhead thereby allowing optimization and adjustments according to the traffic and channel frequency selectivity conditions. 
References
[1] 3GPP, R1-071964, Texas Instruments, “System Level Performance Validation for E-UTRA Downlink”.

[2] 3G-PP, R1-070994, Nokia, “Reduced CQI design for DL SU-MIMO”.
[3] 3G-PP, R1-050707, NTT Docomo, NEC, Sharp, “Physical Channels and Multiplexing in Evolved UTRA Downlink”.

[4] 3GPP, R1-060172, Qualcomm Europe, “Downlink Scheduling Principles for E-UTRA”.
[5] 3GPP, R1-061312, NEC, “CQI Reporting”.
[6] 3GPP, R1-072213, Texas Instruments, “Design Aspects of MIMO-Related UE Feedback”.

Appendix I

Table A-1 gives the link level simulation assumptions.
TABLE A-1: Link Level Simulation Assumptions
	PARAMETER
	VALUES

	UE Speed
	3 kmph

	Channel profile
	Ped-A, TU6

	Number of Node-B antennas
	1

	Number of UE antennas
	2

	System Bandwidth
	5 MHz

	Resource Block Bandwidth
	180 kHz 

	Modulation Schemes
	QPSK r = 1/5, 1/4, 1/3, 2/5, ½, 3/5, 2/3, ¾ 

16QAM r = 2/5, 9/20, ½, 11/20, 3/5, 2/3, ¾, 4/5, 5/6 

64QAM r = 3/5, 5/8, 2/3, 17/24, ¾, 4/5, 5/6   

	TTI duration
	1.0 ms (14 OFDM symbols)

	CQI feedback delay
	4 TTIs

	CQI Feedback Error
	Error-free CQI feedback assumed

	HARQ Feedback Delay
	8 TTIs. Error-free ACK/NACK assumed

	Max Number of HARQ Retransmissions
	3

	Scheduling Details
	MCS fixed across the scheduling bandwidth, which is either 5 RBs or the entire 5 MHz bandwidth.
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