3GPP TSG RAN WG1 #47 bis
 R1-070253
Sorrento, Italy, January 15 – 19, 2007
Source:
Texas Instruments
Title:
Turbo Code Tail Methods
Agenda Item:

6.4
Document for:
Discussion and Decision
1. Introduction
In [1], the channel coding techniques are defined for 3GPP. Turbo codes are one of those techniques used to provide error control. In [2] and [3], possible changes are discussed, such as extending the turbo codes to longer code blocks and removing the tail bits. The tail bits (tailed method) would be replaced with a technique called tail biting.
The tailed method adds tail bits which allow the turbo decoder to correctly initialize the first and last trellis stages during each iteration. The tail biting method is not backward compatible, requires additional decoder latency, and has no performance improvements. In this contribution, we demonstrate that the existing tailed method is preferred over the tail biting method.
2. Proposed Tailed Mode Approach
2.1 Tailed Method
The tailed method is the existing method in [1]. Prior to executing the encoder the encoder is initialized to the zero state. The turbo encoder is executed over the entire block, n. Finally, the switches shown in Figure 1 are turned to the tailed connection (labeled Tail1 and Tail2 in the figure). Each of the constituent encoders is executed 3 more times to reset both of the constituent encoders back to the zero state. For a code rate of 1/3 the turbo encoder will output S1, P1, and P2 n times and S1, P1, S2, P2 three times. A total of
[image: image1.wmf]12

3

+

n

 bits are output from the turbo encoder.

[image: image2.emf]D D D

.

.

S1

P1

Tail1

D D D

.

.

S2

P2

Tail2

Interleaver

Figure 1 – Turbo Encoder Using the Tailed Method
The turbo decoding function is done in an iterative manner. The BCJR algorithm consists of both a forward and backward recursion through the trellis. Correct initialization of the trellis is required for optimum performance. The tailed method allows the decoder to initialize both the starting and ending trellis stages with the zero state.

2.2 Tail Biting Method

The tail biting method does not transmit the tail bits as described in the previous section as shown in Figure 2. Therefore, all the transmitted bits retain the original code rate. For a code rate of 1/3 the number of transmitted bits is
[image: image3.wmf]n

3

. The tail biting method requires that each of the constituent coders encode the information bits twice. The first encode determines the initial state of the constituent convolutional code and the second encode to perform the actual encoding. The initial and final states after the second encode are identical.

[image: image4.emf]D D D

.

S1

P1

D D D

.

P2

Interleaver

Figure 2 – Turbo Encoder Using the Tail Biting Method

Since the constituent codes are recursive, the initial state of the first constituent encoder is determined in two steps as follows:
Step 1. Initialize the encoder with the 0 state. Encode the information bits in the natural order and denote the final state as
[image: image5.wmf]n

SO

.

Step 2. Use Table 1 to determine the initial state of the encoder based on n and
[image: image6.wmf]n

SO

. Encode the information block in the natural order.
The above two steps are repeated for the second encoder except that the information bits are in an interleaved order.

	n mod 7
	
[image: image7.wmf]n

SO

	
	0
	1
	2
	3
	4
	5
	6
	7

	1
	0
	6
	3
	5
	7
	1
	4
	2

	2
	0
	4
	5
	1
	2
	6
	7
	3

	3
	0
	3
	4
	7
	1
	2
	5
	6

	4
	0
	2
	6
	4
	5
	7
	3
	1

	5
	0
	5
	7
	2
	6
	3
	1
	4

	6
	0
	7
	1
	6
	3
	4
	2
	5

Table 1 – Tail Biting Recursive Convolutional Code State Transformation Table
The transformation does not support all block sizes. Note that block sizes that satisfy the equation
[image: image8.wmf])

0

7

%

(

=

n

are not supported [4]. Additional padding bits (1 systematic and 2 parity bits for a total of 3 bits) are required to support all block sizes from 40 to 5114 [5].
The turbo decoding function is done in an iterative manner. The BCJR algorithm consists of both a forward and backward recursion through the trellis. Unfortunately, the initial and final trellis stages are not known for the first iteration. These trellis stages must be initialized with the null state (i.e. initialize all 8 individual states with the same identical value). This incorrect initialization causes suboptimum performance results and can require additional iterations as compared with the tailed method. After the first iteration, the 8 individual states for both the first and last trellis stages can be saved and this data can be used as initialization values for the following iteration. This sequence can be repeated for each iteration.
In software implementations the turbo encoder is one of the baseband functions that require a significant amount of processing. The tail biting method requires twice the processing as compared with the tailed method.

3. Simulation Results

Simulation results that compare the tailed method vs. the tail biting method for bit error rate (BER) and frame error rate (FER) are shown for several block sizes. Each simulation used the following parameters: AWGN channel, code rate = 1/3, 8 iterations, and LogMAP decoder. Each simulation was identical except for the method of initialization of the first and last trellis stages. The tailed method set the stages to the zero state. The tail biting method set the first and last trellis stages to the null state for the first iteration. Saved the final trellis stages at the end of the iteration and used those values to initialize the following iteration. In each scenario, the BER and FER are plotted against Eb/No.
[image: image9.wmf])

*

2

/

1

log(

10

/

2

s

R

No

Eb

=

 where
[image: image10.wmf]t

n

n

R

+

=

3

 . For the tailed method t=12, for the tail biting method where
[image: image11.wmf])

0

7

%

(

¹

n

t=0, and for the tail biting method where
[image: image12.wmf])

0

7

%

(

=

n

 t=3. The normalized plots effectively scales the Eb/No from 0.413dB for n=40 to 0.0034dB for n=5114 for the t=0 cases and from 0.2928dB to 0.0025 for the t=3 cases as compared to a SNR plot.
Figure 3 shows the simulation results for the smallest block size for n=40. The Eb/No plot shows an additional simulation made with a “genie” decoder using the tail biting method. The “genie” decoder was given the starting states for both constituent coders for step 2. This allowed the decoder to initialize both the first and last trellis stage for each iteration. The “genie” Eb/No curves are better than the tailed mode plots. This is the advantage of correct initialization of the first and last trellis stages without having to transmit the tailed bits. Each of these curves is simulated for 8 iterations. Notice also that the gain of the “genie” decoder diminishes as the block size is increased. This is evident from Figure 4 and the fact that the relative overhead due to the tail bits is smaller for larger block sizes.
Figures 3 to 5 show the simulation results for various block sizes. Overall, we observe that tail biting has approximately the same performance as the tailed method.

 [image: image13.emf]0 1 2 3 4 5 6

10

-7

10

-6

10

-5

10

-4

10

-3

10

-2

10

-1

10

0

Eb/No in dBs

BER and FER

n=40 R=1/3 iteration=8

BER tail

BER tailBite

BER tailBite genie

FER tail

FER tailBite

FER tailBite genie

[image: image14.emf]0 1 2 3 4 5

10

-7

10

-6

10

-5

10

-4

10

-3

10

-2

10

-1

10

0

Eb/No in dBs

BER and FER

n=64 R=1/3 iteration=8

BER tail

BER tailBite

BER tailBite genie

FER tail

FER tailBite

FER tailBite genie

Figure 3: Simulation results for n=40 (left) and n=64 (right)
 [image: image15.emf]0 0.5 1 1.5 2 2.5

10

-7

10

-6

10

-5

10

-4

10

-3

10

-2

10

-1

10

0

Eb/No in dBs

BER and FER

n=256 R=1/3 iteration=8

BER tail

BER tailBite

BER tailBite genie

FER tail

FER tailBite

FER tailBite genie

Figure 4: Simulation results for n=256
 [image: image16.emf]0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10

-7

10

-6

10

-5

10

-4

10

-3

10

-2

10

-1

10

0

Eb/No in dBs

BER and FER

n=3840 R=1/3 iteration=8

BER tail

BER tailBite

FER tail

FER tailBite

[image: image17.emf]0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10

-8

10

-6

10

-4

10

-2

10

0

Eb/No in dBs

BER and FER

n=5088 R=1/3 iteration=8

BER tail

BER tailBite

FER tail

FER tailBite

Figure 5: Simulation results for n=3840 (left) and n=5088 (right)
Figure 6 shows the average number of iterations for n=64 using a stopping criteria “genie.” The simulation was halted once the decoded decision bits were equal to the information bits. We observed that the tailed method converged to a solution with a fewer number of iterations. Average number of iterations relates directly to latency and power. Reducing the number of iterations is beneficial to both hardware and software solutions.
These curves show that correct initialization of the first and last trellis stages is important. If the trellis is not initialized correctly, it takes several trellis stages to achieve optimum values as if the trellis was initialized correctly. The number of trellis stages ranges from 3x to 5x the constraint length. This type of redundant trellis stage initialization is called the convergent section in the “windowing” algorithm. For turbo decoders there exist two convergent regions, one at the beginning of the trellis (forward recursion) and one at the end of the trellis (reverse recursion). These two regions occupy a greater percentage of the total number of trellis stages for smaller blocks as compared with larger blocks for the tail biting method. This is the reason that the tail biting mode requires additional iterations and has a worse SNR when the curves are not normalized.

 [image: image18.emf]0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

1

2

3

4

5

6

Eb/No in dBs

average number of iterations

n=64 R=1/3

tail

tailBite

Figure 6: Average Number of Iterations with the Genie Stopping Simulation
4. Comparison between the Two Methods

Table 2 summarizes the comparison between the existing tailed method and the tail biting for the 3GPP turbo coder:
	Aspect
	Tailed Method
	Tail Biting Method

	Performance
	Baseline
	Same

	Decoder latency
	Better
	Worse

	Backward compatibility
	Identical to Rel. 6
	No backward compatibility

	Supported block sizes
	All
	Block sizes with integer multiples of 7 are not supported (need padding).

	Encoder complexity
	Low (1 pass)
	High (2 passes)

	Trellis initialization
	Simple (Identical to Rel. 6)
	Complex (requires additional initialization logic)

	Overhead
	12 tail bits per block: 10% overhead for n=40 and 0.078% overhead for n=5144
	None for
[image: image19.wmf]0

7

%

¹

n

and
3 pad bits for
[image: image20.wmf]0

7

%

=

n

: 2.38% overhead for n=42 and 0.02% overhead for n=5110

Table 2 – Comparison between Tailed Method vs. Tail Biting Method
5. Conclusions

This contribution described the differences between the existing tailed method and a tail biting method proposed in [3]. The tailed method is well understood, supports all block sizes, backward compatible, lower latency, and a lower power solution. Replacing the existing tailed method with tail biting does not improve the performance and has a higher latency. In addition, tail biting requires two encoder passes (hence increased complexity), and is more restrictive in terms of supportable block sizes, and is not backward compatible. Therefore, it is recommended that we keep the existing tailed method for LTE.

References
[1] 3GPP TS 25.212 v6.4.0 (2005-03): “Multiplexing and Channel Coding (FDD) (Release 6)”.

[2] 3GPP TR 25.814 v1.0.1 (2005-11): “Physical layer aspects for evolved UTRA (Release 7)”.

[3] R1-061050, “EUTRA FEC Enhancement”, Motorola, France Telecom, GET, Orange.

[4] R1-062157, “System impact of Rel’6 turbo coding tail-bits removal”.

[5] R1-063242, “Tail-biting encoding for 3GPP LTE turbo code of arbitrary number of information bits”, Broadcom.

_1226126942.vsd
D

D

D

.

.

S1

P1

Tail1

D

D

D

.

.

S2

P2

Tail2

Interleaver

_1227592624.unknown

_1229239394.unknown

_1229241142.unknown

_1229241181.unknown

_1229239485.unknown

_1229239320.unknown

_1229239367.unknown

_1226127036.vsd
D

D

D

.

S1

P1

D

D

D

.

P2

Interleaver

_1225277768.unknown

_1225278066.unknown

_1225278135.unknown

_1225266128.unknown

_1225277116.unknown

