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1 Introduction 

Turbo coding was suggested for 3GPP LTE channel coding. For this coding system, 
algebraic interleave, almost regular permutation (ARP) [3], is considered as one of the 
candidates. On the other hand, due to the high data throughput and large block size for 
LTE parallel decoding of turbo code becomes necessary. In parallel decoding, the 
decoding algorithm is windowed by dividing the entire block into some subblocks and 
performing shorter recursions inside the subblock, all assigned to distinct decoding 
processors working in parallel. Since every processor uses the same algorithm, they 
all access the memory at the same time instants. This may cause collisions, that is two 
(or more) accesses at the same time are attempted to the same memory bank, see Fig.1. 
The collisions will weaken the efficiency of the decoding implementation.  

 

Fig.1 [1]  (a) Absence of collisions.  (b) A collision happens 

In [1], it is shown that there always exists collision-free memory accessing for parallel 
decoding of any degree and for any interleave. However, in general, the method given 
in [1] is somehow ad-hoc and is not implementation friendly, especially when a big 
amount of different block sizes (e.g. the coding system for LTE) have to be supported. 
In this document, we first reviewed three published formulaic collision-free memory 
accessing methods [2-4], which work only when the number of processors used is in a 
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small restrictive set. We then propose a new scheme that allows for more flexible 
parallelization.  

 

2 Parallel Turbo decoding and collision-free memory 

mapping 

To carry out a parallel decoding with P parallel processors, one has to partition the 
interleave L of turbo code to P subblocks. Since turbo code uses convolutional 
encoder as its constituent encoder, the consecutive symbols are connected through the 
states and therefore the subblock has to contain consecutive information bits, Fig.2. 
We call the subblock a window and its size the window size.  

 

                         Figure 2. Parallel decoding 

Let index set of the information sequence be }1,,1,0{ −= LI L  and the index set of 

the interleaved information sequence be )}1(,),1(),0({)( −= LI ππππ L . Then the 

index sets of the P windows for I  are  

}1,)1{(,},12,1,{},1,,1,0{ −−−+− PWWPWWWW KLKK  

see Fig.3. 
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Figure 3. Partition positions  

The set of the elements in every column of Figure 3 is defined to be  

        })1(,,,,,{ iWPisWiWiEi +−++= KK ,                      (EQ-1) 

i.e. the set of the all i-th elements in all P windows. In fact, at cycle i, the P proposes 

will perform decoding in parallel on the bits of the indices in iE . 

On the interleave side, the index sets of the P windows for )(Iπ  are  

)}1(),)1(({,)},12(),1(),({)},1(,),1(),0({ −−−+− PWWPWWWW ππππππππ KLKK

 

 

Figure 4. Partition position for interleaved information 
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 π(0)       π(1)       π(2)      ...   π(t)      ...      π(W-1) 

 π(W)      π(W+1)   π(W+2)    ...   π(W+t)    ...     π(2W-1) 

π(sW)     π(sW+1)    π(sW+2)  ...    π(sW+t)  …    π ((s+1)W-1) 

π(((P-1)W)    π(((P-1)W+1)  π((P-1)W+2)  ...    π((P-1)W+t)  ...       π(PW-1) 

...          

...          

Processor 0 

Processor 1 

Processor s 

Processor P-1 

Window size W, # Parallel processor=P, Block size PW 

Cycle 0    Cycle 1    Cycle 2  ...     Cycle t  ...     Cycle W-1 

   0          1        2      ...      t      ...       W-1 

   W        W+1     W+2    ...     W+t    ...      2W-1 

   sW       sW+1    sW+2    ...      sW+t  …     (s+1)W-1 

(P-1)W    (P-1)W+1  (P-1)W+2  ...   (P-1)W+t  ...      PW-1 

...          

...          

Processor 0 

Processor 1 

Processor s 

Processor P-1 

Window size W, # Parallel processor=P, Interleave size PW 



R1-070172 4

Similarly, we define  

     )})1((,),(,),(),({ˆ iWPisWiWiEi +−++= ππππ KK                (EQ-2) 

Then a map M  defined from the index set I and  )(Iπ  to the set 

}1,,1,0{ −= PZP K   is called a collision-free mapping [1] for parallel decoding with 

parallel degree P if it satisfies the following condition:  

 )()(, jjEjj
i

′≠⇒∈′ MM  and )()(ˆ, jjEjj
i

′≠⇒∈′ MM   (EQ-3)   

for every jjLjj ′≠−∈′ },1,,0{, L  and all possible i , in other words, the decoded 

values belonging to the index set at cycle i should be stored into different memory 
banks.  

In [1], it is proved that for any given interleave there always exists a collision-free 
mapping for parallel decoding of any parallel decoding processor. However, to a 
communication system which need support channel coding of many different block 
sizes, the method to generate such a mapping given [1] is hardly implementable.  

In [2], one formulaic collision-free mapping is defined, which maps )( ijW +π  to 

⎣ ⎦WijW /)( +π  and )(1 ijW +−π  to ⎣ ⎦WijW /)(1 +−π , where W is the 

window size. An interleave is called the contention-free in [2] if such a mapping used 
in this interleave will give collision-free memory accessing. Since this mapping uses 
division, we call it division mapping. In fact, the mapping can be represented by 

                      ⎣ ⎦WiiWDIV /:, aM                        (EQ-4) 

An interleave which is contention-free using this division mapping for all possible 
window size that divides the interleave length is called a maximum contention-free 
interleave in [4]. However, as we will show in the following sections, the division 
mapping is not the only formulaic collision-free mapping and furthermore many 
interleave may not be maximum contention-free interleave when restrict the formulaic 
mapping to the division mapping.   
                                       

3 Almost regular permutation (ARP) and its properties 

An almost regular permutation (ARP) of size CWL = (i.e. C is a divider of L) 
introduced in [2] is defined by  
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 LCjBPCjAjPji mod)mod()mod()( 00 +++== θπ  (EQ-5)                

where P0 is relative prime to L, θ is a constant and )(xA  and )(xB  are integer 

function defined on }1,,1,0{ −CL . To insure the function defined the function is a 

permutation (i.e. one to one and on to), in [2] )(xA  and )(xB  are further restricted 

to 

          1,,0)],()([)()(
00

−=+=+ CiiPiCiBPiA Kβα   

 
where α and β are integer functions.  In this document, we call C the dithering 
period (or period in short) of the ARP. 

Example 1 Let 4,24 == CL  and 70 =P . Define 
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is an ARP of size 24 such that (π(0), π(1), π(2), …π(22), π(23))  = (0,11,22,5,4,15, 
2,9,8,19,6,13, 12,23,10,17,16,3, 14,21,20,7,18,1).    

□ 
Let π be an ARP interleave of size L with period C. Then we have the following 
properties. 

Proposition 1 Cxx mod)()( 10 ππ = if and only if Cxx mod10 = . 

Proposition 2 π is also an ARP interleave with period mCC =
~ provided LC |~ . 

Proposition 3 If π is an ARP interleave then its inverse π-1 is also ARP. 
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4 Formulaic collision-free memory accessing mapping 

class I: Restricted parallel decoding processor number 

Consider an ARP interleave of size L. Then the period C of the ARP is a factor of L. 
We can write L=CM. The memory accessing mapping discussed in this section 
restricts the number of parallel processors to be a divisor of the interleave length.  

4.1 Division mapping 

Let number of parallel processors P be a factor of M=L/C. Then the division mapping 
(EQ-4) [3] with window size W=L/P is collision-free. This method is used in 
Motorola’s proposal [6]. We state this conclusion as a theorem below. 

Theorem 1 Let π be an ARP of size L with period C and P and W defined as above. 

If the window size is a multiple of C, then ⎣ ⎦W
xxDIV,W →:M  is collision-free. □ 

However, if C is not a factor of window size (equivalently P is not a factor of M). 

Then the mapping WDIV ,M  may not be collision-free, see the following example. 

Example 2 Consider the ARP of size L=24 from Example 1. We have C=4. Take P=4 
we have W =6 which is not a multiple of C, i.e. not satisfy the condition given in 
Theorem 1. With these parameters we have the following. 
 

Cycle 
i  i

E  )(
6, iDIV

EM  
i

Ê  )ˆ(
6, iDIV

EM  

0 0,6,12,18 0,1,2,3 0,2,12,14 0,2 
1 1,7,13,19 0,1,2,3 11,19,23,21 1,3 
2 2,8,14,20 0,1,2,3 22,8,10,20 1,3 
3 3,9,15,21 0,1,2,3 5,19,17,7 0,1,2,3 
4 4,10,16,22 0,1,2,3 4,6,16,18 0,1,2,3 
5 5,11,17,23 0,1,2,3 15,13,3,1 0,2 

 

6,DIVM  puts 4 outputs from the four parallel decoding processors to 2 memory banks. 

This causes the collision. 
□ 

Proposition 4 If the period C of an ARP is a prime number, then WDIV ,M  with any 

window size that dividing the interleave length L is a collision-free.             □ 
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4.2 Modulation mapping 

In [2], another memory mapping is introduced for ARP, i.e.  

CiiCMOD mod:, aM  

where C is a period of the ARP and the number of parallel processor P=C. We call 
this a modulation mapping. By Proposition 2, we can extent this mapping to the 
following 

                   CiiCMOD

~mod:~, aM                       (EQ-6) 

where mCC =
~  and LC |~ , i.e. the number of parallel processors is CP ~

= . 

Moreover, the window size is CLW ~/= . 

The following theorem shows a sufficient condition of collision-free mapping for 
modulation mapping. 

Theorem 2 Suppose the number of parallel decoding processors CP ~
=  and L=PW, 

i.e. W is the window size. If 1)~,gcd( =CW  then CMOD ~,M is collision-free.      □ 

If the condition 1)~,gcd( =CW  does not hold, the following counter-example 

shows that  CMOD ~,M  may not be collision-free. 

Example 3 Consider the ARP in Example 1, we have the interleave size L=24 and the 

period C=4. Take P=C=4 we have the window size W=6. With 4,MODM , we have 

 
Cycle 
i  i

E  )(
4, iMOD

EM  
i

Ê  )ˆ(
4, iMOD

EM  

0 0,6,12,18 0, 2 0,2,12,14 0,2 
1 1,7,13,19 1,3 11,19,23,21 1,3 
2 2,8,14,20 0,2 22,8,10,20 0,2 
3 3,9,15,21 1,3 5,19,17,7 1,3 
4 4,10,16,22 0,2 4,6,16,18 0,2 
5 5,11,17,23 1,3 15,13,3,1 1,3 

 

4,MODM  maps 4 outputs from the 4 parallel decoding processors to 2 memory banks, 
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which causes a collision.  

4.3 Combined mapping 

Consider an ARP interleave of size L and period C. We have shown in the previous 

sub-sections that when number of parallel processor mCCP ==
~  provided LC |~  

both division mapping WDIV ,M ( CLW ~/= ) and modulation mapping CMOD ~,M  may 

not be collision-free. In [6] we proposed a formulaic mapping that guarantees the 
collision-free property for all possible number of parallel processor 

mCCP == ~  provided LC |~ . Since this method uses both division and 

modulation we call it combined method which is defined as follows 

                      C
qW

xxxWCCOM

~mod)(:,~, ⎥
⎦

⎥
⎢
⎣

⎢
+aM                (EQ-7) 

where q is the smallest positive integer such that CqW ~mod0=  and CLW ~/=  is 

the window size. 

Theorem 3 Let the number of parallel decoding processors mCCP ==
~  and the 

interleave length L=PW, where W is the window size. Then WCCOM ,~,M  is always 

collision-free. 

Example 4 Consider the ARP from Example 1 with 4,24 == CL . When take the 

number of parallel processor P=4, i.e. the window size W=6, both 6,DIVM  and 

6,MODM  are failed to be collision-free, see Examples 2 and 3. As defined in the 

combined mapping we have  2=q  with 12=qW . Then 

Cycle 
i  i

E  Mod 4 
⎥
⎦

⎥
⎢
⎣

⎢

12
x  )(

6,4, iCOM
EM  

0 0,6,12,18 0,2,0,2 0, 0,1,1 0,2,1,3 
1 1,7,13,19 1,3,1,3 0,0,1,1 1,3,2,0 
2 2,8,14,20 2,0,2,0 0,0,1,1 2,0,3,1 
3 3,9,15,21 3,1,3,1 0,0,1,1 3,1,0,2 
4 4,10,16,22 0,2,0,2 0,0,1,1 0,2,1,3 
5 5,11,17,23 1,3,1,3 0,0,1,1 1,3,2,0 
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On the other hand,  

Cycle 
i  i

Ê  Mod 4 
⎥
⎦

⎥
⎢
⎣

⎢

12
x  )ˆ(

6,4, iCOM
EM  

0 0,2,12,14 0,2,0,2 0, 0,1,1 0,2,1,3 
1 11,19,23,21 3,1,3,1 0,0,1,1 3,1,0,2 
2 22,8,10,20 2,0,2,0 1,0,0,1 3,0,2,1 
3 5,19,17,7 1,3,1,3 0,1,1,0 1,0,2,3 
4 4,6,16,18 0,2,0,2 0,0,1,1 0,2,1,3 
5 15,13,3,1 3,1,3,1 1,1,0,0 0,2,3,1 

Therefore, 6,4,COMM  is collision-free.                                     □ 

4.4 Memory arrangement  

With division mapping WDIV ,M , the output data from the processors can be stored in 

the memories according to the natural order. With other two mappings PMOD,M  

and WPCOM ,,M , the data are put in the memories in such a way that they are accessed 

sequentially in the interleaved phase. 

5 Formulaic collision-free memory accessing mappings 

class II: Flexible parallel-processor number 

In the previous section, the number of parallel processors is limited to be a factor of 
the interleave length. For example, take the interleave size L =4272=8*6*89 and let 
the dithering period of ARP be C=8. Then  

 Using WDIV ,M , the number of parallel decoding processors P must be a factor 

of L/8=6*89, that is 6, 89 or 534; 

 Using CMOD ~,M , the number of parallel decoding processors P must be 16 or 

48 

  Using WCCOM ,~,M , the number of parallel decoding processors P must be 8, 

16, 24, 48 or 712. 
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However, when the number of the parallel decoding processors P=2, 3, 4, 5, 7, 9 10, 
11, 12, 13, 14, 15, 17, 18, 19 or 20, all the three mappings cannot be used. In the 
following we propose a flexible but still formulaic memory mapping that will 
accommodate all the above mentioned P for this example.  

Consider an ARP of size L and period C. By Proposition 2, all mCC =
~ provided 

LC |~  is also a period. Given any number of parallel processors P such that CP ~
≤ . 

Take a window size W be a smallest number satisfy 

 a) PLW /≥ and b) 1)~,gcd( =CW .                               (EQ-8) 

Let WPL *'= . We can now consider parallel decoding on an “virtual” interleave 
length 'L . Using Figure 4 (or 5 we notify that some cycle with either LtsW >+ (or 

LtsW >+ )(π ) becomes dummy cycle, i.e. the corresponded processor in that cycle 

will do nothing. The modulation mapping once again can be used as a collision-free 

mapping thanks to the condition b) 1)~,gcd( =CW . Since the window size W plays an 

important role we re-denote the modulation map to be  

CiiWCMOD

~mod:,~, aM . 

We now have the following theorem. 

Theorem 4 Let the number of parallel decoding processors P be any number satisfy 

CP ~
≤ for any mCC =

~  provided LC |~ . When the window size W satisfies 

conditions in (EQ-8), then WCMOD ,~,M is a collision-free memory accessing mapping. 

Example 5 Consider the ARP of size L=24 and period C=4 form Example 1. Let P=5, 

we have 8~
=C  and 5/5 LW >= . Then, 25*' == WPL . Using 5,8,MODM we have  

Cycle 
i  i

E  )(
5,8, iMOD

EM  
i

Ê  )ˆ(
5,8, iMOD

EM  

0 0,5,10,15,20 0,5,2,7,4 0,15,6,17,20 0,7,6,1,4 
1 1,6,11,16,21 1,6,3,0,5 11,2,13,16,7 3,2,5,0,7 
2 2,7,12,17,22 2,7,4,16 22,9,12,3,18 6,1,4,3,2 
3 3,8,13,18,23 3,0,5,2,7 5,8,23,14,1 5,0,7,6,1 
4 4,9,14,19 4,1,6,3 4,19,10,21 4,3,2,5 
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Let us go back to the example given at the beginning of this section, i.e. the interleave 
length L =4272=8*6*89 and period of the ARP C=8. Then using this new mapping 
method we have 

P  

(#parallel 
processors) 

C~  

 Period 

W  

(window size)

L’  

(virtual size)  

2 8 2137 4274 

3 8 1425 4275 

4 8 1069 4276 

5 8 855 4275 

6 8 713 4278 

7 8 611 4277 

8* 8 535 4280 

9 16 475 4275 

10 16 429 4290 

11 16 389 4279 

12 16 357 4284 

13 16 329 4277 

14 16 307 4298 

15 16 285 4275 

16 16 267 4272 

17 24 253 4301 

18 24 239 4302 

19 24 227 4313 

20 24 215 4300 

     

*) when P=8  534,8,COMM  can also be used.                               
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6 Conclusion 

In this document we first studied the three existing formulaic collision-free mapping 
for parallel turbo decoding using ARP as it’s interleave and we show the pros and 
cons of these interleaves. The rule of using all these mapping is that the number of 
parallel decoding processors has to be a divisor of the interleave length. To overcome 
this hurdle we proposed a more flexible but still formulaic collision-free mapping 
which allows the number of parallel decoding processor to be almost any number. 
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