3GPP TSG RAN WG1 Meeting #47
R1-070113
Sorrento, Italy, Jan 15–19, 2007
Agenda Item:
6.4
Source:
ITRI
Title:
Shortening and pruning for turbo coding
Document for:
Discussion
1 Introduction
This contribution discusses the shortening and pruning strategies for turbo coding in information block matching. The shortening and pruning do not provide much implementation complexity but the performance is completely different. The shortening strategy has two advantages:

· Stable error rate performance comparing to the pruning;
· Simpler performance evaluation in turbo coding interleaver.
2 Shortening and pruning
2.1 Turbo coding error event and interleaver design
Turbo code error events are highly correlated with the non-zero element coordinates of an input sequence. The component code of turbo code is a recursive convolutional code and low weight output sequences are usually corresponding to some special patterns. Figure 1 shows two important error events, the weight-2 and weight-4 error events. A coordinate pair generates a finite weight codeword if coordinates difference is multiple of Tc for both pre-permutation and post-permutation where Tc is the period of the component code. A good interleaver always promise large m and n in Figure 1 (a) and m, n, p and q in Figure 1 (b) and the corresponding codeword weights are large.
[image: image1.jpg]
Figure 1: Turbo code error events.
[image: image2.jpg]
Figure 2: Shortening and pruning comparison.

2.2 The shortening strategy

The shortening strategy decreases distance by at most 1 for each shortened position. The shortening strategy assigns a dummy bit before encoding. After encoding it removes the dummy bit and parity bit. Because the parity bit is removed, the shortened codeword weight decreases by at most 1. A good interleaver generally has large distance and shortening strategy does not influence performance significantly if the shortening positions are not close.
2.3 The pruning strategy
The pruning strategy creates low weight codeword. The strategy assigns a dummy bit and skips the bit when encoding. Therefore a pruned interleaver is completely different to the mother interleaver. Figure 2 (b) shows a pruning example. The mother interleaver moves j’’=j+1 to j’. Because the difference between i and j’’ is Tc+1, it does not generates low weight codeword. However j’’ is shifted to j because one bit is pruned before j’’. The difference between i and j is Tc and a low weight code is generated due to both (i,j) and (i’,j’) pairs have coordinates difference Tc. An unexpected low weight codeword occurs.

Even if a mother interleaver has an outstanding distance property, the pruned interleaver has completely different nature to the mother interleaver. The more bits pruned, the more kinds of interleavers generated. That’s why the Rel-6 turbo coding has higher error floor.
3 Interleaver search
The shortening strategy is better than the pruning strategy for the interleaver search. The shortening only decreases the distance by at most 1 for each shortened bit. We can simply test the case shortening most bits and the performance can not be worse than that. Therefore we only have to test two patterns for one interleaver parameter. The pruning strategy generates one different interleaver for each pruned interleaver. If at most 30 bits could be pruned, 31 kinds of interleavers include the mother interleaver have to be verified. Therefore shortening strategy reduces our interleaver searching time and simplifies our interleaver verification flow.
4 Conclusions

The shortening strategy does not causes significant performance loss comparing to its mother interleaver if the shortening positions are carefully assigned. The performance verification is also simpler than the pruning strategy.

2
2

