3GPP TSG RAN WG1#44bis R1-060872
Athens, Greece. 27 - 31 March 2006
Agenda Item:

10.4.1
Souce:

Intel, ITRI, LG, Mitsubishi, Motorola, Samsung, ZTE
Title:
Parallelism Limitations of Turbo Codes
Document for:
Discussion

1. Introduction
According to TR25.913, the system should support an instantaneous downlink peak data rate of 100Mb/s within a 20 MHz downlink spectrum allocation (5 bps/Hz) and an instantaneous uplink peak data rate of 50Mb/s (2.5 bps/Hz) within a 20MHz uplink spectrum allocation. This contribution shows that the current turbo code scheme will not be able to achieve such a high throughput target for medium-to-low code sizes without sacrificing performance, although it may not be problematic for very large block sizes. This is mainly due to the fact that the turbo-decoding algorithm inherently operates in a serial mode, and hence applying parallelization techniques (e.g., windowing) will result in significant performance degradation when the window size is too small. This contribution does not discuss the implementation issues related to windowing of current turbo codes. For instance, it is well-known that the current turbo internal interleaver does not have the contention-free property, thus making the parallelism more difficult to implement in hardware.
As an alternative to the rate 1/3 turbo code currently defined [2], a promising channel coding candidate to consider is low-density parity-check (LDPC) code. As discussed in [3], LDPC codes have several advantages over turbo codes. Since LDPC decoding is inherently parallel, the amount of parallelism is limited only by the hardware constraints. Unlike turbo codes, the parallelism in LDPC decoders does not affect the performance. Studies have shown that LDPC decoders are capable of achieving very high throughput [5]

 REF _Ref130364950 \r \h
[6] while achieving error-correcting performance that is close to that of the turbo codes. The advantages of LDPC codes make them a very good FEC candidate for LTE and its future evolutions. LDPC codes have been adopted in several standards, including DVB-S2 digital video broadcasting, IEEE 802.11 wireless LAN, and IEEE 802.16 wireless MAN.
2. Parallelism Limit in TC Decoder
One drawback of the TC decoder for high-data rate applications is that increasing the degree of parallelism can lead to significant performance degradation. When the parallel window size falls below a certain level, the information depth (i.e., window size) is insufficient to provide maximum performance.
As an example, Figure 1 shows the impact of decoding window size on performance using information block size 2048 and code rate 5/6 in an AWGN channel using BPSK modulation. The Log-MAP algorithm and eight decoding iterations are used. The figure shows that a window size of 64 leads to about 0.1 dB loss while a window size of 32 leads to a loss of 0.25 dB. Thus, for this example, a window size of 64 or above should be used, i.e., a parallelism factor of 2048/64 = 32 or smaller. Even if a 0.25 dB performance loss is tolerable, the window size can be no smaller than 32 (i.e., parallelism factor 2048/32 = 64 or less). In contrast, the LDPC codes could potentially allow a parallelism of up to 2048 ((1‑5/6) (341 for this case.
[image: image1.wmf]
Figure 1.
Impact of window size on turbo decoding performance.

Similar phenomenon (i.e., increased performance degradation with reduction in window sizes) may be observed for other coding rates as well. Thus the amount of parallelism required, and therefore the resulting window size, is a function of the decoder clock rate, the desired data rate, the block size and the allowed number of iterations. While the complexity will increase due to increased parallelism in any decoder, the TC and LDPC differ in that the TC will necessarily experience performance degradation as the window size decreases below about five constraint lengths. The algebraic nature of the LDPC allows full parallelism without performance degradation. This feature is the key for scalability to high data rates.

[image: image2]
Figure 2.
This is a graphical depiction of an exemplary parallel decoding of one half-iteration of a Turbo Code block. The parallelism factor is assumed to be four. Each of the backward passes (i.e., beta recursion) is performed on the sub-blocks in parallel with a small initialization section in overlap with the adjacent block. Then the forward passes (alpha recursion and output message generation) are performed on the same sub-blocks in parallel.

For analysis purposes, an example parallel TC decoding system is shown in Figure 2. For each half-iteration the BCJR algorithm performs a backward and a forward pass on the data. In a parallel architecture the passes are broken into sub-blocks as shown, and a backward and a forward pass are done on each sub-block. On the backward pass each block can be initialized using several trellis sections of the adjacent window. Note that the decoder in Figure 2 is used for illustration purposes. Other ways to initialize the windows are also possible, such as (a) no initialization or (b) initializing both forward and backward recursions.
In the following the relationship between target data rate and decoder parameters is derived, including the number of parallel windows, window size, and the number of iterations. For this analysis the following notations will be used:

N = information block size of a codeword, which is equal to the trellis length of a constituent code.
N1 = APP backwards pass initialization overhead, for this analysis N1 = 10.
Np = Parallelism factor, i.e., the number of parallel windows used in the decoder.
ITC = Number of decoding iterations.
fclk = Decoder processing clock rate.
RD = Decoder data rate.
The number of computational clocks per bit per BCJR computation, assuming one clock each for the backward and forward passes, is

[image: image3.wmf]N

BCJR

2

N

N

p

æ

ç

è

ö

÷

ø

N

1

+

N

:=

which can be rewritten as

[image: image4.wmf]N

BCJR

2

N

p

N

1

N

+

:=

.

Since there are two constituent codes and ITC iterations are used, the number of clock cycles per bit is then

[image: image5.wmf]N

bit

2

I

TC

×

2

N

p

N

1

N

+

æ

ç

è

ö

÷

ø

×

:=

which can be rewritten as

[image: image6.wmf]N

bit

4

I

TC

×

N

p

2

I

TC

×

N

1

×

N

+

:=

.

The required system clock rate can then be written as

[image: image7.wmf]f

clk

R

D

4

I

TC

×

N

p

2

I

TC

×

N

1

×

N

+

æ

ç

è

ö

÷

ø

×

:=

.

Np is then a function of the system parameters as follows:

[image: image8.wmf]N

p

f

clk

I

TC

,

R

D

,

(

)

ceil

4

I

TC

×

f

clk

R

D

2

I

TC

×

N

1

×

N

-

æ

ç

è

ö

÷

ø

é

ê

ê

ê

ë

ù

ú

ú

ú

û

:=

where the ceiling function is used to provide an integer number for the parallelism factor. Therefore the parallel decoder window size can be computed simply as

[image: image9.wmf]N

win

N

N

p

f

clk

I

TC

,

R

D

,

(

)

:=

,
ignoring the fractions. The above analysis yields the characteristics shown in Figure 3 through Figure 6. For the 3GPP Turbo Code performance degradation becomes evident for window sizes less than about 32 bits, which is shown by the horizontal marker in Figure 4 and Figure 6. It can be seen that high clock rates or low iteration counts would be required in order to guarantee performance for a TC at data rates near 100 Mbps and above. Moreover, the problem gets worse as the data rate increases. Therefore, future scalability of the proposed system beyond 100 Mbps will quickly become prohibitive with the complexity/performance trade-off of the Turbo Code.

[image: image10.wmf]1

.

10

8

1.5

.

10

8

2

.

10

8

2.5

.

10

8

0

50

100

150

200

75 Mbps

100 Mbps

125 Mbps

150 Mbps

TC Parallelism Factor vs Clock Rate

Decoder Clock Rate (Hz)

Parallelism Factor

100

10

6

×

Figure 3.
The parallelism required to meet the data rates shown can be reduced as the decoder clock rate is increased. For the cases shown eight iterations are performed on a block size of 512 bits.

[image: image11.wmf]1

.

10

8

1.5

.

10

8

2

.

10

8

2.5

.

10

8

0

10

20

30

40

50

75 Mbps

100 Mbps

125 Mbps

150 Mbps

TC Decoder Window Size vs Clock Rate

Decoder Clock Rate (Hz)

Window Size (bits)

32

100

10

6

×

Figure 4.
Shown here are the resulting parallel decoder window sizes for eight iterations on a block size of 512 bits. Significant performance degradation for the 3GPP TC can be expected for window sizes below about 32 bits.

[image: image12.wmf]1

.

10

8

1.5

.

10

8

2

.

10

8

2.5

.

10

8

0

50

100

150

200

6 Iterations

8 Iterations

10 Iterations

12 Iterations

TC Parallelism Factor vs Clock Rate

Decoder Clock Rate (Hz)

Parallelism Factor

100

10

6

×

Figure 5.
Shown here is the effect on parallelism by changing the numbers of iterations. For these cases a data rate of 100 Mbps and a block size of 512 bits are assumed.

[image: image13.wmf]1

.

10

8

1.5

.

10

8

2

.

10

8

2.5

.

10

8

0

10

20

30

40

50

6 Iterations

8 Iterations

10 Iterations

12 Iterations

Decoder Window Size vs Clock Rate

Decoder Clock Rate (Hz)

Window Size (bits)

32

Figure 6.
Shown here are the resulting parallel decoder window sizes as the number of iterations are changed. A data rate of 100 Mbps and a block size of 512 bits are assumed. Significant performance degradation for the 3GPP TC can be expected for window sizes below about 32 bits.

The performance degradation due to the increased parallelism (i.e., processing window shrinkage) necessary to sustain high data rates with the incumbent Turbo Code affects block sizes starting at around 1000 bits or higher depending on the assumptions, some of which are conservative (e.g., a system architect may wish to budget for a maximum iteration count higher than eight). For a scalable system that supports variable resource allocations using medium-to-small block sizes, high code-rate cases become limited by the capabilities of the Turbo Code. Inclusion of an LDPC for advanced Forward Error Correction avoids this limitation and provides a path to high data rate transmission without loss of performance. Other standards supporting high data rates have already moved in this direction with the IEEE 802.3an 10GBASE-T Ethernet standard and 802.11n High Throughput Wireless LAN standards including LDPCs as their sole advanced FEC solution.
3. Conclusions

This contribution analyzes the capability of using turbo codes to support the high data rate LTE requires. The study shows that for medium-to-small block sizes, turbo codes may not be able to achieve the high data rate without sacrificing performance significantly. The low-density parity-check (LDPC) codes should be adopted as an alternative FEC scheme.
References
[1]. 3GPP TR 25.814 V1.0.1 (2005-11): “Physical layer aspects for evolved UTRA (Release 7)”.

[2]. 3GPP TS 25.212 v6.4.0 (2005-03): “Multiplexing and Channel Coding (FDD) (Release 6)”.

[3]. R1-060022, ”LDPC Codes for E-UTRA,” 3GPP TSG RAN WG1#44 , R1-060383 Denver, USA. 13-17 Feb. 2006.
[4]. IEEE Std 802.16-2004, “Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems,” Oct. 2004.
[5]. M.M.Mansour and N.R.Shanbhag, “High-Throughput LDPC Decoders,” IEEE Trans. On VLSI Systems, Vol. 11, No 6, pp. 976-996, December 2003.
[6]. Mansour, M.M.; Shanbhag N.R. “A 640-Mb/s 2048-Bit Programmable LDPC Decoder Chip”, IEEE Journal of Solid-State Circuits, vol. 41, no. 3, pp. 684-698, Mar. 2006.

 Page 1 of 6

[image: image14.wmf]_1203853727.bin

_1203853897.bin

_1204026966.bin

_1204027024.bin

_1204027044.bin

_1204027000.bin

_1204025159.bin

_1203853775.bin

_1203853672.bin

_1203853703.bin

_1203853621.bin

