3GPP TSG RAN WG1 #44 R1-060384
Denver, USA. 13-17 Feb 2006
Agenda Item:

13.1.3
Souce:

Motorola

Title:
LDPC Codes for E-UTRA
Document for:
Discussion

Introduction
In [1] it is stated that new channel coding techniques such as LDPC codes should be considered for E-UTRA. Like turbo codes, LDPC codes are pseudo-random codes whose performance approaches the Shannon limit. LDPC codes have the following advantages that could benefit E-UTRA:
· The LDPC codes are inherently rich in parallelism, thus allowing very high throughput. This is especially important for meeting E-UTRA peak data rate requirements.

· The processing unit for LDPC codes is very simple compared to that of turbo codes. For instance, each check equation of an LDPC code can be decoded with the BCJR algorithm on a two-state trellis, whereas the turbo code defined in [2] has an eight-state trellis.

· LDPC codes have comparable performance to turbo codes for small frame sizes (e.g., information block size 1000 bits and lower), and better performance than turbo codes for large frame sizes. Thus for the 5MHz channel, LDPC codes would provide performance similar to or better than the current turbo code.
· Well-designed LDPC codes exhibit extremely low error floor, due to the property that its minimum distance increases linearly as the code size increases.

· Structured LDPC codes can be constructed using simple submatrices such as all-zero and shift identity matrices to allow block-wise encoding and decoding.

· Linear-time encoding can be achieved by using a near-triangular parity portion.

· LDPC codes do not use tail bits, which may simplify the rate matching algorithm.

Thus LDPC codes should be considered along with turbo codes as candidate advanced coding scheme for EUTRA. Some issues that need to be studied for LDPC include the performance of low-complexity Chase hybrid ARQ operation and whether the sharing of resources between UTRA and EUTRA decoders is important or feasible.
Structured LDPC codes

Generally speaking, an LDPC code is a linear block code specified by a sparse parity-check matrix H. As with all linear block codes, a k‑bit information block s1(k is encoded to obtain an n‑bit codeword x1(n, and the code rate is r=k/n. The codeword x is transmitted through a noisy channel, and the received signal vector y is passed to the decoder to estimate s1(k. The parity check constraints are expressed as
[image: image1.wmf]T

T

0

Hx

=

, where “T” denotes matrix transpose, 0 is a zero vector. The codeword is x=[s p]=[s0, s1, …,sk-1, p0, p1, …,pm-1], where p0, . . . pm-1 are the parity-check bits; and s0, . . . sk-1 are the systematic bits.

When an H is constructed randomly, encoder and decoder implementation becomes very difficult as the code size grows, due to the pseudorandom interconnection and the large memory required. To facilitate implementation without compromising performance, structured LDPC codes have been adopted by the industry [3]. A structured LDPC code is defined by an H matrix which is composed of z(z submatrices. It has been shown that submatrices of very simple format can be used, such as all-zero submatrices and shifted identity submatrices. Structured codes can be encoded and decoded in a block-wise manner, thereby simplifying hardware implementation. To further simplify encoding, the parity portion of H matrix can be constructed as partial dual-diagonal so that most parity bits can be obtained via block-wise back-substitution.
A structured LDPC code design starts with a small mb(nb base matrix Hb, makes z copies of Hb, and interconnects the z copies to form a large M(N binary H matrix, where M= mb(z, N= nb(z. Using the matrix representation, to build an H from Hb each 1 in Hb is replaced by a z(z shifted identity matrix (P), and each 0 in Hb is replaced by a z(z all-zero matrix. Each H matrix can be uniquely represented by a mb(nb model matrix Hbm, which is obtained by replacing each 0 in Hb by –1 to denote a z(z all-zero matrix, and by replacing each hi,j=1 in Hb by a circular shift size p(i,j).
Example

As an example, model matrix Hbm of the rate ½ LDPC code defined in [3] is repeated below.
-1 94 73 -1 -1 -1 -1 -1 55 83 -1 -1 7 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 27 -1 -1 -1 22 79 9 -1 -1 -1 12 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 24 22 81 -1 33 -1 -1 -1 0 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1

61 -1 47 -1 -1 -1 -1 -1 65 25 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1

-1 -1 39 -1 -1 -1 84 -1 -1 41 72 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 46 40 -1 82 -1 -1 -1 79 0 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1

-1 -1 95 53 -1 -1 -1 -1 -1 14 18 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1

-1 11 73 -1 -1 -1 2 -1 -1 47 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1

12 -1 -1 -1 83 24 -1 43 -1 -1 -1 51 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1

-1 -1 -1 -1 -1 94 -1 59 -1 -1 70 72 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1

-1 -1 7 65 -1 -1 -1 -1 39 49 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0

43 -1 -1 -1 -1 66 -1 41 -1 -1 -1 26 7 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0

This 12(24 matrix is defined for z0=96 to obtain a code of size n = 2304. By scaling the shift sizes, this matrix can be used to obtain a total of 19 code sizes by using 19 different z values ranging from zf = 24 (n = 576) to z=96 with a step size of 4 (n = 2304). For a matrix with expansion factor zf, its shift sizes {p(f, i, j)}are derived from {p(i,j)} in the matrix above by scaling p(i,j) proportionally,

[image: image2.wmf](

)

(

)

(

)

(

)

(

)

(

)

ï

î

ï

í

ì

>

ú

ú

û

ú

ê

ê

ë

ê

=

ú

û

ú

ê

ë

ê

£

=

0

,

,

,

,

0

,

,

,

,

,

0

j

i

p

j

i

p

z

z

j

i

p

j

i

p

j

i

p

j

i

f

p

f

f

a

.

Note that
[image: image3.wmf]f

f

z

z

0

=

a

 and (x(denotes the flooring function which gives the nearest integer towards ‑(.
Performance of the 19 LDPC code sizes derived from the matrix above is shown in Figure 1. Standard belief propagation with a maximum of 50 iterations is used. For comparison, duo-binary tail-biting convolutional turbo codes (CTC) performance is shown in Figure 2, using max-log-MAP decoding and 8 iterations. LDPC codes achieve similar FER performance even for these relatively small code sizes, as shown in Figure 3. For larger code sizes that are needed in EUTRA, it is expected that LDPC codes may perform better than turbo codes.
The performance shown here is for illustration purpose only in that the complexity of decoding the LDPC codes and the turbo codes may not be equivalent, and other variations of the decoding algorithm may be used. Studies have shown that for structured LDPC codes, 12 iterations of layered belief propagation may be used to achieve similar performance as a maximum 50 iterations of standard belief propagation. The number of iterations provided to the turbo code may be optimistic given the lower complexity of the LDPC code, as discussed in the next section.
Note that CTC is a potential turbo code solution for EUTRA with better performance and lower complexity than the current 3GPP turbo code, and like the LDPC is not a simple modification of the 3GPP turbo code.
[image: image4.wmf]
Figure 1.
FER performance of rate ½ LDPC. AWGN channel and QPSK modulation are assumed.

[image: image5.wmf]
Figure 2.
FER performance of rate ½ CTC. AWGN channel and QPSK modulation are assumed.

[image: image6.wmf]
Figure 3.
Required Eb/N0 (dB) vs. information block size k (bits) for rate 1/2 LDPC and CTC at FER = 10-2. AWGN channel and QPSK modulation are assumed.

Complexity Comparison

Using implementation-friendly H matrices composed of submatrices, efficient decoding algorithms such as the layered belief propagation can be used to reduce the number of iteration and achieve high throughput. Studies shown that layered belief propagation with 12 iterations is only a couple tenths dB away from standard belief propagation with 50 iterations.

To compare the implementation complexity of structured LDPC codes against turbo codes, examples from IEEE 802.16e are used. Two rate ½ codes, (a) the CTC code with k = 480 bits and (b) the LDPC code k = 1152 bits, are used in the analysis. Due to the structured nature of LDPC codes, the amount of storage normalized by k is roughly the same for both.

To compare logic resources, first note that a large portion the combinatorial logic for both decoders can be accounted for by the number of adders that must be instantiated. A count of adders for the CTC and LDPC decoders is presented below.

CTC decoder:

·  (10 bits): 26x2x4 = 208

· + (10 bits): 32x2x4 = 256

· 4‑way min (10 bits): 48x2x4 = 384

· ++ (10 bits): 32x2x4 = 256

· 2‑way min (10 bits): 96x2x4 = 768

· Total number of 10‑bit adders: 1872

LDPC decoder
·  (8 bits): 96

· Check node (6 bits): 288

·  update (8 bits): 96

· Cyclic permutation (8 bits): 192

· Total number of 8‑bit adders: 384

· Total number of 6‑bit adders: 288

Note that the CTC decoder requires about 2.4 as many adders as the LDPC decoder. While this simple adder comparison ignores other logic, it illustrates that for LDPC decoders are easier to implement than turbo decoders.
References

[1]. 3GPP TR 25.814 V1.0.1 (2005-11): “Physical layer aspects for evolved UTRA (Release 7)”.

[2]. 3GPP TS 25.212 v6.4.0 (2005-03): “Multiplexing and Channel Coding (FDD) (Release 6)”.

[3]. IEEE Std 802.16-2004, “Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems,” Oct. 2004.

_1153922125.unknown

_1163853329.unknown

_1091441091.unknown

