25.212 CR 070r1 Current Version: 3.2.0

GSM (AA.BB) or 3G (AA.BBB) specification number \uparrow
\uparrow CR number as allocated by MCC support team
For submission to: TSG RAN \#8 list expected approval meeting \# here \uparrow
strategic \square (for SMG non-strategic use only)

Form: CR cover sheet, version 2 for 3GPP and SMG
Proposed change affects:
(U)SIM

ME \qquad UTRAN / Radio \qquad . Core Network \qquad
(at least one should be marked with an X)

Date: 11 April 2000
Subject: Editorial modifications

Work item:

Category:
(only one category
F Correction
A Corresponds to a correction in an earlier release
B Addition of feature
shall be marked
with an X)
C Functional modification of feature
D Editorial modification

Release: Phase 2
Release 96
Release 97
Release 98
Release 99

Release 00

Reason for \quad Table titles are added to table 3 and table 6. A minor correction in section 4.2.3.3. The change: symbols in section 4.2.7 are changed to align with the changes in section 4.2.3.2.1.

Clauses affected: $\quad 4.2 .3 .3,4.2 .5 .2,4.2 .7,4.2 .11$

Other
 comments:

4.2.3.3 Concatenation of encoded blocks

After the channel coding for each code block, if C_{i} is greater than 1 , the encoded blocks are serially concatenated so that the block with lowest index r is output first from the channel coding block, otherwise the encoded block is output from channel coding block as it is. The bits output are denoted by $c_{i 1}, c_{i 2}, c_{i 3}, \ldots, c_{i E_{i}}$, where i is the TrCH number and $E_{i}=C_{i} Y_{i}$. The output bits are defined by the following relations:

$$
\begin{aligned}
& c_{i k}=y_{i 1 k} \quad k=1,2, \ldots, Y_{i} \\
& c_{i k}=y_{i, 2,\left(k-Y_{i}\right)} \quad k=Y_{i}+1, Y_{i}+2, \ldots, 2 Y_{i} \\
& c_{i k}=y_{i, 3,\left(k-2 Y_{i}\right)} \quad k=2 Y_{i}+1,2 Y_{i}+2, \ldots, 3 Y_{i} \\
& \ldots \\
& c_{i k}=y_{i, C_{i},\left(k-\left(C_{i}-1\right) Y_{i}\right)} \quad k=\left(C_{i}-1\right) Y_{i}+1,\left(C_{i}-1\right) Y_{i}+2, \ldots, C_{i} Y_{\underline{I I}}
\end{aligned}
$$

If no code blocks are input to the channel coding $\left(C_{i}=0\right)$, no bits shall be output from the channel coding, i.e. $E_{i}=0$.

4.2.5.2 $\quad 1^{\text {st }}$ interleaver operation

The $1^{\text {st }}$ interleaving is a block interleaver with inter-column permutations. The input bit sequence to the $1^{\text {st }}$ interleaver is denoted by $x_{i 1}, x_{i 2}, x_{i 3}, \ldots, x_{i X_{i}}$, where i is TrCH number and X_{i} the number of bits (at this stage X_{i} is assumed and guaranteed to be an integer multiple of TTI). The output bit sequence is derived as follows:
(1) Select the number of columns C_{I} from table 3.
(2) Determine the number of rows R_{I} defined as:

$$
\mathrm{R}_{\mathrm{I}}=\mathrm{X}_{\mathrm{i}} / \mathrm{C}_{\mathrm{I}}
$$

(3) Write the input bit sequence into the $R_{I} \times C_{I}$ rectangular matrix row by row starting with bit $x_{i, 1}$ in the first column of the first row and ending with bit $x_{i,\left(R_{I} C_{I}\right)}$ in column C_{I} of row R_{I} :

$$
\left[\begin{array}{ccclc}
x_{i 1} & x_{i 2} & x_{i 3} & \ldots & x_{i C_{I}} \\
x_{i,\left(C_{I}+1\right)} & x_{i,\left(C_{I}+2\right)} & x_{i,\left(C_{I}+3\right)} & \ldots x_{i,\left(2 C_{I}\right)} \\
\vdots & \vdots & \vdots & \ldots & \vdots \\
x_{i,\left(\left(R_{I}-1\right) C_{I}+1\right)} & x_{i,\left(\left(R_{I}-1\right) C_{I}+2\right)} & x_{i,\left(\left(R_{I}-1\right) C_{I}+3\right)} & \ldots x_{i,\left(R_{I} C_{I}\right)}
\end{array}\right]
$$

(4) Perform the inter-column permutation based on the pattern $\left\{\mathrm{P}_{1}(j)\right\}(j=0,1, \ldots, \mathrm{C}-1)$ shown in table 3 , where $\mathrm{P}_{1}(j)$ is the original column position of the j-th permuted column. After permutation of the columns, the bits are denoted by $y_{i k}$:

$$
\left[\begin{array}{ccccc}
y_{i 1} & y_{i,\left(R_{I}+1\right)} & y_{i,\left(2 R_{I}+1\right)} & \ldots y_{i,\left(\left(C_{I}-1\right) R_{I}+1\right)} \\
y_{i 2} & y_{i,\left(R_{I}+2\right)} & y_{i,\left(2 R_{I}+2\right)} & \ldots y_{i,\left(\left(C_{I}-1\right) R_{I}+2\right)} \\
\vdots & \vdots & \vdots & \ldots & \vdots \\
y_{i R_{I}} & y_{i,\left(2 R_{I}\right)} & y_{i,\left(3 R_{I}\right)} & \ldots & y_{i,\left(C_{I} R_{I}\right)}
\end{array}\right]
$$

(5) Read the output bit sequence $y_{i 1}, y_{i 2}, y_{i 3}, \ldots, y_{i,\left(C_{I} R_{I}\right)}$ of the $1^{\text {st }}$ interleaving column by column from the intercolumn permuted $R_{I} \times C_{I}$ matrix. Bit $y_{i, 1}$ corresponds to the first row of the first column and bit $y_{i,\left(R_{I} C_{I}\right)}$ corresponds to row R_{I} of column C_{I}.

Table 3 Inter-column permutation patterns for 1st interleaving

TTI	Number of columns $\mathbf{C}_{\boldsymbol{\prime}}$	Inter-column permutation patterns
10 ms	1	$\{0\}$
20 ms	2	$\{0,1\}$
40 ms	4	$\{0,2,1,3\}$
80 ms	8	$\{0,4,2,6,1,5,3,7\}$

4.2.7 Rate matching

Rate matching means that bits on a transport channel are repeated or punctured. Higher layers assign a rate-matching attribute for each transport channel. This attribute is semi-static and can only be changed through higher layer signalling. The rate-matching attribute is used when the number of bits to be repeated or punctured is calculated.

The number of bits on a transport channel can vary between different transmission time intervals. In the downlink the transmission is interrupted if the number of bits is lower than maximum. When the number of bits between different transmission time intervals in uplink is changed, bits are repeated or punctured to ensure that the total bit rate after TrCH multiplexing is identical to the total channel bit rate of the allocated dedicated physical channels.

If no bits are input to the rate matching for all TrCHs within a CCTrCH , the rate matching shall output no bits for all TrCHs within the CCTrCH and no uplink DPDCH will be selected in the case of uplink rate matching.

Notation used in subcaluse 4.2.7 and subclauses:

$N_{i j}$: For uplink: Number of bits in a radio frame before rate matching on $\mathrm{TrCH} i$ with transport format combination j.

For downlink: An intermediate calculation variable (not an integer but a multiple of 1/8).
$N_{i l}^{T T I}$: Number of bits in a transmission time interval before rate matching on $\operatorname{TrCH} i$ with transport format l. Used in downlink only.
$\Delta N_{i j}$: For uplink: If positive - number of bits that should be repeated in each radio frame on $\operatorname{TrCH} i$ with transport format combination j.

If negative - number of bits that should be punctured in each radio frame on $\operatorname{TrCH} i$ with transport format combination j.

For downlink : An intermediate calculation variable (not an integer but a multiple of 1/8).
$\Delta N_{i l}^{T T I}$: If positive - number of bits to be repeated in each transmission time interval on $\operatorname{TrCH} i$ with transport format j.

If negative - number of bits to be punctured in each transmission time interval on $\mathrm{TrCH} i$ with transport format j.

Used in downlink only.
$N p^{T T I, m}{ }_{i, l}, m=0$ to $F_{m a x} / F_{i}-1$:Positive or null: number of bits to be removed in TTI number m within the largest TTI, to create the required gaps in the compressed radio frames of this TTI, in case of compressed mode by puncturing, for $\operatorname{TrCh} i$ with transport format l. In case of fixed positions and compressed mode by puncturing, this value is noted $\mathrm{Np}{ }^{T T I, m_{i, \max }}$ since it is calculated for all TrCh with their maximum number of bits; thus it is the same for all TFCs

Used in downlink only.
$N p^{n}{ }_{i, l} \quad n=0$ to $F_{\max }-1$:Positive or null: number of bits, in radio frame number n within the largest TTI, corresponding to the gap for compressed mode in this radio frame, for $\operatorname{TrCH} i$ with transport format l. The value will be null for the un-compressed radio frames. In case of fixed positions and compressed mode by puncturing, this value is noted $N p^{n}{ }_{i, \text { max }}$ since it is calculated for all TrChs with their maximum number of bits; thus it is the same for all TFCs

Used in downlink only.
$N_{T G L}[k], k=0$ to $F_{i}-1:$ Positive or null: number of bits in each radio frame corresponding to the gap for compressed mode for the CCTrCh .
$R M_{i}$: Semi-static rate matching attribute for transport channel i. Signalled from higher layers.
PL: Puncturing limit for uplink. This value limits the amount of puncturing that can be applied in order to avoid multicode or to enable the use of a higher spreading factor. Signalled from higher layers.
$N_{\text {data, } j}$: \quad Total number of bits that are available for the CCTrCH in a radio frame with transport format combination j.
I: \quad Number of TrCHs in the CCTrCH .
$Z_{i j}: \quad$ Intermediate calculation variable.
$F_{i}: \quad$ Number of radio frames in the transmission time interval of $\operatorname{TrCH} i$.
$F_{\max } \quad$ Maximum number of radio frames in a transmission time interval used in the CCTrCH :

$$
F_{\max }=\max _{1 \leq i \leq I} F_{i}
$$

$n_{i}: \quad$ Radio frame number in the transmission time interval of $\operatorname{TrCH} i\left(0 \leq n_{i}<F_{i}\right)$.
q : \quad Average puncturing or repetition distance (normalised to only show the remaining rate matching on top of an integer number of repetitions). Used in uplink only.
$I_{F}\left(n_{i}\right)$: The inverse interleaving function of the $1^{\text {st }}$ interleaver (note that the inverse interleaving function is identical to the interleaving function itself for the $1^{\text {st }}$ interleaver). Used in uplink only.
$S\left(n_{i}\right)$: The shift of the puncturing or repetition pattern for radio frame n_{i}. Used in uplink only.
$T F_{i}(j)$: Transport format of $\operatorname{TrCH} i$ for the transport format combination j.
$T F S(i) \quad$ The set of transport format indexes l for $\operatorname{TrCH} i$.
TFCS The set of transport format combination indexes j.
$e_{i n i} \quad$ Initial value of variable e in the rate matching pattern determination algorithm of subclause 4.2.7.5.
$\mathrm{e}_{\mathrm{plus}} \quad$ Increment of variable e in the rate matching pattern determination algorithm of subclause4.2.7.5.
$\mathrm{e}_{\text {minus }} \quad$ Decrement of variable e in the rate matching pattern determination algorithm of subclause 4.2.7.5.
$b: \quad$ Indicates systematic and parity bits
$b=1$: Systematic bit. $X(t) \underline{x}_{\underline{k}}$ in subclause 4.2.3.2.1.
$b=2: 1^{\text {st }}$ parity bit (from the upper Turbo constituent encoder). $Y(t) \underline{\underline{Z}}_{\underline{k}}$ in subcaluse 4.2.3.2.1.
$b=3: 2^{\text {nd }}$ parity bit (from the lower Turbo constituent encoder). $Y^{\prime}(t) \underline{z_{k}}$ in subclause 4.2.3.2.1.
The * (star) notation is used to replace an index x when the indexed variable X_{x} does not depend on the index x. In the left wing of an assignment the meaning is that " $X_{*}=Y$ " is equivalent to "for all $\underline{x} \mathbf{d o} X_{x}=Y$ ". In the right wing of an assignment, the meaning is that " $Y=X_{*}$ " is equivalent to "take any \underline{x} and do $Y=X_{x}$ ".

The following relations, defined for all TFC j, are used when calculating the rate matching parameters:

$$
Z_{0, j}=0
$$

$$
\begin{gather*}
Z_{i j}=\left\{\frac{\left\{\left(\sum_{m=1}^{i} R M_{m} \cdot N_{m j}\right) \cdot N_{\text {data, } j}\right\}}{\sum_{m=1}^{I} R M_{m} \cdot N_{m j}}\right\} \text { for all } i=1 . . \mathrm{I} \tag{1}\\
\Delta N_{i j}=Z_{i j}-Z_{i-1, j}-N_{i j} \quad \text { for all } i=1 . . \mathrm{I}
\end{gather*}
$$

4.2.11 $2^{\text {nd }}$ interleaving

The $2^{\text {nd }}$ interleaving is a block interleaver with inter-column permutations. The bits input to the $2^{\text {nd }}$ interleaver are denoted $u_{p 1}, u_{p 2}, u_{p 3}, \ldots, u_{p U}$, where p is PhCH number and U is the number of bits in one radio frame for one PhCH .
(1) Set the number of columns $C_{2}=30$. The columns are numbered $0,1,2, \ldots, C_{2}-1$ from left to right.
(2) Determine the number of rows R_{2} by finding minimum integer R_{2} such that:

$$
U \leq R_{2} C_{2} .
$$

(3) The bits input to the $2^{\text {nd }}$ interleaving are written into the $R_{2} \times C_{2}$ rectangular matrix row by row.

$$
\left[\begin{array}{ccccc}
u_{p 1} & u_{p 2} & u_{p 3} & \ldots & u_{p 30} \\
u_{p 31} & u_{p 32} & u_{p 33} & \ldots & u_{p 60} \\
\vdots & \vdots & \vdots & \ldots & \vdots \\
u_{p,\left(\left(R_{2}-1\right) 30+1\right)} & u_{p,\left(\left(R_{2}-1\right) 30+2\right)} & u_{p,\left(\left(R_{2}-1\right) 30+3\right)} & \ldots u_{p,\left(R_{2} 30\right)}
\end{array}\right]
$$

(4) Perform the inter-column permutation based on the pattern $\left\{P_{2}(j)\right\}\left(j=0,1, \ldots, C_{2}-1\right)$ that is shown in table 6, where $P_{2}(j)$ is the original column position of the j-th permuted column. After permutation of the columns, the bits are denoted by $y_{p k}$.

$$
\left[\begin{array}{ccccc}
y_{p 1} & y_{p,\left(R_{2}+1\right)} & y_{p,\left(2 R_{2}+1\right)} & \ldots y_{p,\left(29 R_{2}+1\right)} \\
y_{p 2} & y_{p,\left(R_{2}+2\right)} & y_{p,\left(2 R_{2}+2\right)} & \ldots y_{p,\left(29 R_{2}+2\right)} \\
\vdots & \vdots & \vdots & \ldots & \vdots \\
y_{p R_{2}} & y_{p,\left(2 R_{2}\right)} & y_{p,\left(3 R_{2}\right)} & \ldots y_{p,\left(30 R_{2}\right)}
\end{array}\right]
$$

(5) The output of the $2^{\text {nd }}$ interleaving is the bit sequence read out column by column from the inter-column permuted $R_{2} \times C_{2}$ matrix. The output is pruned by deleting bits that were not present in the input bit sequence, i.e. bits $y_{p k}$ that corresponds to bits $u_{p k}$ with $k>U$ are removed from the output. The bits after $2^{\text {nd }}$ interleaving are denoted by $v_{p 1}, v_{p 2}, \ldots, v_{p U}$, where $v_{p 1}$ corresponds to the bit $y_{p k}$ with smallest index k after pruning, $v_{p 2}$ to the bit $y_{p k}$ with second smallest index k after pruning, and so on.

Table 6 Inter-column permutation pattern for 2nd interleaving

Number of column $\mathbf{C}_{\mathbf{2}}$	Inter-column permutation pattern
30	$\left.\left.\begin{array}{c}\{0,20,10,5,15,25,3,13,23,8,18,28,1,11,21, \\ \\ \end{array} \right\rvert\,, 16,26,4,14,24,19,9,29,12,2,7,22,27,17\right\}$

