25.212 CR 065

For submission to: TSG RAN \#8 list expected approval meeting \# here

for approval	
for information	\mathbf{X}

\square (for SMG non-strategic use only)

Form: CR cover sheet, version 2 for 3GPP and SMG The latest version of this form is available from: ftp://ftp.3gpp.org/Information/CR-Form-v2.doc

Proposed change affects: \square ME \mathbf{X}
UTRAN / Radio \qquad Core Network \square
(at least one should be marked with an X)

Source:
 Nokia

Date: 2000-04-04
Subject: \quad Editorial changes for 25.212

Work item: UTRAN

Category: F Correction
(only one category
A Corresponds to a correction in an earlier release
shall be marked
B Addition of feature
C Functional modification of feature
with an X)
D Editorial modification

Release: Phase 2 Release 96 Release 97
Release 98
Release 99
Release 00

Reason for

change: \quad Clarification for definition of q_{i} and for pruning in section 4.2.3.2.3

Clauses affected: $\quad 4.2 .3 .2 .3,4.2 .3 .2 .3 .2$ and 4.2.3.2.3.3
Other specs Other 3G core specifications affected:

Other 3G core specifications		\rightarrow List of CRs:
Other GSM core \quad specifications	\rightarrow List of CRs:	
MS test specifications		
BSS test specifications		\rightarrow List of CRs:
O\&M specifications		\rightarrow List of CRs:
		\rightarrow List of CRs:

Other comments:

4.2.3.2.3 Turbo code internal interleaver

The Turbo code internal interleaver consists of bits-input to a rectangular matrix, intra-row and inter-row permutations of the rectangular matrix, and bits-output from the rectangular matrix with pruning. The bits input to the Turbo code internal interleaver are denoted by $x_{1}, x_{2}, x_{3}, \ldots, x_{K}, x_{K+1}, \ldots, x_{R C}$, where K is the integer number of the bits and takes one value of $40 \leq K \leq 5114$. The relation between the bits input to the Turbo code internal interleaver and the bits input to the channel coding is defined by $x_{k}=o_{i r k}$ for $\mathrm{k}=1,2, \ldots, \mathrm{~K}$ and $x_{k}=0$ for $\mathrm{k}=K+1, K+2, \ldots, R C$, and $K=$ K_{i}.

The following section specific symbols are used in sections 4.2.3.2.3.1-4.2.3.4.3.3:
$K \quad$ Number of bits input to Turbo code internal interleaver
$R \quad$ Number of rows of rectangular matrix
$C \quad$ Number of columns of rectangular matrix
$p \quad$ Prime number
$v \quad$ Primitive root
$s(i) \quad$ Base sequence for intra-row permutation
$q_{j} \quad$ Minimum prime integers
$r_{j} \quad$ Permuted prime integers
$T(j) \quad$ Inter-row permutation pattern
$U_{j}(i) \quad$ Intra-row permutation pattern
$i \quad$ Index of matrix
$j \quad$ Index of matrix
$k \quad$ Index of bit sequence

4.2.3.2.3.1 Bits-input to rectangular matrix

The bit sequence input to the Turbo code internal interleaver x_{k} is written into the rectangular matrix as follows:
(1) Determine the number of rows R of the rectangular matrix such that

$$
R=\left\{\begin{array}{l}
5, \text { if }(40 \leq K \leq 159) \\
10, \text { if }((160 \leq K \leq 200) \text { or }(481 \leq K \leq 530)) \\
20, \text { if }(K=\text { any other value })
\end{array}\right.
$$

where the rows of rectangular matrix are numbered $0,1,2, \ldots, R-1$ from top to bottom.
(2) Determine the number of columns C of rectangular matrix such that

$$
\text { if }(481 \leq K \leq 530) \text { then }
$$

$$
p=53 \text { and } C=p .
$$

else
Find minimum prime p such that

$$
(p+1)-K / R \geq 0
$$

and determine C such that
if $(p-K / R \geq 0)$ then
if $(p-1-K / R \geq 0)$ then

$$
C=p-1 .
$$

else

$$
C=p .
$$

end if
else

$$
C=p+1
$$

end if
end if
where the columns of rectangular matrix are numbered $0,1,2, \ldots, C-1$ from left to right.
(3) Write the input bit sequence x_{k} into the $R \times C$ rectangular matrix row by row starting with bit x_{1} in column 0 of row 0 :

$$
\left[\begin{array}{cccc}
x_{1} & x_{2} & x_{3} & \ldots x_{C} \\
x_{(C+1)} & x_{(C+2)} & x_{(C+3)} & \ldots x_{2 C} \\
\vdots & \vdots & \vdots & \ldots \\
\vdots \\
x_{((R-1) C+1)} & x_{((R-1) C+2)} & x_{((R-1) C+3)} & \ldots x_{R C}
\end{array}\right]
$$

4.2.3.2.3.2

Intra-row and inter-row permutations

After the bits-input to the $R \times C$ rectangular matrix, the intra-row and inter-row permutations are performed by using the following algorithm:
(1) Select a primitive root v from table 2 .
(2) Construct the base sequence $s(i)$ for intra-row permutation as
$s(i)=[v \times s(i-1)] \bmod p, \quad i=1,2, \ldots,(p-2) .$, and $s(0)=1$.
(3) Selection of the consecutive minimum prime integers: assign Let $q_{0}=1$ be the first term prime integer in $\left\{q_{f}\right\}$, and then select the consecutive minimum prime integers $\left\{q_{f}\right\}$ to be a least prime number $(j=1,2, \ldots, R \quad 1)$ such that
g.c.d $\left\{q_{j}, p-1\right\}=1, q_{j}>6$, and $q_{j}>q_{(j-1)}$, for each $j=1,2, \ldots, R-1$,
where g.c.d. is greatest common divisor.
(4) Permute $\left\{q_{j}\right\}$ to make $\left\{r_{j}\right\}$ such that
$r_{T(j)}=q_{j}, j=0,1, \ldots, R-1$,
where $T(j)$ indicates the original row position of the j-th permuted row, and $T(j)$ is the inter-row permutation pattern defined as the one of the following four kind of patterns: $P a t_{1}, P a t_{2}, P a t_{3}$ and Pat_{4} depending on the number of input bits K.
$T(j)=\left\{\begin{array}{ll}\text { Pat }_{4} & \text { if }(40 \leq K \leq 159) \\ \text { Pat }_{3} & \text { if }(160 \leq K \leq 200) \\ \text { Pat }_{1} & \text { if }(201 \leq K \leq 480) \\ \text { Pat }_{3} & \text { if }(481 \leq K \leq 530) \\ \text { Pat }_{1} & \text { if }(531 \leq K \leq 2280), \\ \text { Pat }_{2} & \text { if }(2281 \leq K \leq 2480) \\ \text { Pat }_{1} & \text { if }(2481 \leq K \leq 3160) \\ \text { Pat }_{2} & \text { if }(3161 \leq K \leq 3210) \\ \text { Pat }_{1} & \text { if }(3211 \leq K \leq 5114)\end{array}\right.$,
where $\mathrm{Pat}_{1}, \mathrm{Pat}_{2}, \mathrm{Pat}_{3}$ and Pat_{4} have the following patterns respectively.
Pat $_{1}:\{19,9,14,4,0,2,5,7,12,18,10,8,13,17,3,1,16,6,15,11\}$
Pat $:\{19,9,14,4,0,2,5,7,12,18,16,13,17,15,3,1,6,11,8,10\}$
Pat $_{3}:\{9,8,7,6,5,4,3,2,1,0\}$
Pat $:\{4,3,2,1,0\}$
(5) Perform the j-th $(j=0,1,2, \ldots, R-1)$ intra-row permutation as
if $(C=p)$ then
$U_{j}(i)=s\left(\left[i \times r_{j}\right] \bmod (p-1)\right), \quad i=0,1,2, \ldots,(p-2) ., \quad$ and $U_{j}(p-1)=0$,
where $U_{j}(i)$ is the input bit position of i-th output after the permutation of j-th row.
end if
if $(C=p+1)$ then
$U_{j}(i)=s\left(\left[i \times r_{j}\right] \bmod (p-1)\right), \quad i=0,1,2, \ldots,(p-2) ., U_{j}(p-1)=0$, and $U_{j}(p)=p$,
where $U_{j}(i)$ is the input bit position of i-th output after the permutation of j-th row, and if ($K=C \times R$) then

Exchange $U_{R-1}(p)$ with $U_{R-1}(0)$.
end if
end if
if $(C=p-1)$ then
$U_{j}(i)=s\left(\left[i \times r_{j}\right] \bmod (p-1)\right)-1, \quad i=0,1,2, \ldots,(p-2)$,
where $U_{j}(i)$ is the input bit position of i-th output after the permutation of j-th row.
end if

Table 2: Table of prime p and associated primitive root v

p	v	p	v	p	v	p	v	p	v
7	3	47	5	101	2	157	5	223	3
11	2	53	2	103	5	163	2	227	2
13	2	59	2	107	2	167	5	229	6
17	3	61	2	109	6	173	2	233	3
19	2	67	2	113	3	179	2	239	7
23	5	71	7	127	3	181	2	241	7
29	2	73	5	131	2	191	19	251	6
31	3	79	3	137	3	193	5	257	3
37	2	83	2	139	2	197	2		
41	6	89	3	149	2	199	3		
43	3	97	5	151	6	211	2		

4.2.3.2.3.3
 Bits-output from rectangular matrix with pruning

After intra-row and inter-row permutations, the bits of the permuted rectangular matrix are denoted by $y^{\prime}{ }_{k}$:

$$
\left[\begin{array}{ccclc}
y_{1}^{\prime} & y_{(R+1)}^{\prime} & y_{(2 R+1)}^{\prime} & \ldots y_{((C-1) R+1)}^{\prime} \\
y_{2}^{\prime} & y_{(R+2)}^{\prime} & y_{(2 R+2)}^{\prime} & \ldots y_{((C-1) R+2)}^{\prime} \\
\vdots & \vdots & \vdots & \ldots & \vdots \\
y_{R}^{\prime} & y_{2 R}^{\prime} & y_{3 R}^{\prime} & \cdots & y_{C R}^{\prime}
\end{array}\right]
$$

The output of the Turbo code internal interleaver is the bit sequence read out column by column from the intra-row and inter-row permuted $R \times C$ matrix starting with bit $y^{\prime}{ }_{1}$ in row 0 of column 0 and ending with bit $y^{\prime}{ }_{C R}$ in row $R-1$ of column $C-1$. The output is pruned by deleting bits that were not present in the input bit sequence, $o_{i r k}$ to the channel coding, i.e. bits y_{k} that corresponds to bits x_{k} with $k>K$ are removed from the output. The bits output from Turbo code internal interleaver are denoted by $x^{\prime}{ }_{1}, x^{\prime}{ }_{2}, \ldots, x^{\prime}{ }_{K}$, where $x^{\prime}{ }_{1}$ corresponds to the bit $y^{\prime}{ }_{k}$ with smallest index k after pruning, x_{2}^{\prime} to the bit y_{k} with second smallest index k after pruning, and so on. The number of bits output from Turbo code internal interleaver is K and the total number of pruned bits is
$R \times C-K$.

