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[bookmark: OLE_LINK13][bookmark: OLE_LINK14]Introduction
In RAN #102 meeting, further study objectives on AI CSI compression have been identified in the WID [1]: 
	Study objectives with corresponding checkpoints in RAN#105 (Sept ’24):	
· CSI feedback enhancement [RAN1]: 
· For CSI compression (two-sided model), further study ways to:
· Improve trade-off between performance and complexity/overhead
· e.g., considering extending the spatial/frequency compression to spatial/temporal/frequency compression, cell/site specific models, CSI compression plus prediction (compared to Rel-18 non-AI/ML based approach), etc.
· [bookmark: OLE_LINK2]Alleviate/resolve issues related to inter-vendor training collaboration.
[bookmark: OLE_LINK1]while addressing other aspects requiring further study/conclusion as captured in the conclusions section of the TR 38.843. 
· [bookmark: _Hlk152950038]For CSI prediction (one-sided model), further study performance gain over Rel-18 non-AI/ML based approach and associated complexity, while addressing other aspects requiring further study/conclusion as captured in the conclusions section of the TR 38.843 (e.g., cell/site specific model could be considered to improve performance gain). 



In this contribution, we discuss the key issues involved in the objectives and present our views as well as simulation results.
Improving trade-off between performance and complexity/overhead
In RAN1 #116, it was agreed that two approaches will be further exploited to improve the trade-off between performance and complexity for CSI compression: 1) temporal domain aspects of CSI compression (or namely TSF compression); 2) cell/site specific models (or namely localized models). Some initial agreements on evaluation methodology for each option are given and companies are encouraged to provide their evaluation results. In the following, we would like to discuss the two approaches one by one.

TSF compression 
	Agreement
For the evaluation of temporal domain aspects of AI/ML-based CSI compression using two-sided model in Release 19, adopt the following categorization for study:
	Case
	Target CSI slot(s)
	Whether the UE uses past CSI information
	Whether the network uses past CSI information

	0
	Present slot
	No
	No

	1
	Present slot
	Yes
	No

	2
	Present slot
	Yes
	Yes

	3
	Future slot(s)
	Yes
	No

	4
	Future slot(s)
	Yes
	Yes

	5
	Present slot
	No
	Yes



Note 1: For the UE, the past CSI information may include past model inputs and/or any information derived from them. For the network, the past CSI information may include past CSI feedback instances and/or any information derived from them.
Note 2: For case 3 and case 4, the UE may perform prediction as a separate step or jointly with compression. Similarly, the network may perform prediction as a separate step or jointly with reconstruction. Companies to report which option is selected, the number of future slots, and whether the prediction is AI/ML-based or not.
Note 3: “Target CSI slot(s)” refers to the slot(s) to which the CSI feedback in the report corresponds. “Present slot” refers to the slot of the most recent CSI-RS measurement used to generate the CSI report. “Future slot(s)” includes at least one slot after the present slot and may include the present slot as well. 
Note 4: Down-selection is not precluded. 

Agreement
For the evaluation of temporal domain aspects of AI/ML-based CSI compression using two-sided model in Release 19, adopt the following as baseline options for UE distribution:
· Option 1: 80% indoor, 20% outdoor
· Option 2: 100% outdoor
Note: Indoor speed is 3 km/h, outdoor speed is chosen from the following options: 10 km/h, 20 km/h, 30 km/h, 60 km/h, 120 km/h. Assumption on O2I car penetration loss and spatial consistency follow the R18 AI based CSI prediction.

Working Assumption
For the evaluation of temporal domain aspects of AI/ML-based CSI compression using two-sided model in Release 19, adopt the following benchmark scheme for performance comparison:
· For cases without prediction of future CSI, use the same benchmark scheme assumed in R18 AI/ML-based CSI compression study.
· For cases with prediction of future CSI, use the same benchmark scheme assumed in R18 AI/ML-based CSI prediction study, with R18 MIMO eType II codebook for compressing the feedback.

Agreement
For the evaluation of temporal domain aspects of AI/ML-based CSI compression using two-sided model in Release 19, adopt the following evaluation assumptions:
· CSI-RS configuration
· Periodic: 5 ms periodicity (baseline), 20 ms periodicity(encouraged)
· Aperiodic (for cases with prediction): Optional, CSI-RS burst with K resources and time interval m milliseconds (based on R18 MIMO eType-II) 
· CSI reporting periodicity: {5, 10, 20} ms; other values are not precluded
· For cases with the use of past CSI information, to report observation window, including number/time distance of historic CSI/channel measurements.
· For cases with prediction, to report prediction window, including number/time distance of predicted CSI/channel.

Agreement
· For the evaluation of temporal domain aspects of AI/ML-based CSI compression using two-sided model in Release 19, 
· adopt the CSI feedback overhead rate as reference, where the CSI feedback overhead rate is the average bit-rate of CSI feedback overhead across time.
Note: The CSI feedback overhead of a single report is calculated as in R18 CSI compression study.

Agreement
For the evaluation of temporal domain aspects of AI/ML-based CSI compression using two-sided model in Release 19, for cases with prediction of future CSI, in which prediction and compression are separated, to optionally evaluate a scheme with ideal prediction as an additional evaluation case for reference. 
Note: The ideal prediction scheme should model realistic channel estimation.

Agreement
For the evaluation of temporal domain aspects of AI/ML-based CSI compression using two-sided model in Release 19, for Case 2, Case 4 and Case 5, study the performance impact resulting from non-ideal UCI feedback.



Towards the evaluation of TSF compression, several important issues have been identified in RAN1 #116, including use cases, benchmark, RS configurations, UE distribution, considerations on non-ideal UCI feedback, etc. It should be acknowledged that quite a number of aspects are included in the simulation settings, of which the combinations will inevitably incur heavy burdens on simulation work. Therefore, we put our emphasis on some most interested cases, which could give insights on the potential gain provided by TSF compression on top of SF compression studied in R18.   
Considerations on evaluation cases
Among the agreed cases to be studied in R19, we are most interested in case2 and case3. In our view, case2 refers to the CSI feedback in an auto-regressive manner (as illustrated in Fig. 1), where UE side model encodes and feeds back the (potentially differentiated) PMI on present slot, and NW side model reconstructs it with the help of received PMI on previous slots. It is obvious that the feedback framework of case2 is similar to that of SF compression, so R16 etype II codebook is usually adopted as the benchmark. From our understanding, case2 is the approach with the highest potential gain when considering the feedback framework of R16 etype II codebook. Other cases following the same feedback framework (such as case 1) can be seen as trade-off approaches between case0 (i.e., SF compression studied in R18) and case2. Case3 refers to the joint compression of future (predicted) PMIs (as illustrated in Fig. 1). Compared with case4, we believe that case3 is more common in practical systems, as historic PMIs are not always available when considering the feedback of future predicted PMI.  

[image: ]
Fig. 1. [bookmark: _Ref159247523]Illustration of TSF compression
We find that the agreements on the evaluation assumption for TSF compression primarily consider the additional configurations on top of SF compression studied in R18, i.e., a general model not specific to a local region is assumed. We would like to emphasize that the combination of TSF compression and cell/site specific model is an important issue and should be considered during the study phase in R19, as our results demonstrate that obvious additional gain can be observed in cell/site specific TSF compression compared with a general benchmark. We will provide more detailed results and analysis on this issue in section 2.2. 

Evaluations on case2 
In this part, we will introduce more detailed approach in our evaluation for TSF compression case2. As illustrated in the following figure, historical information accumulates in a fixed buffer in both encoder and decoder to help the feedback of CSI on present slot. In this manner, model complexity will not increase as more slots are taken into considerations. Since there is an accumulating procedure in the exploiting of historic information, it is expected that the performance of feedback will also increase gradually. However, when enough information has been provided in previous slots, feedback performance will converge a stable value. In simulations, we are more interested in the converged stable performance, because the system throughput primarily depends on it (system level simulation usually considers a long period). In the following, we update our simulation configurations according to the newly agreed assumptions. 
[image: ]
Fig. 2. [bookmark: _Ref159247577]Illustration of TSF compression case2. 
[bookmark: _GoBack]Simulation parameters for TSF compression case2
	Parameters
	Value

	Scenario
	Dense Urban (Macro only), InH hotspot

	Carrier frequency
	4GHz

	Subcarrier spacing
	30KHz

	Frequency resources
	52 RBs, 13 subbands for 4RBs per subband

	gNB antenna
	32 ports: (8,8,2,1,1,2,8), (dH,dV) = (0.5, 0.8)λ

	UE antenna
	2 ports: (1,1,2,1,1,1,1), (dH,dV) = (0.5, 0.5)λ for (rank 1,2)

	BS antenna height
	25m

	UE antenna height & gain
	Follow TR36.873

	SCS
	30kHz for 4GHz

	Simulation bandwidth
	20 MHz for 30kHz 

	CSI feedback
	CSI feedback periodicity (full CSI feedback): 5 ms

	CSI-RS
	CSI-RS periodicity: 5ms

	UE distribution
	Configuration 1:20% indoor (3 km/h), 80% outdoor (30 km/h)
Configuration 2:100% indoor (3 km/h)

	Channel estimation
	Ideal DL channel estimation

	Baseline 
	Rel-16 Type II Codebook

	Rank number
	1

	Spatial consistency
	not adopted for general model, adopted for cell/site specific model


we consider different scenarios with different UE distributions in our simulation, and specific results are referred in the following table:
[bookmark: _Ref163052527] Results of the TSF compression case2
	
	R16 eType II compression
	TSF compression with transformer encoder

	Dense urban with 100% outdoor UEs
	0.718
	0.737(+2.6%)

	Dense urban with 20% outdoor UEs
	0.681
	0.766(+12.5%)

	InH with 100% indoor UEs
	0.781
	0.840(+7.6%)



As show in Table 2, we can find some gains in SGCS using TSF compression compared to legacy approach in the scenarios involved in the evaluation. The magnitude of the SGCS gain depends on the complexity of the samples in the scene, where complexity refers to the distribution ratio of UEs as well as the velocity, and the higher the sample complexity the worse the baseline of the scene, but the TSF model is able to use the historical information to overcome the sample complexity to improve the compression quality.
Observation 1: For Dense Urban with 100% outdoor UEs, TSF compression case2 can improve SGCS gain by 2.6% compared to R16 eType2 codebook
Observation 2: For Dense Urban with 20% outdoor UEs, TSF compression case2 can improve SGCS gain by ~12.5% compared to R16 eType2 codebook methods.
Observation 3: For InH scenarios, TSF compression case2 can improve SGCS gain by ~7.6% compared to R16 eType2 codebook methods.

Evaluations on case3 
[bookmark: OLE_LINK24][bookmark: OLE_LINK25]In this part, we will provide more detailed approach in our evaluation for TSF compression case3. We believe that a temporal window is required for case3 to indicate how many slots are included per feedback. To achieve a trade-off between model complexity and performance, we consider a window of length 4 in our simulation. In addition, we are primarily interested in the gain of jointly compressing CSI on multiple slots, so perfect future CSIs (i.e., ideal prediction is assumed) are considered in our initial simulation. Other simulation parameters can be referred to the following table:
Simulation parameters for TSF compression case3
	Parameters
	Value

	Scenario
	Dense Urban (Macro only)

	Carrier frequency
	4GHz

	Subcarrier spacing
	30KHz

	Frequency resources
	52 RBs, 13 subbands for 4RBs per subband

	gNB antenna
	32 ports: (8,8,2,1,1,2,8), (dH,dV) = (0.5, 0.8)λ

	UE antenna
	2 ports: (1,1,2,1,1,1,1), (dH,dV) = (0.5, 0.5)λ for (rank 1,2)

	BS antenna height
	25m

	UE antenna height & gain
	Follow TR36.873

	SCS
	30kHz for 4GHz

	Simulation bandwidth
	20 MHz for 30kHz 

	CSI feedback
	CSI feedback periodicity (full CSI feedback): 5 ms

	UE distribution
	80% indoor (3 km/h), 20% outdoor (30 km/h) 

	Channel estimation
	Ideal DL channel estimation

	Baseline 
	Rel-18 doppler domain Codebook

	Rank number
	1

	Spatial consistency
	not adopted for general model, adopted for cell/site specific model

	Prediction method
	ideal

	Length of compression window
	4 



In order to make the gain due to the CSI compression scheme clearer, ideal prediction scheme is considered in our simulation. For the target CSI, we consider four CSIs in the future with a period of 5ms, which are obtained by an ideal prediction method, and then perform a joint compression of the four future CSs according to the evaluation method described in the previous section. The baseline scheme is R18 DD codebook and payload size = 284. To give more insights into the performance trends, we give the SGCS gain on each slot as well as the averaged value compared to the baseline:
[bookmark: _Ref163056152]Results of the TSF compression case3
	Scenario: Dense urban
	PMI#0
	PMI#1
	PMI#2
	PMI#3
	Averaged

	R18 DD codebook 
(N4=4, Payload = 284bit)
	0.723
	0.734

	0.728

	0.708

	0.723


	Transformer encoder
	0.793
(+9.6%)
	0.814
(+10.9%)
	0.814
(+11.8%)
	0.793
(+12.0%)
	0.804
(+11.2%)


From Table 4, it can be observed that the compression of 4 slots using the joint TSF performs better than the R18 DD codebook compression under ideal channel prediction. The reason why joint TSF compression is advantageous is that the process of compressing CSI is able to make better use of the correlation between CSI information in multiple slot. 
Observation 4: For dense urban scenarios, TSF compression case3 can improve SGCS gain by 9.6%~12.0% compared to R18 DD codebook.

Cell/site specific models 
	Agreement
For the evaluation of AI/ML-based CSI compression using localized models in Release 19, consider the following options as a starting point to model the spatial correlation in the dataset for a local region:
· Option 1: The dataset is derived from UEs dropped within the local region, with spatial consistency modelling as per TR 38.901. 
· E.g., Dropped in a specific cell or within a specific boundary.
· Option 2: By using a scenario/configuration specific to the local region. 
· E.g., Indoor-outdoor ratio, LOS-NLOS ratio, TXRU mapping, etc.
Note: While modelling the spatial correlation, strive to ensure that the dataset distribution also correctly captures the decorrelation due to temporal variations in the channel. To report methods to generate training and testing dataset.

Agreement
For the evaluation of AI/ML-based CSI compression using localized models in Release 19, study the following aspects of the performance/complexity trade-off when comparing the localized model with a benchmark model that is not localized:
· Performance of the localized model that has similar or lower complexity as the benchmark model.
· Model complexity of the localized model that achieves similar or better performance as the benchmark model.



In RAN1 #116, initial agreements towards evaluation methodology for cell/site specific models have been provided to guide the following simulations. For the agreed two options regarding the modelling of spatial correlation within a region, we first consider option 1 in our simulation. In the following, we update our results on this topic.
 SF compression with cell/site specific models 
Intuitively, spatial correlations in channels of different UEs within a specific region could help to improve the performance of SF compression, because the effective characteristic to be compressed in the dataset will be reduced. So, we investigate the performance of SF compression with cell/site specific models first. Some of the parameters considered in our simulations are provided in the following Table 5:
[bookmark: _Ref159247172]Simulation parameters for SF compression with cell/site specific models
	Parameter
	Value

	Scenario
	Dense Urban (Macro only), Indoor Hotspot

	Frequency Range
	4GHz

	Inter-BS distance
	200m

	Channel model        
	According to TR 38.901 with spatial consistency

	Antenna setup and port layouts at gNB
	32 ports: (8,8,2,1,1,2,8), (dH, dV) = (0.5, 0.8)λ for Dense Urban
32 ports : (4,4,2,1,1,4,4), (dH, dV) = (0.5, 0.5)λ for InH

	Antenna setup and port layouts at UE
	2 ports: (1,1,2,1,1,1,1), (dH, dV) = (0.5, 0.5)λ 

	BS antenna height
	25m

	UE antenna height & gain
	Follow TR36.873

	SCS
	30kHz for 4GHz

	Simulation bandwidth
	20 MHz for 30kHz 

	UE distribution
	Dense Urban:
Configuration 1: 100% outdoor (30km/h)
Configuration 2: 80% indoor (3 km/h), 20% outdoor (30 km/h)
InH:
100% indoor (3km/h)

	Feedback assumption
	ideal

	Channel estimation
	Ideal DL channel estimation

	Baseline for performance evaluation
	Rel-16 Type II Codebook, general model not specific to a region

	Rank number
	1

	Spatial consistency
	not adopted for general model, adopted for cell/site specific model

	Dataset size for training and inference 
	300, 000 randomly dropped UEs per region 


Since two scenarios have been considered in our simulation, we provide the illustrations for cell/site region in each scenario in Fig. 3 and Fig. 4, where the region size is sector size for Uma dense urban and a rectangular area of 50m*40m  for InH scenario, respectively.


Fig. 3. [bookmark: _Ref163051747]Schematic of cell/site data collection area for UMa scenarios


Fig. 4. [bookmark: _Ref163051753]Schematic of cell/site data collection area for InH
With each UE following the configurations presented in the above table, we drop 300K UEs in one sector in our simulations, and the cell/site specific model is trained and tested on data collected within each sector. Note that with spatial consistency the channels in different sectors may vary a lot, resulting in different levels of gains. To give an overall evaluation, we repeat the simulation procedures several times in different sectors (such as sector K/M/N in the Fig. 3).
[bookmark: _Ref159247466]As pointed out by some companies, time-variations in channel might affect the performance of SF compression with cell/site specific model. To investigate this issue, we simulate ~1000slots per UE to collect the data and consider two cases: 1) cell/site specific model trained based on data from slot0, where influence of doppler shift is not included; 2) cell/site specific model trained based on data from slot1000 or later, where influence of doppler shift is included. The results are given below:
[bookmark: _Ref158282549]Results for cell/site specific model trained based on data from slot0 (Dense urban with 100% outdoor UEs considered)
	Scenario: Dense urban with 100% outdoor UEs
	R16 eType II CB (PC1)
	SF compression (64payload)
	R16 eType II CB (PC3)
	SF compression (104payload)

	Cell/site model on sector#1 
	0.627
	0.926
(+47.6%)
	0.699
	0.928
(+34.1%)

	Cell/site model on sector#2
	0.779
	0.972
(+24.7%)
	0.829
	0.978
(+17.9%)



[bookmark: _Ref163070182]Results for cell/site specific model trained based on data after slot1000 (Dense urban with 100% outdoor UEs considered)
	Scenario: Dense urban with 100% outdoor UEs
	R16 eType II CB
	SF compression

	General model
	0.718
	0.737(+2.6%)

	Cell/site model on sector#3
	0.679
	0.750(+10.4%)

	Cell/site model on sector#4
	0.732
	0.811(+10.8%)

	Cell/site model on sector#5
	0.701
	0.781(+11.4%)



Results for cell/site specific model trained based on data after slot1000 (Dense urban with 20% outdoor UEs considered)
	Scenario: Dense urban with 20% outdoor UEs
	R16 eType II CB
	SF compression

	General model
	0.681
	0.715(+5.0%)

	Cell/site model on sector#3
	0.596
	0.650(+9.0%)

	Cell/site model on sector#4
	0.613
	0.665(+8.4%)

	Cell/site model on sector#5
	0.670
	0.725(+8.2%)



[bookmark: _Hlk162971942]Results for cell/site specific model trained based on data after slot1000 (InH with 100% indoor UEs considered)
	Scenario: InH with 100% indoor UEs
	R16 eType II CB
	SF compression

	General model
	0.781
	0.832 (+6.5%)

	Cell/site model on region#1
	0.739
	0.811(+9.7%)

	Cell/site model on region#2
	0.746
	0.811(+8.7%)

	Cell/site model on region#3
	0.757
	0.824(+8.9%)



First of all, we notice that the performance of both R16 etypeII codebook and SF compression model is not stable in each sector. This is because the distribution of LoS and NLoS paths in each sector/region is not the same. The more LOS paths in the samples leads to better compression of R16 CB and therefore higher SGCS. Comparing Table 6 and Table 7, there are different gains observed. We conjecture one of the potential reasons for such phenomenon is that doppler shifts introduce diversity of data distribution, especially for those samples located in similar positions. Nevertheless, we would like to emphasize that cell/site specific model is still able to obtain additional gains compared to the general model studied in R18 under the influence of doppler shifts, especially in the indoor hotspot scenario. Such gains, as demonstrated in Tables 6 to 8, are quite stable across different sectors (potentially with different indoor/outdoor UE ratio or los/ NLoS ratio). 
Observation 5: SF compression with cell/site specific model provides up to 11.4% gain compared to legacy codebook in Uma scenario with 0% indoor UE distribution while general model only provides 2.6% SGCS gains.
Observation 6: SF compression with cell/site specific model provides up to 9.0% gain compared to legacy codebook in Uma scenario with 80% indoor UE distribution while general model only provides 5% SGCS gains.
Observation 7: SF compression with cell/site specific model provides up to 9.7% gain compared to legacy codebook in InH scenario with 100% indoor UE distribution while general model provides 9.7% SGCS gains.

TSF compression with cell/site specific models 
As mentioned in previous sections, it is intuitive to combine TSF compression with cell/site specific models to further improve the performance. In this section, we investigate this idea. 
Specifically, we collect the CSIs of UEs in fixed regions in both Uma dense urban and indoor hotspot scenarios to form the dataset for the cell/site model, which is similar to the evaluation methodology employed in section 2.2.1. Basic configuration of the simulation parameters in this section follows that of the general model, and we also performed multiple simulations under different random seeds.

Results for TSF compression case2
We first consider TSF compression case2, of which the results are provided in the following tables.
 Results for TSF compression with cell/site specific model (Dense urban with 100% outdoor UEs considered)
	Dense urban with 100% indoor UEs
	R16 eType II CB
	TSF compression with transformer encoder

	General model
	0.718
	0.737(+2.3%)

	Cell/site model on sector#3
	0.679
	0.742(+9.0%)

	Cell/site model on sector#4 
	0.732
	0.803(+7.1%)

	Cell/site model on sector#5
	0.701
	0.773(+10.3%)



[bookmark: _Hlk163060583] Results for TSF compression with cell/site specific model (InH with 100% indoor UEs considered)
	[bookmark: _Hlk163050728]InH with 100% indoor UEs
	R16 eType II CB
	TSF compression with transformer encoder

	General model
	0.781
	0.840(+7.5%)

	Cell/site model on sector#3
	0.739
	0.863(+16.8%)

	Cell/site model on sector#4 
	0.746
	0.821(+10.1%)

	Cell/site model on sector#5
	0.757
	0.852(+12.5%)



[bookmark: _Ref163070320] Results for TSF compression with cell/site specific model (Dense urban considered, 8:2 indicates that the ratio between indoor and outdoor UEs is 8:2)
	Dense urban
	R16 eType II CB
	TSF compression with CNN encoder
	TSF compression with transformer encoder

	General model (8:2)
	0.681
	0.683(+0.0%)
	0.766(+12.5%)

	Cell/site model on sector#3 (8:2)
	0.596
	0.720(+20.6%)
	0.758(+26.9%)

	Cell/site model on sector#4 (9.9:0.1)
	0.613
	0.805(+31.3%)
	0.820(+33.7%)

	Cell/site model on sector#5 (4:6)
	0.670
	0.707(+5.5%)
	0.738(+10.1%)



From results presented in Tables 10~12, it can be observed that the TSF cell/site model has additional gain compared to the general model, and the additional gain in some regions (random seeds) is very large compared to the general model. For example, in the UMa dense urban scenario, the gain can be maximized from 0.3% to 12.4%; in the InH scenario, the gain can be maximized from 12.5% to 31.0%. The variations in performance gain come from different ratios between indoor UEs (with 3kmph velocity) and outdoor UEs (with 30 kmph velocity). It is straightforward to find that TSF compression can offer higher additional gain on UEs with low velocity, as the temporal domain correlations in CSIs is larger given the same measurement periodicity.  When collecting data within a region, the dropped UEs can also follow very different indoor/outdoor ratios even with the same expected one (Specifically, this is because in the case of spatial consistency modelling, in order to achieve the effect that the channel is slowly changing within a similar space or location, the random number that determines the type of distribution of the UE is affected by the random seed in the simulation as well as by the location of the UE, so that the channels within a similar space and location have a certain degree of similarity.), leading to different performance gains of TSF compression. We have also given the ratio of indoor and outdoor UEs in each case, and the performance trends is consistent with our analysis.
In addition to the results under a powerful transformer encoder, we also present the results under a relatively simple CNN encoder. The results in Table 12 suggests that even with an encoder with simpler structure, TSF compression with cell/site specific models can still achieve higher performance than general model with powerful encoder structure. On the contrary, if CNN encoder is considered, TSF compression with a general model provide almost no performance gain. That is to say, it is possible to simplify model structure design with cell/site specific models, which is obviously beneficial to inter-vendor collaborations.
Observation 8: TSF compression case2 with cell/site specific model provides up to 10.3% gain compared to legacy codebook in Uma scenario with 0% indoor UE distribution while general model only provides 2.3% SGCS gains.
Observation 9: TSF compression case2 with cell/site specific model provides up to 26.9% gain compared to legacy codebook in Uma scenario with 80% indoor UE distribution while general model only provides 12.5% SGCS gains.
Observation 10: TSF compression case2 with cell/site specific model provides up to 16.8% gain compared to legacy codebook in InH scenario with 100% indoor UE distribution while general model provides 7.5% SGCS gains.

Results for TSF compression case3
We then consider TSF compression case3, and the results are provided in the following table.  
[bookmark: _Ref163066106] Results for TSF compression with cell/site specific model (Dense urban considered)   
	Dense urban
	PMI#0
	PMI#1
	PMI#2
	PMI#3
	Averaged

	R18 DD codebook 
(N4=4, Payload = 284bit)
	0.723
sector#3:0.656
sector#4:0.705
sector#5:0.672
	0.734
sector#3:0.667
sector#4:0.723
sector#5:0.668
	0.728
sector#3:0.661
sector#4:0.717
sector#3:0.664
	0.708
sector#3:0.636
sector#4:0.690
sector#5:0.649
	0.723
sector#3:0.655
sector#4:0.709
sector#5:0.663

	General model with Transformer encoder (ind UE: out UE=8:2)
	0.793
(+9.6%)
	0.814
(+10.9%)
	0.814
(+11.8%)
	0.793
(+12.0%)
	0.804
(+11.2%)

	Joint TSF cell/site model with CNN encoder (sector#3, ind UE: out UE=8:2)
	0.723
(+12.2%)
	0.749
(+12.3%)
	0.750
(+13.4%)
	0.720
(+13.2%)
	0.736
(+12.4%)

	Joint TSF cell/site model with Transformer encoder (sector#3, ind UE: out UE=8:2)
	0.757
(+15.4%)
	0.783
(+17.3%)
	0.783
(+18.4%)
	0.756
(+18.6%)
	0.770
(+17.6%)

	Joint TSF cell/site model with CNN encoder (sector#4, ind UE: out UE=9.9:0.1)
	0.773
(+9.6%)
	0.801
(+10.7%)
	0.799
(+11.4%)
	0.769
(+11.4%)
	0.786
(+10.8%)

	Joint TSF cell/site model with Transformer encoder (sector#4, ind UE: out UE=9.9:0.1)
	0.793
(+12.4%)
	0.823
(+13.8%)
	0.823
(+14.7%)
	0.794
(+15.0%)
	0.808 
(+14.1%)

	Joint TSF cell/site model with CNN encoder (sector#5, ind UE: out UE=4:6)
	0.718
(+6.8%)
	0.736(+10.1%)
	0.744(+12.0%)
	0.720(+10.9%)
	0.730
(+9.9%)

	Joint TSF cell/site model with Transformer encoder (sector#5, ind UE: out UE=4:6)
	0.767
(+14.1%)
	0.780
(+16.7%)
	0.781
(+17.6%)
	0.768
(+18.3%)
	0.774
(+16.7%)



From Table 13, it can be observed that 
although the general model already has a considerable gain compared to the baseline, the cell/site model can further improve the gain. Besides, we also find that simpler encoder with CNN structure is also able to achieve satisfying performance gain compared with general model.
Observation 11: TSF compression case3 with cell/site specific model provides up to 17.6% gain compared to legacy codebook in Uma scenario with 80% indoor UE distribution while general model provides 11.2% SGCS gains.
Observation 12: Even considering a relatively simpler CNN encoder, TSF compression with cell/site specific models can still offer an obvious performance (up to 31.3% in our simulation for case2 and up to 12.4% in case3), indicating that it is possible to simplify model design with cell/site specific models.

Issues related to inter-vendor training collaboration 
For the sake of alleviating/resolving issues related to inter-vendor training collaboration of two-sided models, following agreements (including potential options to be studied) were achieved in RAN1 #116:
	Agreement
To alleviate / resolve the issues related to inter-vendor training collaboration of AI/ML-based CSI compression using two-sided model, study the following options:
· Option 1: Fully standardized reference model (structure + parameters)
· Option 2: Standardized dataset
· Option 3: Standardized reference model structure + Parameter exchange between NW-side and UE-side
· Option 4: Standardized data / dataset format + Dataset exchange between NW-side and UE-side
· Option 5: Standardized model format + Reference model exchange between NW-side and UE-side
Note 1: The above options may not be mutually exclusive and may be used together.
Note 2: Other options are not precluded.
Note 3: The study should consider how different methods of exchanging the parameters / dataset / reference model would affect the feasibility and collaboration complexity of options 3 / 4 / 5 respectively, e.g., over the air-interface, offline delivery, etc.
Note 4: “Dataset” refers to a set of data samples of CSI feedback and associated target CSI.



Furthermore, companies are encouraged to analyze the aforementioned options from the following perspective:
	Agreement
For the study of inter-vendor collaboration issues for AI/ML-based CSI compression using a two-sided model, consider at least the following aspects when comparing different options:
· Inter-vendor collaboration complexity, e.g., whether bilateral collaboration is required between vendors.
· Performance.
· Interoperability and RAN4 / testing related aspects.
· Feasibility.



Therefore, we would like to follow the agreed framework to provide our views on training collaboration issues, where the analysis is given option by option.
Option 1: Fully standardized reference model (structure + parameters)
Option 1 considers fully standardized reference model (i.e., both model structure and parameters are specified) to facilitate inter-vendor collaboration. Take fully standardized reference encoder as an example (since the case of a fully standardized decoder model could follow similar training framework), and the general training procedure should be: 
· UE vendor develops its own encoder model according to the reference encoder (implemented encoder should approach the function of reference encoder)
· NW vendor develops its own decoder model himself according to the reference encoder. 
Note that there is no specific execution order in the development of UE side model and NW side model, as they are isolated procedures. If multiple standardized reference encoder models are considered, NW needs to train common decoders for some combinations of reference encoders, and UE may implement a subset of the standardized encoders according to its capability. Finally, NW could schedule which model is utilized on UE side according to the undergoing scenario/configurations. As NW knows the models deployed on UE side, NW can cover all LCM procedures.

· Inter-vendor collaboration complexity, e.g., whether bilateral collaboration is required between vendors.
Based on the above presented procedure, we can figure out that minimum inter-vendor collaboration is required in option 1, as the development of NW side model and UE side model are separated from each other. In the deployment case, there seems no inter-vendor collaboration is required since the model is fully standardized
Observation 13: Option 1 requires minimum inter-vendor collaboration, as the development of NW-side model and UE-side model are separated from each other.

· Performance
It is expected that the performance of option 1 highly depends on the quality of the standardized reference models. If the training dataset of those standardized reference models matches the dataset collected on the deployed scenario/environment, the performance would be accepted. Otherwise, the performance would degrade. The challenge is that building an “ideal” dataset which contains enough CSI samples from all possible wireless environments is difficult. We believe that it is difficult for models trained on data collected from TR 38.901 channels to achieve satisfying performance in real deployment. In addition, the adaptation ability of tuning decoder based on a fixed (and standardized) encoder is better than that of tuning encoder based on a fixed (and standardized) decoder according to simulation results. When there is mismatch of data distribution between encoder development during specification phase and real deployment, tuning decoder based on the standardized encoder can partly alleviate the issue of performance degradation.
Observation 14: The performance of option 1 is restricted and is highly dependent on whether the training dataset of those standardized reference models matches the data distribution in real deployment. 
Observation 15: Tuning decoder based on a fixed (and standardized) encoder in real deployment can partly alleviate the issue of data distribution mismatch between encoder development during specification phase and real deployment.
Observation 16: Performance of standardized encoder would be better than performance of standardized decoders. 

· [bookmark: OLE_LINK3][bookmark: OLE_LINK4]Interoperability and RAN4 / testing related aspects
Interoperability in our understanding means that for any UE vendor that passes the RAN4 testing, the interoperability between UE and NW can be guaranteed with expected performance target.
A standardized encoder can obviously help such interoperability. As long as a UE passes the RAN4 testing, it means UE implements the encoder based on the specified reference encoder thus for any UE that interoperate with the NW, the expected performance can be guaranteed although such guaranteed performance may not be good if there is mismatch of data distribution between real deployment and testing environment.
Observation 17: For any UE that passes the RAN4 testing based on Option1, the UE is interoperable with any NW vendor with guaranteed expected performance, although there may be mismatch of data distribution between real deployment and testing environment.

A standardized reference model can significantly help RAN4 testing for AI/ML based CSI compression, and it is agreed as one way forward in RAN4 agreement. So that RAN4 can use the standardized model (either encoder or decoder) directly in the testing procedure. Once a UE vendor passes the pre-deployment test, its operations based on standardized signaling and procedures would be guaranteed with minimum requirement.
If 3GPP considers fully specifying encoders in option 1, we believe that 1) It is easy for UE and TE to interoperate with specified model structure and parameters; 2) It is easy to define requirements with additionally aligned reference decoders among companies. On the other hand, if 3GPP considers specifying decoders in option 1, we believe that 1) It is easy for UE and TE to interoperate with specified decoders; 2) It is easy to define RRM requirements with additionally aligned reference encoders among companies. 
Observation 18: Option 1 in the RAN1 agreement has been agreed upon as a potential solution for RAN4 testing so there is no issue with using for interoperability and from perspective of RAN4 testing-related aspects

· Feasibility
From the perspective of on-device feasibility, option 1 with standardized reference models (both structure and parameter) is feasible with the assumption that the specification fully specifies the model.
Observation 19: Option 1 is feasible from NW side and UE side implementation.   

Option 2: Standardized dataset
Option 2 considers to standardize dataset for inter-vendor collaboration. Similar to the analysis of option 1, we also consider the case of standardizing the dataset for encoder. And it is straightforward to observe that option 1 and option 2 share a series of characteristics, e.g., model development procedures at NW side and UE side in option 2 are also isolated. The general training procedure in option 2 would be: 
· UE vendor develops encoder according to the standardized dataset, 
· NW vendor develops encoder according to the standardized dataset and then develops the decoder according to the developed encoder.
 One critical issue for option 2 is whether a standardized dataset is enough for NW/UE to develop models with satisfying performance since evaluations in R18 revealed that if the model design (e.g., backbone type) in the development stage is different from the one utilized in the generation of standardized dataset model training will become more difficult. 

· Inter-vendor collaboration complexity, e.g., whether bilateral collaboration is required between vendors.
We believe that option 2 involves little inter-vendor collaboration, mainly because NW side and UE side can develop their models separately, but different model designs (e.g., backbone type) will raise the different performance
Observation 20: Option 2 requires minimum inter-vendor collaboration, as the development of NW-side model and UE-side model are separated from each other.

· Performance
Similar to option 1, the performance of option 2 is closely related to the quality of standardized dataset. It can be expected that the performance will be quite limited if the standardized dataset does not match the data distribution in at real wireless environment, and possibly a small mismatch could incur severe performance degradation. In addition, the performance variation of option 2 will be more obvious than that of option 1, since the behavior of standardized reference model in option 1 will be determined and predictable, but the behavior of models trained on standardized dataset is not determined and thus not predictable. 
Observation 21: The performance of option 2 will be limited if the standardized dataset does not match the data distribution in real deployment (possibly a small mismatch could incur severe performance degradation).

· Interoperability and RAN4 / testing related aspects
As discussed above, interoperability in our understanding means that for any UE vendor that passes the RAN4 testing, the interoperability between UE and NW can be guaranteed with expected performance target.
A standardized dataset may not help such interoperability. Even for a UE that passes the RAN4 testing, the implemented model would be dramatically different. The expected performance is not predictable when the NW side tunes its decoder implementation. 
Observation 22: For Option2, the interoperability cannot be guaranteed since for any UE that passes the RAN4 test, the NW side may not be able to predict the performance of UE in real deployment. UE implementation based on the dataset would be dramatically different and dataset only cannot be used for performance prediction.

The testing of option 2 will be more challenging than that for option 1, though both options consider to standardize something fixed to oblige the behaviours of models. In fact, it is extremely difficult for a model to exactly fit the specified dataset without any errors. And models trained on the same specified data could also vary significantly (Merely changing the random seed in the training algorithm with all other hyper-parameters and configurations unchanged could lead to a completely different model). Therefore, performance requirements in RAN4 cannot be defined unless the model structure can be aligned from a 3GPP level. On the other hand, even a UE passes RAN4 tests using the standardized dataset, it is not guaranteed that the UE could achieve minimum required performance in real deployment, since the data distribution might shift to an unknown one that leads to a significant performance loss.
Observation 23: Without model information, only a standardized dataset cannot fully solve the issue of RAN4 testing-related aspects

· Feasibility
We believe that option 2 is a feasible solution from the perspective of on-device deployment. NW and UE are able to develop their model based on the standardized dataset.
Observation 24: Option 2 is feasible from the perspective of on-device deployment. 

Option 3: Standardized reference model structure + Parameter exchange between NW-side and UE-side
Option 3 corresponds to “type 1 training with known model structure” as agreed in the R18 study. Considering the case that the reference UE side model structure is standardized and the parameter is transferred from NW-side to UE-side, the general procedure is
 1) NW develops both encoder and decoder, where encoder structure follows the reference model structure, and UE also prepares to deploy the reference encoder. 
2) NW then transfers the model parameters to UE side; 
3) UE deploys the received parameters to align the encoder and decoder. NW could train a common decoder to multiple encoders, and transmit each encoder to the corresponding UE. 
If multiple reference model structures are specified, the UE vendor could select a subset of model structures to deploy at UEs considering the UE capability. Note that the quantization methods of the parameters can also be specified as part of the model structure to facilitate the on-device deployment of transferred parameters.
Observation 25: Quantization methods of the parameters can also be specified as part of the model structure to facilitate the on-device deployment of transferred parameters.

· Inter-vendor collaboration complexity, e.g., whether bilateral collaboration is required between vendors
Provided that model structure is specified, the remaining work is to exchange the parameters between NW-side and UE-side. If such parameter exchange happens in an offline manner, inter-vendor collaboration is inevitable to negotiate the necessary information such as the format of parameters. If the parameter exchange happens in an over-the-air manner, we believe that option 3 requires no inter-vendor collaboration. 
Observation 26: Option 3 requires minimum inter-vendor collaboration if the parameter exchange happens in an over-the-air manner. 

· Performance
The performance of option 3 can be guaranteed by the flexibly-updated model parameters, i.e., different parameter sets can be trained based on cell/site or configuration-specific data to achieve good performance to fit different real scenarios. In fact, simulation results in R18 show that only updating parameters in a fixed model structure is enough to achieve satisfying performance.
Observation 27: The performance of option 3 can be guaranteed by the flexibly-updated model parameters.

· Interoperability and RAN4 / testing related aspects
As discussed above, interoperability in our understanding means that for any UE vendor that passes the RAN4 testing, the interoperability between UE and NW can be guaranteed with expected performance target.
Standardized encoder structure can help such interoperability. RAN4 test can be designed in such a way that TE vendors can flexibly update the parameter at UE side. As long as a UE passes the RAN4 testing, it means UE implements the encoder structure in a way that can have flexible parameter update. Thus for any UE that interoperate with the NW, the expected performance can be guaranteed in a cell/site specific way.
Observation 28: Option3 guarantees the interoperability between UE and gNB since for any UE that passes the RAN4 test on model performance based on model parameter update, the expected performance of the UE would be predictable and guaranteed.

Towards the testing of option 3, one key issue to be considered is how to guarantee the performance in real deployment via pre-deployment testing, since the complete model can be obtained only after the parameters for deployment have been transferred to UE. Specifically, RAN4 could identify (or even specify) several sets of testing parameters and testing condition together for the standardized model structure. With the identified testing parameters and conditions, UE can deploy the test parameters with specified model to check whether the output of UE side model approaches the target output given the testing condition (how to generate the testing dataset could be further studied in RAN4). If UEs successfully pass such tests, the UEs are expected to receive and deploy the transferred model parameters in a way that meets minimum performance requirements. Note that on-device self-optimization for the model structure is feasible in option 3, as long as the self-optimized model deployment could pass the corresponding RAN4 test. 
Observation 29: Option 3 has no issue from RAN4 testing perspective.

For the performance requirement definition itself, we believe that it can be defined with specified encoder structure and possible RAN4 agreed testing condition, including concluded reference decoder structure for performance target evaluation. 
Observation 30: The performance requirement in RAN4 testing for option 3 can be defined with specified encoder structure and possible RAN4 agreed testing condition, including concluded reference decoder structure for performance target evaluation.

Another approach to guarantee the performance in real deployment is to design a post-deployment testing framework. The post-deployment testing could guarantee the performance of models through observation of inference results against expected inference outputs, which is somewhat similar to model monitoring in LCM. Dataset for post-deployment testing can be either real-time measurements or predefined. However, with well-designed pre-deployment testing for Option3 for model parameter update, the necessity of post deployment testing needs to be studied.
Observation 31: Necessity of post deployment testing can be studied for Option3. 

· Feasibility
 In Appendix, an initial lab test for model transfer with known model structure is done to find the main aspects in this procedure and obtain the actual latency. For even 10M parameters, the total latency of UE updating the received model parameters is just 12.472ms, which would result in the low latency of model transfer with known model structure. Our result of lab test demonstrated that option 3 with standardized reference model structure and parameter exchange between NW-side and UE-side is also feasible with typical UE implementations and on-device operation. 
Observation 32: Option 3 is feasible with typical UE implementations and on-device operation.

Option 4: Standardized data / dataset format + Dataset exchange between NW-side and UE-side
Option 4 corresponds to the “type 3 training” agreed in R18 study. Considering the case that data/dataset format is standardized and dataset is transferred from NW-side to UE-side, the general procedure is:
1) NW trains the encoder and decoder locally with arbitrary or aligned encoder model structure; 
2) NW generates the dataset based on the trained encoder;
3) The dataset for encoder training will be transmitted to UE side in a standardized format; 
4) UE (or mainly the UE-side server) trains its encoder model based on the transmitted dataset and deploy it on UE device.

· Inter-vendor collaboration complexity, e.g., whether bilateral collaboration is required between vendors
Inter-vendor collaboration complexity of option 4 mainly depends on the ways of exchanging dataset between NW-side and UE-side. We have noticed three kinds of procedures from companies since R18 study:
 1) The dataset is exchanged over the air; 
2) The dataset is exchanged in a vendor-vendor specific server-to-server manner, i.e., offline delivery;
 3) The dataset is exchanged in server to server manner via standardized interface, e.g., central register. 
The inter-vendor training complexity would be high as long as there is offline among vendors, since the offline needs to be done in a vendor-vendor specific manner. If interfaces for dataset exchange can be developed among vendors, it is possible to reduce the complexity of inter-vendor training collaborations. For example, standardized training collaboration interfaces can be built up in a central register, and servers can collaborate with each other during training stage. However, such method can also incur additional (communication) overhead, since more nodes distributed at different NW part (e.g., RAN or CN) are included in the whole training procedure.
Observation 33: For inter-vendor collaboration of option 4, 
· if the dataset is exchanged over the air, inter-vendor collaboration may still require vendor-specific data distribution procedures which increases inter-vendor collaboration complexities;
· if the dataset is exchanged in a vendor-vendor specific server-to-server manner, i.e., offline delivery, inter-vendor training complexity would be high.
Observation 34: It is possible to reduce the complexity of inter-vendor collaborations with standardized interfaces for dataset exchange, but this would also involve complicated inter-vendor collaboration since gNB vendor/CN vendor/UE server/UE device would all be involved. 

· Performance
The performance of option 4 corresponds to (NW-first) type 3 training studied in R18. According to TR 38.843, some performance loss can be observed in cases including: 1) misaligned backbone of encoder model structure at NW-side and UE-side, 2) insufficient samples in the exchanged dataset, 3) one UE to many NW vendor cases.  
Observation 35: According to TR 38.843, performance loss for option 4 can be observed once backbone of encoder model structure at NW-side and UE-side is misaligned or the samples in the exchanged dataset is insufficient, or there are one to many pairing issues.

· Interoperability and RAN4 / testing related aspects
One of the key issues for the testing of option 4 is how to guarantee the performance in real deployment meeting the minimum requirement, since the performance of real-deployed model highly depends on the transferred dataset from NW-side. From our understanding, it is extremely challenging for option 4 to guarantee the performance in real deployment through RAN4 pre-deployment testing, as any dataset considered in testing stage could mismatch the data distribution in real deployment environment. In addition, the uncertainty in training procedure is much more than that in deploying a standardized model structure (e.g., the configuration of learning rate, batch size, optimizer, or loss function can be very different in different training algorithms). It is difficult to ensure that a training algorithm with good performance on testing dataset performs stably on any dataset in real deployment.  Meanwhile, the cost of such pre-deployment testing for option 4 is also prohibitively high, since model training generally cannot be done in an on-device manner, i.e., a server is required for model training and communication between UE and UE-side server is necessary during the test stage. Last but not least, it is difficult to determine the testing requirement in RAN4 for option 4, if only testing dataset is provided without any alignment on model structure. 
Observation 36: Option4 cannot guarantee interoperability between UE and gNB since for any UE that passes the RAN4 test, the performance can still not be predictable in real deployment since UE implementation that passes the RAN4 test can be dramatically different.
Observation 37: Motivation of pre-deployment testing for option 4 is not clear, as 1) the cost of pre-deployment testing for option 4 is significantly high since the model has to be trained on a UE-side server; 2) Even if pre-deployment has been done for UE, the performance in real-deployment cannot be guaranteed because the exchanged dataset in real deployment could be different from the one considered in pre-deployment testing.
Observation 38: It is difficult to determine the RAN4 testing requirement for option 4 if only testing dataset is provided without any alignment on model structure.

Therefore, we believe that the testing of option 4 highly relies on the post-deployment testing, which could be a monitoring-like procedure to test the performance of real-deployed models. It could be foreseen that RAN4 needs to discuss a new testing framework to address the above issues. 
Observation 39: For the testing of option 4, post-deployment testing is always necessary, which incurs additional burden in real deployment.

· Feasibility
According to the procedure, option 4 is not feasible with only on-device optimization and operation considered, but feasible with the assumption that a server can help the device to train the model. In addition, user-consent issue should be considered when exchanging dataset between UE device and UE-side server.
Observation 40: Option 4 is not feasible with only on-device optimization and operation considered, but feasible with the assumption that a server can help the device to train the model.

Option 5: Standardized model format + Reference model exchange between NW-side and UE-side
Option 3 corresponds to “type 1 training with unknown model structure” agreed in R18 study, and a standardized model format could be something like ONNX to express model with arbitrary structure. For the case of NW-side training, the general procedure is 
1) NW trains encoder and decoder with arbitrary structure; 
2) NW then transfers the encoder model to UE side, whose structure could be an unknown structure for UE; 
3) After receiving the model in the standardized format, UE (or mostly the UE side server) should compile, quantize, or possibly retrain the model to fit the hardware/software environment at UE to make the model deployable on device. 
Note that we believe the last step is necessary for option 5, since UEs are usually not capable of deploying models with unknown structures. Similar to option 3, NW can also train a common decoder to multiple encoders, and transfer each encoder to the corresponding UE. In the following, our discussions are all based on the case of NW-side training. 

· Inter-vendor collaboration complexity, e.g., whether bilateral collaboration is required between vendors
As the exchanged model with an unknown structure will be processed in a server, we believe its inter-vendor collaboration follows option 4, i.e., three ways can be considered to exchange the model:
1) over-the-air;
2) vendor-vendor specific server-to-server communication; 
3) server-to-server communication via standardized interface, e.g., a central register.
Over-the-air model exchange obviously incurs little inter-vendor collaboration, but vendor-vendor specific model exchange between servers requires large inter-vendor collaboration efforts. Similar to the discussion for option 3, a standardized interface for server-to-server model exchange can reduce the inter-vendor collaboration complexity, but more communication overhead will be included. 
Observation 41: For inter-vendor collaboration of option 5,
· if the model is exchanged over the air, inter-vendor collaboration may still require vendor-specific model distribution procedures which increases inter-vendor collaboration complexities;
· if the model is exchanged in a vendor-vendor specific server-to-server manner, i.e., offline delivery, inter-vendor training complexity would be high.

· Performance
Option 5 offers the best flexibility in encoder model design. If the exchanged model is successfully deployed at UE without significant errors, the performance of option 5 will be guaranteed by NW side training. To this end, option 5 will offer the best performance among the 5 given options in the agreement.  
Observation 42: Performance of option 5 is guaranteed by the highest flexibility in the design of model to be exchanged.

· Interoperability and RAN4 / testing related aspects
Firstly, we believe that it is significantly challenging to guarantee the performance of option 5 in real deployment via RAN4 pre-deployment testing, as it is difficult to predict what kind of models will be transferred from NW. In addition, since the compilation process (e.g., quantization or retraining) of models usually requires a server at UE side, the cost of pre-deployment testing is also quite high. Towards the testing requirement, our view is that a common model structure should be aligned in RAN4, otherwise achieving consensus in companies will be difficult. Based on the above analysis, we find that the RAN4 testing issue for option 5 is quite similar to that of option 4.
Observation 43: Motivation of pre-deployment testing for option 5 is not clear due to the same reasons presented in the analysis of option 4.
Observation 44: Option5 can guarantee some level of interoperability between UE and gNB since the performance can be predictable in real deployment with UE-side implementation mimicing the transferred model between NW side and UE side. But it may still suffer interoperability issue since the pre-deployment test cannot guarantee the performance of an optimized model unless post deployment testing is enabled.

· Feasibility
Similar to option 4, option 5 is not feasible if only on-device optimization and operation is considered, but feasible when a server can help the device to train the model. 
Observation 45: Option 5 is not feasible if only on-device optimization and operation is considered, but feasible when a server can help the device to train the model.

Additional aspects when comparing different options: timescale of deploying a model for inference
Besides the given aspects in the agreement, we believe that the timescale of deployment should be also taken into consideration when comparing different options. In fact, the timescale of deployment determines the deployment “flexibility”, i.e., if the timescale of deployment is short, the models are more capable of adapting to various scenarios/configurations such. Our simulation results demonstrate that cell/site specific models could offer obvious additional gains compared with the general model, indicating that deployment flexibility is a key issue for inter-vendor training collaboration. 
Proposal 1: For the study of inter-vendor collaboration issue, consider the timescale of deployment when comparing different options.

Among the given options, timescale of deployment for option 1 and 2 with either a standardized model or dataset is the shortest, as the complete model can be developed in advance. However, whether the developed models in option 1 and 2 could achieve the performance of cell/site specific model is another issue. Timescale of deployment for option 3 is moderate, e.g., minutes or hours for on-device operation to deploy the transmitted parameters on UE. Timescale of deployment of option 4 and 5 is long since they both require a server to train or compile the model, where the processing and communication delay between device and UE-side server could be large, e.g., half or even several days. 
Observation 46: Timescale of deploying a model for inference for option 1 and 2 is minimum as models can be developed separately in advance. However, for update of a model, a 3GPP specification procedure is needed which would incur the largest delay for deploying a new model.
Observation 47: Timescale of deployment for deployment a model for inference option 3 is short as only on-device operation is required; Timescale of deploying a model for inference for option 4 and 5 is long as the model has to be trained/processed at a server.

Summary and proposal for options
Based on the above discussion, we summarize our views on the above 5 options in the following table:     
Observation 48: Characteristics of options to alleviate / resolve the issues related to inter-vendor training collaboration of AI/ML-based CSI compression can be summarized as:
	
	Inter-vendor collaboration complexity
	Performance
	Interoperability and RAN4 / testing related aspects
	Feasibility
	Deployment timescale

	Option 1
	Minimum complexity
	Restricted
	Solved
	feasible
	\

	Option 2
	Minimum complexity
	Highly restricted
	Not solved
	feasible
	\

	Option 3

	Minimum complexity with over the air signalling; Otherwise high;
	Optimum 
	Solved
	Feasible
	Short

	Option 4

	High complexity in server to server manner; Medium complexity with over the air signalling; 
	Better than Option1/2, but worse than Option3 and Option5
	Not solved
	Infeasible with only on-device operation
	Long

	Option 5
	High complexity in server to server manner; Medium complexity with over the air signalling; 
	Optimum
	Not solved
	Infeasible with only on-device operation
	Long


Based on the summary, we propose to study how to support option 3 to address inter-vendor training collaborations.
Proposal 2: Option 3 should be supported, and then further study how to standardize reference model.

· Towards how to achieve consensus when discussing reference model structure in 3GPP
Reference model structure is a quite new topic for 3GPP discussion, which has never emerged in previous specifications. From the information revealed by companies in R18 study, it can be found that the models used by different companies varied significantly. Even if some companies considered similar model structure, their detailed implementation can be very different. To this end, we would like to discuss how to achieve consensus among companies when discussing reference model structure in RAN1. 
It is obvious that some efforts are needed to define the reference model structure. In the following, one possible method of aligning the reference model structure is provided.
· Step 0: Aligning evaluation assumptions. Previous aligned simulation assumptions could be used as a starting point. Take a step further, it would be useful to align the dataset containing only channel information. Companies could bring their own generated dataset and multiple datasets from different companies can be merged into one dataset, which is the aligned dataset. This dataset can be generated through 3GPP synthetic channel models. For CSI compression, this dataset only needs the channel information, i.e. the input for the encoder or the output for the decoder.
· Step 1: Determine the model backbone based on consensus and evaluation results on complexity and performance. Model complexity may include Flops or model storage size, which can be restricted to avoid exceeding hardware capabilities and also serve as KPI of model quality. When evaluating model quality, it is important to consider not only its performance but also its implementation complexity. During this process, some restrictions may be aligned directly related to model complexity, e.g., model backbone and some important hyperparameters.
· Step 2: Determine the model hyperparameters that need to be aligned. Below are some important hyperparameters that need to be aligned for the model:
· Number of layers in the neural network.
· Number of neurons in each layer.
· Activation function(s) for each layer.
· Configuration of normalization layers.
· Special connection relationships between layers:
· ResBlock.
· Inception.
· Special hyperparameters for CNN:
· Parameters for the convolutional layers such as kernel size, stride, padding, activation function, bias, and channel number.
· Special hyperparameters for Transformer:
· Implementation method for multi-head attention, parameters for multi-head attention such as number of heads and dimensions of heads.
· Step 3: Align the hyperparameters of the model. Based on the aligned model backbone, detailed hyperparameters would be further aligned based on consensus and evaluation results on complexity and performance. If the dataset with only channel information is aligned in Step 1, each company could provide their own model trained by the aligned dataset, and then the best model structure may be selected from these models. 
Then we have the following proposal.
Proposal 3: The reference model structure may be aligned through the following procedures
· Step 0: Aligning evaluation assumptions
· Step 1: Determine the model backbone based on consensus and evaluation results on complexity and performance. 
· Step 2: Determine the model hyperparameters that need to be aligned. 
· Step 3: Align the hyperparameters of the model.

Conclusion
In this contribution, we have the following observations:
Observation 1: For Dense Urban with 100% outdoor UEs, TSF compression case2 can improve SGCS gain by 2.6% compared to R16 eType2 codebook
Observation 2: For Dense Urban with 20% outdoor UEs, TSF compression case2 can improve SGCS gain by ~12.5% compared to R16 eType2 codebook methods.
Observation 3: For InH scenarios, TSF compression case2 can improve SGCS gain by ~7.6% compared to R16 eType2 codebook methods.
Observation 4: For dense urban scenarios, TSF compression case3 can improve SGCS gain by 9.6%~12.0% compared to R18 DD codebook.
Observation 5: SF compression with cell/site specific model provides up to 11.4% gain compared to legacy codebook in Uma scenario with 0% indoor UE distribution while general model only provides 2.6% SGCS gains.
Observation 6: SF compression with cell/site specific model provides up to 9.0% gain compared to legacy codebook in Uma scenario with 80% indoor UE distribution while general model only provides 5% SGCS gains.
Observation 7: SF compression with cell/site specific model provides up to 9.7% gain compared to legacy codebook in InH scenario with 100% indoor UE distribution while general model provides 9.7% SGCS gains.
Observation 8: TSF compression case2 with cell/site specific model provides up to 10.3% gain compared to legacy codebook in Uma scenario with 0% indoor UE distribution while general model only provides 2.3% SGCS gains.
Observation 9: TSF compression case2 with cell/site specific model provides up to 26.9% gain compared to legacy codebook in Uma scenario with 80% indoor UE distribution while general model only provides 12.5% SGCS gains.
Observation 10: TSF compression case2 with cell/site specific model provides up to 16.8% gain compared to legacy codebook in InH scenario with 100% indoor UE distribution while general model provides 7.5% SGCS gains.
Observation 11: TSF compression case3 with cell/site specific model provides up to 17.6% gain compared to legacy codebook in Uma scenario with 80% indoor UE distribution while general model provides 11.2% SGCS gains.
Observation 12: Even considering a relatively simpler CNN encoder, TSF compression with cell/site specific models can still offer an obvious performance (up to 31.3% in our simulation for case2 and up to 12.4% in case3), indicating that it is possible to simplify model design with cell/site specific models.
Observation 13: Option 1 requires minimum inter-vendor collaboration, as the development of NW-side model and UE-side model are separated from each other.
Observation 14: The performance of option 1 is restricted and is highly dependent on whether the training dataset of those standardized reference models matches the data distribution in real deployment. 
Observation 15: Tuning decoder based on a fixed (and standardized) encoder in real deployment can partly alleviate the issue of data distribution mismatch between encoder development during specification phase and real deployment.
Observation 16: Performance of standardized encoder would be better than performance of standardized decoders. 
Observation 17: For any UE that passes the RAN4 testing based on Option1, the UE is interoperable with any NW vendor with guaranteed expected performance, although there may be mismatch of data distribution between real deployment and testing environment.
Observation 18: Option 1 in the RAN1 agreement has been agreed upon as a potential solution for RAN4 testing so there is no issue with using for interoperability and from perspective of RAN4 testing-related aspects
Observation 19: Option 1 is feasible from NW side and UE side implementation.   
Observation 20: Option 2 requires minimum inter-vendor collaboration, as the development of NW-side model and UE-side model are separated from each other.
Observation 21: The performance of option 2 will be limited if the standardized dataset does not match the data distribution in real deployment (possibly a small mismatch could incur severe performance degradation).
Observation 22: For Option2, the interoperability cannot be guaranteed since for any UE that passes the RAN4 test, the NW side may not be able to predict the performance of UE in real deployment. UE implementation based on the dataset would be dramatically different and dataset only cannot be used for performance prediction.
Observation 23: Without model information, only a standardized dataset cannot fully solve the issue of RAN4 testing-related aspects
Observation 24: Option 2 is feasible from the perspective of on-device deployment. 
Observation 25: Quantization methods of the parameters can also be specified as part of the model structure to facilitate the on-device deployment of transferred parameters.
Observation 26: Option 3 requires minimum inter-vendor collaboration if the parameter exchange happens in an over-the-air manner. 
Observation 27: The performance of option 3 can be guaranteed by the flexibly-updated model parameters.
Observation 28: Option3 guarantees the interoperability between UE and gNB since for any UE that passes the RAN4 test on model performance based on model parameter update, the expected performance of the UE would be predictable and guaranteed.
Observation 29: Option 3 has no issue from RAN4 testing perspective.
Observation 30: The performance requirement in RAN4 testing for option 3 can be defined with specified encoder structure and possible RAN4 agreed testing condition, including concluded reference decoder structure for performance target evaluation.
Observation 31: Necessity of post deployment testing can be studied for Option3. 
Observation 32: Option 3 is feasible with typical UE implementations and on-device operation.
Observation 33: For inter-vendor collaboration of option 4, 
· if the dataset is exchanged over the air, inter-vendor collaboration may still require vendor-specific data distribution procedures which increases inter-vendor collaboration complexities;
· if the dataset is exchanged in a vendor-vendor specific server-to-server manner, i.e., offline delivery, inter-vendor training complexity would be high.
Observation 34: It is possible to reduce the complexity of inter-vendor collaborations with standardized interfaces for dataset exchange, but this would also involve complicated inter-vendor collaboration since gNB vendor/CN vendor/UE server/UE device would all be involved. 
Observation 35: According to TR 38.843, performance loss for option 4 can be observed once backbone of encoder model structure at NW-side and UE-side is misaligned or the samples in the exchanged dataset is insufficient, or there are one to many pairing issues.
Observation 36: Option4 cannot guarantee interoperability between UE and gNB since for any UE that passes the RAN4 test, the performance can still not be predictable in real deployment since UE implementation that passes the RAN4 test can be dramatically different.
Observation 37: Motivation of pre-deployment testing for option 4 is not clear, as 1) the cost of pre-deployment testing for option 4 is significantly high since the model has to be trained on a UE-side server; 2) Even if pre-deployment has been done for UE, the performance in real-deployment cannot be guaranteed because the exchanged dataset in real deployment could be different from the one considered in pre-deployment testing.
Observation 38: It is difficult to determine the RAN4 testing requirement for option 4 if only testing dataset is provided without any alignment on model structure.
Observation 39: For the testing of option 4, post-deployment testing is always necessary, which incurs additional burden in real deployment.
Observation 40: Option 4 is not feasible with only on-device optimization and operation considered, but feasible with the assumption that a server can help the device to train the model.
Observation 41: For inter-vendor collaboration of option 5,
· if the model is exchanged over the air, inter-vendor collaboration may still require vendor-specific model distribution procedures which increases inter-vendor collaboration complexities;
· if the model is exchanged in a vendor-vendor specific server-to-server manner, i.e., offline delivery, inter-vendor training complexity would be high.
Observation 42: Performance of option 5 is guaranteed by the highest flexibility in the design of model to be exchanged.
Observation 43: Motivation of pre-deployment testing for option 5 is not clear due to the same reasons presented in the analysis of option 4.
Observation 44: Option5 can guarantee some level of interoperability between UE and gNB since the performance can be predictable in real deployment with UE-side implementation mimicing the transferred model between NW side and UE side. But it may still suffer interoperability issue since the pre-deployment test cannot guarantee the performance of an optimized model unless post deployment testing is enabled.
Observation 45: Option 5 is not feasible if only on-device optimization and operation is considered, but feasible when a server can help the device to train the model.
Observation 46: Timescale of deploying a model for inference for option 1 and 2 is minimum as models can be developed separately in advance. However, for update of a model, a 3GPP specification procedure is needed which would incur the largest delay for deploying a new model.
Observation 47: Timescale of deployment for deployment a model for inference option 3 is short as only on-device operation is required; Timescale of deploying a model for inference for option 4 and 5 is long as the model has to be trained/processed at a server.
Observation 48: Characteristics of options to alleviate / resolve the issues related to inter-vendor training collaboration of AI/ML-based CSI compression can be summarized as:
	
	Inter-vendor collaboration complexity
	Performance
	Interoperability and RAN4 / testing related aspects
	Feasibility
	Deployment timescale

	Option 1
	Minimum complexity
	Restricted
	Solved
	feasible
	\

	Option 2
	Minimum complexity
	Highly restricted
	Not solved
	feasible
	\

	Option 3

	Minimum complexity with over the air signalling; Otherwise high;
	Optimum 
	Solved
	Feasible
	Short

	Option 4

	High complexity in server to server manner; Medium complexity with over the air signalling; 
	Better than Option1/2, but worse than Option3 and Option5
	Not solved
	Infeasible with only on-device operation
	Long

	Option 5
	High complexity in server to server manner; Medium complexity with over the air signalling; 
	Optimum
	Not solved
	Infeasible with only on-device operation
	Long



and the following proposals:
Proposal 1: For the study of inter-vendor collaboration issue, consider the timescale of deployment when comparing different options.
Proposal 2: Option 3 should be supported, and then further study how to standardize reference model.
Proposal 3: The reference model structure may be aligned through the following procedures
· Step 0: Aligning evaluation assumptions
· Step 1: Determine the model backbone based on consensus and evaluation results on complexity and performance. 
· Step 2: Determine the model hyperparameters that need to be aligned. 
· Step 3: Align the hyperparameters of the model.
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Appendix A: Initial lab test for model transfer with known model structure
An initial lab test for model transfer with known model structure is done to find the main aspects in this procedure and obtain the actual latency. For even 10M parameters, the total latency of UE updating the received model parameters is just 12.472ms, which would result in the low latency of model transfer with known model structure.
From the lab test, it is found that the model parameters updating with known model structure can be listed in 4 steps.
· Step1: UE generates one certain format of model executable file (e.g., engine file for TensorRT), where the model parameters and model structure related part are stored separately. Each model parameter group could be updated separately with very low latency. The results of a lab test would be provided later to show the detailed latency. The input data processing operations would be stored in model structure related part, e. g., matrix multiplications and additions. 
· Step2: UE extracts the target model parameters from the received new model file (e.g., ONNX or other open formats) from NW. The extracted parameters would be stored in buffer area temporarily. Simple quantization may be used and details will be discussed in the following.
· Step3: New model parameters would replace the previous model parameters directly.
· Step4: After the replacement of target model parameters, the model is available to run.
[image: ]
Figure A-1. The procedure of model parameters updating with known model structure.
The following is the detailed latency test of model parameter updating for different number of parameters. A full connected model with 5 full connected layers is adopted in this lab test. The number of parameters of 5 layers are 1K, 10K, 100K, 1M and 10M respectively. The new model parameters are stored in ONNX format. The latency of parameter extraction from ONNX in Step 2 and the latency of parameter replacement in Step 3 are both provided. As the number of parameters increases, the latency of Step 2 and Step 3 both increases for more than 10K parameters. For the case with less than 10K parameters, the basic latency of hardware interaction may be the majority, which would have low correlation with the number of parameters. For even 10M parameters, the total latency of Step 2 and Step 3 is just 12.472ms, which would result in the low latency of model transfer with known model structure.
Table A-1. Initial lab test for model parameter updating with known model structure
	Number of parameters in one group
	Latency of parameter extraction from ONNX in Step 2 (ms)
	Latency of parameter replacement in Step 3 (ms)

	1K
	0.212
	0.793

	10K
	0.223
	0.704

	100K
	0.344
	2.520

	1M
	1.342
	4.893

	10M
	6.740
	5.732



The feasibility of model transfer with known model structure were discussed by companies in Rel-18, where the major issues lie in necessity and feasibility of on device compilation. From our observation, the main issue based on previous discussion for on device compilation is how to quantize the trained models. There are two ways to handle this: post training quantization or quantization aware training. On device quantization is one kind of posting training quantization.
The alignment of quantization before model transfer could avoid the on device quantization, e.g., the transferred model parameters have been quantized by NW, using post training quantization or quantization-aware training.
On the other hand, if the quantization is not aligned beforehand, on device quantization would be needed. There are several aspects that need to be considered for on device quantization: the performance of on device quantization and involved complexities.
Since on device quantization is a kind of post training quantization, we did an experiment to compare the performance loss of post training quantization and quantization aware training. The loss would be small. The following tables shows the impact of different quantization levels for different use cases. The INT8 quantization is directly mapping Float32/16 values to INT8/16, which would be worst performance of post training quantization. For positioning, since the model inference may be not in UE modem, there may be no strict requirement on quantization.
Table A-2. An example of the impact of different quantization levels for CSI compression, where the INT8 quantization is directly mapping Float32/16 values to INT8/16.
	
	MLP model
	CNN model
	Transformer model

	SGCS of FP32 quantized model
	0.9421
	0.9493
	0.9581

	SGCS of FP16 quantized model
	0.9421
	0.9493
	0.9581

	SGCS of INT8 quantized model
	0.9413
	0.9486
	0.9573



Table A-3. An example of the impact of different quantization levels for AI/ML assisted positioning.
	 
	90% positioning accuracy of AI/ML assisted positioning (m)

	FP32 quantized model
	0.970

	FP16 quantized model
	0.973



Table A-4. An example of the impact of different quantization levels for beam spatial prediction, where the INT8 quantization is directly mapping Float32/16 values to INT8/16.
	 
	Top-1 (%)
	Top-1 (%) with 1dB margin

	FP32 quantized model
	77.4
	96.6

	FP16 quantized model
	75.5
	96.3

	INT8 quantized model
	71.3
	94.9



On device quantization is also feasible at least for some operations with low complexity. For example, regular quantization from Float32/16 to INT8/16 by directly mapping Float32/16 values to INT8/16, or with minor adjustment based on parameter distribution. More advance quantization, e.g., non-uniform quantization, finetuning after quantization, does not seem to provide additional gains at least for current use cases.
Performance monitoring/assessment could monitor the performance of quantization and may provide some data samples for quantization calibration. UE could get some data samples through the measurement or from the data delivery from NW.
·
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