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1. Introduction
The study item on Artificial Intelligence (AI)/Machine Learning (ML) for NR air interface is established in RAN plenary meeting #94e for Rel.18 [1] to investigate the benefits of AI/ML in air interface performance enhancement. The AI/ML will be an icon technology in 5G advanced and afterwards. 
Thanks to the rapid development of AI technology, many AI technologies have been applied to the compression and prediction fields of CSI, including Channel Representation and Prediction Model, Channel Representation and Prediction Model, and Neural ODE Model for Channel Prediction. For the technical standard research aspect, very important conclusions have been reached through discussions at multiple meetings such as RAN1 #110, RAN1 #111, RAN1 #112, RAN1#113, RAN1#114, including the sub use cases and potential standard impacts. the following latest agreements and conclusions are achieved at[4]. A few sub use cases are excluded from selection of representative sub-use cases. That renders the afterwards work more focused.

RAN1 #114 meeting Agreement
· In CSI compression using two-sided model use case, do not capture the column “Type 1 training at UE/NW/ neutral site with 3GPP transparent model delivery to UE and NW respectively” in the table that summarizes training collaboration Types 1.
· Note: both collaboration level y and z are considered for pros and cons of training types
· In CSI compression using two-sided model use case, the following table capture the pros/cons of training collaboration type 1:

For CSI prediction using UE side model use case, at least the following aspects have been proposed by companies on performance monitoring for functionality-based LCM: 
· Type 1: 
· UE calculate the performance metric(s) 
· UE reports performance monitoring output that facilitates functionality fallback decision at the network
· Performance monitoring output details can be further defined 
· NW may configure threshold criterion to facilitate UE side performance monitoring (if needed). 
· NW makes decision(s) of functionality fallback operation (fallback mechanism to legacy CSI reporting). 
· Type 2: 
· UE reports predicted CSI and/or the corresponding ground truth  
· NW calculates the performance metrics. 
· NW makes decision(s) of functionality fallback operation (fallback mechanism to legacy CSI reporting).
· Type 3: 
· UE calculate the performance metric(s) 
· UE report performance metric(s) to the NW
· NW makes decision(s) of functionality fallback operation (fallback mechanism to legacy CSI reporting). 
· Functionality selection/activation/ deactivation/switching what is defined for other UE side use cases can be reused, if applicable. 
· Configuration and procedure for performance monitoring 
· CSI-RS configuration for performance monitoring
· Performance metric including at least intermediate KPI (e.g., NMSE or SGCS)
· UE report, including periodic/semi-persistent/aperiodic reporting, and event driven report.
· Note: down selection is not precluded.
· Note: UE may make decision within the same functionality on model selection, activation, deactivation, switching operation transparent to the NW. 

The CSI feedback sub use cases and possible standard impacts will be further discussed in this contribution.  We will provide possible sub use cases in CSI compression and CSI prediction, also the associated reference configuration procedure for CSI-RS and SRS, also joint SRS and uplink transmission had been discussed in this paper. The potential standard impacts will be discussed for each sub use case. 
2. CSI requirement for AI wireless communication
Until RAN1 #111 meeting, many wireless AI related topics had been discussed, including the use cases (CSI compressing/prediction/measurement, positioning, beam management, RRM etc), system-level and link-level simulations, life cycle management, some key conclusions and agreements had been achieved, especially the AI/ML lifecycle management framework as shown in following picture, which is the fundamental for the wireless AI/ML standardization. Even a general framework had been proposed, but how to define a universal procedure satisfying different use cases is a big challenge right now.


[bookmark: _Ref122469796][bookmark: _Ref122469774]Figure 1 AI general framework for wireless communication
As illustrated by Figure 1, data collection, model inference and feedback perform the key role at the system, those processes are AI model specific and associated information are various between different models, as shown in table I. For example, the channel measurements, e.g., the power delay profile (PDP), the channel impulse response (CIR), the channel frequency response (CFR) or post-processed CIR and ground-truth UE coordinates are required for UE-based AL/ML positioning methodology. But for beam management, the following information is required, including new RSRP and/or SSBRI/CRI report behavior. E.g., a larger number of RSRPs is to be reported to generate the labels and AI/ML inputs, or larger number of beam IDs is to be reported as the AI/ML outputs, as opposed to the legacy mode where only the best RSRP(s) are reported. In addition, when Set B is a subset of Set A, the mapping relationship between Set B and Set A may need to be aligned, e.g., which subset within Set A is configured as Set B. Also for the CSI prediction, the requirement is quite different from positioning and beam management, including ground-truth CSI of realistic DL/UL channels, Raw Channel matrix or precoding matrix etc. Meanwhile, in order to fetch those assistant information from measurement or feedback, dedicated reference signal must be needed. For example, enhanced RS design to perform AI/ML specific RSRP measurement and the enhancement of the RS to conduct more accurate measurements of data samples, which would be required by AI-based beam management. For CSI prediction, enhanced CSI-RS may be considered specifically for the data collection procedure to generate the dataset with more accurate ground-truth CSI as samples. For example, by setting a higher power to the CSI-RS or allocating more RE in time/frequency domain to the CSI-RS for data collection so that UE can achieve more accurate DL measured channel as the ground-truth CSI labels. Also the same to positioning, dedicated RS would be needed for accuracy improvement to performance AI model inference or monitoring. 
Table 1 AI-model specific reference signal and data requirements
	AI model functionalities
	Reference signal enhancement
	Data requirement

	Positioning
	Positioning specific reference signal, higher density, wider beam etc.
	Positioning specific data, for example, the  channel measurements, e.g., the power delay profile (PDP), the channel impulse response (CIR), the channel frequency response (CFR) or post-processed CIR and ground-truth UE coordinates

	Beam management
	BM-specific reference signal, higher power, higher density different spatial filter etc.
	BM-specific data, for example, new RSRP and/or SSBRI/CRI report behavior. E.g., a larger number of RSRPs is to be reported to generate the labels and AI/ML inputs, or larger number of beam IDs is to be reported as the AI/ML outputs, etc. 

	CSI feedback enhancement
	CSI-enhancement specific reference signal, higher density and measurement gap etc.
	CSI-enhancement specific data, for example, ground-truth CSI of realistic DL/UL channels, Raw Channel matrix or precoding matrix etc


Observed from table I, those specific required data (for feedback, training, inference input etc.) is highly related with AI functionalities and/or reference signal, to unify those configuration and data collection procedure is quite important to support functionalities or AI models with effective signaling method. Also we can see until RAN1 #111 and RAN1 #112 meeting, for the general framework and CSI measurement, great efforts had been processed, we have the following proposals to make the discussion under a unified framework, so as to achieve agreements on some general aspects ASAP.
Observation 1: Conventional reference signal configuration and CSI reporting framework could be enhanced to support various requirement of AI model functionalities or procedures within one function.
Furthermore, in a Frequency Division Duplex (FDD) mode wireless communication system, uplink measurements based on SRS signals are performed by the base station. An AI model is utilized by the base station to compress the uplink CSI information. This compressed information needs to be transmitted to the User Equipment (UE) side, where it is reconstructed using the UE's own AI model to restore the uplink channel's CSI information. Currently, this solution has not received much attention, but uplink data transmission has always been a bottleneck for wireless communication systems. Thus, resolving issues with uplink CSI measurement, compression, and reconstruction is equally important. In FDD mode, the uplink and downlink transmissions are separated by different frequency bands. As a result, the base station needs to measure the uplink channel quality using the SRS signal transmitted by the UE. The measured CSI information is then compressed by an AI model to reduce the amount of data to be transmitted to the UE side. The compressed information is then sent to the UE, where it is reconstructed using another AI model to recover the uplink channel's CSI information.
While uplink data transmission is essential for wireless communication systems, it is also challenging due to limited available bandwidth and interference from other devices. Therefore, it is crucial to improve uplink CSI measurement, compression, and reconstruction to enhance the overall performance of the communication system. By addressing these issues, we can increase the capacity and efficiency of the system, ultimately leading to better user experiences and improved communication services. 
Observation 2: AI-based uplink CSI measurement and reconstruction also would be considered to make larger uplink data transmission in FDD working mode.
3. AI/ML-based downlink CSI measurement
NR has defined a framework for downlink CSI measurement, which includes various CSI procedure such as CSI-RS configuration and CSI reporting configuration. The framework encompasses timing and frequency resource allocation, as well as periodic, aperiodic, and semi-static behaviors. It also includes CSI feedback information and other associated behaviors. This framework serves as a comprehensive guide for implementing downlink CSI measurement in NR systems, ensuring that the measurement process is standardized and consistent across different scenarios. By following this framework, communication systems can achieve accurate and reliable downlink CSI measurements, which are essential for optimizing system performance and delivering high-quality communication services to users.
3.1 CSI measurement framework for AI/ML
In the context of CSI measurement framework, it is necessary to enhance the traditional NR CSI measurement framework in order to support both conventional CSI measurement mechanisms and those that enable AI/ML capabilities. Such mechanisms include CSI measurement for inference, monitoring, and data compression, among others. To this end, the traditional NR CSI measurement framework has been augmented as follows.
A new CSI measurement framework has been introduced in this paper, which includes specific CSI measurement methods for AI/ML models or AI/ML functionalities. These methods involve CSI-RS configuration for AI/ML measurements, as well as feedback of CSI measurement content for AI/ML measurement purposes. These enhancements enable the support of AI-enabled CSI measurements, which have become increasingly important in modern communication systems. The 3GPP protocol provides guidelines and standards for implementing CSI measurement in NR systems, ensuring that the measurement process is standardized and consistent across different scenarios. By following these guidelines and incorporating the aforementioned enhancements, communication systems can achieve accurate and reliable CSI measurements for both conventional and AI/ML-based applications, improving system performance and delivering high-quality communication services to users.
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[bookmark: _Ref131537848]Figure 2 AI.ML-based CSI measurement framework for wireless communication
Figure 2 illustrates the introduction of an additional CSI measurement specifically dedicated to AI/ML functionalities in 5G networks. This new measurement is characterized by several improvements, such as denser timing periods, more frequency resources, additional antenna ports, and a different analog beam designed for AI-specific CSI measurements. The purpose of these improvements is to enable more efficient and accurate AI-based processing and decision-making in 5G networks, where the AI-based CSI reference signal would share the same time-frequency resource allocation with other regular reference signals such as CSI-RS, DMRS, SSB, and others. However, the CSI feedback will differ significantly to support various measurement scenarios, including inference, monitoring, or model training. For instance, the AI-specific CSI measurement may be used to train machine learning models for predictive maintenance, detect anomalies in network traffic, or optimize resource allocation.
Proposal 1: AI/ML-specific CSI measurement framework should be introduced, to support various CSI measurement scenarios, which would be used for different AI/ML functions, or different AI/ML procedure that associated with one AI/ML functions.
3.2 CSI processing mechanism with limited UE capability
For legacy CSI measurement processing criteria, the concept of CSI processing unit (CPU) is introduced to indicate the capability of supported simultaneous CSI calculations implemented in UE,  which is illustrated that if a UE supports  simultaneous CSI calculations it is said to have  CSI processing units for processing CSI reports. Similarly, as for AI/ML models implementing CSI measurement operations, the concept of AI/ML-specific CPU can also be introduced. However, the requirements of AI/ML-specific CPU is quite different from legacy CPU because of the different requirements of UE capabilities to implement AI/ML-specific and legacy CSI measurement operations. If AI/ML models are applied to the CSI measurement process of CSI prediction, channel information feedback, beam management, and positioning, since the resources (including computing units, memory, storage and other hardware resources) consumed by AI/ML models are different from the resources required by legacy CSI computation methods, this leads to the current CPU and Occupied CPU quantified based on non-AI/ML models being unusable for AI/ML models. It is necessary to redefine the relevant parameters specifically for AI/ML models. 

When AI/ML models are utilized for CSI measurements and calculations, it may bring challenges for the capabilities of UE to implement AI/ML models for inference. Firstly, the size of AI/ML models may be quite large due to the complicated AI/ML model structures and a great amount of AI/ML proprietary parameters, including hyper parameters, learnable parameters and other kinds of parameters specified to an AI/ML model. Therefore, to facilitate AI/ML models running for inference in UE, a large amount of memory resources of UE have to be occupied, which may exceed the available memory resources of UE specific to AI/ML model operation. Secondly, the computation requirements (e.g., FLOPs) of AI/ML models may be high enough for UE to support. It means running AI/ML models for inference in UE may consume computation resources to a big extent. Lastly, it will lead to big power consumption for running AI/ML models for inference in UE, which may exceed the tolerable limit of the power saving requirements of the UE.
Observation 3: UE may suffer various types of challenges to implement AI/ML models for CSI measurements and calculations, such as large amount of memory resource occupation, big computation resource exhaustion, high power consumption, etc. Each of the factors illustrated above may become the bottleneck for a UE to implement AI/ML models for CSI measurements and calculations. 
Proposal 2: How to describe the capabilities for UE to implement AI/ML models for inference on CSI measurements and calculations should be studied.

3.3 CSI reporting mechanism with limited overhead
CSI has been extensively researched from LTE to 5G, target to limited feedback overhead but with higher network throughput, including much higher antenna number, more accuracy feedback information etc., how to make the system performance with significant gain with controllable feedback overhead is also the most important research topic, even we think the AI will be driven the network with a totally new direction. As depicted in Figure 1, CSI feedback is necessary for AI model training, inference, and monitoring, regardless of whether a one-sided or two-sided AI model is used in the network system. Additionally, as illustrated in Table I, the CSI reporting content varies depending on the AI models used in the system. The overhead is much greater for the legacy CSI reporting mechanism, and this view is shared by system-level simulation results from other companies. Therefore, a challenge in AI-based wireless systems is how to make the CSI reporting information specific to AI models and limit the feedback overhead. 
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Figure 3 CSI measurement for different procedure for one AI function
To begin with, the CSI reporting configuration would comprise pertinent details pertaining to the AI model and its feedback mechanism. This includes the AI model identifier, AI functionalities descriptor, and other related information that enables the UE to determine the feedback metrics that need to be measured and reported for specific AI models. To ensure the measurement and feedback’s accuracy, a well-defined procedure would be followed to process the information. 
Proposal 3: AI model information should be configured to UE for CSI measurement and CSI reporting, where the AI model information would be model ID or functionalities descriptor etc.
3.4 CSI reporting with dedicated timing
After receiving the CSI request which triggers CSI measurements and calculations in UE carried in DCI via PDCCH, UE starts to perform the CSI measurements and calculations, and reports the CSI measurement results to gNB via PUSCH/PUCCH whose time slot has been assigned in advance. In order to report the newest CSI measurement information to gNB, the CSI measurements and calculations must accomplish before the first uplink symbol to carry the corresponding CSI report(s), and the CSI computation time should be considered. As for CSI measurements and calculations utilizing AI/ML models for inference, the CSI computation time estimation needs to be reconstructed for AI/ML. Different from legacy CSI measurement and calculation operations that can be implemented immediately without any preparation, AI/ML models need to be activated in UE before implementing inference, and the model activation procedure may spend some period of time. In addition, the size of AI/ML models may have impact on the model inference time. The overall AI/ML model operating time duration for CSI computation is composed of two durations, time duration of model activation (if any) and time duration of model inference, may cause different handling consequences of CSI measurements and calculations (providing a valid CSI report or ignoring the scheduling request) compared to the time duration from the last symbol of DCI carrying CSI request to the first uplink symbol to carry the corresponding CSI report(s).
Observation 4: CSI computation time estimation needs to be reconstructed for AI/ML which may contain the time duration of model activation and model inference.
3.5 CSI reporting with dedicated signaling
In order to facilitate the periodic, semi-static, or aperiodic collection of AI data from the User Equipment (UE) side, various signaling methods can be employed at the Layer 1/2/3 level, including the UCI signaling, RRC signaling, and data plane signaling. While RRC signaling and data plane signaling offer a greater capacity for transmitting larger amounts of data, the UCI exhibits lower latency and greater accuracy, making it particularly suitable for use in wireless communication scenarios, particularly in conjunction with AI models.
Proposal 4: CSI feedback can be conveyed through UCI, RRC or data plane signaling, and which can be configured by gNB to achieve a balance between their capability and E2E requirements .
If the CSI reporting is carried by UCI signaling, here various UCI (Uplink control information) formats have been defined in NR, ranging from PUCCH format 0 to format 4, which includes SR, CSI, and HARQ-ACK. With the pre-configuration of the UCI transmission resource (such as timing, frequency, RBs, sequence, etc.), the gNB can decode the UCI information without real-time associated DCI information. However, regarding the design of UCI, format 0 and format 1 can only support 1-2 bit information, format 2 can support a maximum of 16 RBs with 2 OFDM symbols' data loading, format 3 can support up to 4608 bits of information transmission, while format 4 has less ability compared to format 3 due to the user multiplexing supported in the scheme. Therefore, according to "Table 2: Initial Analysis of Existing Data Collection Frameworks," the current UCI design has limited capacity for data transmission and is unable to support the transmission of larger data for AI data collection.
Observation 5: The inadequacy of the conventional UCI format in accommodating AI-related Channel State Information (CSI) feedback, enhancement is needed.
[bookmark: _Hlk130889603]Table 2: Initial analysis of existing data collection frameworks
	
	Max payload size per reporting*
	Contents to be collected
	End-to-End report latency**
	Report type

	Logged MDT
	<9kbyte
	L3 cell/beam measurements, location info, sensor info, timing info
	Procedure latency***:
Latency to enter CONNECTED state
Latency to receive gNB request signaling (~20ms)
Air interface signaling latency****: ~20ms (RRC)
Other latency:
Forwarding latency between gNB and TCE
	Upon gNB request after entering RRC_CONNECTED

	Immediate MDT
	<9kbyte
	L3 cell/beam measurements, location info, sensor info
	Procedure latency:
Report interval: 
l20ms~30min for periodic report TTT for event triggered report
Air interface signaling latency:
~20ms (RRC)
Other latency:
Forwarding latency between gNB and TCE   
	Event triggered report,
Periodic reporting

	L3 measurements
	<9kbyte
	L3 cell/beam measurements
	Procedure latency:
Report interval: 
l20ms~30min for periodic report
TTT for event triggered report
Air interface signaling latency:
20ms (RRC)
	Event triggered report,
Periodic reporting

	L1 measurement (CSI reporting)
	<1706bit in PUCCH, 
<3840bit in PUSCH
	L1 CSI measurement
	Procedure latency:
Report interval: 
4-320 slot for periodic report and semi-persistent report 
0-32 slot after reception of DCI for aperiodic report 
Air interface signaling latency:
1 TTI (PUCCH) 
	Aperiodic report,
Semi-persistent report,
Periodic report

	UAI
	<9kbyte
	Assistance information to show UE preference
	Procedure latency:
Upon generation of UE's preference
Air interface signaling latency:
~20ms (RRC)
	Up to UE implementation when to report

	Early measurements
	<9kbyte
	L3 cell/beam measurements
	Procedure latency:
Latency to enter CONNECTED state
Latency to receive gNB request signaling (~20ms)
Air interface signaling latency: 
~20ms (RRC)
	Upon gNB request after entering RRC_CONNECTED

	LPP
	<9kbyte
	Location info
	Procedure latency:
Latency to get upper layer trigger (for UE triggered)
Or latency to receive NW request message (~20ms)
Air interface signaling latency: 
~20ms (RRC)
Other latency:
Forwarding latency between gNB and LMF
	UE-triggered,
NW-triggered



4. AI-based uplink CSI measurement
Traditionally, the gNB has complete control over the uplink data transmission behavior, including the determination of the uplink CSI measurement with SRS and the PUSCH transmission scheme, which encompasses elements such as code rate, precoding, and power control. However, the introduction of AI-based functionalities into the system empowers the UE to participate in PUSCH data channel transmission determination. For instance, in the FDD system, assuming that the AI model is deployed at UE side for one-side or two-side AI operation, the UE requires the uplink channel's CSI information to ensure that the AI model operates correctly. On the other hand, in the TDD system, where inter-cell interference is not reciprocal between downlink and uplink, CQI is also necessary to facilitate the normal functioning of the uplink AI model. To address those new issues which is introduced by AI model, new CSI measurement framework that would be different from traditional method would be used, as shown in following chapters.
4.1 New SRS measurement framework for uplink transmission
Regarding the legacy uplink reference configuration, the SRS serves as an illustrative example of a data structure comprising several parameters, such as srs-ResourceSetId, srs-ResourceIdList, resourceType, usage, and usagePDC-r17. The usage of SRS was first introduced in Release 17, where it denotes whether the SRS resource set is utilized for beam management, codebook-based or non-codebook-based transmission, or antenna switching. On the other hand, the usagePDC parameter indicates that this SRS resource set is employed for propagation delay compensation. To achieve convergence between non-AI-based and AI-based SRS configurations, novel mechanisms will be introduced to distinguish the usage of the SRS resource. Additionally, considering the usage of more than one AI model for distinct purposes, including positioning, CSI compression, beam management, etc., supplementary information related to AI model information is also required to be incorporated into the SRS resource configuration.
Proposal 5: AI-model information would be needed along with the legacy SRS resource configuration, the AI model information could be AI model ID or AI functionalities descriptor.
According to the 3GPP protocol, the network has control over the uplink data transmission, which implies that the User Equipment (UE) does not require any uplink transmission channel state information. However, for the UE-based AI model operations, such as one-side or two-side, as discussed in Chapter 4, network-side measurement information obtained by UE from the uplink reference signal is mandatory. So here would require new designing for the SRS to make the AI model in UE side working normally and correctly, for example, new SRS resource configuration framework would be considered to support UE-side AI functionalities which providing dedicated services for uplink transmission, as illustrated in following figure.
[image: ]
[bookmark: _Ref131665560]Figure 4 SRS resource configuration framework for AI-based communication
To ensure normal functioning of the UE-side AI model, uplink measurement reporting from the network to UE is introduced. This reporting enables the AI model to access sufficient information regarding the uplink channel, such as Channel State Information (CSI), interference, and others. The one-side AI mode at the UE side and the two-side AI mode, which is specific to uplink transmission, can both function normally with this mechanism. However, the design of the mechanism for uplink channel information feedback from the network to UE requires careful consideration. This includes the design of the signalling, trigger mechanism, association relationship between SRS and feedback information, and other related aspects.
Proposal 6: New SRS resource configuration framework which can support uplink CSI feedback from NW to UE should be considered, to make UE-side AI mode work normally.
4.2 New Information from NW to UE
For the uplink, the following formulate just give an example for the uplink data transmission and decoding, where the Y is the receiving signal at gNB side, where the X0 is the target UE’s transmitting signal, Xj is intra-cell interference from other UEs in one cell, H is the channel matrix between gNB and UE, P is the transmitting precoding matrix,  I is the inter-cell interference and the n is the white-noise signal. 

And the receiving SINR is,

The transmitting precoding matrix P0 is used to maximize the transmitter's effective isotropic radiated power (EIRP). To achieve optimal performance, the right eigen-vector of H0 should be selected as the precoding matrix P0. The W receiver is used to maximize the receiver's gain, while also mitigating intra-cell interference from other user equipment (UEs) in the serving cell and inter-cell interference. The W can be calculated by the gNB using the transmitted SRS signal. To reduce the overhead of DCI, quantized eigen-vector TPMI is used for P0. However, the use of TPMI can lead to performance loss due to the mismatch between the channel matrix and TPMI. To maximize the UE's receiving signal-to-interference-plus-noise ratio (SINR), AI-based precoding matrix derivation and prediction should be used for uplink transmission to overcome this performance loss. Moreover, when analog beamforming is used in NR systems, the reliability of the communication link becomes more challenging as the beam width decreases. Due to the unpredictability of the UE's rotation, beam blockages can occur frequently from the gNB side. To address these issues, multiple link transmission from different transmission and reception points (TRPs) are introduced. However, more intelligent algorithms should be studied to combine the link's transmitting status and determine the transmitting beam direction to minimize link failure or beam blocking.
To address the aforementioned issues and improve the system performance, Figure 4 illustrates the introduction of AI-model specific information feedback from the NW to the UE in the context of SRS transmission. To perform AI-related procedures such as training, monitoring, or inference at the UE side, at least the following contents will be carried. Firstly, uplink CSI information obtained from SRS measurements, including CQI, full channel matrix, Eigen vector, transmit precoding matrix index, inter-cell interference, and beam-pair information. Secondly, uplink data transmission status, measured by the gNB based on the PUSCH transmission, including the BLER, resource utilization ratio, congestion information, and traffic loading at cells. These measures will allow for greater efficiency and better communication link quality, leading to a more stable and reliable communication network.
Proposal 7: For AI-based uplink transmission, uplink link information (including CSI measurement from SRS, channel status information) which associated with SRS transmission would be feedback to UE with dedicated signaling, e.g., RRC or PDSCH signal etc.
5. Conclusion
In this contribution the following observations had been made:
Observation 1: Conventional reference signal configuration and CSI reporting framework could be enhanced to support various requirement of AI model functionalities or procedures within one function.
Observation 2: AI-based uplink CSI measurement and reconstruction also would be considered to make larger uplink data transmission in FDD working mode.
Observation 3: UE may suffer various types of challenges to implement AI/ML models for CSI measurements and calculations, such as large amount of memory resource occupation, big computation resource exhaustion, high power consumption, etc. Each of the factors illustrated above may become the bottleneck for a UE to implement AI/ML models for CSI measurements and calculations. 
Observation 4: CSI computation time estimation needs to be reconstructed for AI/ML which may contain the time duration of model activation and model inference.
Observation 5: The inadequacy of the conventional UCI format in accommodating AI-related Channel State Information (CSI) feedback, enhancement are needed.
Also, the following proposals been made:
Proposal 1: AI-specific CSI measurement framework should be introduced, to support various CSI measurement scenarios, which would be used for different AI functions, or different AI procedure that associated with one AI functions.
Proposal 2: How to describe the capabilities for UE to implement AI/ML models for inference on CSI measurements and calculations should be studied.
Proposal 3: AI model information should be configured to UE for CSI measurement and CSI reporting, where the AI model information would be model ID or functionalities descriptor etc.
Proposal 4: CSI feedback can be conveyed through UCI, RRC or data plane signaling, and which can be configured by gNB to achieve a balance between their capability and E2E requirements.
Proposal 5: AI-model information would be needed along with the legacy SRS resource configuration, the AI model information could be AI model ID or AI functionalities descriptor.
Proposal 6: New SRS resource configuration framework which can support uplink CSI feedback from NW to UE should be considered, to make UE-side AI mode work normally.
Proposal 7: For AI-based uplink transmission, uplink link information (including CSI measurement from SRS, channel status information) which associated with SRS transmission would be feedback to UE with dedicated signaling, e.g., RRC or PDSCH signal etc.
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