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1	Introduction
In RAN#100, TR 38.843 v1.0.0 has been endorsed, which captures RAN1 progress up to RAN1#114 meeting for the study item of AI/ML for air interface.
For the evaluation of positioning accuracy enhancement, 
2	Discussion on evaluation of positioning accuracy enhancement
2.1	New observations on positioning accuracy
In RAN1#114, the following observations were made for direct AI/ML positioning, which are summary type of observations based on a list of observations on fine-tuning performance. 
	Observation (RAN1#114)
For direct AI/ML positioning, evaluation results show that: 
· Fine-tuning/re-training a previous model with dataset of the new deployment scenario improves the model performance for the new deployment scenario. For details on the amount of improvement, see other observations.
· After fine-tuning/re-training a previous model with dataset of the new deployment scenario, the performance of the updated model degrades for the previous deployment scenario (e.g., previous clutter parameter setting) that the previous model was trained for.
· Examples of the deployment scenario include: different drops, different clutter parameter, different InF scenarios

Observation (RAN1#114)
For direct AI/ML positioning, 
· if the new deployment scenario is significantly different from the previous deployment scenario the model was trained for (e.g., different drops, different clutter parameter, different InF scenarios), fine-tuning a previous model requires similarly large training dataset size as training the model from scratch, in order to achieve the similar performance for the new deployment scenario.
· If the new deployment scenario is NOT significantly different from the previous deployment scenario the model was trained for (e.g., 2ns difference in network synchronization error between the previous and the new deployment scenario), fine-tuning a previous model requires a small (e.g., x%=10%) training dataset size as compared to training the model from scratch, in order to achieve the similar performance for the new deployment scenario.



Considering that similar list of observations on fine-tuning performance were made for AI/ML assisted positioning also, the same summary type of observation can be made for AI/ML assisted positioning as well. Thus the observations in RAN1#114 can be updated to the following. They replace the corresponding observations made in RAN1#114.

[bookmark: _Toc146721188][bookmark: _Toc146903904]Capture the following observations in TR 38.843, which are updated from the corresponding observations in RAN1#114.
Observation 2.1-1
For both direct AI/ML positioning and AI/ML assisted positioning, evaluation results show that: 
· Fine-tuning/re-training a previous model with dataset of the new deployment scenario improves the model performance for the new deployment scenario. For details on the amount of improvement, see other observations.
· After fine-tuning/re-training a previous model with dataset of the new deployment scenario, the performance of the updated model degrades for the previous deployment scenario (e.g., previous clutter parameter setting) that the previous model was trained for.
· Examples of the deployment scenario include: different drops, different clutter parameter, different InF scenarios
For both direct AI/ML positioning and AI/ML assisted positioning, 
· if the new deployment scenario is significantly different from the previous deployment scenario the model was trained for (e.g., different drops, different clutter parameter, different InF scenarios), fine-tuning a previous model requires similarly large training dataset size as training the model from scratch, in order to achieve the similar performance for the new deployment scenario.
· If the new deployment scenario is NOT significantly different from the previous deployment scenario the model was trained for (e.g., 2ns difference in network synchronization error between the previous and the new deployment scenario), fine-tuning a previous model requires a small (e.g., x%=10%) training dataset size as compared to training the model from scratch, in order to achieve the similar performance for the new deployment scenario.


Furthermore, with the above updates, the observation should be captured under a new heading "Both direct AI/ML positioning and AI/ML assisted positioning". The text proposal is shown below to capture the observation above.

	======================= Start of text proposal to TR 38.843 v1.0.0 ====================
6.4.2.3	Fine-tuning
Observations:
Direct AI/ML positioning
...
As a summary of the observations above, for direct AI/ML positioning, evaluation results show that: 
· Fine-tuning/re-training a previous model with dataset of the new deployment scenario improves the model performance for the new deployment scenario. For details on the amount of improvement, see the observations listed above.
· After fine-tuning/re-training a previous model with dataset of the new deployment scenario, the performance of the updated model degrades for the previous deployment scenario (e.g., previous clutter parameter setting) that the previous model was trained for.
· Examples of the deployment scenario include: different drops, different clutter parameter, different InF scenarios
For direct AI/ML positioning, 
· if the new deployment scenario is significantly different from the previous deployment scenario the model was trained for (e.g., different drops, different clutter parameter, different InF scenarios), fine-tuning a previous model requires similarly large training dataset size as training the model from scratch, in order to achieve the similar performance for the new deployment scenario.
· If the new deployment scenario is NOT significantly different from the previous deployment scenario the model was trained for (e.g., 2ns difference in network synchronization error between the previous and the new deployment scenario), fine-tuning a previous model requires a small (e.g., x%=10%) training dataset size as compared to training the model from scratch, in order to achieve the similar performance for the new deployment scenario.

AI/ML assisted positioning
...
Both direct AI/ML positioning and AI/ML assisted positioning
As a summary of the observations above, for both direct AI/ML positioning and AI/ML assisted positioning, evaluation results show that: 
· Fine-tuning/re-training a previous model with dataset of the new deployment scenario improves the model performance for the new deployment scenario. For details on the amount of improvement, see the observations listed above.
· After fine-tuning/re-training a previous model with dataset of the new deployment scenario, the performance of the updated model degrades for the previous deployment scenario (e.g., previous clutter parameter setting) that the previous model was trained for.
· Examples of the deployment scenario include: different drops, different clutter parameter, different InF scenarios
For both direct AI/ML positioning and AI/ML assisted positioning, 
· if the new deployment scenario is significantly different from the previous deployment scenario the model was trained for (e.g., different drops, different clutter parameter, different InF scenarios), fine-tuning a previous model requires similarly large training dataset size as training the model from scratch, in order to achieve the similar performance for the new deployment scenario.
· If the new deployment scenario is NOT significantly different from the previous deployment scenario the model was trained for (e.g., 2ns difference in network synchronization error between the previous and the new deployment scenario), fine-tuning a previous model requires a small (e.g., x%=10%) training dataset size as compared to training the model from scratch, in order to achieve the similar performance for the new deployment scenario.

<Unchanged text is omitted>
=======================  End of text proposal to TR 38.843 v1.0.0 ====================




2.2	New observations on AI/ML complexity for positioning evaluations
For the AI/ML evaluation work, AI/ML complexity (both model complexity and computational complexity) for model inference is an important KPI.  Companies have reported the complexity values of the models used their simulations. In this section, figures are drawn to summarize the model inference complexity as reported by participating companies.
Specifically, Figure 1-5 show the reported range of complexity values by companies. Figure 1-4 each show the range of complexity for a given scheme: (1) direct positioning; (2) assisted positioning with multi-TRP; (3) assisted positioning with single-TRP and one-model for N TRPs; (4) assisted positioning with single-TRP and N models for N TRPs. Figure 5 collects the complexity data of all schemes in one plot. The complexity values shown correspond to those of  Table 1 - Table 4 in the Appendix.
In each figure, three lines are drawn to show the trend of the complexity values among companies, one solid line for the linear regression line, two dashed lines for  and  lines relative to the linear regression line.
For the data points in the figures, if several different complexities are reported by a given company, two data points (i.e., the minimum and maximum) reported by companies are selected, as shown in Table 1 - Table 4. This is to reflect all companies' input in a fair manner, and to avoid the figures being dominated by companies who has used many variations of the AI/ML complexity.

[bookmark: _Toc146721189][bookmark: _Toc146903905]Capture in TR 38.843 Figures 1-5 for model inference complexity for the positioning use case, which shows the (a) model complexity in number of real parameters (millions) and (b) computational complexity in FLOPs (millions). 
[bookmark: _Toc146721190][bookmark: _Toc146903906]If the Figures 1-5 are captured in TR 38.843, include a Note for the figures: "Note: For a given positioning scheme, the information captured in Figures 1-5 indicates the highest complexity and lowest complexity used in individual company's evaluation, if models of multiple complexity levels are evaluated by a company for the given scheme. "

Additionally, there is already an observation made on complexity, which is currently captured under "6.4.2.2 Generalization Aspects". This observation can be moved under the new section 6.4.2.6 as well.
The text proposal is shown below to reflect the points above.


	======================= Start of text proposal to TR 38.843 v1.0.0 ====================
[bookmark: _Toc135002580][bookmark: _Toc137744872]6.4.2	Performance results
...
6.4.2.2	Generalization Aspects
Observations:
Direct AI/ML positioning
...
For AI/ML based positioning method, companies have submitted evaluation results to show that for their evaluated cases, for a given company’s model design, a lower complexity (model complexity and computational complexity) model can still achieve acceptable positioning accuracy (e.g., <1m), albeit degraded, when compared to a higher complexity model. 
...

6.4.2.6	Model complexity and computational complexity

For AI/ML based positioning method, companies have submitted evaluation results to show that for their evaluated cases, for a given company’s model design, a lower complexity (model complexity and computational complexity) model can still achieve acceptable positioning accuracy (e.g., <1m), albeit degraded, when compared to a higher complexity model. 

In Figure 6.4.2.6-1 to Figure 6.4.2.6-5 below, the model inference complexity for the positioning use case as reported by companies are shown, including (a) on the x-axis: model complexity in number of real parameters (millions) and (b) on the y-axis: computational complexity in FLOPs (millions). 
Figure 6.4.2.6-1 to Figure 6.4.2.6-4 each show the range of complexity for a given scheme: (1) direct positioning; (2) assisted positioning with multi-TRP; (3) assisted positioning with single-TRP and one-model for N TRPs; (4) assisted positioning with single-TRP and N models for N TRPs. Figure 6.4.2.6-5 collects the complexity data of all schemes in one plot. The complexity numbers are taken from POS_Table 1. For the three schemes of AI/ML assisted positioning, the complexity is calculated according to Table 6.4.1-2.
Note: For a given positioning scheme, the information captured in Figure 6.4.2.6-1 to Figure 6.4.2.6-5 indicates the highest complexity and lowest complexity used in individual company's evaluation, if models of multiple complexity levels are evaluated by a company for the given scheme.
[Insert the figures and figure captions]

<Unchanged text is omitted>
=======================  End of text proposal to TR 38.843 v1.0.0 ====================




[image: ]
Figure 1. Model complexity and computational complexity for AI/ML direct positioning, based on companies' evaluations in Table 1.
[image: ]

Figure 2. Model complexity and computational complexity for AI/ML assisted positioning with multiple-TRP, based on companies' evaluations in Table 2.
[image: ]
Figure 3. Model complexity and computational complexity for AI/ML assisted positioning with single-TRP and one-model for N TRPs, based on companies' evaluations in Table 3.

[image: ]

Figure 4. Model complexity and computational complexity for AI/ML assisted positioning with single-TRP and N models for N TRPs, based on companies' evaluations in Table 4.

[image: ]
Figure 5. Model complexity and computational complexity for schemes of AI/ML based positioning. Details of the data are in Table 1-Table 4.
2.3	Texts to clarify the evaluation methodology
In RAN1#109e, the following agreement was made:
Agreement
When reporting evaluation results with direct AI/ML positioning and/or AI/ML assisted positioning, proponent company is expected to describe if a one-sided model or a two-sided model is used.
· If one-sided model (i.e., UE-side model or network-side model), the proponent company report which side the model inference is performed (e.g. UE, network), and any details specific to the side that performs the AI/ML model inference.
· If two-sided model, the proponent company report which side (e.g., UE, network) performs the first part of interference, and which side (e.g., network, UE) performs the remaining part of the inference.

The evaluation study by companies show that the positioning methods can be applied equally on the UE side or network side. In the excel sheets capturing the evaluation results, there was no need to distinguish evaluation results using uplink measurements from those using downlink measurements. It is suggested that this is clarified in the TR.
[bookmark: _Toc146903907]Adopt the text proposal to clarify that the AI/ML positioning methods can be used on the network side or the UE side.

	======================= Start of text proposal to TR 38.843 v1.0.0 ====================
<Unchanged text is omitted>
[bookmark: _Toc135002579][bookmark: _Toc137744871]6.4.1	Evaluation assumptions, methodology and KPIs
For AI/ML-based positioning evaluation, RAN1 does not attempt to define any common AI/ML model as a baseline.
The evaluated positioning schemes can be used either on the network side or the UE side. The evaluated direct AI/ML positioning methods are applicable to Case 1/2b/3b, and the AI/ML assisted positoning methods are applicable to Case 1/2a/3a. For Case 1/2a/2b, the model input are UE measurements of PRS on the downlink. For Case 3a/3b, the model input are gNB measurements of SRS on the uplink. In the evaluation, some results use UE measurements as model input, other results assume gNB measurements as model input, and they are not distinguished.
<Unchanged text is omitted>
=======================  End of text proposal to TR 38.843 v1.0.0 ====================



2.3	Correct the placement of observations which cover both direct and assisted approaches
	
In section 6.4.2, some observations misplaced. 
· For section 6.4.2.1, heading "Direct AI/ML positioning" should be deleted, since the observations are generic.
· For section 6.4.2.2 and 6.4.2.4, the performance results are grouped under “Direct AI/ML positioning” and “AI/ML assisted positioning”. On the other hand, some agreements are made to cover both. A new heading "Both direct AI/ML positioning and AI/ML assisted positioning" can be created for such observations. 
· For section 6.4.2.5, some observations are made for semi-supervised learning or labels from existing NR-RAT methods. Such observations should be put under a new heading rather than “Direct AI/ML positioning”.

A text proposal is provided below to reflect the comments above.

	======================= Start of text proposal to TR 38.843 v1.0.0 ====================
6.4.2	Performance results
6.4.2.1	Training Data Collection
Observations:
Direct AI/ML positioning
...
6.4.2.2	Generalization Aspects
Observations:
Direct AI/ML positioning
...
AI/ML assisted positioning
...
Both direct AI/ML positioning and AI/ML assisted positioning
For both direct AI/ML and AI/ML assisted positioning, evaluation results submitted show that with CIR model input for a trained model,
-	For two SNR/SINR values S1 (dB) and S2 (dB), S1 ≥ S2 + 15 dB, positioning error of a model trained with data of S1 (dB) and tested with data of S2 (dB) is more than 5.75 times that of the model trained and tested with data of S1 (dB).
-	For two SNR/SINR values S1 (dB) and S2 (dB), S1 ≤ S2 – 10 dB, the generalization performance of a model trained with data of S1 (dB) and tested with data of S2 (dB) is better than the performance of a model trained with data of S2 (dB) and tested with data of S1 (dB). Positioning error of a model trained with data of S2 (dB) and tested with data of S1 (dB) is more than 2.97 times that of the model trained with data of S1 (dB) and tested with data of S2 (dB).
Note: here the positioning error is the horizonal positioning error (meters) at CDF=90%.

6.4.2.3	Fine-tuning
...
6.4.2.4	Model-input Size Reduction
Observations:
Direct AI/ML positioning
...
AI/ML assisted positioning
...
Both direct AI/ML positioning and AI/ML assisted positioning
Evaluation of TRP reduction for both direct AI/ML positioning and AI/ML assisted positioning shows that: identification of the active TRPs is beneficial for Approach 2-B. Otherwise, the model suffers from poor performance in terms of positioning accuracy.
For example, evaluation results from 4 sources show that the horizontal positioning accuracy is greater than 10 m if TRP identification is not included as model input. 
6.4.2.5	Non-ideal label(s)
Observations:
Direct AI/ML positioning
Evaluation shows that direct AI/ML positioning is robust to certain label error based on evaluation results of L in the range of (0, 5) meter. The exact range of label error that can be tolerated depends on the positioning accuracy requirement, where tighter positioning accuracy requirement demands smaller label error.
For AI/ML based positioning, evaluation results show that semi-supervised learning is helpful for improving the positioning accuracy when the same amount of ideal labelled data is used for supervised learning, and the number of ideal labelled data is limited.
Regarding ground truth label generation for AI/ML based positioning, multiple sources submitted evaluation results on the impact of ground truth label for training obtained by existing NR RAT-dependent positioning methods. Feasibility and performance benefit of utilizing ground truth label for training estimated by existing NR RAT-dependent positioning methods are observed.
· Source 1 evaluated in InF-DH {40%, 2, 2} and showed that AI/ML model can be trained with noisy labels along with the corresponding quality estimated by the legacy positioning methods, to improve positioning performance from 3.73m@90% (5k ideal label) to 1.72m @90% (5k ideal label + 20k noisy label). It also showed that the performance benefit compared to semi-supervised training of 2.78m @90% (5k ideal label + 20k unlabeled data). Note that training data weighting is used with label quality indicator.
· Source 2 evaluated in InF-DH {60%, 6, 2} and showed that the performance of direct AI/ML positioning with 1k clean labelled samples improves from 13.76m to 8.72m when considering additional 350 samples that are labelled using NR-RAT positioning method. Note that the label error is up to 3.5m. 
· Source 3 evaluated in both InF-DH {60%, 6, 2} and InF-DH {40%, 2, 2} and showed performance loss when compared to all ideal label case. For example it showed in InF-DH {40%, 2, 2} the accuracy degrades from 0.39m @90% (100% ideal label) to 2.10m @90% (50% ideal label and 50% label obtained by existing DL-TDOA scheme). Note that noisy label is treated the same as ideal label in training.
...
AI/ML assisted positioning
...
Other
For AI/ML based positioning, evaluation results show that semi-supervised learning is helpful for improving the positioning accuracy when the same amount of ideal labelled data is used for supervised learning, and the number of ideal labelled data is limited.
Regarding ground truth label generation for AI/ML based positioning, multiple sources submitted evaluation results on the impact of ground truth label for training obtained by existing NR RAT-dependent positioning methods. Feasibility and performance benefit of utilizing ground truth label for training estimated by existing NR RAT-dependent positioning methods are observed.
· Source 1 evaluated in InF-DH {40%, 2, 2} and showed that AI/ML model can be trained with noisy labels along with the corresponding quality estimated by the legacy positioning methods, to improve positioning performance from 3.73m@90% (5k ideal label) to 1.72m @90% (5k ideal label + 20k noisy label). It also showed that the performance benefit compared to semi-supervised training of 2.78m @90% (5k ideal label + 20k unlabeled data). Note that training data weighting is used with label quality indicator.
· Source 2 evaluated in InF-DH {60%, 6, 2} and showed that the performance of direct AI/ML positioning with 1k clean labelled samples improves from 13.76m to 8.72m when considering additional 350 samples that are labelled using NR-RAT positioning method. Note that the label error is up to 3.5m. 
· Source 3 evaluated in both InF-DH {60%, 6, 2} and InF-DH {40%, 2, 2} and showed performance loss when compared to all ideal label case. For example it showed in InF-DH {40%, 2, 2} the accuracy degrades from 0.39m @90% (100% ideal label) to 2.10m @90% (50% ideal label and 50% label obtained by existing DL-TDOA scheme). Note that noisy label is treated the same as ideal label in training.



2.5	KPIs not evaluated
In RAN1#110 and RAN1#110bis-e, a list of common KPIs were agreed, and the list is captured in TR38.843 v1.0.0 section 6.1.
For the positioning use case, the yellow-highlighted common KPIs are not evaluated or reported by companies. For inference complexity for pre- and post-processing, this KPI is not evaluated or reported by companies when pre-processing or post-processing may be necessary, e.g., pre-processing to select N't samples from the time window of Nt samples for model input.
The blue-highlighted KPI ("Link and system level performance") is not applicable to positioning.
	Agreement
The following is an initial list of common KPIs (if applicable) for evaluating performance benefits of AI/ML
1. Performance
0. Intermediate KPIs
0. Link and system level performance 
0. Generalization performance
1. Over-the-air Overhead
0. Overhead of assistance information
0. Overhead of data collection
0. Overhead of model delivery/transfer
0. Overhead of other AI/ML-related signaling
1. Inference complexity
0. Computational complexity of model inference: FLOPs
0. Computational complexity for pre- and post-processing
0. Model complexity: e.g., the number of parameters and/or size (e.g. Mbyte)
1. Training complexity
1. LCM related complexity and storage overhead
2. FFS: specific aspects
1. FFS: Latency, e.g., Inference latency
Note: Other aspects may be added in the future, e.g. training related KPIs
Note: Use-case specific KPIs may be additionally considered for the given use-case. 

Agreement
The following are additionally considered for the initial list of common KPIs (if applicable) for evaluating performance benefits of AI/ML
· Clarification on inference complexity
· Note: Inference complexity includes complexity for pre- and post-processing.
· LCM related complexity and storage overhead
· Storage/computation for training data collection.
· Storage/computation for training and model update
· Storage/computation for model monitoring.
· Storage/computation for other LCM procedures, e.g., model activation, deactivation, selection, switching, fallback operation.
· FFS: Power consumption, latency (e.g., Inference latency)





The model monitoring KPIs were agreed in RAN1#110bis-e as shown below. In the Rel-18 study item, no rigorous evaluations were done to examine the model monitoring KPIs listed, except some accuracy results submitted by individual companies based on their preferred model monitoring methods. 
Model monitoring is an important component in the life cycle management procedure. While it can be up to implementation how model monitoring metric is calculated, the model monitoring decision (e.g., activate or deactivate a model) has to be reliable. Rel-19 WI may further investigate how to ensure that the model monitoring entity provide reliable model monitoring decisions. This may involve both RAN1 and RAN4 work.

	Agreement (RAN1#110bis-e)
Study performance monitoring approaches, considering the following model monitoring KPIs as general guidance
· Accuracy and relevance (i.e., how well does the given monitoring metric/methods reflect the model and system performance)
· Overhead (e.g., signaling overhead associated with model monitoring)
· Complexity (e.g., computation and memory cost for model monitoring)
· Latency (i.e., timeliness of monitoring result, from model failure to action, given the purpose of model monitoring)
· FFS: Power consumption
· Other KPIs are not precluded.
Note: Relevant KPIs may vary across different model monitoring approaches.
FFS: Discussion of KPIs for other LCM procedures



Considering the above situation, RAN1 should discuss and decide how to treat the KPIs not evaluated in TR 38.843. This is because such KPIs are explicitly described in the TR for evaluations, see section 6.1 "Common evaluation methodology and KPIs" of [1]. One solution is to spell out in the TR the KPIs not evaluated for each use case. 

[bookmark: _Toc146721192][bookmark: _Toc146903908]RAN1 discuss and decide how to treat the KPIs not evaluated in TR 38.843. One solution is to spell out in the TR the KPIs not evaluated for each use case.

2.4	Aspects without observations due to insufficient evaluation results

For the generalization aspect of SNR/SINR, an observation was made in RAN1#112bis for CIR as model input. No  observation was made for PDP or DP as model input, since there were insufficient evaluation results on this aspect.
	Observation (RAN1#112bis)
For both direct AI/ML and AI/ML assisted positioning, evaluation results submitted to RAN1#112bis show that with CIR model input for a trained model,
· For two SNR/SINR values S1 (dB) and S2 (dB), S1>=S2 + 15 dB,  positioning error of a model trained with data of S1 (dB) and tested with data of S2 (dB) is more than 5.75 times that of the model trained and tested with data of S1 (dB).
· For two SNR/SINR values S1 (dB) and S2 (dB), S1<=S2 – 10 dB, the generalization performance of a model trained with data of S1 (dB) and tested with data of S2 (dB) is better than the performance of a model trained with data of S2 (dB) and tested with data of S1 (dB). Positioning error of a model trained with data of S2 (dB) and tested with data of S1 (dB) is more than 2.97 times that of the model trained with data of S1 (dB) and tested with data of S2 (dB).
Note: here the positioning error is the horizonal positioning error (meters) at CDF=90%.



For the length of Nt consecutive time domain samples used as model input, the following observation was made for CIR and PDP as model input. No observation was made for DP as model input, since there were insufficient evaluation results on this aspect.
	Observation (RAN1#113)
For AI/ML assisted positioning, with Nt consecutive time domain samples used as model input, evaluation results submitted to RAN1#113 show that when CIR or PDP are used as model input, using different Nt while holding other parameters the same,  
· Reducing Nt from 256 to 128 does not appreciably degrade the positioning accuracy, while the measurement size and signaling overhead shrink to (approximately) 1/2 that of Nt=256.
· Positioning error of Nt=128 is 1.00 ~ 1.42 times the positioning error of Nt=256;
· Reducing Nt from 256 to 64~32 may degrade the positioning accuracy, while the measurement size and signaling overhead shrink to (approximately) 1/4 ~1/8 that of Nt=256, respectively. 
· Positioning error of Nt=64 is 1.09 ~ 3.02 times the positioning error of Nt=256;
· Positioning error of Nt=32 is 2.43 ~ 5.10 times the positioning error of Nt=256;



Since the evaluation work has concluded, no further action is to be taken for the above in the study item phase. On the other hand, evaluations may be necessary in the work item phase for the missing aspects if decisions need to be taken based on such evaluation results, for example, to decide on the desired range of Nt when DP is used as model input.
For the purpose of TR writing, there is no need to explicitly point out potential observations which were not drawn due to insufficient evaluation results. The TR only need to summarize the observations RAN1 was able to draw. No further action is needed in the study item phase.

[bookmark: _Toc146721191][bookmark: _Toc146903909]For aspects that no observations were drawn due to insufficient evaluation results, there is no need to explicitly state it in the TR. No further action is needed in the study item phase.

3	High-level descriptions for evaluation of positioning accuracy enhancement

In this section, high-level description for improving readability of TR 38.843 is provided.

[bookmark: _Toc146903910]Adopt the text proposal below to describe the AI/ML methods used in evaluation.

	======================= Start of text proposal to TR 38.843 v1.0.0 ====================
[bookmark: _Toc135002578][bookmark: _Toc137744870]6.4	Positioning accuracy enhancements
6.4.1	Evaluation assumptions, methodology and KPIs
For AI/ML based positioning, the following methods are evaluated.
(1) Direct AI/ML positioning, as illustrated in Figure 6.4.1-1.
(2) Assisted AI/ML positioning.
(a)  Assisted AI/ML positioning with multi-TRP construction, as illustrated in Figure 6.4.1-2.
(b) Assisted positioning with single-TRP construction and one model for N TRPs, as illustrated in Figure 6.4.1-3.
(c) Assisted positioning with single-TRP construction and N models for N TRPs, as illustrated in Figure 6.4.1-4.

[image: ]
Figure 6.4.1-1. Direct AI/ML positioning

[image: ]
Figure 6.4.1-2. Assisted positioning with multi-TRP construction

[image: ]
Figure 6.4.1-3. Assisted positioning with single-TRP construction, and one model for N TRPs.

[image: ]
Figure 6.4.1-4. Assisted positioning with single-TRP construction, and N models for N TRPs.

=======================  End of text proposal to TR 38.843 v1.0.0 ====================




[bookmark: _Toc146903911]Adopt the text proposal below, which provides high-level description of the evaluations carried by RAN1 for AI/ML based positioning.


	======================= Start of text proposal to TR 38.843 v1.0.0 ====================

For the use case of positioning accuracy enhancement, extensive evaluations have been carried out. Both direct AI/ML positioning and AI/ML assited positioning are evaluated using one-sided model (either UE-side model or network-side model). The following areas are investigated.
· Basic performance, where the AI/ML model is trained and tested with dataset of the same deployment scenario. 
· For the basic performance without generalization consideration, AI/ML based positioning can significantly improve the positioning accuracy compared to existing RAT-dependent positioning methods. For example, in InF-DH with clutter parameter setting {60%, 6m, 2m}, AI/ML based positioning can achieve horizontal positioning accuracy of <1m at CDF=90%, as compared to >15m for conventional positioning method.
· Impact of training data sample density (i.e., training dataset size for a given evaluation area). Evaluation with uniform UE distribution show that, the larger the training dataset size (i.e., higher sample density), the smaller the positioning error (in meters), until a saturation point is reached where additional training data does not bring further improvement to the positioning accuracy.
· AI/ML complexity. For a given company’s model design, a lower complexity (model complexity and computational complexity) model can still achieve acceptable positioning accuracy (e.g., <1m), albeit degraded, when compared to a higher complexity model.
· Generalization study. Evaluations are carried to investigate various generalization aspects, where the AI/ML model is trained with dataset of one deployment scenario, while tested with dataset of a different deployment scenario. The generalization aspects include: different drops; different clutter parameters; different InF scenarios; network synchronization error; UE/gNB RX and TX timing error; SNR mismatch; Channel estimation error.
· Methods to handel generalization issues are extensively evaluated.
· Better training dataset construction (e.g., mixed dataset), where the training dataset is composed of data from multiple deployment scenarios, which include data from the same deployment scenario as the test dataset.  
· Fine-tuning/re-training, where the model is re-trained/fine-tuned with a dataset from the same deployment scenario as the test dataset. The impact of the amount of fine-tuning data on the positioning accuracy of the fine-tuned model is evaluated for the various generalization aspects. Evaluation results are obtained for two experiments: 
· The AI/ML model is (a) previously trained for scenario A with a dataset of sample density N (#samples/m2), (b) followed by fine-tuning for scenario B with a dataset of sample density x%  N (#samples/m2), (c) then tested under scenario B and the horizontal accuracy at CDF=90% is E meters.
· The AI/ML model is (a) previously trained for scenario A with a dataset of sample density N (#samples/m2), (b) followed by fine-tuning for scenario B with a dataset of sample density x%  N (#samples/m2), (c) then tested under scenario A and the horizontal accuracy at CDF=90% is E meters.
· Model input size reduction. Evaluations are carried out to examine various ways to change the model input size. The model size can be varied by using:
· Different model input type, for example, CIR, PDP, DP.
· Different time window size, Nt, during which the model input is collected.
· Different number of non-zero samples N't  collected within the time window..
· Different number of active TRPs, N'TRP, where measurements are collected for the model input. 
· Fixed TRP pattern vs dynamic TRP pattern. Evaluation results show that, approaches supporting dynamic TRP pattern can achieve comparable horizontal positioning accuracy as approaches supporting fixed TRP pattern, when other design parameters are held the same 
· Model output of AI/ML assisted positioning. For AI/ML assisted positioning, evaluations are carried out where the model output includes timing information and/or LOS/NLOS indicator.
· Non-ideal label in the training dataset. Evaluations are carried out to show the impact of:
· Label error, where the label in the training dataset is degraded from ground truth label by an error. 
· For direct AI/ML positioning and AI/ML assisted positioning with timing information as model output, location error in each dimension of x-axis and y-axis is modelled as a truncated Gaussian distribution. 
· For AI/ML assisted positioning where the model output includes the LOS/NLOS indicator, random LOS/NLOS label error is applied.
· Absent label, where some data samples in the training dataset do not have associated labels. Semi-supervised learning is evaluated for this case.
· Model monitoring. Performance of model monitoring methods are evaluated, including:
· Label based methods, where ground truth label (or its approximation) is provided for monitoring the accuracy of model output.
· Label-free methods, where model monitoring does not require ground truth label (or its approximation).

=======================  End of text proposal to TR 38.843 v1.0.0 ====================



3	Potential conclusions/recommendations for AI/ML based positioning
Based on the evaluation results performed by RAN1 for the Rel-18 study item, recommendations are provided below for the use case of positioning accuracy enhancement.
From RAN1 perspective:
· Support both direct AI/ML and AI/ML assisted positioning approaches. Direct AI/ML and AI/ML assisted positioning can achieve comparable positioning accuracy. Thus the down-selection of sub-use cases 1/2a/2b/3a/3b (if desired) depends on other considerations, e.g., measurement report sizes for training data collection, signaling overhead for model inference.
· Support both UE-side model and NW-side model. Evaluations by companies show that the AI/ML based positioning methods can be equally applied to UE-side and NW-side model. Thus both UE-side model and NW-side model can be supported from RAN1 perspective. UE-side model and NW-side model have different ramification to architecture, protocol, signaling when considering the various LCM stages. Such issues may need input from other RAN groups (e.g., RAN2 and RAN3).
· Model life-cycle management needs to handle the generalization issues if present in the deployment. Evaluation results show that most trained models tend to be sensitive to changes in deployment scenario, where the exact performance impact varies depending on many factors. The AI/ML model is robust only for certain AI/ML approaches, for example, some companies observed that AI/ML assisted positioning with single TRP is robust to environment changes. Thus model life cycle management needs to take this into account. For example, support mixed training dataset in training data collection, properly define conditions in functionality-based LCM.
· Training data collection need to support collecting a sufficiently large quantity of training data. In the evaluations, companies typically used 2.7~8.8 training data samples per m2 for training. That is, a dataset of (19,000~63,000) training data samples for a factory floor size of 120mx60m. Since evaluations show that the achievable positioning accuracy is directly affected by the training dataset size, it is important that the training data collection procedure is properly designed to collect a sufficiently large training dataset for the targeted use case.
· Training data collection need to ensure adequate label quality. Evaluation results have show that positioning error grows approximately linearly with label error for both AI/ML direct positioning and AI/ML assisted positioning with timing information as output.  Thus it is very important to have high-quality label in order to achieve high positioning accuracy with the AI/ML model.
· Training data collection should support mixed training dataset for the anticipated deployment scenarios. Extensive evaluation results have been submitted by companies to demonstrate that mixed training dataset allow the AI/ML model to support different deployment scenarios without increasing the model complexity. This can be accomplished by a properly designed training data collection procedure.
· Deprioritize model fine-tuning in Rel-19. Evaluation results show that fine-tuning a previously trained model with a small dataset is only useful to handle minor environment change. Otherwise, re-training the model with a full dataset is required. Considering the difficulty in implementing model fine-tuning, it is not wise to support fine-tuning in Rel-19. Rel-19 is the first release to support AI/ML in PHY and only the most useful and critical procedure should be considered. 
· Rel-19 WI further investigate the most appropriate model input type (e.g., CIR, PDP, DP) considering the tradeoff of positioning accuracy, signaling overhead, and AI/ML complexity. While evaluations have been done in the study item, further study is needed before the model input can be standardized. It is noted that CIR does not exist in current specification. Compared to PDP and DP, CIR has more standardization workload and more specification impact.
· Rel-19 WI further investigate the most appropriate model input size to specify, e.g., parameters (N'TRP, Nt, N't, Nport). While evaluations have been done in the study item, further study is needed before they can be standardized. These parameters affect the training data collection for all cases, and affect the signaling overhead for Case 2b/3b for model inference.
· Rel-19 WI further investigate how to ensure that the model monitoring entity provide reliable model monitoring decisions (e.g., activate or deactivate a model). 

Conclusion
Based on the discussion in the previous sections we propose the following:
Proposal 1	Capture the following observations in TR 38.843, which are updated from the corresponding observations in RAN1#114.
Proposal 2	Capture in TR 38.843 Figures 1-5 for model inference complexity for the positioning use case, which shows the (a) model complexity in number of real parameters (millions) and (b) computational complexity in FLOPs (millions).
Proposal 3	If the Figures 1-5 are captured in TR 38.843, include a Note for the figures: "Note: For a given positioning scheme, the information captured in Figures 1-5 indicates the highest complexity and lowest complexity used in individual company's evaluation, if models of multiple complexity levels are evaluated by a company for the given scheme. "
Proposal 4	Adopt the text proposal to clarify that the AI/ML positioning methods can be used on the network side or the UE side.
Proposal 5	RAN1 discuss and decide how to treat the KPIs not evaluated in TR 38.843. One solution is to spell out in the TR the KPIs not evaluated for each use case.
Proposal 6	For aspects that no observations were drawn due to insufficient evaluation results, there is no need to explicitly state it in the TR. No further action is needed in the study item phase.
Proposal 7	Adopt the text proposal below to describe the AI/ML methods used in evaluation.
Proposal 8	Adopt the text proposal below, which provides high-level description of the evaluations carried by RAN1 for AI/ML based positioning.
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Appendix. Tables for AI/ML Complexity 
[bookmark: _Ref146228546]Table 1. From excel "POS_Table1 Pos-Supervised-NoLabelerr-Train-Test-Same-Setting_vfinal", tab "Direct AIML"
	 
	 
	 
	 
	Settings (e.g., drops, clutter parameters, mixed dataset)
	AI/ML complexity
	 

	Source
	Model input
	Model output
	UE distribution area
	Train
	Test
	Model complexity (Millions)
	Computational complexity (Millions)
	Horizontal accuracy @90% (meters)

	China Telecom R1-2306811
	DL-TDOA;size:18*1
	UE coordinates
	120x60 m2
	{60%, 6m, 2m}
	same as training
	0.08
	0.08
	0.73

	China Telecom R1-2306811
	RSRP+DL-TDOA; size:18*2
	UE coordinates
	120x60 m2
	{60%, 6m, 2m}
	same as training
	0.2
	0.2
	0.38

	ZTE R1-2306799
	PDP
{Nport, NTRP, Nt, Nt'}
= {2, 18, 256, 256}
	2-D UE position
(1x2)
	InF-DH: 120x60 m(grid distribution for training dataset;  the width of the square grid is 0.5 m)
	clutter parameters:{60%, 6m, 2m}
	same as training
	9.5
	158.66
	0.26

	ZTE R1-2306799
	CIR
{Nport, NTRP, Nt, Nt'}
= {2, 18, 256, 256}
	2-D UE position
(1x2)
	InF-DH: 120x60 m(grid distribution for training dataset;  the width of the square grid is 0.5 m)
	clutter parameters:{60%, 6m, 2m}
	same as training
	9.69
	172.77
	0.18

	Samsung R1-2303124
	CIR with 18x256x2
	UE 2D position estimate
	120x60 m2
	SH
	SH
	0.076
	9.5
	0.37

	Samsung R1-2307672
	SIG 
With
18*6
	UE 2D position estimate
	120x60 m2
	DH662
	DH662
	0.074
	0.21
	1.69

	Xiaomi R1-2307379
	18*256*1 CIR
	2*1 UE coordinates
	120*60
	{0.6，6，2}
	same as training
	21.28
	5760
	0.4462

	OPPO R1-2307568
	RSTD + RSRP (18, 1,1,1) 
	UE coordination
	120x60 m
	1 drop, 80,000 UEs per drop 

{60%, 6, 2}
	same as training
	0.24
	0.47
	0.48

	OPPO R1-2307568
	Normalized CIR + RSRP  (18, 1, 256, 2)
	UE coordination
	120x60 m
	1 drop, 80,000 UEs per drop 

{60%, 6, 2}
	same as training
	2.66
	5.32
	0.33

	MediaTek R1-2308056
	CIR [18,2,256]
	UE pos [x,y]
	120x60m
	InF-DH{60%, 6m, 2m} 
	same as training
	0.46424
	266
	0.896

	MediaTek R1-2308056
	PDP [18,2,256]
	UE pos [x,y]
	120x60m
	InF-DH{60%, 6m, 2m} Nt=64,N't=25
	same as training
	0.24305
	66
	0.942

	NVIDIA R1-2306479
	CIR
	Position
	120x60 m
	{60%, 6m, 2m}
	same as training
	1.8
	90.9
	0.75

	vivo R1-2306744
	CIR
	Pos.
	120x60 m
	DH {0.6, 6,2}
	same as training
	1.65
	22.3
	0.99

	CMCC R1-2307187
	CIR;size：18*1*256
	UE coordinates
	120x60 m2
	{60%, 6m, 2m}, Drop 1
	same as training
	3.71
	7.42
	0.38

	CMCC R1-2307187
	CIR;size：18*1*256
	UE coordinates
	120x60 m2
	{60%, 6m, 2m}
	same as training
	6.4
	12.8
	0.386

	CATT R1-2307080
	Type: CIR;
Size:
18*1*256*2
	Type:Position
Size:1*2
	120m*60m
	InF-DH
{60%,6m,2m}
with perfect network synchonzation
	same as training
	11.2
	2780
	0.54m

	CATT R1-2307080
	Type: CIR;
Size:
18*1*32*2
	Type:Position
Size:1*2
	120m*60m
	InF-DH
{60%,6m,2m}
with perfect network synchonzation
	same as training
	11.2
	350
	0.62m

	Ericsson R1-2302335
	Time-domain CIR, 18x2x256, complex array
	UE 2D position estimate
	120x60 m2
	{60%,6m,2m}
	same as training
	11
	410
	0.155

	Ericsson R1-2304339
	Time-domain PDP, 6x1x256, real array
	UE 2D position estimate
	120x60 m2
	{60%,6m,2m}
	same as training
	0.05
	1
	1.191

	NOKIA R1-2307242
	PDP (NTRP =18* Nt = 128*Real Number=1)
	horizontal 2d positioning
	120x60 m2
	{40%,2m,2m}
	same as training
	0.4669
	6.39
	0.732

	NOKIA R1-2307242
	PDP (NTRP =8* Nt = 128*Real Number=1)
	horizontal 2d positioning
	120x60 m2
	{40%,2m,2m}
	same as training
	0.464
	0.72
	1.23

	Qualcomm R1-2307920
	CIR (18,1, 256)
	2D
	Baseline evaluation area for InF-DH = 120x60 m
	Drop A {60%, 6m, 2m}
	same as training
	0.029
	29.7
	1.08

	Qualcomm R1-2307920
	CIR (18,4, 400) 
	2D
	Baseline evaluation area for InF-DH = 120x60 m
	Drop A {60%, 6m, 2m}
	same as training
	1.5
	1540
	2.24

	InterDigital R1-2307582
	CIR (18*256* 2)
	UE position
	120x60 m2
	clutter parameters:{60%, 6m, 2m}
	same as training
	37
	843
	0.98

	InterDigital R1-2307582
	RSRP +RSTD
	UE position
	120x60 m2
	clutter parameters:{60%, 6m, 2m}
	same as training
	0.334
	11.41
	1.69

	Apple-R12308248
	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	120 x 60m
	InF-DH{60%, 6m, 2m} 
	same as training
	12.37
	103
	0.745

	Apple-R12308248
	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	100 x 40 m
	InF-DH{60%, 6m, 2m} 
	same as training
	1.48
	2.75
	0.844

	Fraunhofer R1-2307236
	CIR with 18x120x2
	UE 2D position estimate
	60x30 m2
	DH662
	DH662
	0.462
	637
	0.37

	Huawei-R1-2306515
	CIR 18*4*256
	UE coordinates
	120x60 m
	{60%, 6m, 2m}, Drop 1
	same as training
	0.052
	25.81
	0.62

	Huawei-R1-2306515
	PDP 2*4*256
TRP(7,10)
	UE coordinates
	120x60 m
	{60%, 6m, 2m}, Drop 1
	same as training
	0.005
	2.05
	2.8



[bookmark: _Ref146228593]Table 2. From excel "POS_Table1 Pos-Supervised-NoLabelerr-Train-Test-Same-Setting_vfinal", tab "Assisted, multi-TRP"
	 
	 
	 
	 
	Settings (e.g., drops, clutter parameters, mixed dataset)
	AI/ML complexity
	 

	Source
	Model input
	Model output
	UE distribution area
	Train
	Test
	Model complexity (Millions)
	Computational complexity (Millions)
	Horizontal accuracy @90% (meters)

	ZTE R1-2306799
	CIR
{Nport, NTRP, Nt, Nt'}
= {1, 18, 256, 256}
	RSTD values(1x18)
	InF-DH: 120x60 m(grid distribution for training dataset;  the width of the square grid is 0.5 m)
	clutter parameters:{60%, 6m, 2m}
	same as training
	9.5
	158.66
	0.28

	Xiaomi R1-2307379
	18*256*1 CIR
	18*1 UE TOA
	120*60
	{0.6，6，2}
	same as training
	21.29
	5760
	0.6778

	OPPO R1-2307568
	Normalized CIR (18, 1, 256, 2) 
	TOA
	120x60 m
	1 drop, 80,000 UEs per drop 

{60%, 6, 2}
	same as training
	1.48M
	2.96 MFLOPs
	0.52

	MediaTek R1-2308056
	PDP[18,8,256]
	TOA
	120x60m
	InF-DH{60%, 6m, 2m}
	same as training
	0.205
	77
	1.05

	MediaTek R1-2308056
	PDP[18,8,256]
	TOA
	120x60m
	InF-DH{40%, 2m, 2m} 
Nt=64
N't=64
	same as training
	0.181
	19.3
	1.7

	Huawei-R1-2306515
	CIR 18*1*256
	TOA
	120x60 m
	{60%, 6m, 2m}, Drop 1
	same as training
	0.177
	45.19
	1.25

	vivo R1-2306744
	CIR
	TOA
	120x60 m
	DH{0.6, 6, 2}
	same as training
	1.65
	22.3
	1.08

	CMCC R1-2307187
	CIR;size：18*1*256
	UE coordinates
	120x60 m2
	{60%, 6m, 2m}
	same as training
	3.71M
	7.42M
	0.537

	CATT R1-2307080
	Type: CIR;
Size:
18*1*256*2
	Type:TOA
Size:1*18
	120m*60m
	InF-DH
{60%,6m,2m}
with perfect network synchonzation
	same as training
	0.7M
	60.8M FLOPs
	0.655m

	CATT R1-2307080
	Type: CIR;
Size:
18*1*32*2
	Type:TOA
Size:1*18
	120m*60m
	InF-DH
{60%,6m,2m}
with perfect network synchonzation
	same as training
	0.7M
	7.60M FLOPs
	1.104m

	Ericsson R1-2302335
	Time-domain CIR, 18x2x256, complex array
	18 direct path ToA estimates
	120x60 m2
	{60%,6m,2m}
	same as training
	11 M real parameters
	410 M FLOPs
	0.156

	Ericsson R1-2302335
	Time-domain PDP, 18x1x256, real array
	18 direct path ToA estimates
	120x60 m2
	{60%,6m,2m}
	same as training
	0.36 M real parameters
	9 M FLOPs
	0.426

	NOKIA R1-2307242
	PDP (NTRP =18* Nt = 128*Real Number=1)
	LOS/NLOS indicator
	120x60 m2
	{40%,2m,2m}
	same as training
	2.364186
	0.476
	0.9818

	NOKIA R1-2307242
	PDP (NTRP =18* Nt = 128*Real Number=1)
	ToA estimation
	120x60 m2
	{40%,2m,2m}
	same as training
	1.4131
	1.82
	0.61

	Qualcomm R1-2307920
	CIR (18,4, 400) 
	17 RSTDs
	Baseline evaluation area for InF-DH = 120x60 m
	Drop A 
	same as training
	1.5
	1540
	2.92

	InterDigital R1-2307582
	CIR (18,256,2)
	18 direct path TOA
	100x40 m2
	{60%,2m,2m}
	same as training
	23.15
	551
	1.27

	InterDigital R1-2307582
	RSRP
	18 direct path RSTD
	120x60 m2
	{60%,2m,2m}
	same as training
	0.332
	11.42
	10.6




[bookmark: _Ref146228634]Table 3. From excel "POS_Table1 Pos-Supervised-NoLabelerr-Train-Test-Same-Setting_vfinal", tab "Assisted, single-TRP, one model"

	 
	 
	 
	 
	Settings (e.g., drops, clutter parameters, mixed dataset)
	AI/ML complexity
	 

	Source
	Model input
	Model output
	UE distribution area
	Train
	Test
	Model complexity (Millions)
	Computational complexity (Millions)
	Horizontal accuracy @90% (meters)

	ZTE R1-2306799
	CIR
{Nport, NTRP, Nt, Nt'}
= {1, 1, 256, 256}
	LOS&NLOS indicator
	InF-DH: 120x60 m(grid distribution for training dataset;  the width of the square grid is 0.5 m)
	clutter parameters:{40%, 2m, 2m}
	same as training
	1.18
	7.6
	N/A

	OPPO R1-2307568
	Normalized CIR (1, 1, 256, 2)
	TOA
	120x60 m
	1 drop, 80,000 UEs per drop 

{40%, 2, 2}
	same as training
	0.33M
	0.66 MFLOPs
	0.35

	MediaTek R1-2308056
	PDP[18,8,256]
	TOA 
Soft- decision
	120x60m
	InF-DH{40%, 2m, 2m}
	same as training
	0.187
	15*18
	5.6

	MediaTek R1-2308056
	CIR[18,8,256]
	LOS/NLOS
	120x60m
	InF-DH{40%, 2m, 2m}
	same as training
	0.186
	29.4*18
	N/A

	MediaTek R1-2308056
	CIR[18,8,256]
	LOS/NLOS
	120x60m
	InF-DH{40%, 2m, 2m} 
Nt=64
N't=64
	same as training
	0.173
	7.39*18
	N/A

	Huawei-R1-2306515
	PDP 1*4*256
TRP(0~17)
	LOS probability
	120x60 m
	InF-DH{40%, 2m, 2m}, Drop 1
	same as training
	0.001
	192K
	0.353

	vivo R1-2306744
	CIR
	TOA
	120x60 m
	DH{0.6, 6, 2}
	same as training
	11.92
	23.79
	0.83

	CATT R1-2307080
	Type: CIR;
Size:
1*1*256*2
	Type:TOA
Size:1
	120m*60m
	InF-DH
{60%,6m,2m}
with perfect network synchonzation
	same as training
	3.84M
	19.48M FLOPs
	0.52m

	Ericsson R1-2210854
	Time-domain CIR, 1x2x256, complex array
	LoS/NLoS classification, ToA estimates
	120x60 m2
	{40%,2m,2m}
	same as training
	0.07 M real parameters
	7 M FLOPs
	0.109

	Qualcomm R1-2307920
	CER (1, 2, 256)
	RSTD distribution
	Baseline evaluation area for InF-DH = 120x60 m
	{60%, 6m, 2m}
	same as training
	2.1
	37.59 (per TRP)
	4.74

	Qualcomm R1-2307920
	CER (1, 2, 64)
	RSTD distribution
	Baseline evaluation area for InF-DH = 120x60 m
	{40%, 4m, 2m}
	same as training
	0.02
	0.21 (per TRP)
	0.53



[bookmark: _Ref146228663]Table 4. From excel "POS_Table1 Pos-Supervised-NoLabelerr-Train-Test-Same-Setting_vfinal", tab "Assisted, single-TRP, N models"
	 
	 
	 
	 
	Settings (e.g., drops, clutter parameters, mixed dataset)
	AI/ML complexity
	 

	Source
	Model input
	Model output
	UE distribution area
	Train
	Test
	Model complexity (Millions)
	Computational complexity (Millions)
	Horizontal accuracy @90% (meters)

	Huawei-R1-2306515
	CIR 1*1*256
TRP(0~17)
	TOA
	120x60 m
	{60%, 6m, 2m}, Drop 1
	same as training
	0.175
	7.98
	0.72

	vivo R1-2306744
	CIR
	TOA
	120x60 m
	DH{0.6, 6, 2}
	same as training
	4.26x18
	8.50x18
	0.73

	CATT R1-2307080
	Type: CIR;
Size:
1*1*256*2
	Type:TOA
Size:1
	120m*60m
	InF-DH
{60%,6m,2m}
with perfect network synchonzation
	same as training
	23.04M
	116.88M FLOPs
	2.37m

	Ericsson R1-2304339
	Time-domain PDP, 1x1x256, real array
	1 direct path ToA estimate
	120x60 m2
	{60%,6m,2m}
	same as training
	17 M real parameters
	420 M FLOPs
	0.72

	Apple-R12308248
	DP
[18,1,256,1]
	Direct path ToA 
[1x1]
	100x40 m
	InF-DH{60%, 6m, 2m} 
Drop1
	same as training
	1.6
	3.1
	0.9183

	Apple-R12308248
	DP
[18,1,256,1]
	Direct path ToA 
[1x1]
	100x40 m
	InF-DH{60%, 6m, 2m} 
Drop1
	same as training
	3.88
	24.95
	0.8657

	Apple-R12308248
	DP
[18,1,256,1]
	Direct path ToA 
[1x1]
	100x40 m
	InF-DH{60%, 6m, 2m} 
Drop1
	same as training
	12.37
	103
	0.5794
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