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Introduction
[bookmark: _Hlk101176897]AI/ML-based CSI feedback enhancement is one of the use cases in this study item. In the RAN WG1 109-e meeting [1], spatial-frequency domain CSI compression using two-sided AI/ML model (depicted in Figure 1) is selected as one representative sub-use case. In the RAN WG1 111 meeting [2], time-domain CSI prediction using UE sided model is also selected as a representative sub-use case for CSI enhancement.
[image: ]
[bookmark: _Ref131533032]Figure 1: The two-sided AI/ML model.
In previous RAN WG1 112-bis-e meeting [5], some agreements and conclusions were made from the aspects of the complexity calculation of FLOPs and the storage overhead for rank>1, evaluation assumptions for feedback payloads, intermediate KPIs and the EVM for model monitoring, and evaluation assumptions for CSI prediction. In this contribution, we further show our views and evaluation results.
Evaluation results for CSI compression 
Quantization
In RAN WG1 111 meeting, the following agreement regarding the AI/ML model quantization for CSI compression has been made [2]. In this section, we give the simulation results for the following evaluation cases and show the performance of quantization in spatial-frequency-domain CSI compression using two-sided AI/ML models.  
	Agreement
For the evaluation of quantization aware/non-aware training, the following cases are considered and reported by companies:
· Case 1: Quantization non-aware training, where the float-format variables are directly passed from CSI generation part to CSI reconstruction part during the training.
· Fixed/pre-configured quantization method/parameters is applied for the inference phase
· Companies to report the design of the fixed/pre-configured quantization method/parameters, e.g., quantization resolution, vector quantization codebook, etc.
· Case 2: Quantization aware training, where quantization/dequantization is involved in the training process
· Case 2-1: Fixed/pre-configured quantization method/parameters are applied during the training phase; the same quantization codebook is applied for the inference phase.
· Companies to report the design of the fixed/pre-configured quantization method/parameters, e.g., quantization resolution, vector quantization codebook, etc.
· Case 2-2: The quantization method/parameters are updated in together with the AI/ML models during the training; when training is finished, the final quantization codebook is applied for the inference phase.
· Companies to report how to update the quantization method/parameters during the training.
Note: the above cases apply



In our view, for quantization aware training, the quantization/dequantization is involved in both the forward propagation (FP) and the loss function, this in turn affects back propagation (BP) in the whole training phase. The AI/ML model trained by a quantization aware strategy may be completely different from the AI/ML model trained by a quantization non-aware strategy in terms of both model weights and model performance. 
To evaluate the performance difference between quantization aware training and quantization non-aware training, we consider B-bits scalar uniform quantization. In our simulation, the input of quantization is normalized into the range [0,1] by setting the activation function of the last neural network layer as sigmoid. The training data and test data are the right singular vectors of the channel matrix of a CDL-C-300-10. 
The simulation results are provided in Figure 2 for 2-bits quantization aware training and {2,3,4,5}-bits quantization non-aware training under various feedback payloads. From this figure, it can be observed that：
· Compared with quantization aware training, there is a 0.01~0.03 SGCS loss for quantization non-aware training under various feedback payloads.
· The SGCS loss of quantization non-aware training is reduced with the increasing quantization bits and the feedback payloads.
Observation-1: [bookmark: _Ref131771213] For scalar uniform quantization, the performance of quantization aware training is better than that of quantization non-aware training, and the performance loss of quantization non-aware training is reduced with the increasing quantization bits and feedback payloads.
Let us fix a payload size, e.g., 120 bits. The numbers of floating-point outputs of the neural networks are 60, 40, 30, 24 for the 2-bit, 3-bit, 4-bit, and 5-bit quantizers, respectively. It is observed from Figure 2 that the performance of quantization aware training followed by a 2-bit scalar quantizer is the best among all cases. The reasons are two-folded. First, the number of floating-point outputs in this case is the largest, which allows a neural network of a large size. Second, since the neural network is trained according to how its floating-point outputs are quantized in quantization aware training, the neural network is trained to adjust a better performance of the classification problem of the quantizer.
Observation-2: [bookmark: _Ref131771236]For a fixed number of payload size, the number of floating-point outputs of the neural network followed by a low-resolution quantizer is larger than that followed by a high-resolution quantizer. This is helpful in increasing the SGCS performance if quantization aware training is used.
 
[bookmark: _Ref131518895]Figure 2: The SGCS performance of 2-bits quantization aware training and {2,3,4,5}-bits quantization non-aware training.
In addition to the above scalar uniform quantization, we also consider a vector quantization (VQ) approach where the VQ table is updated during the training phase. Figure 3 provides the SGCS performance of the scalar uniform quantization and the VQ under various feedback payloads. From this figure, it can be seen that:
· Compared with the “Case 2-1 quantization aware training”, where the (scalar uniform) quantization method is fixed, the vector quantization (VQ) is updated together with the AI/ML models during the training phase in the “Case 2-2 quantization aware training”, which offers slightly better performance.
Observation-3: [bookmark: _Ref131771370]Under the method of quantization aware training, compared with the fixed scalar uniform quantization method (Case 2-1), better performance is achieved in an updated quantization approach (Case 2-2), where the vector quantization is updated together with the AI/ML models during the training phase.
 
[bookmark: _Ref131519210]Figure 3: The SGCS performance of the fixed/pre-configured quantization and the non-fixed/non-pre-configured quantization under various feedback payloads.
Based on the above simulation results, we have the following proposal.
Proposal-1: [bookmark: _Ref131771660] Quantization aware training is considered as the priority training strategy for the evaluation of AI/ML based CSI compression feedback.
Proposal-2: [bookmark: _Ref131771687]In quantization aware training, it is suggested that we increase the number of floating-point outputs for a fixed number of output bit numbers.
We should also note that the cost of Case 2-2 is higher than those of Case 2-1. Specifically, since the quantizer is updated in the training phase, the quantization method, e.g., the codebook for VQ, should be acknowledged between the UE side and the NW side. The overhead is increased because of the possibly transmitted quantization codebook. With this regard, the throughput gain should be studied to ensure the gain of VQ. So, we have the following proposal.
Proposal-3: [bookmark: _Ref131771669]For the evaluation of the quantization aware training, study and compare the throughput achieved by the approaches that the quantizers are updated (Case 2-2) or not (Case 2-1) during the training phase. This provides evidence for studying which of the two should be considered as the priority method.
Regarding to transmission overheads, the output of AI/ML based CSI generation parts after quantization is preferred to generate separate training dataset for training Type 3. If the quantization scheme is not disclosed, there may be a quantization mismatching between UE sides and NW sides. Even if the quantization scheme is released, quantization mismatching can also happen for the multi-vendor case, e.g., for NW-first training Type 3, a UE may receive separate training datasets with different quantization schemes from multiple NW sides. Although the AI/ML model can be trained by ignoring the quantization mismatching because the neural network has universally approximation ability. But such kind of mismatching will make AI/ML model training more challenging and leads to a serious performance degradation. To evaluate such performance degradation, we consider the following three cases:
· Case 1(Baseline): AI/ML based CSI generation part and reconstruction part are jointly trained with a 2-bit scalar uniform quantization.
· Case 2: UE-first separate training, the quantization bits are respectively 2 and 4 for the UE side and the NW side.
· Case 3: NW-first separate training, the quantization bits are respectively 2 and 4 for the UE side and the NW side.
The simulation result for quantization mismatching is given in Table 1. We can observe that there is a significant performance loss in terms of SGCS when the quantization at the UE side and the dequantization at the NW side are aligned. With this regarding, we have the following observation and the proposal.
Observation-4: [bookmark: _Ref131771400]The significant SGCS performance loss can be observed for separate training (training Type 3) when the quantization and the dequantization are mismatched. 
Proposal-4: [bookmark: _Ref131771692]Evaluate the performance of separate training (training Type 3) for the case that the quantization and the dequantization are mismatched.
[bookmark: _Ref131523950]Table 1: SGCS performances for quantization mismatched.
	Feedback
Payload(bits)
	Case 1
	Case 2
	Case 3

	80
	0.7959
	0.2927
	0.2252

	120
	0.8569
	0.2638
	0.2222

	180
	0.9036
	0.2445
	0.2008

	240
	0.9256
	0.2419
	0.2136

	280
	0.9343
	0.2343
	0.2044



Training Type 2 
In this section, we provide our evaluation results on training Type 2. In our evaluation case, there are  UE part models with CNN-based and transformer-based backbones, and one NW part model with a transformer-based backbone. Two UE part models and one NW part model are simultaneously trained for training Type 2. The evaluation is performed on the link level simulations and the simulation parameters are adopted in Table 12. The SGCS performances of training Type 2 with CSI generation parts at UE sides and one CSI reconstruction part at the NW side are given Table 2 over the various feedback payloads.  We can observe that:
· For training Type 2, there is a significant SGCS loss for two UE part models and one NW part model and the backbone is different comparing with the joint training.
Observation-5: [bookmark: _Ref131771422]For training Type 2, the significant SGCS loss can be observed for two UE part models and one NW part model, and the backbone is different, comparing with the joint training.
[bookmark: _Ref131531209]Table 2: SGCS performances of training Type 2 with two CSI generation parts at UE sides and one CSI reconstruction part at the NW side.
	Feedback
payload(bits)
	Joint training
Transformer-Transformer
	Training Type 2
CNN-Transformer
	Training Type 2
Transformer-Transformer

	80
	0.7539
	0.7234
	0.7329

	120
	0.8284
	0.803
	0.808

	180
	0.8851
	0.8718
	0.8789

	240
	0.9166
	0.9024
	0.9089

	280
	0.9321
	0.9193
	0.9252



Separate training
In RAN WG1 111 meeting, the following agreement regarding Type 3 training for CSI compression has been made [2]. In this section, we give the simulation results for the following evaluation cases and show the performance of separate training for multi-vendors in spatial-frequency-domain CSI compression using two-sided AI/ML models.  
	Agreement
For the evaluation of an example of Type 3 (Separate training at NW side and UE side), the following evaluation cases for sequential training are considered for multi-vendors 
· Case 1 (baseline): Type 3 training between one NW part model and one UE part model
· Note 1: Case 1 can be naturally applied to the NW-first training case where 1 NW part model to M>1 separate UE part models
· Companies to report the dataset used between the NW part model and the UE part model, e.g., whether dataset for training UE part model is the same or a subset of the dataset for training NW part model
· Note 2: Case 1 can be naturally applied to the UE-first training case where 1 UE part model to N>1 separate NW part models
· Companies to report the dataset used between the NW part model and the UE part model, e.g., whether dataset for training NW part model is the same or a subset of the dataset for training UE part model
· Companies to report the AI/ML structures for the combination(s) of UE part model and NW part model, which can be the same or different
· FFS: different quantization methods between NW side and UE side
· Case 2: For UE-first training, Type 3 training between one NW part model and M>1 separate UE part models
· Note: Case 2 can be also applied to the M>1 UE part models to N>1 NW part models
· Companies to report the AI/ML structures for the M>1 UE part models and the NW part model
· Companies to report the dataset used at UE part models, e.g., same or different dataset(s) among M UE part models
· Case 3: For NW-first training, Type 3 training between one UE part model and N>1 separate NW part models
· Note: Case 3 can be also applied to the N>1 NW part models to M>1 UE part models
· Companies to report the AI/ML structures for the UE part model and the N>1 NW part models
· Companies to report the dataset used at NW part models, e.g., same or different dataset(s) among N NW part models 



For spatial-frequency-domain CSI compression using two sided AI/ML models, joint training will face proprietary and hardware-compatible challenges for multi-vendors. If the CSI generation part or the CSI reconstruction part is transferred over the air interface, the AI/ML model description is also a big challenge.  For separate training, the CSI generation part and the CSI reconstruction part can be independently trained with a set of separate training data provided by NW side or UE side, even a common data provided by a third parity. This kind of training strategy can directly avoid model transferring and the above challenges.
For the above evaluation cases, the separate training process in our simulations is given as follows:
· Case 1
· UE-first: the CSI generation part and the CSI reconstruction part are jointly trained at a UE side with right singular vectors . Then separate training dataset  is generated with right singular vectors  (different from ) where  is the output of CSI generation part for the input . The CSI reconstruction part is separately trained at a NW side with separate training dataset .
· NW-first: the CSI generation part and the CSI reconstruction part are jointly trained at a NW side with right singular vectors . Then separate training dataset  is generated with right singular vectors  (different from ) where  is the output of CSI generation part for the input . The CSI generation part is separately trained at a UE side with separate training dataset .
· Case 2: Each pair of CSI generation part and the CSI reconstruction part is jointly trained at each UE side with right singular vectors . Then the separate training dataset  is generated for each UE which is similar to Case 1 UE-first. The CSI reconstruction part is separately trained at a NW side with mixed separate training dataset  from multiple UE sides.
· Case 3: Each pair of CSI generation part and the CSI reconstruction part is jointly trained at each NW side with right singular vectors . Then the separate training dataset  is generated for each NW which is similar to Case 1 NW-first. The CSI generation part is separately trained at a UE side with mixed separate training dataset  from multiple NW sides.
[bookmark: _Ref127151911]Table 3: The SGCS performance of separate training with different quantization behaviors.
	Feedback payload(bits)
	Joint training
	NW-first
without quantization
	NW-first 
with quantization
	UE-first
without quantization
	UE-first
with quantization

	80
	0.7559
	0.7557
	0.7534
	0.7564
	0.7556

	120
	0.8282
	0.8279
	0.8265
	0.8266
	0.8256

	180
	0.8855
	0.8854
	0.8842
	0.8828
	0.8822

	240
	0.9236
	0.9233
	0.922
	0.9232
	0.922

	280
	0.9354
	0.9353
	0.9342
	0.9351
	0.934


.
We perform the link level simulations to evaluate performance of separate training with different quantization behaviors. The training data and test data are the right singular vectors of the channel matrix of a CDL-C-300-10.  Two kinds of separate training dataset are considered as follows：
· The output of CSI generation part after quantization is used for constructing separate training dataset.  
· The output of CSI generation part before quantization is used for constructing separate training dataset.
Table 3 provides the SGCS performance of separate training with two above quantization behaviors. No obvious performance difference is observed between two quantization behaviors for both NW-first and UE-first separate training.
Observation-6: [bookmark: _Ref131771434] There is negligible performance difference between two quantization behaviors for both NW-first and UE-first separate training. 
[bookmark: _Ref127153778]Table 4: The SGCS performance of UE-first separate training with one UE part model and NW-first separate training with one UE part model.
	Feedback payload(bits)
	Joint training
Transformer
	NW-first
Transformer-Transformer
	NW-first
CNN-Transformer
	UE-first
Transformer-Transformer
	UE-first
Transformer-CNN

	80
	0.7559
	0.7557
	0.7149
	0.7564
	0.705

	120
	0.8282
	0.8279
	0.7664
	0.8266
	0.7768

	180
	0.8855
	0.8854
	0.8086
	0.8828
	0.8206

	240
	0.9236
	0.9233
	0.8432
	0.9232
	0.8705

	280
	0.9354
	0.9353
	0.8923
	0.9351
	0.8854



Table 4 provides the SGCS performance of NW-first separate training with one NW part model and two separate UE part models and UE-first with separate training with one UE part model and two separate NW part models. The training data and test training are also the right singular vectors of the channel matrix of a CDL-C-300-10. There is no significant performance loss between joint training and separate training for Transformer models.
Observation-7: [bookmark: _Ref131771445]For the Case 1 of training Type 3, only a negligible SGCS degradation (0.0001~0.0011) is observed compared to joint training. 
Observation-8: [bookmark: _Ref131771447] For the Case 1 of Type 3 training, by varying the backbones of AI/ML models and fixing other conditions, it is observed that the performance of transformer models is superior to that of a convolutional neural network (CNN).
[bookmark: _Ref127154651]Table 5: The SGCS performance of UE-first separate training with 2 separate UE part models and 2 separate NW part model.
	Feedback payload(bits)
	Joint training Transformer
	Joint training
CNN
	Separate training
Transformer-Transformer
	Separate training
CNN-Transformer

	80
	0.7559
	0.9166
	0.7254
	0.9178

	120
	0.8282
	0.9472
	0.8067
	0.9437

	180
	0.8855
	0.9562
	0.8699
	0.9577

	240
	0.9236
	0.9636
	0.9119
	0.9633

	280
	0.9354
	0.9675
	0.9237
	0.9664


[bookmark: _Ref127154654]Table 6: The SGCS performance of NW-first separate training with 2 separate UE part models and 2 separate NW part model.
	Feedback payload(bits)
	Joint training
Transformer
	Joint training
CNN
	Separate training
Transformer-Transformer
	Separate training
Transformer-CNN

	80
	0.7559
	0.9166
	0.75
	0.9024

	120
	0.8282
	0.9472
	0.8227
	0.9316

	180
	0.8855
	0.9562
	0.8814
	0.9483

	240
	0.9236
	0.9636
	0.9185
	0.9588

	280
	0.9354
	0.9675
	0.932
	0.9648



Table 5 and Table 6 provide the SGCS performances of UE-first separate training with 2 separate UE part models and NW-first separate training with 2 separate NW part models. The transformer model of joint training is trained by right singular vectors of CDL-300-10, but the CNN model of joint training is trained by right singular vectors of CDL-30-10. The separate training data is generated by mixing the input and the output of both Transformer based and CNN based CSI generation part after quantization. It can be noticed that the significant performance loss of Case 2 of Type 3 training is observed compared with joint training when the backbones of joint training AI//ML models are transformer. However, no obvious performance loss is observed for Case 2 of training Type 3 when the backbones of joint training AI//ML models are CNN. For Case 3 of Type 3 training, minor performance loss can be observed for both transformer-based and CNN based backbones.
Observation-9: [bookmark: _Ref131771448] For the Case 2 of Type 3 training, where the training at UE side is performed at first, the SGCS degradation is 0.11~0.03 compared to that of Case 1 of Type 3 training if the backbone of the AI/ML model is transformer.
Observation-10: [bookmark: _Ref131771449] For the Case 3 of Type 3 training, where the training at NW side is performed at first, the SGCS degradation is negligibly 0.003~0.006 compared to that of Case 1 of Type 3 training if the backbone of the AI/ML model is transformer.
Proposal-5: [bookmark: _Ref131771700]For the evaluation of the Type 3 training, evaluate the effect of the choice of backbone of AI/ML model on the performance of Type 3 training.
Proposal-6: [bookmark: _Ref131771701]For the evaluation of the Type 3 training, evaluate the effect of the choice of quantizer on the performance of Type 3 training, from the perspectives of
· Training method: quantization aware training or quantization non-aware training.
· Quantization method: scalar quantization or vector quantization.
AI/ML model generalization/scalability
In RAN WG1 111 meeting, the following agreement regarding the scalability over different input dimensions of CSI generation part has been made [2]. In our previous contributions, some evaluation results for AI/ML model generalization/scalability of feedback payload were provided [2]. In this section, we give the simulation results for AI/ML model generalization/scalability of sub-bands and antenna ports using zero-padding method in spatial frequency CSI compression.  
	[bookmark: _Hlk127381436]Agreement
For evaluating the generalization/scalability over various configurations for CSI compression, to achieve the scalability over different input dimensions of CSI generation part (e.g., different bandwidths/frequency granularities, or different antenna ports), the generalization cases of are elaborated as follows
· Case 1: The AI/ML model is trained based on training dataset from a fixed dimension X1 (e.g., a fixed bandwidth/frequency granularity, and/or number of antenna ports), and then the AI/ML model performs inference/test on a dataset from the same dimension X1.
· Case 2: The AI/ML model is trained based on training dataset from a single dimension X1, and then the AI/ML model performs inference/test on a dataset from a different dimension X2.
· Case 3: The AI/ML model is trained based on training dataset by mixing datasets subject to multiple dimensions of X1, X2,..., Xn, and then the AI/ML model performs inference/test on a single dataset subject to the dimension of X1, or X2,…, or Xn.
· Note: For Case 2/3, the solutions to achieve the scalability between Xi and Xj, are reported by companies, including, e.g., pre-processing to angle-delay domain, padding, additional adaptation layer in AI/ML model, etc.
· FFS the verification of fine-tuning
· FFS other additional cases



In our evaluations, the method to achieve the scalability over different input dimensions of CSI generation part is zero-padding. As shown in Figure 4, the input of CSI generation part will be filled with zero value along the sub-band dimension and/or the antenna port dimension if input dimensions are less than pre-configured values. For the CSI reconstruction part, the output will be truncated in the positions of zero padding. 
[bookmark: _Ref127126631][image: ]
[bookmark: _Ref131533076]Figure 4: The generalization/scalability of sub-bands and antenna ports with zero-padding method.
We perform the link-level simulation to evaluate the scalability performance of zero-padding method for different numbers of sub-bands and antenna ports. Figure 5 gives the scalability performance for 10 sub-bands and 13 sub-bands under various feedback payloads. In this figure, three lines stand for different combinations of training data and test data as follows:
· 10 sub-bands 32 ports case 1:  both training and test perform on the data of 10 sub-bands and 32 antenna ports.
· 10 sub-bands 32 ports case 2: training on the data of 13 sub-bands and 32 antenna ports, and test on the data of 10 sub-bands and 32 antenna ports.
· 10 sub-bands 32 ports case 3: training on the mixed data of 10 sub-bands and 13 sub-bands, and test on the data of 10 sub-bands and 32 antenna ports.
It can be observed from this figure that:
· There is a significant performance loss when the AI/ML model is trained by 13 sub-bands data and tested by 10 sub-bands data.
· The AI/ML model can achieve the good scalability performance for the number of sub-bands using zero-padding method when the AI/ML model is trained with the mixed data of 10 sub-bands and 13 sub-bands.
It should be noted that the performance of 10 sub-bands 32 ports case 3 is even better than that of 10 sub-bands 32 ports case 1. This performance gain may benefit from a larger size of the mixed data.

[bookmark: _Ref131532795]Figure 5: The scalability performance for different numbers of sub-bands.
Figure 6 gives the scalability performance for 16 antenna ports and 32 antenna ports under various feedback payloads. In this figure, three lines stand for different combinations of training data and test data as follows:
· 13 sub-bands 16 ports case 1:  both training and test perform on the data of 13 sub-bands and 16 antenna ports.
· 13 sub-bands 16 ports case 2: training on the data of 13 sub-bands and 32 antenna ports, and test on the data of 13 sub-bands and 16 antenna ports.
· 13 sub-bands 16 ports case 3: training on the mixed data of 16 antenna ports and 32 antenna ports, and test on the data of 13 sub-bands and 16 antenna ports.
It can be observed from this figure that:
· There is a significant performance loss when the AI/ML model is trained by 32 sub-bands data and tested by 16 sub-bands data.
· The AI/ML model can achieve the good scalability performance for the number of antenna ports using zero-padding method when the AI/ML model is trained with the mixed data of 16 antenna ports and 32 antenna ports.


[bookmark: _Ref131533169][bookmark: _Ref127129951]Figure 6: The scalability performance for different numbers of antenna ports.
Observation-11: [bookmark: _Ref131771454]For generalization/scalability of AI/ML model over the different number of sub-bands, the zero-padding method can achieve good performances in terms of the SGCS when the AI/ML model is trained with mixed data.
Observation-12: [bookmark: _Ref131771456] For generalization/scalability of AI/ML model over the different number of antenna ports, the zero-padding method can achieve good performances in terms of the SGCS when the AI/ML model is trained with mixed data.
Finetuning
In the RAN WG1 110bis-e meeting, the following agreement regarding the AI/ML model finetuning for CSI feedback enhancement was made [3].
Agreement
For the evaluation of the potential performance benefits of model fine-tuning of CSI feedback enhancement which is optionally considered by companies, the following case is taken 
· The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model is updated based on a fine-tuning dataset different than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B. After that, the AI/ML model is tested on a different dataset than Scenario#A/Configuration#A, e.g., subject to Scenario#B/Configuration#B, Scenario#A/Configuration#B
· Company to report the fine-tuning dataset setting (e.g., size of dataset) and the improvement of performance
In this section, we evaluate the performance benefits of model finetuning according to this agreement. Link-level simulations are performed. We show that there is a significant performance gain of using finetuning, which is close to the performance of joint training. 
Finetuning for a jointly trained model
We describe our simulation setting as follows. A pair of two-sided AI/ML model is trained using a training dataset composed by the right singular vectors of the channel matrix of a CDL-C-300-10 channel. We then use a dataset composed by the right singular vectors of the channel matrix of a CDL-C-30-10 channel to do finetuning. The inference is performed by the dataset of same type of that of the finetuning dataset but is independently drawn from the finetuning dataset.
[bookmark: _Hlk131517985]When the size of finetuning dataset is 40K, the performance of finetuning is shown in Figure 7. The simulation parameters are summarized in Table 12 in Appendix A. According to Figure 7, a negligible performance degradation is observed in finetuning, compared to the performance of the jointly trained AI/ML model on CDL-C-30-10 channel.
[image: 图表, 折线图

描述已自动生成]
[bookmark: _Ref131533212]Figure 7: The performance of finetuning.
Finetuning for a separately trained model
Using high-resolution codebook quantization
We describe our simulation setting as follows. Two pairs of two-sided AI/ML models, namely AI/ML model pair A and AI/ML model pair B are trained based on the training dataset from the scenarios of CDL-C-30-10 and CDL-C-300-10 channels, respectively. The AI/ML-based CSI generation part of the AI/ML model pair A, namely Encoder A, is finetuned using a dataset  drawn from the CDL-C-300-10 channel, and the updated encoder is called Encoder A’. Then the performance of the pair of AI/ML model, which is composed by Encoder A’ and the AI/ML-based CSI reconstruction part of the AI/ML model pair B, namely Decoder B, is tested using a dataset  drawn independently from the CDL-C-300-10 channel.
We present the datasets used for finetuning () and inference (). The dataset for inference is composed by the right singular vectors of the channel matrices of CDL-C-300-10 channels. The dataset for finetuning is composed by the quantized version of the right singular vectors of the channel matrices of CDL-C-300-10 channels. Specifically, the approach of quantization is high resolution codebook quantization using Rel-16 type II-like method with new parameter values. In this paper, we choose two sets of new parameter values, which are presented in Table 7.
[bookmark: _Ref131533414]Table 7: The parameters of Rel-16 type II-like method for finetuning dataset construction.
	
	
	
	
	
	
	
	Reference Amplitude (bit)
	Difference Amplitude (bit)
	Phase (bit)
	Total Bit Number
	SCGS in CDL-C-300-10

	Parameter Set #1
	6
	7
	0.5
	0.5
	13
	1
	4
	4
	4
	449
	0.8387

	Parameter Set #2
	12
	13
	0.95
	0.5
	13
	1
	4
	4
	4
	1579
	0.9609



The simulation parameters are summarized in Table 12 in Appendix A. The size of the dataset for finetuning is 40K. The performance is measured by SGCS and is presented in Figure 8.
[image: 图表, 折线图

描述已自动生成]
[bookmark: _Ref131533296]Figure 8: The performance of finetuning from an AI/ML model trained in the scenario of CDL-C-30-10 channel, which is compared with that of the jointly trained two-sided AI/ML model and Rel-16 type II codebook for the scenario of CDL-C-300-10.
It is noticed from Figure 8 that the SGCS achieved by finetuning is very close to that of the jointly trained AI/ML model, which is much better than that of Rel-16 type II codebook. We have the following observations and proposal.
Observation-13: [bookmark: _Ref131771459] There is a huge penalty of the performance if the AI/ML-based CSI generation part and the AI/ML-based CSI reconstruction part are mismatched in the sense that they are trained using the datasets from different scenarios.
Observation-14: [bookmark: _Ref131771461] The performance of the finetuning is very similar to that of joint training in terms of the SGCS.
Observation-15: [bookmark: _Ref131771462]For finetuning, an excellent performance can be achieved by the dataset composed by the high-resolution codebook quantization, i.e., Rel-16 type II-like method with new parameter values, of the right singular vectors of the spatial-frequency-domain channel matrix.
Proposal-7: [bookmark: _Ref131771715] High-resolution codebook quantization of the right singular vectors of the spatial-frequency-domain channel matrix, e.g., Rel-16 type II-like method with new parameter values, can be used in the dataset construction for finetuning.
Comparison with finetuning using right singular vectors
In this subsection, we compare the finetuning performance obtained from using Rel-16 type II-like method and true right singular vectors of channel matrices. The result is shown in Figure 9. It is observed that the performance of finetuning using those two types of data is almost the same.
Observation-16: [bookmark: _Ref131771467]The performance of finetuning is almost the same from using right singular vectors of channel matrices and their high-resolution codebook quantization, e.g., Rel-16 type II-like method with new parameter values.
It is also noticed from Figure 9 that the performance varies for different amount of finetuning data used. Specifically, a better performance is obtained when a larger amount of data is used than a small amount of data used for finetuning. We further study this problem in the next subsection.
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[bookmark: _Ref131533507]Figure 9: Comparison of the performances of finetuning using Rel-16 type II-like method and right singular vectors of channel matrices.
We analyze the overhead reduction. As discussed above, 449 bits are consumed for each codebook vector with parameters in Table 7, which is approximately 56 bytes. However, according to the antenna configuration and the number of subband as summarized in Table 8, a total number of 3328 bytes is needed to represent a right singular vector in floating-point numbers. By using codebook-based dataset, only  overhead is consumed compared to the dataset of right singular vectors, but only with a minor performance degradation in terms of the SGCS. 
We have the following observation and proposal.
Observation-17: [bookmark: _Ref131771469] It is observed that there is a significant overhead reduction of transferring a codebook-based dataset than a dataset composed by channel vectors of floating-point numbers for separate training. So, it is worth to study codebook-based quantization method to achieve a low-overhead dataset transferring in separate training.
Proposal-8: [bookmark: _Ref131771716] In order to achieve a low-overhead dataset transferring in over-the-air-training/monitoring, the codebook-based quantization approach should be further studied.
SLS throughput
In RAN WG1 112-bis-e meeting, the following working assumption regarding CSI compression of 1-on-1 joint training has been made. In this section, we update the simulation results for CSI compression of 1-on-1 joint training with new feedback overheads.  

	Working Assumption
For the template of Table 1. Evaluation results for CSI compression of 1-on-1 joint training without model generalization/scalability, the CSI feedback overhead for the metric of eventual KPI (e.g., mean/5% UPT) is re-determined as:
· CSI feedback overhead A: <=β* 80 bits.
· CSI feedback overhead B: β* (100bits – 140 bits).
· CSI feedback overhead C: >=β* 230 bits.
· Note: β=1 for max rank = 1, andβ=1.5 for max rank = 2/3/4.
· FFS for rank 2/3/4, whether to add an additional CSI feedback overhead D: >=γ* 230 bits, γ= [1.9], and limit the range of CSI feedback overhead C as:β* 230 bits-γ* 230 bits.
· Note: companies additionally report the exact CSI feedback overhead they considered




This section provides the throughput evaluation based on the system level simulation (SLS). The simulation parameters are given in Table 13. For R16 eType-II codebook, we consider parameter configurations of {1,2,6} which corresponds to feedback payloads of {62, 91, 279} bits for rank 1 and {113, 169, 539} bits rank=2. For AI/ML based CSI feedback, a rank-common and layer-common AI/ML model is used to evaluate the performance. The feedback payloads of AI/ML models are {62, 90, 278} bits. For the calculation of CQI, the CSI reconstruction part of NW side is assumed to be available at the UE side.
Table 8 shows the UPT performance for eType-II codebook and AI/ML models for the maximum rank=2. For these simulation results, the traffic model of FTP is used, and the rank adaption is adopted for the maximum rank=2. We can observe that:
· For RU, the average UPT can be improved by 5.5%~9.5% and the 5% UPT can be improved by 3.77%~23.9% by using AI/ML based CSI compression.
· For RU, the average UPT can be improved by 10%~20.8% and the 5% UPT can be improved by 7.9%~25.8% by using AI/ML based CSI compression.
· For RU, the average UPT can be improved by 11.5%~20.2% and the 5% UPT can be improved by 12.4%~18.6% by using AI/ML based CSI compression.
[bookmark: _Ref134556462]Table 8: The UPT performance for eType-II codebook and AI/ML models for the maximum rank=2 with rank adaption and the traffic model of FTP. 
	RU
	%
	50%
	80%

	Config
	PC1/62
	PC2/90
	PC6/278
	PC1/62
	PC2/90
	PC6/278
	PC1/62
	PC2/90
	PC6/278

	Average UTP, eType-II
	1
	1.06
	1.218
	1
	1.089
	1.474
	1
	1.087
	1.45

	Average UTP, AI/ML
	1.088
（+8.8%）
	1.16
（+9.5%）
	1.285
(+5.5%)
	1.147
(+14.7%)
	1.316
(+20.8%)
	1.622
(+10%)
	1.158
(+15.8%)
	1.31
(+20.2%)
	1.62
(+11.5%)

	5%UPT, eType-II
	1
	1.138
	1.506
	1
	1.157
	1.895
	1
	1.112
	1.573

	5%UPT, AI/ML
	1.239
(+23.9%)
	1.284
(+12.8%)
	1.563
(+3.77%)
	1.258
(+25.8%)
	1.363
(+17.8%)
	2.044
(+7.9%)
	1.124
(+12.4%)
	1.319
(+18.6%)
	1.858
(+18.1%)



Observation-18: [bookmark: _Ref135045566]Comparing with eType-II codebook, the throughput can be improved by AI/ML based CSI feedback:
· For RU, the average UPT can be improved by 5.5%~9.5% and the 5% UPT can be improved by 3.77%~23.9% by using AI/ML based CSI compression.
· For RU, the average UPT can be improved by 10%~20.8% and the 5% UPT can be improved by 7.9%~25.8% by using AI/ML based CSI compression.
· For RU, the average UPT can be improved by 11.5%~20.2% and the 5% UPT can be improved by 12.4%~18.6% by using AI/ML based CSI compression.
Performance monitoring
In RAN WG1 112-bis-e meeting, the following agreement regarding intermediate KPI based performance monitoring has been made. In this section, we provide the simulation results for both UE-side and NW-side performance monitoring.  
	Agreement
To evaluate the performance of the intermediate KPI based monitoring mechanism for CSI compression, the model monitoring methodology is considered as:
· Step1: Generate test dataset including K test samples
· FFS how to obtain the K test samples
· Step2: For each of K test samples, a bias factor of monitored intermediate KPI () is calculated as a function of , where  is the actual intermediate KPI, and  is the genie-aided intermediate KPI.
· Step3: Calculate the statistical result of the  over K test samples which represents the monitoring accuracy performance.
· Note:  is introduced for the evaluation and comparison purpose; it may not be available in the real network.
· Note: the complexity, overhead and latency of the monitoring scheme are reported by companies. FFS how to evaluate latency.

Agreement
To evaluate the performance of the intermediate KPI based monitoring mechanism for CSI compression, for Step2 of the model monitoring methodology, the per sample  is considered for
· [bookmark: OLE_LINK3]Case 1: NW side monitoring of intermediate KPI, where the monitoring accuracy is evaluated for a given ground-truth CSI format (e.g., quantized ground-truth CSI with 8 bits scalar, R16 eType II-like method, etc.) or SRS measurements, where
·  is calculated with the output CSI at the NW side and the given ground-truth CSI format or SRS measurements.
·  is calculated with output CSI (as for ) and the ground-truth CSI of Float32.
· Note: if Float32 is used for , the monitoring accuracy is 100% if  and  are based on the same CSI sample. 
· Case 2: UE side monitoring of intermediate KPI with a proxy model, where the monitoring accuracy is evaluated for the output of the proxy model at UE:
· Case 2-1: the proxy model is a proxy CSI reconstruction part, and  is calculated based on the inference output of the proxy CSI reconstruction part at UE and the ground-truth CSI.
· Note: if the proxy CSI reconstruction model is the same as the actual CSI reconstruction model at the NW, the monitoring accuracy is 100%
· Case 2-2: the proxy model directly outputs intermediate KPI ()
·  is calculated with the output CSI at the NW side and the same ground-truth CSI.
· FFS how to train the proxy model and the resulting monitoring performance, to be reported by companies.
· FFS whether/how to evaluate the generalization performance of the proxy model.
· Case 3: others are not precluded
Agreement
To evaluate the performance of the intermediate KPI based monitoring mechanism for CSI compression,  is in forms of
· Option 1: Gap between  and , i.e. ; 
· Monitoring accuracy is the percentage of the samples for which , where  is a threshold of the intermediate KPI gap.
· Option 2: Binary state where  and  have different relationships to their threshold(s), i.e., , where  can be same or different from 
· Monitoring accuracy is the percentage of the samples for which .
· FFS other metrics: Misdetection, False alarm, etc.
· FFS the values of , , .
· FFS whether/how to evaluate the monitoring metrics for Rank>1




For CSI compression, the intermediate KPIs based performance monitoring considers the SGCS or the NMSE between the reconstructed CSI and the target CSI. This performance monitoring can be further divided into monitoring at the NW side and monitoring at the UE side. For intermediate KPIs based performance monitoring at the NW side, UE needs to report the target CSI to the NW side which can be realized by high resolution codebook quantization using Rel-16 type II-like method with new parameter values. For intermediate KPIs based performance monitoring at the UE side, the CSI reconstruction part or the reconstructed CSI should be available at the UE side. 
UE-side monitoring
In this section, we evaluate the feasibility of intermediate KPIs based model monitoring at the UE side with a proxy CSI reconstruction part at the UE side. Two training types are considered as follows:
· Joint training: three AI/ML models of the CSI generation part, the CSI reconstruction part and the proxy CSI reconstruction part are jointly trained.
· Separate training (training Type 3): The CSI generation part and the CSI reconstruction part are firstly trained and then the proxy CSI reconstruction part is separately trained with separate training data.
We consider the case of the same model structure (Transformer) but smaller model size (about 1/40 comparing with CSI reconstruction part) for the proxy CSI reconstruction part and the case of the different model structure (CNN) for the proxy CSI reconstruction part. Figure 10 shows the SGCS performance of the proxy CSI reconstruction part for joint training for the above two cases. It can be observed that:
· For joint training, the SGCS of the proxy decoder output and the target CSI is like that of the output of the CSI reconstruction part and the target CSI, whether the structures of the proxy decoder and the CSI reconstruction part are the same.
Figure 11 provides the SGCS performance of the proxy CSI reconstruction part for separate training for the above two cases. It can be observed that:
· For separate training, the performance (SGCS) of the proxy CSI reconstruction part is like that of the CSI reconstruction part when the backbone of AI/ML models is similar; But the SGCS drift can be observed when the backbone is different.
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描述已自动生成]Figure 10: The SGCS performance of proxy decoder with different model sizes (left) and structures (right) for joint training.
[bookmark: _Ref131540203]Figure 11: The SGCS performance of proxy decoder with different model size and model structure for separate training (training Type 3).
Based on these simulation results, we have the following observations and the proposal.
Observation-19: [bookmark: _Ref131771472]For joint training, the SGCS of the proxy decoder output and the target CSI is like that of the output of the CSI reconstruction part and the target CSI, whether the structures of the proxy decoder and the CSI reconstruction part are the same.
Observation-20: [bookmark: _Ref131771473]For separate training, the performance (SGCS) of the proxy decoder is like that of the CSI reconstruction part when the backbone of AI/ML models is similar; But the SGCS drift can be observed when the backbone is different.
Proposal-9: [bookmark: _Ref131771720][bookmark: _Ref135045929]For the UE-side AI/ML monitoring in AI/ML-based CSI feedback using two-side model, study the performance of using UE-side proxy CSI reconstruction part for multi-vendor cases.
To evaluate the monitoring accuracy, we consider AI/ML based CSI compression with 80/120/180/240-bit feedback payloads. For each AI/ML model, the proxy CSI reconstruction part is jointly trained with the CSI generation part and the CSI reconstruction part. The proxy CSI reconstruction part has the same structure, but 1/40 model size compared to the CSI reconstruction part at the NW side. Figure 10 provides the monitoring accuracy of proxy CSI reconstruction part under various thresholds. It can be observed that:
· For 90% monitoring accuracy, the monitoring error (threshold) can be less than 0.07 by using a proxy CSI reconstruction part with 1/40 model size.
· The monitoring performance of proxy CSI reconstruction part is improved with the increasing feedback payloads of AI/ML based CSI compression.
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Figure 12: the monitoring accuracy of proxy decoder at the UE side under various thresholds and feedback payloads.
Observation-21: [bookmark: _Ref135045694]For joint training, the monitoring error (threshold) can be less than 0.07 under 90% monitoring accuracy by using a proxy decoder with 1/40 model size; The monitoring performance of proxy CSI reconstruction is improved with the increasing feedback payloads of AI/ML based CSI compression.

NW-side monitoring
For intermediate KPIs based performance monitoring at the NW side, UE needs to report the target/ground-truth CSI to the NW side which can be realized by high resolution codebook quantization using Rel-16 type II-like method with new parameter values. To evaluate NW-side monitoring, we consider the parameter configurations of Rel-16 type II-like codebook in Table 9. For AI/ML based CSI compression, we consider the AI/ML models with 80/120/180/240-bit feedback payloads. Figure 13 provides the monitoring accuracy of Rel-16 type II-like method under various thresholds and feedback payloads. It can be observed that:
· For 90% monitoring accuracy, the monitoring error (threshold) can be less than 0.07/0.04/0.03/0.025 by using the Rel-16 type II-like codebook of PC#1/ PC#2/ PC#3/ PC#4, respectively.
· The AI/ML model with a larger feedback payload for CSI compression needs a higher resolution codebook to achieve the good monitoring performance.
[bookmark: _Ref135042782]Table 9:  The parameters of Rel-16 type II-like method for NW-side performance monitoring.
	Parameter configuration
	L
	Mv
	Pv
	beta
	N3
	R
	Reference Amplitude(bit)
	Difference Amplitude(bit)
	Phase(bit)
	Total Bit

	PC#1
	6
	7
	0.5
	0.5
	13
	1
	4
	4
	4
	449

	PC#2
	10
	7
	0.5
	0.5
	13
	1
	4
	4
	4
	730

	PC#3
	10
	8
	0.6
	0.5
	13
	1
	4
	4
	4
	830

	PC#4
	12
	13
	0.95
	0.5
	13
	1
	4
	4
	4
	1579
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PC#3                                                                                                                PC#4
[bookmark: _Ref135042490]Figure 13: the monitoring accuracy of Rel-16 type II-like method under various thresholds and feedback payloads.
Observation-22: [bookmark: _Ref135045723]For NW-side monitoring with the ground-truth CSI quantized by Rel-16 type II-like method, the monitoring error (threshold) can be less than 0.07/0.04/0.03/0.025 under 90% monitoring accuracy by using the Rel-16 type II-like codebook of PC#1/ PC#2/ PC#3/ PC#4, respectively; The AI/ML model with a larger feedback payload for CSI compression needs a higher resolution codebook to achieve the good monitoring performance.
Evaluation results for CSI prediction
Performance comparison with benchmark
In RAN WG1 112bis-e, the following agreement for CSI prediction have been made. In this section, we provide our views and evaluation results for raw channel-based CSI prediction.
	Agreement
For the AI/ML based CSI prediction, for the submission of simulation results to the RAN1#113 meeting, 
· for Table 6. Evaluation results for CSI prediction without model generalization/scalability, companies are encouraged to take the following assumptions as baseline for the calibration purpose:
· UE speed: 10km/h, 30km/h, 60km/h;
· Others can be additionally submitted, e.g., 120km/h.
· Input/Output type: Raw channel matrix
· Other can be additionally submitted, e.g., eigenvectors.
· Observation window: 5/5ms, 10/5ms
· Other observation window configurations can be additionally submitted for comparison, e.g., 3/5ms, 4/5ms, 8/2.5ms, 10/4ms, etc.
· Prediction window: 1/5ms/5ms
· Other prediction window configurations can be additionally submitted for comparison, e.g., 3/5ms/5ms, 5/5ms/5ms, 4/2.5ms/2.5ms, 5/4ms/4ms, etc.
· Performance metric for intermediate KPI: SGCS
· NMSE can be additionally submitted.
· Spatial consistency configuration (optional): procedure A with 50m decorrelation distance and channel updating periodicity of 1 ms.
· for Table 7. Evaluation results for CSI prediction with model generalization, companies are encouraged to take the following assumption as baseline for the calibration purpose:
· Performance metric for intermediate KPI: SGCS
· NMSE can be additionally submitted.




The raw channel matrix-based prediction is considered in this contribution where five historical raw channel matrices are used to predict a future raw channel matrix.  The gain of the AI/ML based raw channel matrix prediction compared to the sample-and-hold method is evaluated by system level simulations. The UE speeds are considered as 10, 30, 60 km/h for 100% outdoor. The sampling interval of raw channel matrix (H1, H2, H3, …, H5) is 5ms, the slot numbers of AI/ML model input and output are 5 and 1, respectively. 
The evaluation result is provided in Table 10 where the AI/ML model is Appendix B. For the calculation of intermediate KPI, we calculate the SGCS between the eigenvectors associated with predicted and target raw channel matrix. It can be seen that:
· AI/ML based raw channel matrix prediction outperforms the sample-and-hold method for temporal domain.
· For AI/ML based raw channel matrix predictions, the performance gain is increased first and then decreased as the UE speed increases, compared to the sample-and-hold method.
[bookmark: _Ref134995518]Table 10: The SGCS performance of AI/ML based CSI prediction.
	UE speed
	Sample-and-hold
	AI/ML

	
	Layer 1
	Layer 2
	Layer1
	Layer 2

	10 km/h
	0.9483 
	0.9337 
	0.9730 (2.6+%)
	0.9716(+4%)

	30 km/h
	0.7366
	0.6892
	0.9434(+28%)
	0.9301(+35%)

	60 km/h
	0.6482
	0.6001
	0.6798(+5%)
	0.6261(+4%)



Observation-18: AI/ML-based CSI prediction outperforms the sample-and-hold method for temporal domain.
Observation-19: For AI/ML-based CSI predictions, the performance gain is increased first and then decreased as the UE speed increases, compared to the sample-and-hold method.
Generalization for UE speeds
In RAN WG1 112 meeting, the following agreement for CSI prediction have been made. In this section, we provide evaluation results for the generalization of AI/ML based CSI prediction over various UE speeds.
	Agreement
The CSI prediction-specific generalization scenario of various UE speeds (e.g., 10km/h, 30km/h, 60km/h, 120km/h, etc.) is added to the list of scenarios for performing the generalization verification.
· FFS various frequency PRBs (e.g., trained based on one set of PRBs, inference on the same/different set of PRBs)


To evaluate the generalization of AI/ML models, we consider the following cases:
· Case 1: The AI/ML model for CSI prediction are trained by the dataset with UE speed X and evaluated by the dataset with UE speed X.
· Case 2: The AI/ML model for CSI prediction is trained by the dataset with UE speed X and evaluated by the dataset with UE speed Y(X).
· Case 3: The AI/ML model for CSI prediction is trained by the mixed dataset with UE speed X1, X2, X3 and respectively evaluated by the dataset with UE speed X1, or X2, or X3.
The system level simulation is used by the above three cases. The sampling interval of eigenvectors (v1, v2, v3, …) is also 5ms, the slot numbers of AI/ML model input and output are 5 and 1, respectively. Table 11 shows the generalization evaluation of AI/ML based CSI predictions over 10, 30, 60 km/h UE speeds. It can be observed that:
· For AI/ML based CSI prediction, the performance degradation can be observed when the AI/ML model trained by the dataset with UE speed X is tested on the dataset with UE speed Y ().
· For AI/ML based CSI prediction, the AI/ML model trained by the mixed dataset has good generalization for various UE speeds.
Observation-23: [bookmark: _Ref131771479]For AI/ML based CSI prediction, the performance degradation can be observed when the AI/ML model trained by the dataset with UE speed X is tested on the dataset with UE speed Y ().
Observation-24: [bookmark: _Ref131771480]For AI/ML based CSI prediction, the AI/ML model trained by the mixed dataset has good generalization for various UE speeds.
[bookmark: _Ref131535898]Table 11: The generalization evaluation of AI/ML based CSI predictions for various UE speeds and 2 layers.
	                 Test set
Training set
	10km/h
	30km/h
	60km/h

	10km/h
	0.9723
	0.7432
	0.5549

	30km/h
	0.9733
	0.9368
	0.5025

	60km/h
	0.8751
	0.6993
	0.6529

	10&30&60km/h
	0.9532
	0.8449 
	0.6011



Conclusions
Observation-1:For scalar uniform quantization, the performance of quantization aware training is better than that of quantization non-aware training, and the performance loss of quantization non-aware training is reduced with the increasing quantization bits and feedback payloads.
Observation-2:For a fixed number of payload size, the number of floating-point outputs of the neural network followed by a low-resolution quantizer is larger than that followed by a high-resolution quantizer. This is helpful in increasing the SGCS performance if quantization aware training is used.
Observation-3:Under the method of quantization aware training, compared with the fixed scalar uniform quantization method (Case 2-1), better performance is achieved in an updated quantization approach (Case 2-2), where the vector quantization is updated together with the AI/ML models during the training phase.
Observation-4:The significant SGCS performance loss can be observed for separate training (training Type 3) when the quantization and the dequantization are mismatched.
Observation-5:For training Type 2, the significant SGCS loss can be observed for two UE part models and one NW part model, and the backbone is different, comparing with the joint training.
Observation-6:There is negligible performance difference between two quantization behaviors for both NW-first and UE-first separate training.
Observation-7:For the Case 1 of training Type 3, only a negligible SGCS degradation (0.0001~0.0011) is observed compared to joint training.
Observation-8:For the Case 1 of Type 3 training, by varying the backbones of AI/ML models and fixing other conditions, it is observed that the performance of transformer models is superior to that of a convolutional neural network (CNN).
Observation-9:For the Case 2 of Type 3 training, where the training at UE side is performed at first, the SGCS degradation is 0.11~0.03 compared to that of Case 1 of Type 3 training if the backbone of the AI/ML model is transformer.
Observation-10:For the Case 3 of Type 3 training, where the training at NW side is performed at first, the SGCS degradation is negligibly 0.003~0.006 compared to that of Case 1 of Type 3 training if the backbone of the AI/ML model is transformer.
Observation-11:For generalization/scalability of AI/ML model over the different number of sub-bands, the zero-padding method can achieve good performances in terms of the SGCS when the AI/ML model is trained with mixed data.
Observation-12:For generalization/scalability of AI/ML model over the different number of antenna ports, the zero-padding method can achieve good performances in terms of the SGCS when the AI/ML model is trained with mixed data.
Observation-13:There is a huge penalty of the performance if the AI/ML-based CSI generation part and the AI/ML-based CSI reconstruction part are mismatched in the sense that they are trained using the datasets from different scenarios.
Observation-14:The performance of the finetuning is very similar to that of joint training in terms of the SGCS.
Observation-15:For finetuning, an excellent performance can be achieved by the dataset composed by the high-resolution codebook quantization, i.e., Rel-16 type II-like method with new parameter values, of the right singular vectors of the spatial-frequency-domain channel matrix.
Observation-16:The performance of finetuning is almost the same from using right singular vectors of channel matrices and their high-resolution codebook quantization, e.g., Rel-16 type II-like method with new parameter values.
Observation-17:It is observed that there is a significant overhead reduction of transferring a codebook-based dataset than a dataset composed by channel vectors of floating-point numbers for separate training. So, it is worth to study codebook-based quantization method to achieve a low-overhead dataset transferring in separate training.
Observation-18:Comparing with eType-II codebook, the throughput can be improved by AI/ML based CSI feedback: 
· For RU, the average UPT can be improved by 5.5%~9.5% and the 5% UPT can be improved by 3.77%~23.9% by using AI/ML based CSI compression.
· For RU, the average UPT can be improved by 10%~20.8% and the 5% UPT can be improved by 7.9%~25.8% by using AI/ML based CSI compression.
· For RU, the average UPT can be improved by 11.5%~20.2% and the 5% UPT can be improved by 12.4%~18.6% by using AI/ML based CSI compression.
Observation-19:For joint training, the SGCS of the proxy decoder output and the target CSI is like that of the output of the CSI reconstruction part and the target CSI, whether the structures of the proxy decoder and the CSI reconstruction part are the same.
Observation-20:For separate training, the performance (SGCS) of the proxy decoder is like that of the CSI reconstruction part when the backbone of AI/ML models is similar; But the SGCS drift can be observed when the backbone is different.
Observation-21:For joint training, the monitoring error (threshold) can be less than 0.07 under 90% monitoring accuracy by using a proxy decoder with 1/40 model size; The monitoring performance of proxy CSI reconstruction is improved with the increasing feedback payloads of AI/ML based CSI compression.
Observation-22:For NW-side monitoring with the ground-truth CSI quantized by Rel-16 type II-like method, the monitoring error (threshold) can be less than 0.07/0.04/0.03/0.025 under 90% monitoring accuracy by using the Rel-16 type II-like codebook of PC#1/ PC#2/ PC#3/ PC#4, respectively; The AI/ML model with a larger feedback payload for CSI compression needs a higher resolution codebook to achieve the good monitoring performance.
Observation-23:For AI/ML based CSI prediction, the performance degradation can be observed when the AI/ML model trained by the dataset with UE speed X is tested on the dataset with UE speed Y ≠𝐗).
Observation-24:For AI/ML based CSI prediction, the AI/ML model trained by the mixed dataset has good generalization for various UE speeds.
Proposal-1:Quantization aware training is considered as the priority training strategy for the evaluation of AI/ML based CSI compression feedback.
Proposal-2:In quantization aware training, it is suggested that we increase the number of floating-point outputs for a fixed number of output bit numbers.
Proposal-3:For the evaluation of the quantization aware training, study and compare the throughput achieved by the approaches that the quantizers are updated (Case 2-2) or not (Case 2-1) during the training phase. This provides evidence for studying which of the two should be considered as the priority method.
Proposal-4:Evaluate the performance of separate training (training Type 3) for the case that the quantization and the dequantization are mismatched.
Proposal-5:For the evaluation of the Type 3 training, evaluate the effect of the choice of backbone of AI/ML model on the performance of Type 3 training.
Proposal-6:For the evaluation of the Type 3 training, evaluate the effect of the choice of quantizer on the performance of Type 3 training, from the perspectives of
· Training method: quantization aware training or quantization non-aware training.
· Quantization method: scalar quantization or vector quantization
Proposal-7:High-resolution codebook quantization of the right singular vectors of the spatial-frequency-domain channel matrix, e.g., Rel-16 type II-like method with new parameter values, can be used in the dataset construction for finetuning.
Proposal-8:In order to achieve a low-overhead dataset transferring in over-the-air-training/monitoring, the codebook-based quantization approach should be further studied.
Proposal-9: For the UE-side AI/ML monitoring in AI/ML-based CSI feedback using two-side model, study the performance of using UE-side proxy CSI reconstruction part for multi-vendor cases.
Appendix A. Simulation parameters and AI/ML models
The parameters for link-level simulation used in this paper are summarized in Table 12.
[bookmark: _Ref131525502]Table 12: Simulation parameters for LLS.
	Parameter
	Value


	Duplex, Waveform
	FDD, OFDM

	BS Antenna Element Number (
	32 ports: (8,8,2,1,1,2,8), (dH,dV) = (0.5, 0.8)λ

	UE Antenna Element Number ()
	4Rx: (1,2,2,1,1,1,2), (dH,dV) = (0.5, 0.5)λ

	Channel Estimation
	Realistic Channel Estimation

	Channel Model
	CDL-C

	Bandwidth
	10 MHz

	RB Number
	52

	Sub-Band Number
	13

	Carrier Frequency
	2 GHz

	Sub-Carrier Spacing
	15 kHz

	Delay Spread
	30/300 ns

	Doppler shift
	100/200/400 Hz



The parameters for link-level simulation used in this paper are summarized in Table 13.
[bookmark: _Ref131525531]Table 13: Simulation parameters for SLS.
	Parameter
	Value

	Duplex, Waveform
	FDD, OFDM

	Multiple access
	OFDMA

	Scenario
	UMa

	Frequency Range
	2GHz

	[bookmark: _Hlk130373213]Inter-BS distance
	200m

	Channel model        
	According to TR 38.901

	Antenna setup and port layouts at gNB
	32 ports: (8,8,2,1,1,2,8), (dH,dV) = (0.5, 0.8)λ

	Antenna setup and port layouts at UE
	2RX: (1,1,2,1,1,1,1), (dH,dV) = (0.5, 0.5)λ for (rank 1,2)

	BS Tx power
	41 dBm

	BS antenna height
	25m

	UE antenna height & gain
	Follow TR36.873

	UE receiver noise figure
	9dB

	Numerology
	Slot/non-slot
	14 OFDM symbol slot

	
	SCS
	15kHz

	Simulation bandwidth
	10MHz

	Frame structure
	Slot Format 0 (all downlink) for all slots

	CSI feedback
	· CSI feedback periodicity:  5 ms,
· Scheduling delay:  4 ms
· 52 PRBs, 13 sub-bands

	Traffic model
	- Full Buffer
-FTP 

	UE distribution
	For CSI compression:
- 80% indoor (3km/h), 20% outdoor (30km/h)
For CSI prediction:
- 100% outdoor (10/30/60km/h)



Appendix B. [bookmark: _Ref135050796]The details of AI/ML models
In this appendix, we present the details of AI/ML model used in both CSI compression and CSI prediction.
[image: ]The structure of the two-sided AI/ML model is depicted in Figure 14. The number of parameters in the AI/ML model is 10.86M, and the computational complexity is 137.96M FLOPS. 
[bookmark: _Ref131525661]Figure 14: The two-sided AI/ML model used in the simulations.
The structure of the AI/ML model used for CSI prediction is depicted in Figure 15. The number of parameters in the AI/ML model is 2.46M, and the computational complexity is 541.3M FLOPS. 
[image: 图示

描述已自动生成]
[bookmark: _Ref131527388]Figure 15: The AI/ML model used for eigenvector-based CSI prediction.
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