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[bookmark: _Ref521334010]Introduction
In RAN#94-e meeting, AI/ML for NR air-interface was agreed and several objectives were approved in the SID [1]. In previous meetings, evaluation methodology for AI/ML based CSI feedback enhancement was widely discussed, and multiple templates for simulation results collection for AI/ML-based CSI compression were provided [2]-[7]. 
In this contribution, our evaluation results for spatial-frequency domain CSI compression using two-sided AI/ML model and CSI prediction are provided.
Simulation results
CSI compression in spatial-frequency domain
In this section, our simulation results on spatial-frequency domain CSI compression using two-sided AI/ML models are provided, with the simulation assumptions shown in Table 9 in Annex. Unless explicitly stated (e.g. for Section 2.1.4), the simulations assume that AI/ML model for CSI compression are jointly trained and the encoder and decoder are deployed in UE side and network side respectively.
AI/ML model description
In RAN1 #111 meeting, the following agreements were achieved on generalization/scalability over various configurations for CSI compression [5]:
	Agreement
For evaluating the generalization/scalability over various configurations for CSI compression, to achieve the scalability over different input dimensions of CSI generation part (e.g., different bandwidths/frequency granularities, or different antenna ports), the generalization cases of are elaborated as follows
· Case 1: The AI/ML model is trained based on training dataset from a fixed dimension X1 (e.g., a fixed bandwidth/frequency granularity, and/or number of antenna ports), and then the AI/ML model performs inference/test on a dataset from the same dimension X1.
· Case 2: The AI/ML model is trained based on training dataset from a single dimension X1, and then the AI/ML model performs inference/test on a dataset from a different dimension X2.
· Case 3: The AI/ML model is trained based on training dataset by mixing datasets subject to multiple dimensions of X1, X2,..., Xn, and then the AI/ML model performs inference/test on a single dataset subject to the dimension of X1, or X2,…, or Xn.
· Note: For Case 2/3, the solutions to achieve the scalability between Xi and Xj, are reported by companies, including, e.g., pre-processing to angle-delay domain, padding, additional adaptation layer in AI/ML model, etc.
· FFS the verification of fine-tuning
· FFS other additional cases
Agreement
For evaluating the generalization/scalability over various configurations for CSI compression, to achieve the scalability over different output dimensions of CSI generation part (e.g., different generated CSI feedback dimensions), the generalization cases of are elaborated as follows
· Case 1: The AI/ML model is trained based on training dataset from a fixed output dimension Y1 (e.g., a fixed CSI feedback dimension), and then the AI/ML model performs inference/test on a dataset from the same output dimension Y1.
· Case 2: The AI/ML model is trained based on training dataset from a single output dimension Y1, and then the AI/ML model performs inference/test on a dataset from a different output dimension Y2.
· Case 3: The AI/ML model is trained based on training dataset by mixing datasets subject to multiple dimensions of Y1, Y2,..., Yn, and then the AI/ML model performs inference/test on a single dataset of Y1, or Y2,…, or Yn.
· Note: For Case 1/2/3, companies to report whether the output of the CSI generation part is before quantization or after quantization.
· Note: For Case 2/3, the solutions to achieve the scalability between Yi and Yj, are reported by companies, including, e.g., truncation, additional adaptation layer in AI/ML model, etc.
· FFS the verification of fine-tuning
· FFS other additional cases
Agreement
For evaluating the generalization/scalability over various configurations for CSI compression, to achieve the scalability over different input/output dimensions, companies to report which case(s) in the following are evaluated
· Case 0 (benchmark for comparison): One CSI generation part with fixed input and output dimensions to 1 CSI reconstruction part with fixed input and output dimensions for each of the different input and/or output dimensions.
· Case 1: One CSI generation part with scalable input and/or output dimensions to N>1 separate CSI reconstruction parts each with fixed and different output and/or input dimensions
· Case 2: M>1 separate CSI generation parts each with fixed and different input and/or output dimensions to one CSI reconstruction part with scalable output and/or input dimensions
· Case 3: A pair of CSI generation part with scalable input/output dimensions and CSI reconstruction part with scalable output and/or input dimensions


In this section, we provide a solution of Case 3 that can achieve the scalability over different input/output dimensions, based on adaptive layers. The solution can be used for various configurations, e.g., various sizes of CSI feedback payloads, various antenna port layouts, various bandwidths, etc. 
Figure 1 illustrates the basic structure of the solution when it is used for CSI feedback payload scalability. For the ease of discussion, we call the model as payload-scalable AI/ML model. For the model, transformer based AI/ML model (two transformer encode blocks) is used in both encoder part (EN block) and decoder part (DE block), and fully-connected layers are used for adaptation layers (i.e. down-sampling (DS-x block) and up-sampling (US-x block)). A pair of DS-x block and US-x block corresponds to a payload configuration while EN block and DE block are shared among all payload configurations. The AI/ML model is trained based on training dataset by mixing datasets subject to various sizes of payloads, i.e., it is Case 3 in the above agreement in RAN1 #111 meeting for achieving the scalability over different output dimensions of CSI generation part. In the simulation, quantization aware training is adopted, with a 2-bit uniform quantization codebook applied during the training phase, and the same quantization codebook is applied for the inference phase, i.e., the quantization method is Case 2-1 in the agreement achieved in RAN1 #111 meeting on quantization method. At the training phase, multi-task learning scheme is used and the loss function is the average SGCS over all payload configurations. At the inference phase, for a given layer, only one branch is activated according to the configured payload. The input data  is eigenvector base on SVD of channel matrix.


[bookmark: _Ref127524998]Figure 1: Basic structure of payload-scalable AI/ML model
To support variable ports, payload-scalable AI/ML model can be further extended with the above idea as shown in Figure 2 (named as SCsiNet). Fully connected layers are used for linear pre-transforming (LPT-x block) and linear transforming (LT-x block) for the purpose of unifying input/output dimensions and probability distribution of eigenvectors from different port numbers. Similar to payload-scalable AI/ML model, EN block and DE block are shared among all payload and port configurations. The input of SCsiNet is eigenvector from all layers, i.e. ignoring layer index. Note that the proposed SCsiNet can be also extended for other aspects such as bandwidth etc.


[bookmark: _Ref127525009]Figure 2: Basic structure of SCsiNet, scalable in payloads and ports
[bookmark: _Ref115387127]The SCsiNet can be viewed as a family of AI/ML models with shared core blocks, or an AI/ML model with scalability fulfilled by multiple additional adaptive layers. 
The training parameters of SCsiNet are given in Table 1. The AI/ML model is trained based on training dataset by mixing datasets subject to various numbers of antenna ports and various sizes of payloads. The FLOPs and size of AI/ML model for each payload and port configuration are provided in Table 2. 
For each AI/ML model, the AI/ML model is trained for a specific payload and port with mixed eigenvectors from all 4 layers. In our simulations, ideal eigenvectors are used at the training phase for both encoder input and ground truth/label. At the inference phase, realistic eigenvectors are used for encoder inputs and SGCS is calculated with reconstructed eigenvectors and ideal eigenvectors. 
[bookmark: _Ref127525044]Table 1: Parameters for AI/ML model training for CSI compression
	Parameter
	Value

	Size of training and validation dataset
	

	Size of test dataset
	

	Epoch
	200~300

	Batch size
	1024

	Learning rate
	

	Optimizer
	Adam

	Loss function
	SGCS

	Input/output format
	Eigenvector

	Quantization
	Uniform, 2 bits


[bookmark: _Ref131632344]Table 2: FLOPs and size of SCsiNet
	Payload size(bits)
	20
	40
	60
	80
	100
	120
	140
	160

	FLOPs of encoder (M)
	16ports
	9.8
	9.84
	9.87
	9.9
	9.93
	9.96
	9.96
	10.02

	
	32ports
	9.9
	9.93
	9.97
	10
	10
	10.06
	10.06
	10.12

	FLOPs of decoder (M)
	16ports
	9.8
	9.84
	9.87
	9.9
	9.93
	9.96
	9.96
	10.02

	
	32ports
	9.9
	9.93
	9.96
	10
	10.03
	10.06
	10.06
	10.12

	Payload (bits)
	180
	200
	220
	240
	260
	280
	300
	320

	FLOPs of encoder (M)
	16ports
	10.1
	10.08
	10.11
	10.14
	10.17
	10.21
	10.24
	10.27

	
	32ports
	10.15
	10.18
	10.21
	10.24
	10.27
	10.3
	10.34
	10.37

	FLOPs of decoder (M)
	16ports
	10.05
	10.08
	10.11
	10.14
	10.17
	10.2
	10.24
	10.27

	
	32ports
	10.15
	10.18
	10.21
	10.24
	10.27
	10.3
	10.33
	10.36

	#Total parameters of Encoder (M)
	2.51

	#Total parameters of Decoder (M)
	2.52


Evaluation results for scalability over payloads and ports
Figure 3 provides simulation results for SCsiNet in terms of intermediate KPI (SGCS). The scalable SCsiNet provides results from payload = 20, 40 … 320 bits, for both 16 ports and 32 ports.  
[image: ]
[bookmark: _Ref127525058] Figure 3: Intermediate KPI (SGCS) of SCsiNet
It can be seen from this simulation results that compared with a family of layer-common AI/ML models, SCsiNet can achieve a similar performance for all layers. Note that the total number of layer-common AI/ML models should be  to support 20/40/…320-bit payloads and 16/32 ports. This means that the size of SCsiNet is approximately 1/32 as that of the family of layer-common AI/ML models, since all branches of SCsiNet use common transformer blocks (i.e. EN, DE), and the size of transformer blocks is usually much bigger than other blocks (i.e. DS-x, US-x, LT-x, LPT-x) of the AI/ML model.
Observation 1: Compared with a family of layer-common AI/ML models, the scalable AI/ML model (SCsiNet) can achieve a similar performance and can significantly reduce storage memory and model transferring overhead. 
Evaluation results for different ranks
In RAN1 #112 meeting, the following agreement was achieved on AI/ML settings to adapt to ranks/layers for CSI feedback with rank > 1:
	Agreement
For the evaluation of the AI/ML based CSI compression sub use cases with rank >=1, companies to report the specific option adopted for AI/ML model settings to adapt to ranks/layers.
· Option 1-1 (rank specific): Separated AI/ML models are trained per rank value and applied for corresponding ranks to perform individual inference, any specific model operates on multi-layers jointly.
· FFS on the reported complexity and storage
· FFS: input/output type
· Option 1-2 (rank common): A unified AI/ML model is trained and applied for adaptive ranks to perform inference, the model operates on multi-layers jointly. 
· FFS: input/output type
· Option 2 (layer specific): Separated AI/ML models are trained per layer value and applied for corresponding layers to perform individual inference.
· FFS on the reported complexity and storage
· Note: input/output type is Precoding matrix
· Companies to report the setting is 
· Option 2-1: layer specific and rank common (different models applied for different layers; for a specific layer, the same model is applied for all rank values), or 
· Option 2-2: layer specific and rank specific (different models applied for different layers; for a specific layer, different models are applied for different rank values)
· Option 3 (layer common): A unified AI/ML model is trained and applied for each layer to perform individual inference.
· FFS on the reported complexity and storage
· Note: input/output type is Precoding matrix
· Companies to report whether the setting is 
· Option 3-1: layer common and rank common (A unified AI/ML model is applied for each layer under any rank value to perform individual inference), or 
· Option 3-2: layer common and rank specific (different models applied for different rank values; for a specific rank, the same model is applied for all layers)
· Other options not precluded.


Different options have different impacts on training complexity and storage size of the AI/ML model. For example, if layer common and rank common model is adopted at the inference phase, since the same AI/ML model is used for all layers and all ranks, the overhead of CSI feedback is proportional to the number of layers. In real deployment, the gain of increasing overhead for high ranks would be much lower than that for low ranks, and the probability of scheduling UEs with high ranks would be lower than that for low ranks. Therefore allocating more bits for high ranks than low ranks is not a good idea. For DL Type II codebook based CSI feedback in NR systems, the overheads of PMI feedback for rank 3, 4 are comparable to that for rank 2. For AI/ML based CSI feedback, the overhead of PMI feedback for rank 3, 4 are also not expected to be much larger than rank 2. Therefore layer specific AI/ML model should be considered.
Figure 4, Figure 5, Figure 6 and Figure 7 provide simulation results of 16 ports and 32 ports respectively for rank 1, rank 2, rank 3 and rank 4 based on the SCsiNet proposed in section 0. In the simulation, six CSI feedback payload configurations are considered for 16 ports and 32 ports. The bit distributions among 4 layers are shown in Table 3. The payload of rank 1 is about half of the payload of rank 2/3/4. In the simulation, rank-adaptive scheduling is considered. It can be seen from the simulation results that compared to Rel-16 Type II codebook based CSI feedback, obvious performance gain can be achieved by CSI feedback with the proposed scalable AI/ML model for all ranks:
· Under the same CSI feedback payload, SGCS can be improved by 0.02~0.1 for rank 1, 0.03~0.17 for rank 2, 0.03~0.22 for rank 3 and 0.03~0.18 for rank 4;
· Under the same SGCS, payload can be saved by 40%~60% for rank 1, 50%~60% for rank 2, 30%~60% for rank 3 and 50%~60% for rank 4.
Observation 2: Compared to Rel-16 Type II codebook based CSI feedback, obvious performance gain can be achieved by CSI feedback with proposed scalable AI/ML model for rank=1, 2, 3, 4:
· SGCS can be improved by 0.02~0.22 under the same CSI feedback payload;
· Payload can be saved by 30%~60% bits under the same SGCS.
[bookmark: _Ref118741180]Table 3: Payload distribution among 4 layers
	Payload size(bits)
	Rank1
	Rank2
	Rank3
	Rank4

	
	Layer1
	Layer1
	Layer2
	Total
	Layer1
	Layer2
	Layer3
	Total
	Layer1
	Layer2
	Layer3
	Layer4
	Total

	Config1
	40
	60
	20
	80
	40
	20
	20
	80
	40
	20
	20
	20
	100

	Config2
	60
	80
	40
	120
	60
	40
	20
	120
	60
	20
	20
	40
	140

	Config3
	80
	100
	60
	160
	80
	40
	40
	160
	80
	40
	20
	40
	180

	Config4
	120
	160
	80
	240
	100
	80
	60
	240
	120
	60
	40
	40
	260

	Config5
	160
	220
	100
	320
	160
	120
	80
	360
	160
	100
	60
	60
	380

	Config6
	240
	320
	140
	460
	180
	140
	120
	440
	180
	140
	80
	60
	460
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[bookmark: _Ref127039529]Figure 4: Intermediate results of SCsiNet for rank=1
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[bookmark: _Ref127039539]Figure 5: Intermediate results of SCsiNet for rank=2
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[bookmark: _Ref127039548]Figure 6: Intermediate results of SCsiNet for rank=3
[image: ]
[bookmark: _Ref127039594] Figure 7: Intermediate results of SCsiNet for rank=4
Based on the proposed SCsiNet, the SLS evaluation results for 16 ports and 32 ports are provided in Figure 8. Rank adaption and FTP model-1 are applied in the simulation. The payload is calculated based on the maximum allowed bits for the maximum rank. The CQI is calculated based on option 2a (i.e., CQI is calculated based on CSI reconstruction output). It can be seen from the simulation results that compared to Rel-16 Type II codebook based CSI feedback, significant performance gain can be achieved by AI/ML based CSI feedback:
· The throughput can be improved by 3%~11% under the same CSI feedback payload.
[image: ]
[bookmark: _Ref127039638] Figure 8: Eventual simulation results for rank adaption
Observation 3: Compared to Rel-16 Type II codebook based CSI feedback, 3%~11% throughput improvement under the same CSI feedback payload can be achieved by proposed scalable AI/ML model.
[bookmark: _Ref127521713]Evaluation results for separate training
For spatial-frequency domain CSI compression using two-sided AI/ML model, there are several challenges for joint training of AI/ML models: If the two-sided AI/ML model is trained at one side and a part of AI/ML model (i.e. encoder or decoder) is transferred to the other side through air interface: 1) Transferring AI/ML model would cause proprietary/privacy problem. 2) Transferred AI/ML model may not match the hardware platform of the other side well. Then low operating efficiency, high power consumption and large operating delay may be incurred. 3) If the AI/ML model is transferred through air interface, a common model representation format (MRF) would be needed to exchange interpretable languages between network and UE, which needs more study within 3GPP at present. If the two-sided model at network side and UE side is joint training respectively, the BP and FP need to be exchanged between network side and UE side, which will increase the DL and UL resource overhead.
Training AI/ML models in two sides separately is an attractive solution that can avoid above problems. In RAN1 #110 meeting, it was clarified that separate training included sequential training starting with UE side training, or sequential training starting with network side training, or parallel training at UE and network [3]. In RAN1 #110bis-e meeting, the following two options of sequential training were concluded to be considered for evaluation [4]:
· Option 1: Sequential training starting with network side (network-first training). For the evaluation, the following procedure is considered:
· Step1: network side trains the network side CSI generation part (which is not used for inference) and the network side CSI reconstruction part jointly
· Step2: After network side training is finished, network side shares UE side with a set of information (e.g., dataset) that is used by the UE side to be able to train the UE side CSI generation part
· Step3: UE side trains the UE side CSI generation part based on the received set of information
· Option 2: Sequential training starting with UE side (UE-first training). For the evaluation, the following procedure is considered:
· Step1: UE side trains the UE side CSI generation part and the UE side CSI reconstruction part (which is not used for inference) jointly
· Step2: After UE side training is finished, UE side shares network side with a set of information (e.g., dataset) that is used by the network side to be able to train the CSI reconstruction part
· Step3: network side trains the network side CSI reconstruction part based on the received set of information
In RAN1 #111 meeting, the following agreement was further achieved on evaluation for separate training [5]:
	Agreement
For the evaluation of an example of Type 3 (Separate training at NW side and UE side), the following evaluation cases for sequential training are considered for multi-vendors
· Case 1 (baseline): Type 3 training between one NW part model and one UE part model
· Note 1: Case 1 can be naturally applied to the NW-first training case where 1 NW part model to M>1 separate UE part models
· Companies to report the dataset used between the NW part model and the UE part model, e.g., whether dataset for training UE part model is the same or a subset of the dataset for training NW part model
· Note 2: Case 1 can be naturally applied to the UE-first training case where 1 UE part model to N>1 separate NW part models
· Companies to report the dataset used between the NW part model and the UE part model, e.g., whether dataset for training NW part model is the same or a subset of the dataset for training UE part model
· Companies to report the AI/ML structures for the combination(s) of UE part model and NW part model, which can be the same or different
· FFS: different quantization methods between NW side and UE side
· Case 2: For UE-first training, Type 3 training between one NW part model and M>1 separate UE part models
· Note: Case 2 can be also applied to the M>1 UE part models to N>1 NW part models
· Companies to report the AI/ML structures for the M>1 UE part models and the NW part model
· Companies to report the dataset used at UE part models, e.g., same or different dataset(s) among M UE part models
· Case 3: For NW-first training, Type 3 training between one UE part model and N>1 separate NW part models
· Note: Case 3 can be also applied to the N>1 NW part models to M>1 UE part models
· Companies to report the AI/ML structures for the UE part model and the N>1 NW part models
· Companies to report the dataset used at NW part models, e.g., same or different dataset(s) among N NW part models
· FFS: whether/how to report overhead of dataset


Parallel training means the AI/ML model at the UE side and the AI/ML model at the network side are trained separately, with no distinguishable sequential order. In other words, parallel training is order-agnostic training. For example, UE side and network side can use a common dataset from Mobile Communication Open Dataset, without knowing the dataset is UE-first or NW-first. One example of parallel training is as follows:
· UE side trains the UE side CSI generation part with dataset #A;
· Network side trains the network side CSI reconstruction part based on dataset #B;
· Dataset #A and dataset #B can be the same or not. 
In this section, intermediate evaluations of separate training for rank 1 are provided, with the following cases considered:
· Case 0 (Benchmark): Type 1 training (i.e., joint training) of one NW part model and one UE part model; 
· Case 1 - NW first training between one NW part model and one UE part model;
· Case 1 - UE first training between one NW part model and one UE part model;
· Case 2 - UE first training between one NW part model and M>1 separate UE part models;
· Case 3 - NW first training between one UE part model and N>1 separate NW part models; 
· Case 4 - Parallel training between one NW part model and one UE part model.
For Case 4, we consider a parallel training with both the UE side CSI generation part and the network side CSI reconstruction part trained with the same dataset of {Channel, target CSI}, where “channel” is used as the input, and “target CSI” is used as output for the training of the UE side CSI generation part; and “target CSI” is used as the input, and “channel” is used as output for the training of the network side CSI reconstruction part. 
For the evaluation for the three cases, eigenvector is adopted as the input of the CSI generation part and the output of the CSI reconstruction part.
The simulation results on comparison of sequential separate training are provided in Table 4. To examine the impact of model pairing with different backbones or layers, the AI/ML model structures for UE#1/UE#2/UE#3 are 6 layers transformer/ 5 layers transformer/CNN, and the AI/ML model structures for NW#1/NW#2/NW#3 are 6 layers transformer/ 5 layers transformer/CNN. It can be seen from the simulation results that:
· For separate training, when the network side CSI reconstruction part and the UE side CSI generation part use aligned AI/ML model structure,
· For Case 1, similar performance can be achieved by separate training and joint training (the performance loss is no more than 0.7%);
· For Case 2, the SGCS degradation can be 1.31% ~ 2.41%;
· For Case 3, the SGCS degradation can be 0.72% ~ 4.52%.
· For separate training, when the network side CSI reconstruction part and the UE side CSI generation part use the same AI/ML model backbone and different number of layers, compared to joint training,
· For Case 1, the SGCS degradation can be no more than 0.79%;
· For Case 2, the SGCS degradation can be 1.58% ~ 2.45%;
· For Case 3, the SGCS degradation can be 3.95% ~ 4.81%.
· For separate training, when the network side CSI reconstruction part and the UE side CSI generation part use different AI/ML model backbones, compared to joint training, 
· For Case 1, the SGCS degradation can be no more than 1%;
· For Case 2, the SGCS degradation can be 3.95% ~ 4.81%;
· For Case 3, the SGCS degradation can be 2.74% ~ 4.43%.
[bookmark: _Ref118741216]Table 4: SGCS for sequential separate training 
	Payload size(bits)
	　
	49
	130
	242

	　
	Dataset size (NW side, UE side)
	SGCS(Gain)
	SGCS(Gain)
	SGCS(Gain)

	Case 0 - Benchmark 
	NW#1-UE#1/UE#2/UE#3
	(100k,100k)
	0.6387/
0.6245/
0.5419
	0.6995/
0.6965/
0.5894
	0.7719/
0.7605/
0.6490

	
	NW#2-UE#1
	(100k,100k)
	0.6293
	0.6973
	0.7712

	
	NW#3-UE#1
	(100k,100k)
	0.6195
	0.6709
	0.7072

	Case 1 - NW first training
	NW#1-UE#1/UE#2/UE#3
	(100k,100k)
	0.6354(-0.52%)/
0.6208(-0.59%)/
0.5369(-0.92%)
	0.6951(-0.63%)/
0.6921(-0.66%)/
0.5836(-0.98%)
	0.7664(-0.71%)/
0.7545(-0.79%)/
0.6424(-1.00%)

	Case 1 - UE first training
	NW#1/NW#2/NW#3-UE#1
	(100k,100k)
	0.6378(-0.14%)/
0.6280(0.21%)/
0.6129(1.07%) 
	0.6979(-0.23%)/
0.6954(-0.27%)
0.6641(-0.98%)
	0.7708(-0.14%)/
0.7686(-0.35%)/
0.7008(-0.90%)

	Case 2 - UE first training
	NW#1/NW#2/NW#3-UE#1
	(100k,100k)
	0.6233(-2.41%) /
0.6092(-2.45%)/ 
0.5202(-4.00%)
	0.6837(-2.26%)/
0.6814(-2.17%)/ 
0.5661(-3.95%)
	0.7618(-1.31%)/
0.7485(-1.58%)/ 
0.6178(-4.81%)

	Case 3 - NW first training
	NW#1-UE#1/UE#2/UE#3
	(100k,100k)
	0.6341(-0.72%)/
0.6222(-1.13%)/ 
0.6025(-2.74%)
	0.6897(-1.40%)/
0.6838(-1.94%)/ 
0.6513(-2.92%)
	 0.7370(-4.52%)/
 0.7200(-6.64%)/ 
0.6759(-4.43%)


In Table 5, simulation results with dataset in step 2 with only half size of dataset in step 1 for Case 1 are provided, as well as the simulation results for parallel training. It can be seen from the simulation results that:
· For separate training with Case 1, compared to dataset in step 2 with the same size as dataset in step 1, minor performance loss (<0.6%) can be seen for dataset CSI reconstruction part trained with half size of dataset in step 1.
· For separate training, similar performance can be achieved by parallel training and sequential training.
[bookmark: _Ref134825898]Table 5: SGCS for separate training with different dataset sizes and parallel training
	Payload size(bits)
	　
	49
	130
	242

	　
	Dataset size (NW side, UE side)
	SGCS(Gain)
	SGCS(Gain)
	SGCS(Gain)

	Case 0 - Benchmark 
	NW#1-UE#1
	(360k,360k)
	0.681
	0.72
	0.816

	Case 1 - NW first training
	NW#1-UE#1
	(360k,360k)
	0.679(-0.29%)
	0.719(-0.14%)
	0.814(-0.25%)

	Case 1 - NW first training
	NW#1-UE#1
	(360k,180k)
	0.675(-0.88%)
	0.716(-0.56%)
	0.812(-0.49%)

	Case 4- Parallel training
	NW#1-UE#1
	(360k,360k)
	0.68(-0.15%)
	0.72(0%)
	0.819(0.37%)



Observation 4: For separate training for AI/ML based CSI compression, compared to joint training, 
· The performance loss can be up to 4.00% for 49bits, 3.95% for 130bits and 6.64% for 242 bits.
· When the UE side CSI generation part and network side CSI reconstruction part use aligned AI/ML model structure, 
· Similar performance can be achieved for Type 3 training between one NW part model and one UE part model;
· The SGCS degradation of UE first training between one NW part model and M>1 separate UE part models and NW first training between one UE part model and N>1 separate NW part models are much larger than that for Type 3 training between one NW part model and one UE part model;
· On combination of structures between UE part model and NW part model for Type 3 training between one NW part model and one UE part model, the performance degradation order is: Aligned backbone and the same number of layers > Aligned backbone and different number of layers > different backbone
· In general, UE first training between one NW part model and M>1 separate UE part models and NW first training between one UE part model and N>1 separate NW part models have worse performance than Type 3 training between one NW part model and one UE part model;
· The performance loss of NW first training between one UE part model and N>1 separate NW part models is larger than UE first training between one NW part model and M>1 separate UE part models for high payload size, and on the contrary for low payload size.
Observation 5: For sequential separate training, compared to dataset in step 2 with the same size as dataset in step 1, minor performance loss can be seen for dataset CSI reconstruction part trained with half size of dataset in step 1.
Observation 6: For separate training, similar performance can be achieved by parallel training and sequential training.
[bookmark: _Ref131635047]Proposal 1: For separate training, parallel training is supported for further studied and evaluation.
Evaluation results for generalization
For spatial-frequency domain CSI compression using two-sided AI model, evaluations on generalization of the AI/ML model for scenarios of UMi, UMa and InH are provided in Table 6. In the simulation, the following cases are considered:
· Case 1: The training dataset for AI/ML model is obtained from scenario #A, and the inference is performed in scenario #A;
· Case 2: The training dataset for AI/ML model is obtained from scenario #A, and the inference is performed in scenario #B;
· Case 3: The training dataset for AI/ML model is obtained from scenario #A and scenario #B (i.e. mixed dataset of scenario #A and scenario #B), and the inference is performed in scenario #A/ scenario #B.
For simplicity, only rank=1 is considered in this simulation.
[bookmark: _Ref118741247]Table 6: SGCS for generalization
	
	Scenario for inference

	
	UMa
	UMi
	InH

	CSI feedback payload (bits)
	49
	87
	242
	49
	87
	242
	49
	87
	242

	Scenarios for generating dataset for training
	UMa
	0.681
	0.720
	0.816
	0.615
	0.669
	0.800
	0.880
	0.895
	0.903

	
	UMi
	0.685
	0.733
	0.834
	0.646
	0.706
	0.840
	0.880
	0.897
	0.914

	
	InH
	0.584
	0.613
	0.645
	0.525
	0.547
	0.573
	0.841
	0.861
	0.904

	
	Mixed UMa & InH(9:1)
	0.664
	0.701
	0.805
	/
	/
	/
	0.881
	0.900
	0.923

	
	Mixed UMa & InH(8:2)
	0.654
	0.695
	0.794
	/
	/
	/
	0.883
	0.899
	0.922

	
	Mixed UMa & InH(7:3)
	0.648
	0.690
	0.787
	/
	/
	/
	0.884
	0.901
	0.925

	
	Mixed UMa & InH(6:4)
	0.581
	0.628
	0.783
	/
	/
	/
	0.880
	0.900
	0.925


Based on the simulation results, it can be seen that: 
· For applying AI/ML model in UMa/UMi, the SGCS difference between training the AI/ML model with dataset of UMa and training the AI/ML model with dataset of UMi is less than 5%. 
· For applying AI/ML model in InH, the AI/ML model trained based on a dataset collected in UMa/UMi slightly outperforms the AI/ML model trained based on a dataset collected in InH.
· For applying AI/ML model in UMa, compared to the AI/ML model trained in UMa, the SGCS degradation of the AI/ML model trained in InH can be 14.9%~21%. Training the AI/ML model with mixed data of UMa and InH can alleviate the performance loss. 
Observation 7: For the generalization of AI/ML based CSI feedback, the following is observed:
· For applying AI/ML model in UMa/UMi, the performance difference between training the AI/ML model with dataset of UMa and training the AI/ML model with dataset of UMi is small.
· For applying AI/ML model in InH, the AI/ML model trained based on a dataset collected in UMa/UMi slightly outperforms the AI/ML model trained based on a dataset collected in InH.
· For applying AI/ML model in UMa, compared to the AI/ML model trained in UMa, significantly performance loss can be seen by the AI/ML model trained in InH. Training the AI/ML model with mixed data of UMa and InH can alleviate the performance gap.
CSI prediction in time domain
In this section, we provide our initial evaluation results on AI/ML based CSI prediction. 
AI/ML model description
The CSI prediction AI /ML model is constructed by ConvLSTM cells. The structure of ConvLSTM cell is shown in Figure 9: 
[image: ]
[bookmark: _Ref127470498]Figure 9: Structure of ConvLSTM cell
Among the structure, σ and tanh represent sigmoid function and tanh function respectively.  and  represents the short-term status and long-term status in the sequence.  represents the input at time t, and similarly, ，，, and  represents the output of classical structure forgetting gate, input gate (memory gate), update gate and output gate in LSTM, respectively. Forgetting gate determines how much long-term state  is left based on the input  from the current moment and the hidden state  from the previous moment. Update gate uses the input  from the current moment and the hidden state  from the previous moment to update the long-term state . Input gate determines how many update gate output  to update the long-term state  according to the input  from the current moment and the hidden state  from the previous moment. Output gate determines how many  to update  according to the input  from the current time and the hidden state  from the previous time.
The ConvLSTM model contains three ConvLSTM cells. It introduces two-dimensional convolution to capture the information of subbands and ports, and uses the output of convolution as the input of the forgetting gate, input gate, update gate  and output gate . Then these values are used to calculate ，， and . Then the long and short term status  and  are updated. The overall structure is shown in Figure 10.


[bookmark: _Ref127470602]Figure 10: AI/ML based CSI prediction model
The training parameters are shown in Table 7. In our design, we use the CSI in past five moments (i.e., t-4, t-3, t-2, t-1, t) to predict the CSI in one moment in the future (i.e., t+1). The interval between consecutive moments is 5ms. To be more specific, both the input and output are in the format of eigenvectors. 
[bookmark: _Ref127547675]Table 7: Parameters for AI/ML model training for CSI prediction
	Parameter
	Value

	Size of dataset for Case 1: training, test
	342k, 85.5k

	Size of dataset for Case 2: training, test
	114k, 28.5k

	Size of dataset for Case 3: training, test
	342k, 114k

	Epoch
	300

	Batch size
	512

	Learning rate
	

	Optimizer
	Adam

	Loss function
	SGCS

	Input/output format
	Eigenvector


Evaluation results
In Table 8, the simulation results on comparison of AI/ML based CSI prediction and the nearest historical CSI w/o prediction are provided, with SGCS as the intermediate KPI, and other simulation assumptions provided in Table 10. In Table 8, the following three cases are considered:
· Case 1: The training dataset for AI/ML model is obtained from a scenario with UE speed of 10km/h, and the inference is performed in a scenario with UE speed of 10km/h;
· Case 2: The training dataset for AI/ML model is obtained from a scenario with UE speed of 30km/h, and the inference is performed in a scenario with UE speed of 30km/h;
· Case 3: The training dataset for AI/ML model is obtained from a scenario with UE speed of 10km/h, and the inference is performed in a scenario with UE speed of 30km/h.
[bookmark: _Ref127472436]Table 8: Intermediate KPI of CSI prediction
	
	Training, Inference
	AI/ML prediction
	Nearest historical CSI without prediction

	Case 1
	10km/h, 10km/h
	0.8866
	0.7422

	Case 2
	30km/h, 30km/h
	0.833
	0.6161

	Case 3
	10km/h, 30km/h
	0.8204
	-


It can be seen from Table 8 that 
· Compared to the nearest historical CSI w/o prediction, AI/ML based CSI prediction can obtain better prediction performance.
· For AI/ML model tested with UE speed of 30km/h, compared to the AI/ML model trained with the same UE speed of 30km/h, an SGCS degradation of about 1.5% is observed when the AI/ML model is trained in a scenario with UE speed of 10km/h.  
Observation 8: AI/ML based CSI prediction outperforms the baseline using nearest historical CSI. 
Observation 9: For the generalization of AI/ML based CSI prediction, the following is observed: 
· For AI/ML model tested with UE speed of 30km/h, compared to the AI/ML model trained with the same UE speed of 30km/h, an SGCS degradation of about 1.5% is observed when the AI/ML model is trained in a scenario with UE speed of 10km/h.
Conclusions
In this contribution, we provide our views on evaluation and KPIs for AI/ML based CSI feedback. We have the following observations and proposals:
Observation 1: Compared with a family of layer-common AI/ML models, the scalable AI/ML model (SCsiNet) can achieve a similar performance and can significantly reduce storage memory and model transferring overhead. 
Observation 2: Compared to Rel-16 Type II codebook based CSI feedback, obvious performance gain can be achieved by CSI feedback with proposed scalable AI/ML model for rank=1, 2, 3, 4:
· SGCS can be improved by 0.02~0.22 under the same CSI feedback payload;
· Payload can be saved by 30%~60% bits under the same SGCS.
Observation 3: Compared to Rel-16 Type II codebook based CSI feedback, 3%~11% throughput improvement under the same CSI feedback payload can be achieved by proposed scalable AI/ML model.
Observation 4: For separate training for AI/ML based CSI compression, compared to joint training, 
· The performance loss can be up to 4.00% for 49bits, 3.95% for 130bits and 6.64% for 242 bits.
· When the UE side CSI generation part and network side CSI reconstruction part use aligned AI/ML model structure, 
· Similar performance can be achieved for Type 3 training between one NW part model and one UE part model;
· The SGCS degradation of UE first training between one NW part model and M>1 separate UE part models and NW first training between one UE part model and N>1 separate NW part models are much larger than that for Type 3 training between one NW part model and one UE part model;
· On combination of structures between UE part model and NW part model for Type 3 training between one NW part model and one UE part model, the performance degradation order is: Aligned backbone and the same number of layers > Aligned backbone and different number of layers > different backbone
· In general, UE first training between one NW part model and M>1 separate UE part models and NW first training between one UE part model and N>1 separate NW part models have worse performance than Type 3 training between one NW part model and one UE part model;
· The performance loss of NW first training between one UE part model and N>1 separate NW part models is larger than UE first training between one NW part model and M>1 separate UE part models for high payload size, and on the contrary for low payload size.
Observation 5: For sequential separate training, compared to dataset in step 2 with the same size as dataset in step 1, minor performance loss can be seen for dataset CSI reconstruction part trained with half size of dataset in step 1.
Observation 6: For separate training, similar performance can be achieved by parallel training and sequential training.
Observation 7: For the generalization of AI/ML based CSI feedback, the following is observed:
· For applying AI/ML model in UMa/UMi, the performance difference between training the AI/ML model with dataset of UMa and training the AI/ML model with dataset of UMi is small.
· For applying AI/ML model in InH, the AI/ML model trained based on a dataset collected in UMa/UMi slightly outperforms the AI/ML model trained based on a dataset collected in InH.
· For applying AI/ML model in UMa, compared to the AI/ML model trained in UMa, significantly performance loss can be seen by the AI/ML model trained in InH. Training the AI/ML model with mixed data of UMa and InH can alleviate the performance gap.
Observation 8: AI/ML based CSI prediction outperforms the baseline using nearest historical CSI. 
Observation 9: For the generalization of AI/ML based CSI prediction, the following is observed: 
· For AI/ML model tested with UE speed of 30km/h, compared to the AI/ML model trained with the same UE speed of 30km/h, an SGCS degradation of about 1.5% is observed when the AI/ML model is trained in a scenario with UE speed of 10km/h.
Proposal 1: For separate training, parallel training is supported for further studied and evaluation.
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Annex
[bookmark: _Ref127052611]Table 9: Simulation assumptions for CSI compression
	Parameter
	Value

	Duplex, Waveform
	FDD, OFDM

	Scenario
	Dense Urban (Macro only), UMi, InH 

	Frequency Range
	FR1 only

	Inter-BS distance
	200m

	Channel model        
	According to TR 38.901

	Antenna setup and port layouts at gNB
	32 ports: (8,8,2,1,1,2,8), (dH,dV) = (0.5, 0.8)λ
16 ports: (8,4,2,1,1,2,4), (dH,dV) = (0.5, 0.8)λ

	Antenna setup and port layouts at UE
	4RX: (1,2,2,1,1,1,2), (dH,dV) = (0.5, 0.5)λ for (rank 1-4)

	BS Tx power
	41 dBm

	BS antenna height
	25m

	UE antenna height & gain
	Follow TR36.873

	UE receiver noise figure
	9dB

	Modulation
	Up to 256QAM

	Coding on PDSCH
	LDPC
Max code-block size=8448bit

	Numerology
	Slot/non-slot
	14 OFDM symbol slot

	
	SCS
	15kHz for 2GHz

	Simulation bandwidth
	10MHz

	Frame structure
	Slot Format 0 (all downlink) for all slots

	CSI feedback
	CSI feedback periodicity: 5 ms,
Scheduling delay: 4 ms

	Traffic model
	Full buffer, FTP

	Traffic load (Resource utilization)
	~40%

	UE distribution
	80% indoor (3km/h), 20% outdoor (30km/h)

	UE receiver
	MMSE-IRC

	Feedback assumption
	Realistic

	Channel estimation         
	Realistic

	Evaluation Metric
	Throughput, SGCS

	Baseline for performance evaluation
	R16 Type II codebook


[bookmark: _Ref127052647]
[bookmark: _Ref135224213]Table 10: Simulation assumptions for CSI prediction

	Parameter
	Value

	Duplex, Waveform
	FDD, OFDM

	Scenario
	UMa

	Frequency Range
	FR1 only

	Inter-BS distance
	200m

	Channel model        
	According to TR 38.901

	Antenna setup and port layouts at gNB
	32 ports: (8,8,2,1,1,2,8), (dH,dV) = (0.5, 0.8)λ

	Antenna setup and port layouts at UE
	4RX: (1,2,2,1,1,1,2), (dH,dV) = (0.5, 0.5)λ for (rank 1-4)

	BS Tx power
	41 dBm

	BS antenna height
	25m

	UE antenna height & gain
	Follow TR36.873

	UE receiver noise figure
	9dB

	Modulation
	Up to 256QAM

	Coding on PDSCH
	LDPC
Max code-block size=8448bit

	Numerology
	Slot/non-slot
	14 OFDM symbol slot

	
	SCS
	15kHz for 2GHz

	Simulation bandwidth
	10MHz

	Frame structure
	Slot Format 0 (all downlink) for all slots

	CSI feedback
	CSI feedback periodicity: 5 ms

	Traffic load (Resource utilization)
	~40%

	UE distribution
	100% outdoor

	UE speed
	10km/h, 30km/h

	UE receiver
	MMSE-IRC

	Feedback assumption
	Realistic

	Channel estimation         
	Realistic

	Observation window (number/distance)
	5/5ms

	Prediction window  (number/distance between prediction instances/distance from the last observation instance to the 1st prediction instance)
	1/5ms

	Evaluation Metric
	SGCS

	Baseline for performance evaluation
	Nearest historical CSI without prediction
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