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Introduction
[bookmark: _Hlk510705081]In RAN#94 plenary meeting, a new SID on AI/ML for air-interface was approved [1]. One of the objectives of the SID was to evaluate the performance benefits of AI/ML based algorithms for agreed use cases, including CSI feedback enhancements, beam management and positioning accuracy enhancements. For AI/ML based beam management two cases are considered: spatial domain beam prediction and temporal domain beam prediction. In the previous RAN#1 meetings [2] - [7], many agreements were made after multiple rounds of discussions.
Following agreements were made in the RAN1#112bis-e meeting[7].
Agreement
· For the evaluation of the overhead for BM-Case2, adoption the following metrics:
· RS overhead reduction, 
·  
· where N is the total number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement for AI/ML, including the beams (pairs) required for additional measurements before/after the prediction if applicable
· where M is the total number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement for baseline scheme
· Companies report the assumption on additional measurements
· Companies report the assumption on baseline scheme
· Companies report the assumption on T1 and T2
· Other options are not precluded and can be reported by companies.
Agreement
· To evaluate the performance of AI/ML in beam management at least for NW side beam prediction, UCI report overhead (e.g., number of UCI reports and UCI payload size) and/or UCI overhead reduction for inference of AI/ML model can be reported by company. 
· UCI overhead reduction = 1- Total UCI payload size for AI/ML/Total UCI payload size of baseline.
· Companies to report detailed assumption of UCI for AI/ML and baseline, e.g., including quantization mechanism
Conclusion
· It is optional to evaluate and compare the performance for BM Case-1 with different UE distribution assumptions: 
· Option 1: 80% indoor, 20% outdoor as in TR 38.901
· Option 2: 100% outdoor
Agreement
At least for evaluation on the performance of DL Tx beam prediction, consider the following options for Rx beam for providing input for AI/ML model for training and/or inference if applicable
· Option 1: Measurements of the “best” Rx beam with exhaustive beam sweeping for each model input sample 
· Companies report how to select the “best” Rx beam(s) 
· Option 2: Measurements of specific Rx beam(s)
· Companies report how to select specific Rx beam(s) 
· Option 3: Measurements of random Rx beam(s) per model input sample
Other options are not precluded and can be reported by companies.

Observation
· At least for BM-Case1 for inference of DL Tx beam with L1-RSRPs of all beams in Set B, existing quantization granularity of L1-RSRP (i.e., 1dB for the best beam, 2dB for the difference to the best beam) causes [a minor loss x%~y%, if applicable] in beam prediction accuracy compared to unquantized L1-RSRPs of beams in Set B.

Agreement
· For AI/ML in beam management, further study performance with different types of label, considering the following:
· Option 1a: Top-1 beam(pair) in Set A
· Option 1b: Top-K beam (pair)s in Set A
· Option 2a: L1-RSRPs per beam of all the beams(pairs) in Set A 
· Option 2b: Top-K beam(pair)s in Set A and the corresponding L1-RSRPs 
· Option 2c: Top-1 beam(pair) in Set A and the corresponding L1-RSRP
· Other options are not precluded and can be reported by companies. 
Observation
· For BM-Case1 DL Tx beam prediction, when Set B is a subset of Set A, AI/ML can provide good beam prediction performance with less measurement/RS overhead without considering generalization aspects with the measurements from the best Rx beam without UE rotation.
· (A)With measurements of fixed Set B of beams that of 1/4 of Set A of beams
· evaluation results [from 4 sources] indicate that, AI/ML can achieve [about 70%~80%] beam prediction accuracy of Top-1 DL Tx beam, evaluation results [from 6 sources] indicate that, AI/ML can achieve [about 80%~90%] beam prediction accuracy of Top-1 DL Tx beam, and evaluation results [from 4 sources] show [more than 90%] beam prediction accuracy of Top-1 DL Tx beam
· evaluation results [from 8 sources] indicate that, AI/ML can achieve [more than 90%] beam prediction accuracy for Top-1 DL Tx beam with 1dB margin
· evaluation results [from 8 sources] indicate that, AI/ML can achieve [more than 80%] beam prediction accuracy for Top-2 DL Tx beam. The beam prediction accuracy increases with K.  
· evaluation results [from 9 sources] indicate that, the average L1-RSRP difference of Top-1 predicted beam can be [below or about 1dB].
 
· (B) With measurements of fixed Set B of beams that of 1/8 of Set A of beams
· evaluation results [from 2 sources] indicate that, AI/ML can achieve [about 50%] beam prediction accuracy of Top-1 DL Tx beam, evaluation results [from 3 sources] show [about 60%~70%] beam prediction accuracy of Top-1 DL Tx beam, and evaluation results [from 2 sources] show [about 70%~80] beam prediction accuracy of Top-1 DL Tx beam.
· evaluation results [from 4 sources] indicate that, AI/ML can achieve [70%-90%] beam prediction accuracy for Top-1 DL Tx beam prediction with 1dB margin
· evaluation results [from 2 sources] indicate that, AI/ML can achieve [about 70%~ 80%] beam prediction accuracy for Top-2 DL Tx beam, and evaluation results [from 4 sources] indicate that, AI/ML can achieve [more than 80%] beam prediction accuracy for Top-2 DL Tx beam. The beam prediction accuracy increases with K.
· Note that ideal measurements are assumed
· Beams could be measured regardless of their SNR.
· No measurement error.
· Measured in a single-time instance (within a channel-coherence time interval).
· No quantization for the L1-RSRP measurements.
· No constraint on UCI payload overhead for full report of the L1-RSRP measurements of Set B for NW-side models are assumed. 




Agreement
For performance evaluation of AI/ML based DL Tx beam prediction for BM-Case1 and BM-Case2, optionally study the performance with a quasi-optimal Rx beam (i.e., not all the measurements as inputs of AI/ML are from the “best” Rx beam) with less measurement/RS overhead compared to exhaustive Rx beam sweeping. 
· At least the following options can be considered:
· Opt A: Identify the quasi-optimal Rx beams to be utilized for measuring Set B/Set C based on the previous measurements.
· Companies can report the time information and beam type (e.g., whether the same Tx beam(s) in Set B) of the reference signal to use. 
· Companies report how to find the quasi-optimal Rx beam with “previous measurement”
· FFS: Opt B: The Rx beams for measuring Set B/Set C consist of the X% of “best” Rx beam exhaustive Rx beam sweeping and (1-X%) of random Rx beams [or the adjacent Rx beam to the “best” Rx beam].
· X%= 80% or 90%, or other values reported by companies. 
· Note: X% is the percentage of measurements with “best” Rx beams out of all measurements   
· Other options are not precluded.
· Companies report the measurement/RS overhead together with beam prediction accuracy. 

Conclusion
To evaluate the performance of BM-Case1 for both DL Tx beam and pair prediction, aiming to analysis the following aspects:
· Clarify the baseline performance in terms of beam prediction accuracy and/or average L1-RSRP difference. 
· Other metrics to be considered:
· Measurement/RS overhead reduction
· UCI overhead (reduction) potentially with different quantization 
· User throughput
· Model size /complexity
· Average predicted L1-RSRP difference, if applicable 
· Performance difference based on the reported results from each company
· Different Set B assumption
· Opt A/B, Opt C, Opt D
· [(optional) with UE rotation] 
· (optional) with different Rx assumption for DL Tx beam prediction/DL beam pair prediction and potentially with quasi-optimal Rx beam
· (optional) with quantization
· [(optional) with measurement error]
· [(optional) with different label, including data collection for NW side model if supported]
· [(optional) Impact of different beam pair pattern for beam pair prediction, e.g., 
· Tx down sampling only
· Tx and Rx down sampling]
· Other settings:
· Other percentage of Set B and Set A if reported by companies
· When Set B is different from Set A (e.g., Set B is composed of wide beams and Set A is composed of narrow beams).
· Other aspects are not precluded
· Observation/analysis may consider UE-side and NW-side model when applicable




Observation
· For BM-Case1 DL Tx beam prediction, when Set B is a subset of Set A without considering other generalization aspects with the measurements from the best Rx beam without UE rotation.
· (Opt 2B) For the case that Set B of beams is changed among pre-configured patterns, evaluation results [from 4 sources] show that the beam prediction accuracy degrades [no more than 5%] in terms of Top-1 beam prediction accuracy than when Set B is fixed across training and inference, where the [one source] used [24] pre-configured patterns and the rest of sources use [4 or 5] patterns; evaluation results [from 1 source] show that the beam prediction accuracy degrades [about 10%] in terms of Top-1 beam prediction accuracy than when Set B is fixed across training and inference. 
· Note: the above performance can also be treated as training with mixed patterns of Set B of beam, and testing with mixed patterns Set B of beams. 
· Note: the measurements are obtained from the best Rx beam without UE rotation
· Note that ideal measurements are assumed
· Beams could be measured regardless of their SNR.
· No measurement error.
· Measured in a single-time instance (within a channel-coherence time interval).
· No quantization for the L1-RSRP measurements.
· No constraint on UCI payload overhead for full report of the L1-RSRP measurements of Set B for NW-side models are assumed. 
· This observation is based on Set B patterns that were chosen by each company.
Conclusion
To evaluate the performance of BMCase-2 for both DL Tx beam and pair prediction, aiming to analysis the following aspects:
· Clarify the baseline performance in terms of beam prediction accuracy and/or average L1-RSRP.
· Observations based on the metrics to be considered:
· Top-1/K [=2] beam prediction accuracy, Top-1 beam prediction accuracy with 1dB, average L1-RSRP difference
· Measurement/RS overhead reduction
· UCI overhead (reduction) potentially with different quantization
· User throughput
· Model size and complexity
· Average predicted L1-RSRP difference, if applicable
· Scenarios/assumptions/Cases for basic observations
· Set A and Set B relationship
· Set A= Set B
· Set B /Set A =1/4, [1/6], 1/8, 1/16, [1/32]
· UE speed: 30km/h
· No UE rotation
· FFS the following cases for results reporting.
· Case 1:  based on T1 and T2, where T2 is the time duration for the best beam selection, and T1 is a time duration to obtain the measurements of all the RS resource from Set B of beams.
· T1 = 40ms, 80ms, 160ms, [320ms], [640ms]
· T2 = 40ms, 80ms, 160ms, 320ms, [960ms]
· M= [1, 2, 3, 4, 5, 8], where M is the number of time instance(s) for measurement/report in T1 as AI/ML inputs (per model)
· P= [1, 2, 4, 5, …], where P is the number of time instance(s) P for prediction as AI/ML model output(s)/label(s) (per model)
· Case 2: based on the number of prediction instance(s) Y for every number of measurement instance(s) X, at least consider the following values:
· Minimal periodicity for time instances for measurement(s) and prediction(s) = [40ms, 80ms, 160ms]
· X = [1, 2]
· Y = [1, 2, 4, 5, 10]
· P= [1, 2, 4, 5, …], where P is the number of time instance(s) P for prediction as AI/ML model output(s)/label(s) (per model)
· The number of measurement instance(s) as AI inputs are up to implementation.
· FFS whether separated observations are needed or not for the following:
· UE trajectories



· Performance difference based on the reported results from each company
· With UE rotation
· Different UE speed: e.g., 60km/h, 90km/h, 120km/h
· Different observation/prediction windows or periodicity for time instances.
· Different Set B assumption when Set A is a subset of Set B
· Opt A/B, Opt C, Opt D
· Other settings:
· Other percentage of Set B and Set A if reported by companies
· When Set B is different from Set A (e.g., Set B is composed of wide beams and Set A is composed of narrow beams).
· Other aspects are not precluded
· Observation/analysis may consider UE-side and NW-side model when applicable

In this contribution we present our evaluation results of beam prediction in spatial domain and our views on the evaluation methodologies and KPI’s.
Evaluation Results
In this section we explain the evaluation assumptions and present our results for spatial domain beam prediction.
Evaluation Assumptions
For generating the dataset, we considered a 21-cell layout with 3GPP Uma scenario with 200m inter-site distance. Using this setup, we performed multiple random UE drops and thereby generating approximately 30000 UE per sectors. Out of the samples generated, 90% of the samples were used for training, and 10% for testing. The UEs were associated to the gNB based on the coupling loss.
The antenna configuration for the gNB and UE are given in the table in Appendix. In the simulations, we assume that the gNB is equipped with a single panel, which can generate a total of 32 CSI-RS beams. The UE is equipped with 2 panels, can generate a total of 8 beams. The beam related assumptions are summarized in the table in Appendix.
The dataset consists of L1-RSRP measurements from all the transmit beams. At the UE side, we assume that the UE performs measurement using all the 8 receive beams and then reports back either all the 8 L1-RSRP measurements or reports back the L1-RSRP measurement using the best UE-side Rx beam, where the best UE-side Rx beam is the UE-side Rx beam with the maximum L1-RSRP for a fixed Tx beam.
For the selection of beams for Set B, we assume that Set B is fixed across both training and inference. As for the number of beam pairs in Set B, we consider multiple values to analyze the tradeoff between performance and overhead reduction.
Model Description
We use a low-complexity neural network with 3 dense layers. The neural network is used for predicting the best beam ID. The neural network uses ReLU as the activation function. The cost function used was categorical cross entropy and an Adam optimizer was used to minimize the loss. The RSRP values were normalized to have zero mean and unit variance before giving it as input to the AI/ML model. A dropout layer was added to reduce overfitting.
	Parameter 
	Parameter Value

	Model description
	3 dense layers of size Set-B, ReLU activation, and dropout.

	Loss function
	Categorical cross entropy

	Optimization function
	ADAM with learning rate of .001

	Dataset size
	~30000 samples, 90% training, 10% testing

	Model complexity
	Number of parameters: 82500, FLOP: 15000


Table 1 AI/ML model details

Evaluation Results
Based on the agreements and discussions, we report the following KPIs in this document:
· Beam prediction accuracy:
· Top-1 (%): the percentage of the Top-1 genie-aided beam is Top-1 predicted beam.
· Top-2/1 (%): the percentage of “the Top-1 genie-aided beam is one of the Top-K predicted beams.
· Top-1 genie-aided Tx beam is the Tx beam that results in the largest L1-RSRP over all Tx and Rx beams.
· CDF of L1-RSRP difference between the predicted best beam and genie-aided best beam.
· Average L1-RSRP difference between the predicted best beam and genie-aided best beam.
· RS overhead reduction:
· For the definition of RS overhead reduction, we select the given equation,
RS overhead reduction [%] = 
· N is the number of beam/beam pairs in Set B
· M is the total number of beams/beam pairs to be predicted.

The baseline scheme that we use is exhaustive beam sweeping, where the best beam is selected based on the measurement from all the beams on Set A.
For all our evaluations, we trained the model on one single sector, unless otherwise mentioned.
In this contribution we present our evaluation results of BM-Case-1, for the scenarios with different evaluation criteria.
· Tx-beam predication with fixed Set-B pattern and with different UE distribution and deployment scenarios (UMa and UMi).
· Tx-beam predication with variable Set-B pattern, when Set-B pattern is changed randomly among pre-configured pattern.
· Tx-Rx beam pair prediction with fixed Set-B pattern.
· Generalization evaluation for Tx beam prediction using different cases agreed in the previous meetings.
Tx-beam prediction with Fixed Set-B pattern
In Tx-beam prediction, the UE reports the L1-RSRP using the best UE side Rx side beam. Set-A consists of RSRP measurement for each Tx beam using the corresponding best UE side Rx beam and Set-B is a sub-set of Set-A.
For the fixed Set-B pattern we considered 2 different Set-B patterns with sizes of 1/4 of Set-A size and 1/8 of Set-A size.
Also, we have considered the performance with different UE distribution assumptions. We considered 2 UE distribution with Option-1 80% indoor, 20% outdoor, and Option-2 100% outdoor.
The KPI results for Tx-Beam prediction with 100% outdoor UE are summarized in Table 2 and the results for Tx-Beam prediction with 80% indoor, 20% outdoor UE are summarized in Table 3. For both the cases we considered data from a single sector for training and inference. In the Tables we show the Top-K beam predication accuracy for K=1, 2, 3, and 5 and the average RSRP difference. The CDF plot for RSRP difference is shown in Figure 1.
Table 2 AI/ML model Performance for Tx beam prediction with Fixed Set-B pattern and 100% outdoor UE.

	[bookmark: _Hlk134713934]Parameters
	CEWiT (BM-Case1)

	Beam pair assumptions
	Number of beam pairs in Set A
	32

	
	Number of beam pairs in Set B
	8 (1/4 of Set-A)
	4 (1/8 of Set-A)

	
	Baseline scheme
	Best beam within Set A via exhaustive beam pair search (i.e., Option 1)

	AI/ML model
input/output
	Model input
	L1-RSRPs of Set-B Tx Beam using best Rx beam, implicit Tx beam ID

	
	Model output
	RSRPs of Tx beam in Set A

	Data Size
	Training
	~30,000 samples

	
	Testing
	~4,000 samples

	AI/ML model
	Short model description
	3-layer DNN 

	
	Model complexity
	~85,000 parameters

	
	Computational complexity
	~15000 FLOPS

	Evaluation results
with AI/ML / baseline
	Beam prediction accuracy (%)
	Top-1/1
	70.2%
	51.15%

	
	
	Top-2/1
	86.76%
	69.85%

	
	
	Top-3/1
	92.79%
	79.63%

	
	
	Top-5/1
	97.44%
	89.54%

	
	L1-RSRP Diff
	Average L1-RSRP diff. 
	0.29 dB
	1.02 dB

	
	System performance
	RS overhead Reduction/
RS overhead (N)
	75%
	87.5%





Table 3 AI/ML model Performance for Tx beam prediction with Fixed Set-B pattern and 80% indoor, 20% outdoor UE.


	Parameters
	CEWiT (BM-Case1)

	Beam pair assumptions
	Number of beam pairs in Set A
	32

	
	Number of beam pairs in Set B
	8 (1/4 of Set-A)
	4 (1/8 of Set-A)

	
	Baseline scheme
	Best beam within Set A via exhaustive beam pair search (i.e., Option 1)

	AI/ML model
input/output
	Model input
	L1-RSRPs of Set-B Tx Beam using best Rx beam, implicit Tx beam ID

	
	Model output
	RSRPs of Tx beam in Set A

	Data Size
	Training
	~30,000 samples

	
	Testing
	~4,000 samples

	AI/ML model
	Short model description
	3-layer DNN 

	
	Model complexity
	~85,000 parameters

	
	Computational complexity
	~15000 FLOPS

	Evaluation results
with AI/ML / baseline
	Beam prediction accuracy (%)
	Top-1/1
	53.32%
	36.70%

	
	
	Top-2/1
	73.13%
	54.71%

	
	
	Top-3/1
	82.10%
	65.96%

	
	
	Top-5/1
	90.56%
	80.40%

	
	L1-RSRP Diff
	Average L1-RSRP diff. 
	0.91dB
	2.06 dB

	
	System performance
	RS overhead Reduction/
RS overhead (N)
	75%
	87.5%
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Description automatically generated]
Figure 1 RSRP difference CDF plot for Tx beam prediction with fixed Set-B

The results show that the AI/ML models can give satisfactory performance with significant RS overhead reduction. As the size of the Set-B is reduced that, the prediction accuracy of the model reduces.
Observation 1: For BM-Case1 DL Tx beam prediction with 100% outdoor UE distribution, when Set B is a subset of Set A and Set-B pattern is fixed, AI/ML can provide good beam prediction performance with less measurement/RS overhead.
Observation 2: For the case when Set B of beams is fixed, evaluation results show that the beam prediction accuracy degrades by approximately 18.7% in terms of Top-1 beam prediction accuracy when the size of Set-B is reduced from 1/4 of Set-A size to 1/8 of Set-A size.
Observation 3: For the case when Set B of beams is fixed, evaluation results show that the beam prediction accuracy degrades by approximately 16.8% in terms of Top-1 beam prediction accuracy when the UE distribution is changed from 100% outdoor to 80% indoor, 20% outdoor.
Tx-beam prediction with variable Set-B pattern
In this section we investigate the effect of variable set-B pattern, focusing on the option where Set-B pattern is randomly changed amongst a set of pre-configured patterns. Implicit information of the beam ID is given as input to NN, by constructing the input vector with size same as Set-A. A particular element in the vector has an RSRP value if the beam corresponding to the element index is in Set-A otherwise the element will have a value of 0. So, an element in the input vector can have an RSRP value or 0 value depending on the Set-B pattern.
We have considered the case when all the Set-B patterns have 1/4 beams of Set-A. As for the number of patterns, we have considered 4 different patterns.
The KPI results for Tx-Beam prediction with 100% outdoor UE and variable Set-B patterns are summarized in Table 4. We considered data from a single sector for training and inference. In the Tables we show the Top-K beam predication accuracy for K=1, 2, 3, and 5 and the average RSRP difference. The CDF plot for RSRP difference is shown in Figure 2.
Table 4 AI/ML model Performance for Tx beam prediction with Variable Set-B pattern.

	Parameters
	CEWiT (BM-Case1)

	Beam pair assumptions
	Number of beam pairs in Set A
	32

	
	Number of beam pairs in Set B
	8 (1/4 of Set-A)
4 different patterns

	
	Baseline scheme
	Best beam within Set A via exhaustive beam pair search (i.e., Option 1)

	AI/ML model
input/output
	Model input
	L1-RSRPs of Set-B Tx Beam using best Rx beam, implicit Tx beam ID

	
	Model output
	RSRPs of Tx beam in Set A

	Data Size
	Training
	~30,000 samples

	
	Testing
	~4,000 samples

	AI/ML model
	Short model description
	3-layer DNN 

	
	Model complexity
	~85,000 parameters

	
	Computational complexity
	~15000 FLOPS

	Evaluation results
with AI/ML / baseline
	Beam prediction accuracy (%)
	Top-1/1
	57.60%

	
	
	Top-2/1
	74.49%

	
	
	Top-3/1
	82.24%

	
	
	Top-5/1
	90.00%

	
	L1-RSRP Diff
	Average L1-RSRP diff. 
	1.04 dB

	
	System performance
	RS overhead Reduction/
RS overhead (N)
	75%



[image: ]
Figure 2 CDF plot for RSRP difference for tX b eam prediction with variable Set-B
The results show that there is a slight degradation in performance, when the Set-B beam pattern is varied.
Observation 4: For BM-Case1 DL Tx beam prediction, for the case when Set B of beams is variable, evaluation results show that the beam prediction accuracy degrades by approximately 12.6% in terms of Top-1 beam prediction accuracy when compared to the cased when Set-B of beams is fixed.
Tx-Rx beam pair prediction with fixed Set-B pattern
In this case the AI/ML model is used to predict the best beam pair. Set A consists of all the L1-RSRP measurement for all the possible Tx and Rx beam pairs and Set B consists of L1-RSRP measurements from a subset of transmit-receive beam pairs. 

While generating the dataset, we assumed 100% outdoor UE distribution and UMa deployment scenario. The size of Set-B is 1/2 of Set-A size. The beams in Set-B correspond to 8 different Tx beams measured using 8 Rx beams.
The KPI results for Tx-RX beam pair prediction with 100% outdoor UE and fixed Set-B patterns are summarized in Table 5. We considered data from a single sector for training and inference. In the Tables we show the Top-K beam predication accuracy for K=1, 2, 3, and 5 and the average RSRP difference. The CDF plot for RSRP difference is shown in Figure 3.

Table 5 AI/ML model Performance for Tx-Rx beam pair prediction.

	Parameters
	CEWiT (BM-Case1)

	Beam pair assumptions
	Number of beam pairs in Set A
	256

	
	Number of beam pairs in Set B
	64 (1/4 of Set-A)

	
	Baseline scheme
	Best beam within Set A via exhaustive beam pair search (i.e., Option 1)

	AI/ML model
input/output
	Model input
	L1-RSRPs of Set-B Tx Beam using best Rx beam, implicit Tx beam ID

	
	Model output
	RSRPs of Tx beam in Set A

	Data Size
	Training
	~30,000 samples

	
	Testing
	~4,000 samples

	AI/ML model
	Short model description
	3-layer DNN 

	
	Model complexity
	~85,000 parameters

	
	Computational complexity
	~15000 FLOPS

	Evaluation results
with AI/ML / baseline
	Beam prediction accuracy (%)
	Top-1/1
	50.70%

	
	
	Top-2/1
	67.45%

	
	
	Top-3/1
	74.22%

	
	
	Top-5/1
	81.87%

	
	L1-RSRP Diff
	Average L1-RSRP diff. 
	0.899dB

	
	System performance
	RS overhead Reduction/
RS overhead (N)
	75%
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Figure 3 CDF plot for RSRP difference for Tx-RX beam pair prediction using fixed Set-B.
The results show that AI/ML models can achieve performance close to baseline scheme with reduced overhead. For e.g. for 100% outdoor users, AI/ML model can achieve a Top-5 accuracy of 81.87% with an overhead reduction of 75%. 
Observation 5: For BM-Case1 DL Tx-Rx beam pair prediction, for the case when Set B of beams is fixed, evaluation results show that AI/ML can provide good beam prediction performance in terms of Top-5/1 prediction accuracy with less measurement/RS overhead.
Results for generalization evaluation
In this section we present our results for model generalization for the three different cases of generalization. For generalization evaluations, we generated dataset for three different configurations by varying the outdoor/indoor user ratios and deployment scenarios. The details of the dataset generated are given below.
· Dataset-1: UMa, 100% outdoor.
· Dataset-2: UMa 80% indoor, 20% outdoor.
· Dataset-3: UMi 100% outdoor.
As per the agreement made at the previous RAN#1 meetings, we evaluate three different cases of generalization.
· Case 1: The AI/ML model is trained and tested using the same dataset.
· Case 2: The AI/ML model is trained using one dataset and tested using another dataset.
· Case 3: The AI/ML model is trained using a mix of 2 datasets and tested using one of the datasets from the mix.

Depending on the dataset used and the generalization case considered, we have performed evaluations for the following different scenarios.
· Scenario 1: Generalization case 1 and dataset used is dataset 1.
· Scenario 2: Generalization case 1 and dataset used is dataset 2.
· Scenario 3: Generalization case 1 and dataset used is dataset 3.
· Scenario 4: Generalization case 2 and dataset used is dataset-1 for training and dataset-2 for testing.
· Scenario 5: Generalization case 2 and dataset used is dataset-1 for training and dataset-3 for testing.
· Scenario 6: Generalization case 3 and dataset used is dataset-1 and dataset-2 for training and dataset-1 for testing.
· Scenario 7: Generalization case 3 and dataset used is dataset-1 and dataset-3 for training and dataset-1 for testing.

For all the evaluations here, we use a fixed Set-B pattern which has size of 1/4 of Set-A size.
The results for generalization evaluation are summarized in Table 6. For all the evaluations, we used the data from a single sector for both training and testing. The CDF plots for RSRP difference is shown in Figure 5.
Table 6 Generalization results


	Generalization Type/Dataset used
	Top-1 Accuracy
	Average RSRP Difference (dB)

	
	
	

	Scenario 1
	70.2%
	0.29

	Scenario 2
	53.32%
	0.91

	Scenario 3
	66.39%
	0.26

	Scenario 4
	42.46%
	0.85

	Scenario 5
	63.76%
	0.29

	Scenario 6
	55.20%
	1.15

	Scenario 7
	71.04%
	0.19




Figure 4 RSRP CDF plots for generalization evaluation
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Figure 5 CDF plot for RSRP difference for generalization evaluation.
We observe from the results that, the performance of the model that is trained only on data from one scenario is low when compared to the case when the model is trained on a mix of data from different scenarios. For e.g., for scenario-4 when the model is trained only on data with 100% outdoor users and then tested on data from 80% indoor, 20% outdoor  users, the Top-1 accuracy is 42.46%%. But when the training data is a mix of both 100% outdoor users and 80% indoor, 20% outdoor  users, the Top-1 accuracy becomes 55.20%.
Observation 6: For BM-Case1 DL Tx beam prediction, when Set B is a subset of Set A, AI/ML can provide good beam prediction performance with less measurement/RS overhead when considering generalization aspects with the measurements from the best Rx beam without UE rotation.
Observation 7: For BM-Case1 DL Tx beam prediction, when generalization aspects are considered, the evaluation results show that, training the AI/ML model on a mix of dataset can improve the performance of the AI/ML model in terms of Top-1/1 prediction accuracy.
Conclusion
In this contribution we make the following observations.
Observation 1: For BM-Case1 DL Tx beam prediction with 100% outdoor UE distribution, when Set B is a subset of Set A and Set-B pattern is fixed, AI/ML can provide good beam prediction performance with less measurement/RS overhead.
Observation 2: For the case when Set B of beams is fixed, evaluation results show that the beam prediction accuracy degrades by approximately 18.7% in terms of Top-1 beam prediction accuracy when the size of Set-B is reduced from 1/4 of Set-A size to 1/8 of Set-A size.
Observation 3: For the case when Set B of beams is fixed, evaluation results show that the beam prediction accuracy degrades by approximately 16.8% in terms of Top-1 beam prediction accuracy when the UE distribution is changed from 100% outdoor to 80% indoor, 20% outdoor.
Observation 4: For BM-Case1 DL Tx beam prediction, for the case when Set B of beams is variable, evaluation results show that the beam prediction accuracy degrades by approximately 12.6% in terms of Top-1 beam prediction accuracy when compared to the cased when Set-B of beams is fixed.
Observation 5: For BM-Case1 DL Tx-Rx beam pair prediction, for the case when Set B of beams is fixed, evaluation results show that AI/ML can provide good beam prediction performance in terms of Top-5/1 prediction accuracy with less measurement/RS overhead.
Observation 6: For BM-Case1 DL Tx beam prediction, when Set B is a subset of Set A, AI/ML can provide good beam prediction performance with less measurement/RS overhead when considering generalization aspects with the measurements from the best Rx beam without UE rotation.
Observation 7: For BM-Case1 DL Tx beam prediction, when generalization aspects are considered, the evaluation results show that, training the AI/ML model on a mix of dataset can improve the performance of the AI/ML model in terms of Top-1/1 prediction accuracy.
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Appendix
	Parameters
	Values

	Frequency Range
	FR2 @ 30 GHz
· SCS: 120 kHz

	Deployment
	200m ISD,
· 2-tier model with wrap-around (7 sites, 3 sectors/cells per site)

	Channel mode
	UMa with distance-dependent LoS probability function defined in Table 7.4.2-1 in TR 38.901.

	System BW
	80MHz

	UE distribution
	· For spatial domain beam prediction: 
· Option 1: 100% outdoor
· Option 2: 80% outdoor
· Option 3: 60% outdoor
· For time domain prediction: 100% outdoor
· 10 UE per sector

	BS Antenna Configuration
	antenna setup and port layouts at gNB: (4, 8, 2, 1, 1, 1, 1), (dV, dH) = (0.5, 0.5) λ
Azimuth angles (degrees) = [-78.75, -56.25, -33.75, -11.25, 11.25, 33.75, 56.25, 78.75]
Zenith angles (degrees) = [85.5, 94.5, 99, 103.5]

	UE Antenna Configuration
	antenna setup and port layouts at UE: (1, 4, 2, 1, 2, 1, 1), 2 panels (left, right) 
Azimuth angles (degrees) = [ -67.5, -22.5, 22.5, 67.5]

	BS Tx Power
	40dBm (baseline)

	Maximum UE Tx Power
	23 dBm

	BS receiver Noise Figure
	7 dB

	UE receiver Noise Figure
	10 dB

	Inter site distance
	200m

	BS Antenna height
	25m

	UE Antenna height
	1.5 m

	Car penetration Loss
	38.901, sec 7.4.3.2: μ = 9 dB, σp = 5 dB
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