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[bookmark: _Ref4683067] Introduction 
Artificial intelligence (AI)/machine learning (ML) for NR air interface has been approved as a study item in Release 18 ‎[1]. In RAN WG1 #110‎ [2]-#112bis-e‎ ‎[9], potential of AI/ML models for enhancing CSI feedback has been revealed, and essential KPIs, training strategies, and evaluation methodologies for pilot studies have been agreed. In this contribution, for CSI compression sub use case, we further study AI/ML models’ capability of improving CSI feedback for channel models in ‎[4], training strategies, generalization, quantization, data collection, and monitoring for two-sided AI/ML models. For CSI prediction, we have studied potential of AI/ML model compared to conventional methods and also examined the generalizability of AI/ML models from one scenario/configuration to another and on mixed datasets. 
[bookmark: _Hlk126161272]CSI Compression
We adopt autoencoder (AE)-based AI/ML model to compress CSI feedback, where the AI/ML-based encoder at the UE is responsible for providing an abstract representation of CSI, and the AI/ML-based decoder at the gNB reconstructs CSI. CSI can be fed back either in the form of precoders or channel gains. While the potential of AE-based AI/ML models in compressing channel gains has already been verified in ‎[5], we turn our focus on compressing CSI in the form of precoders, i.e., eigenvectors (EVs for simplicity), in this contribution. 
[image: ]
[bookmark: _Ref115254118]Figure ‎2‑1: A high-level illustration of AE-based CSI compression
As shown in Figure 2-1, in our AI/ML model of interest, UE first extracts a set of EVs from the estimated channel gains in a desired frequency granularity, e.g., a resource block (RB) or a sub-band (SB) including multiple RBs. A sample-invariant or sample-variant pre-processing may be applied on the EVs to either inject a desired statistic or translate the EVs to an intermediate representation domain. The pre-processed EVs will be compressed, quantized, and converted into bits to be sent toward the gNB. Feedback from a UE to the gNB includes information of CSI and may also include useful information about the pre-processing applied at the UE. The pre-processing information is not needed to be a part of feedback unless the pre-processing stage involves sample-variant functions with effects that have to be reverted or considered at the gNB, e.g., categorization, per-sample normalization, etc. We believe this kind of pre-processing approaches drastically impact the realization of multi-vendor environments. The scope of such pre-processing approaches should be limited to the single-vendor environment, or detailed information about their additional feedback overhead should be revealed by proponents. At the gNB side, the received feedback will be dequantized, decompressed, and possibly post-processed. The post-processed information is leveraged to design precoders at the gNB.
	Evaluation Methodology
Our evaluation scopes for CSI compression are as follows:
· AI/ML models’ potential for CSI compression in terms of overhead, accuracy, and throughput 
· New KPIs and baselines for evaluation of AI/ML models or training techniques
· Generalization of AI/ML models over various scenarios/configurations, input, and payloads
· Strategies for training single or multiple two-sided AI/ML modes from different UE/gNB vendors
· Quantization schemes for data collection and latent output of two-sided AI/ML models
· AI/ML model monitoring suited for two-sided AI/ML model in CSI compression sub use case
Datasets
[bookmark: _Hlk110337592]Simulation Assumption: To train and evaluate AI/ML models, we have resorted to datasets according to channel models specified in TR 38.901 ‎[4] and parameters presented in Table ‎6‑1 in Section ‎6.1 for CSI compression. For generalization purposes, we have also combined subsets of Dataset 1-3 to create a mixed dataset over layer and rank dimensions. 
Avoiding input/output disorder: The input/output disorder has been noted as a possible issue when input CSI is ideal/realistic while the output CSI is realistic/ideal. This discrepancy may cripple the evaluation of AI/ML models and blur the real capability of AI/ML models in compressing CSI. As stated in ‎[8], the companies have to ensure input/output disorder is either properly treated or completely avoided.  
	Working assumption ‎[8] 
In the evaluation of the AI/ML based CSI feedback enhancement, if SGCS is adopted as the intermediate KPI for the rank>1 situation, companies to ensure the correct calculation of SGCS and to avoid disorder issue of the output eigenvectors
Note: Eventual KPI can still be used to compare the performance


We ensure correctness of our evaluations as: i) Input and output CSI we have used in our evaluations are either both realistic or both ideal. By avoiding any discrepancy, we ensure input/output disorder does not happen in our evaluations. ii) Due to promising performance, complexity, and generalization capability of layer-common AI/ML models, our evaluations mainly target this kind of AI/ML models for CSI compression. Input/output disorder is not the case for these AI/ML models as they process a single layer at a time.   
KPIs
Performance KPIs: We use Generalized Cosine Similarity (GCS), Squared Generalized Cosine Similarity (SGCS), and Normalized Mean Square Error (NMSE) as intermediate performance KPIs and use throughput as the ultimate performance KPI for CSI feedback enhancement sub use cases. 
Complexity KPIs: The complexity of AI/ML models are measured in terms of floating-point operations (FLOPs) and number of parameters, which respectively indicate computational and storage requirements of AI/ML models in final deployment stage. We also report these KPIs separately as discussed in ‎[3] for encoder (CSI generation) and decoder (CSI reconstruction) parts of AI/ML models.
Baselines
Baseline for generalization: To quantify generalization of an AI/ML model from one scenario/configuration to another, we have measured and compared performance KPI of the generalized and dedicated AI/ML models in the test setting (scenario/configuration which may be different from training scenario/configuration depending on the generalization case).
Baseline for quantization: To measure the effectiveness of a quantization method, we have measured its performance compared to that achieved by training-non-aware non-learnable uniform scalar quantizer as the baseline. In our baseline scheme, an autoencoder is first trained without any quantization in forward pass or backpropagation. Once training is finished, then the quantization is applied in the forward pass during the inference stage.
[bookmark: _Hlk118112067][bookmark: _Hlk118112171]Baseline for training strategies: In evaluation of different training strategies, the performance of joint training is adopted as the performance baseline for matched and unmatched pairs of single-encoder and single-decoder. For the setting with more than one encoder or one decoder, we suggest using two baselines: i) to measure the performance loss/gain achieved by a training strategy, we use the performance of the same encoder(s)-decoder(s) setting with Type 2 (joint) training as the baseline; and ii) performance of single-encoder single-decoder with the same training type to measure how the number of encoders/decoders affect the performance of final AI/ML models in inference. 
Performance of AI/ML Models in CSI Compression
[bookmark: _Hlk131754123]We have evaluated the performance of the AI/ML model shown in Figure 2-1 and compared it with eType II codebook. We particularly focused our evaluation on Dataset 1 with parameters specified in Table ‎6‑1 and used the same SLS parameter configuration to evaluate eType II codebook. The evaluation confirms the superior performance of AI/ML model in terms of overhead (OH) and spectral efficiency (SE). The evaluation result is illustrated in Figure ‎2‑2.  Most importantly, given the marginal SE gain achieved by AI/ML model in return of a huge computational and storage complexity, replacing eType II with AI/ML model for CSI feedback enhancement is highly questionable. 
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[bookmark: _Ref131754303]Figure ‎2‑2: SE performance of AI/ML models versus eType II codebook.
AI/ML Model for Rank>1
The effective design of AI/ML models for channels with rank>1 has been subject of further studies to identify best approach for dealing with different ranks/layers and extend current KPIs to rank>1 case ‎[3]. For CSI compression sub use case, layer-specific and rank-specific models manifold the number of AI/ML models need to be deployed at gNBs and UEs. Given the possible number of scenarios and configurations, it is infeasible to train and deploy a dedicated AI/ML model for each. In fact, it is the objective of generalization efforts to avoid dedicated designs like layer-specific and rank-specific AI/ML models. On the other, rank-specific designs are not suited for UE vendors as stacking layers, to process them jointly, will drastically increases AI/ML models’ complexity. In this regard, we believe designing elegant layer-common AI/ML models which treat layers individually with high accuracy is of greater importance. Also, the generalization of layer-common AI/ML models from higher channel ranks to lower channel ranks are quite clear and expected. To support this down selection, we have evaluated and compared the performance of a layer-common AI/ML model and two layer-specific AI/ML models for rank-2 channels of Dataset 1. Our results implicate that similarity of semantic features among different layers as input are relatively high, and there is no pressing need for training dedicated (layer-specific) AI/ML models for each layer. As shown in Table 2-1, the layer-common AI/ML model not only does not underperform but it also respectively achieves 1.18% and 1.55% SGCS gain for layer 0 and layer 1 of rank-2 channels compared to layer-specific AI/ML models. In lieu of this observation, we believe at least among the layer-specific and layer-common AI/ML models, the layer-common AI/ML model design is a more favorable option for both UEs and gNBs.
[bookmark: _Ref115286569]Table ‎2‑1: Comparison of layer-common and layer-specific models for rank-2 channels in terms of SGCS
	[bookmark: _Hlk115286785]FB bits
	48
	60
	72
	84
	96
	108
	120
	180
	240
	300

	Layer-specific:   L0
	0.721
	0.728
	0.733
	0.740
	0.748
	0.753
	0.767
	0.832
	0.846
	0.857

	Layer-common: L0
	0.724
	0.734
	0.741
	0.746
	0.752
	0.755
	0.783
	0.845
	0.869
	0.865

	Layer-specific:   L1
	0.584
	0.599
	0.612
	0.642
	0.619
	0.627
	0.630
	0.694
	0.745
	0.759

	Layer-common: L1
	0.590
	0.605
	0.616
	0.623
	0.630
	0.635
	0.663
	0.728
	0.762
	0.759


Generalization of AI/ML Models for CSI Compression
In the context of AI/ML research, generalization capability of a model is commonly referred to its success upon encountering unseen data with the same distribution as that of the training dataset. One may consider a generalizable AI/ML model as a robust one which is not suffering from overfitting, and it equally performs well in both training and inference phases. However, the generalization issues discussed in RAN WG1 #110 ‎‎ [2] and RAN WG1 #111 ‎[7] include:
· “re-usage” where the distribution of data in training and inference phases are not necessarily the same
· “unification” where one unified model serves multiple datasets with different distributions (or a mixed dataset) to replace AI/ML models dedicated to each dataset
· “payload-scalability” where encoder and/or decoder handle CSI feedback with multiple payload sizes
Generalization Case 2 Over Rank and Layers
Per second case of generalization, AI/ML modes are re-used in unseen scenarios/configurations. To be specific, in this case of scenario/configuration generalization, the AI/ML models is trained on a dataset from a scenario/configuration which is different from that in inference phase. As such, the data samples that the AI/ML model will be exposed to are not necessarily drawn from the same distribution in training and inference phases. Therefore, we use “generalization case 2” and “re-usage” interchangeably in this contribution. The re-usage of AI/ML models has prominent benefits: i) Using AI/ML models trained on more frequent settings as an initial point of training for AI/ML models targeting rare settings, ii) Temporary solution if a dedicated AI/ML model fails due to any reason, and iii) Rectifying the need for dedicated models and reducing the number of AI/ML models stored at UEs or gNBs. As a pilot study on feasibility of re-using AI/ML models (case 2 of generalization), we focus on the following two cases:
· Generalization case 2 over layers: We focus on rank-2 channels of datasets represented in Table ‎6‑1. Separating EVs of layer 0 and layer 1 of rank-2 channels into two sub-datasets, we train an AI/ML model on a sub-dataset and perform inference on another. Figure ‎2‑3(a) shows an example of layer-level generalization case 2 (training on layer 0 and inference on layer 1)
· Generalization case 2 over ranks: We focus on rank-1 and rank-2 channels of datasets represented in Table ‎6‑1. Separating EVs from different channel ranks into two sub-datasets, we train an AI/ML model on a sub-dataset and perform inference on another. Figure ‎2‑3(b) shows an example of rank-level generalization case 2 (training on rank 1 and inference on rank 2)
	[image: ]
(a) Layer-level generalization case 2
	[image: ]
(b) Rank-level generalization case 2


[bookmark: _Ref111110450]Figure ‎2‑3: Examples of AI/ML model re-usage (generalization case 2) for eigenvector compression
To evaluate layer-level and rank-level re-usage, we have considered case 1 of generalization (i.e., a dedicated model trained and inferenced on the same sub-dataset) as the baseline. The results are shown in Figure ‎2‑4 to Figure ‎2‑9 and confirms the feasibility of re-using AI/ML models to unseen scenarios/configurations (generalization case 2) on both rank and layer dimensions. On average over evaluation settings with 100~300 bits of CSI feedback, re-usage of AI/ML models (case 2 of generalization) at layer level causes 1.29% GCS degradation. We have also observed, on average over evaluation settings with 100~300 bits of CSI feedback, re-usage of AI/ML models (case 2 of generalization) at rank level causes 1.13% GCS degradation.
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[bookmark: _Ref111110506]Figure ‎2‑4: Layer-level re-usage of AI/ML models for Dataset 1
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Figure ‎2‑5:  Rank-level re-usage of AI/ML models for Dataset 1
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Figure ‎2‑6: Layer-level re-usage of AI/ML models for Dataset 2
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Figure ‎2‑7:  Rank-level re-usage of AI/ML models for Dataset 2
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Figure ‎2‑8: Layer-level re-usage of AI/ML models for Dataset 3
	[image: ]
[bookmark: _Ref111110517]Figure ‎2‑9:  Rank-level re-usage of AI/ML models for Dataset 3


Generalization Case 3 Over Layers
Generalization case 3 deals with training a unified model covering multiple scenarios/configurations, thereby we use “unification” and “generalization case 3” interchangeably. Unification stands in contradiction to dedicated training where one model is responsible for handling a single scenario/configuration. As the number of possible scenarios/configurations dealing with CSI compression is numerous, storing and maintaining dedicated models at UEs and the gNB are not pragmatic. This makes unification (generalization case 3) approach a necessity for the prospect of “AI/ML for NR air interface”.  To examine feasibility and potential of unification, we conduct a pilot study on using a unified model for EV compression. We specifically compare generalization case 1 and case 3 of a layer-common AI/ML model for rank-2 channels in Dataset 1, 2, and 3.
· Generalization Case 1: A dedicated model is trained on EVs of layer  and is responsible for their compression, where and. The performance of dedicated AI/ML modes are used as the baseline.
· Generalization Case 3: A unified model is trained on EVs of layer 0 and 1 to compress all EVs.
For training a unified model, EVs from both layers equally contributes to forming a mixed dataset. We also treat them equally important for calculating training loss and test accuracy through a simple averaging over both layers. The evaluation results are presented in Figure ‎2‑10 to Figure ‎2‑15. Our evaluation result show that  a unified AI/ML model (generalization case 3) not only does not degrade the feedback accuracy, but it also achieves 0.46% higher GCS accuracy compared to the dedicated AI/ML models for both layers. Also,  a unified AI/ML model (generalization case 3) shows 5.8% higher GCS accuracy for EVs of layer 0 compared to those belonging to layer 1. The similar trend has also been observed among the dedicated AI/ML models.  
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[bookmark: _Ref111196126]Figure ‎2‑10: Layer-level unification of AI/ML models for Dataset 1
	

Figure ‎2‑11: Performance of unified AI/ML models for layers 0 and 1 of Dataset 1
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Figure ‎2‑12: Layer-level unification of AI/ML models for Dataset 2
	

Figure ‎2‑13: Performance of unified AI/ML models for layers 0 and 1 of Dataset 2
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Figure ‎2‑14: Layer-level unification of AI/ML models for Dataset 3
	
[bookmark: _Ref111196130]Figure ‎2‑15: Performance of unified AI/ML models for layers 0 and 1 of Dataset 3


[bookmark: _Hlk115295456]Generalization Over Carrier Frequency
We conduct an experiment to study generalization ability of AI/ML models over carrier frequency. We particularly study generalization of AI/ML models over 2GHz and 3.5GHz. As the baseline, we use two dedicated AI/ML models which are respectively trained based on the data collected at  2GHz and 3.5GHz. Our evaluation scenarios are three folds:
· Dedicated AI/ML models for 2GHz and 3.5GHz
· AI/ML model trained at 2GHz/3.5GHz and tested at 3.5GHz/2GHz
· AI/ML model trained on a mixed dataset collected at 2GHz and 3.5GHz
[bookmark: _Hlk134788555]We collected 600k CSI samples with 13 SBs, 32 Tx ports, and rank 1. Our evaluation results are shown in Table ‎2‑2.
[bookmark: _Ref134788498]Table ‎2‑2: Evaluation results for generation of AI/ML models over carrier frequency
	Evaluation Scenario
	52 bits
	128 bits
	256 bits

	Train@2GHz, Test@3.5GHz
	-0.1%
	+0.5%
	+0.4%

	Train@3.5GHz, Test@2GHz
	+0.3%
	-0.5%
	-0.2%

	Train@2GHz+ 3.5GHz
	Test@2GHz
	0.0%
	-0.8%
	-0.2%

	
	Test@3.5GHz
	-0.3%
	-0.3%
	+0.1%



Our results indicate generalization over carrier frequency is feasible. For generalization case 2, it does not cause any degradation in overall. For generalization case 3, it causes 0.3% degradation on average and 0.8% at most. Also, our results indicate the generalization from a lower carrier frequency to a higher carrier frequency is more promising.
 Generalization over carrier frequency is feasible. For 2GHz and 3.5GHz, the SGCS degradation is 0% for generalization case 2, and 0.3% for generalization case 3.
 For generalization case 2, generalization from a lower frequency to a higher frequency is more promising compared to the opposite direction.
Generalization Over UEs’ Deployment
We study the opportunity of using a unified AI/ML model and re-using AI/ML models over UEs’ deployment. We particularly focused on collecting two datasets from UMa and Umi deployments of UEs. Our evaluation scenarios are as follows:
· Dedicated AI/ML models for UMa and UMi deployments
· AI/ML model trained at UMa/UMi deployment and tested at UMi/UMa deployment
· AI/ML model trained on a mixed dataset collected at UMa and UMi deployments
We collected 600k CSI samples with 13 SB, 32 Tx port, and rank 1 to perform evaluations. Our experimental results are shown in Table ‎2‑3. It can be seen the generalization over UEs’ deployment is feasible as the performance degradation is 1.1% for generalization case 2 and 0.6% for generalization case 3. It is also clear that UMa channels are more difficult to compress. That is why in generalization case 2, generalization from UMa to UMi is more promising than generalization from UMi to UMa.
[bookmark: _Ref134788583] Table ‎2‑3: Evaluation results for generation of AI/ML models over UEs’ deployment
	Evaluation Scenario
	52 bits
	128bits
	256bits

	Train@UMa, Test@UMi
	-0.9%
	+0.2%
	+0.1%

	Train@UMi, Test@UMa
	-1.4%
	-2.8%
	-2.1%

	Train@UMa + UMi
	-1.6%
	-1.6%
	-1.0%
	-0.5%

	
	-0.8%
	-0.8%
	+0.1%
	+0.2%



 Generalization over UEs’ deployment is feasible. SGCS degradation is 1.1% for generalization case 2 and 0.6% for generalization case 3.
 In generalization case 2, generalization from UMa to UMi is more promising than generalization from UMi to UMa.
Generalization on CSI feedback size (payload-scalability)
As another dimension of unifying AI/ML models, we can design AI/ML models that are able to handle more than one CSI feedback size. Rectifying the need for storing and compiling multiple dedicated encoders or decoders for each CSI feedback size relaxes the storage and LCM burden at both UE and gNB sides. The unification can embrace the CSI generation part (encoder) and/or CSI reconstruction part (decoder). Therefore, upon deployment in the inference stage, one of the following three cases can be leveraged in handling different CSI feedback sizes for CSI compression.
· One payload-scalable encoder serves multiple fixed-payload/payload-scalable decoders
· One payload-scalable decoder serves multiple fixed-payload/payload-scalable encoders
· One payload-scalable encoder serves one payload-scalable decoder
In this contribution, we have evaluated the latter case and showed it is feasible to design payload-scalable encoders and decoders to form a payload-scalable autoencoder which is able to generate CSI feedback with various sizes. The feasibility of this case concludes the feasibility of the other two cases. The general architecture of payload-scalable autoencoder is shown Figure ‎2‑16.  

[image: ]
[bookmark: _Ref131547278]Figure ‎2‑16: General structure of payload-scalable AI/ML model for CSI compression
[bookmark: _Hlk131550040]As shown in Figure ‎2‑16, in the training stage, the encoder first receives a CSI sample and generates an intermediate vector of fixed length. The intermediate vector is down-sampled at different rates using different fully-connected layers each of which generates a CSI feedback with a pre-defined size. Therefore, the number of payload sizes that the encoder can handle equals to the number of these down samplers. The generated CSI feedback flows into the decoder part, each CSI feedback will be up-sampled using a fully-connected layer, a.k.a. up-samplers. The up-samplers revert the CSI feedback with different sizes to a fixed length which is expected by the rest of decoder. The decoder recovers the CSI samples and compares them with the target CSI. The final loss is averaged over losses from all CSI reconstructions and used for the sake of backpropagation. In the inference stage, only one up-sampling and down-sampling branch will be used based on the desired CSI feedback size/accuracy. We have trained such payload-scalable AI/ML models with two and three feedback sizes and compared their performance with AI/ML models exclusively designed for each size (as the benchmark). The results of our evaluation are shown in Table ‎2‑4.
[bookmark: _Ref131548002]Table ‎2‑4: Performance of payload-scalable and dedicated AI/ML models for CSI compression
	
	Ref 1
	Ref 2
	Ref 3
	2-rates #1
	2-rates #2
	2-rates #3
	3-rates

	SGCS loss – 52bits
	0%
	-
	-
	-0.42%
	-0.84%
	-
	-1.12%

	SGCS loss-104 bits
	-
	0%
	-
	-1.17%
	-
	-1.44%
	-2.35%

	SGCS loss-208 bits
	-
	-
	0%
	-
	-3.81%
	-2.21%
	-4.05%

	Enc. Param (M)
	0.294
	0.316
	0.359
	0.462
	0.473
	0.479
	0.484

	Enc. Flop (M)
	7.105
	7.148
	7.235
	7.440
	7.462
	7.473
	7.483

	Dec. Param (M)
	0.560
	0.582
	0.625
	0.604
	0.647
	0.669
	0.692

	Dec. Flop (M)
	13.947
	13.990
	14.077
	27.938
	28.025
	28.068
	42.016

	Total Param (M)
	0.855
	0.898
	0.985
	1.067
	1.121
	1.148
	1.176

	Total Flop (M)
	21.052
	21.139
	21.312
	35.379
	35.487
	35.541
	49.499



In our evaluation, we have considered three CSI payload sizes of 52, 104, and 208 bits which can be classified as low, medium, and high feedback sizes according to ‎[8]. As the benchmark, we have evaluated the dedicated AI/ML models marked by Ref 1 to Ref 3 in Table ‎2‑4. Our evaluation results show an AI/ML model can handle multiple CSI feedback sizes with negligible SGCS performance loss compared to the dedicated AI/ML models. The average SGCS loss is only -1.6% if two feedback sizes are handled and is -2.5% if three feedback sizes are handled by the payload-scalable AI/ML model. This performance loss is negligible considering the huge gain achieved in terms of storage requirements of AI/ML models. Payload scalability of AI/ML models can bring 59.4% and 57.0% storage gains if generalized AI/ML model handles two and three CSI feedback sizes, respectively.  
 SGCS loss from payload scalability is only -1.6% and -2.5% for two and three rates, respectively. The SGCS loss increases as the difference between payload lengths increases. 
Payload scalability saves 59.4% and 57.0% storage for two and three rates, respectively.
Another interesting results in Table ‎2‑4 is that as the difference between CSI feedback sizes increases, the SGCS loss increases as well. For examples, handling feedback sizes with 52 and 104 bits causes less SGCS loss compared to the case AI/ML model handles feedback sizes of 52 and 208 bits. Also, it is observed that as accuracy/length of feedback size increases, it suffers from higher SGCS loss in generalization.
[bookmark: _Hlk131552045]The architecture shown in Figure ‎2‑16 is one of the possible solutions to realize payload-scalable AI/ML models. The other examples are shown in Figure ‎2‑17. As shown in Figure ‎2‑17(a), payload-scalability at the encoder can be achieved by applying different quantization methods with various codeword lengths. At the decoder side, each feedback size corresponds to a dedicated dequantizer for CSI reconstruction. Another example is shown in Figure ‎2‑17 (b), where various CSI feedback sizes are generated by splitting the encoder’s latent output into segments with different sizes. At the decoder side, the dropped part of latent can be replaced with zero padding. The zero-padded vector is of a pre-defined length expected by the decoder and used for CSI reconstruction. As you can notice, the method for achieving the payload scalability at the encoder implicates the desired CSI recovery method at the decoder and vice versa. Therefore, it needs to be studied whether payload-scalability methods need to be aligned between payload-scalable encoders and decoders or not.
 Study alignment requirement for payload-scalability methods between CSI generation and CSI reconstruction parts of AI/ML models.
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(a) Scalability achieved by quantization 
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(b) Scalability achieved by splitting latent output


[bookmark: _Ref131551115]Figure ‎2‑17: Examples of achieving payload-scalability in AI/ML models for CSI
Finally, each generalized CSI generation and reconstruction part are responsible for handling more than one CSI feedback size. In the lifecycle of a generalized model, it is possible that the AI/ML model fails to meet the monitoring criteria for one feedback size while it meets the criteria for the other settings. As such, complete deactivation/switching of such an AI/ML model deprive the UE/gNB from all possible feedback sizes at once. In this regard, it is not clear whether one or multiple model IDs should be assigned to a generalized model. 
Discuss model ID assignment and relevant LCM issues for payload-scalable AI/ML models.
Generalization over I/O dimensions (I/O-scalability)
In order to reduce the number of AI/ML models that need to be maintained in the UEs and NWs, it in inevitable to avoid using dedicated model for each possible Tx and Rx port configuration. Therefore, a promising direction is to train I/O-scalable AI/ML models that can handle different I/O dimensions within a fixed architecture. We study possibility of designing such AI/ML models through two different approaches.
Padding-truncation:  As shown in Figure ‎2‑18, the core AI/ML model has nominal input dimensions at its input and output. At the input side, if the actual input dimension does not match the nominal expected input dimension, we use zero padding across one or two dimensions if needed to increase the dimension of input with the nominal dimension. At the output side, we truncate the part of nominal output that corresponds to the padded part. 
[image: ]
[bookmark: _Ref134790526]Figure ‎2‑18: Padding-truncation approach to design I/O-scalable AI/ML models

Adaptation layer:  As shown in Figure ‎2‑19, in the case of dimension mismatch between actual input and nominal input to the core AI/ML model or between nominal output and actual output, an adaptation layer is used. Adaption layer maps its input to an output with desired dimension.
[image: ]
[bookmark: _Ref134790775]Figure ‎2‑19: Using adaptation layers for designing I/O-scalable AI/ML models
We have evaluated both ideas in designing a generalized model and studied the potential benefit of each. Our experimental results for padding-truncation and adaptive layer-based approaches are respectively shown in Table ‎2‑5 and Table ‎2‑6. The following observations are made based on our evaluation results.
[bookmark: _Ref134796896]Table ‎2‑5: Performance of the I/O-scalable AI/ML model designed based on padding-truncation approach
	OH (bits)
	SGCS (32 Tx, 12 SB)
	SGCS (16 Tx, 6 SB)
	Total Flop (M)
	Total parameters (M)

	48
	-2.0%
	-0.8%
	19.4 (+20.5%)
	0.8 (-55.9%)

	128
	-3.5%
	-1.8%
	19.6 (+21.0%)
	0.9 (-54.5%)

	256
	-1.1%
	-1.8%
	19.7 (+21.2%)
	1.0 (-52.7%)


[bookmark: _Ref134796907]Table ‎2‑6: Performance of the I/O-scalable AI/ML model designed based on adaptive layer-based approach
	OH (bits)
	SGCS (32 Tx, 12 SB)
	SGCS (16 Tx, 6 SB)
	Total Flop (M)
	Total parameters (M)

	48
	-0.8%
	-0.1%
	20.0 (+24.2%)
	1.1 (-40.9%)

	128
	-2.4%
	-1.7%
	20.1 (+24.1%)
	1.2 (-39.5%)

	256
	-1.2%
	-0.1%
	20.3 (+24.9%)
	1.3 (-38.7%)



I/O-scalable AI/ML models obtained through padding and truncation degrades the SGCS by 1.8% and offers 54% parameters reduction compared to dedicated AI/ML models.
 I/O-scalable AI/ML models obtained through padding and truncation increases FLOPs between 0% to 54% and 21% on average compared to dedicated AI/ML models.
 I/O-scalable AI/ML models with adaptation layers degrades the SGCS by 1.0% and offers 40% parameters reduction compared to dedicated AI/ML models.
I/O-scalable AI/ML models obtained through padding and truncation increases FLOPs between 1% to 59% and 24% on average compared to dedicated AI/ML models.
Comparing adaptation layers and padding-truncation for I/O-scalable AI/ML models, adaptation layers offer better performance at the cost of less storage reduction and more FLOPs.
Given the marginal gain achieved through using the adaptation layers at the cost of less storage reduction and more FLOPs, we suggest promoting the padding-truncation approach as the main framework for building I/O-scalable AI/ML models.
Study padding-truncation approach as the main framework for building I/O-scalable AI/ML models.
Study the trade-off between parameters reduction and FLOPs increase for I/O-scalable and payload-scalable AI/ML models.
Training Strategies
In this contribution, we evaluate different training strategies in a multi-vendor environment where encoder(s) and decoder(s) of the AE-based AI/ML model do not necessarily belong to the same vendor, thereby, not necessarily posing same architecture, type, training loss, optimizer, etc. By evaluating various types of encoders and decoders, we pursue the following objectives:
· Performance of each encoder/decoder type upon training 
· Performance loss/gain achieved by different training strategies 
· Vulnerability of certain encoder/decoder types in joint or separate training
· Requirements of each training strategy
To pursue our evaluation scopes, we resort to four AI/ML models with different architectures and computational capabilities. To be specific, we have used Model 1-4, where Model 1 and Model 2 use convolutional neural networks (CNN)-based AE. Model 3 and Model 4 employ Transformer (TF)-based AE for CSI compression. Complexity of these AI/ML models are measured for encoder and decoder parts separately in terms of FLOPs and number of parameters as agreed in ‎[2]. The complexity of models is shown in Figure ‎2‑20.
	[image: ]
(a) FLOPs
	[image: ]
(b) Number of parameters


[bookmark: _Ref115042659][bookmark: _Ref115042650]Figure ‎2‑20: Complexity of AI/ML models used for CSI compression

[bookmark: _Ref115343215]Training Type 2: Joint Training
We evaluate joint training first to offer a baseline for evaluation of the other training strategies. We focus on three different settings: i) single-encoder single-decoder setting, ii) multi-encoder single-decoder setting, and iii) single-encoder multi-decoder setting.
Single-Encoder Single-Decoder Setting
We pair encoder  from Model  with decoder  from Model  for  If , the pair is called a “matched pair” of encoder-decoder, and if , the pair is called an “unmatched pair” of encoder-decoder in the rest of this contribution. The joint training is implemented such that the paired encoder and decoder are trained in a single forward pass and backpropagation loop. We measure the GCS performance of each possible encoder-decoder pair with the four different models we described. We compare performance of unmatched pairs and matched pairs to identify possible performance gain/loss for UE and gNB within the join training strategy. We define UE’s and gNB’s gain as what follows:
· UE’s gain: Performance of (encoder  , decoder) compared to (encoder  , decoder) which is the matched pair designed by UE vendor before pairing (similar to Type 1)
· gNB’s gain: Performance of (encoder  , decoder) compared to (encoder  , decoder) which is the matched pair designed by gNB vendor before pairing (similar to Type 1)
[bookmark: _Ref115290270]Table ‎2‑7: UE’s gain from the joint training for single-encoder single-decoder setting
	
	
	
	Decoder

	
	
	
	Model 1
	Model 2
	Model 3
	Model 4

	
	
	Type
	CNN
	CNN
	TF
	TF

	Encoder
	Model 1
	CNN
	0.00%
	-0.11%
	-1.64%
	-2.23%

	
	Model 2
	CNN
	-0.23%
	0.00%
	-3.28%
	-4.09%

	
	Model 3
	TF
	-6.12%
	-6.12%
	0.00%
	-9.68%

	
	Model 4
	TF
	2.88%
	3.36%
	0.48%
	0.00%


[bookmark: _Ref115080288]
The UE’s and gNB’s gains for different pairs in training type 2 are shown in Table ‎2‑7 and Table ‎2‑8, respectively. It can be seen unmatched pairs suffer from performance loss compared to their paired designed either on UE or gNB sides.  On average over all unmatched pairs, UE loses 2.23% GCS performance and gNB loses 2.26%.  Also, the UE’s and gNB’s losses vary in a relatively large range, making some unmatched pairs more vulnerable than others in training type 2 (joint training). Overall, joint training on all pairs caused 1.68% performance loss.
[bookmark: _Ref131755943]Table ‎2‑8: gNB’s gain from joint training for single-encoder single-decoder setting
	
	
	
	Decoder

	
	
	
	Model 1
	Model 2
	Model 3
	Model 4

	
	
	Type
	CNN
	CNN
	TF
	TF

	Encoder
	Model 1
	CNN
	0.00%
	-0.35%
	-6.68%
	0.12%

	
	Model 2
	CNN
	0.00%
	0.00%
	-8.02%
	-1.56%

	
	Model 3
	TF
	-1.06%
	-1.29%
	0.00%
	-2.52%

	
	Model 4
	TF
	0.47%
	0.70%
	-6.90%
	0.00%



Define a mechanism/threshold to identify and avoid certain vulnerable pairings of encoders and decoders.
[bookmark: _Ref118137203][bookmark: _Hlk118120721]Multi-Encoder Single-Decoder Setting
We have evaluated settings with more than one encoder, i.e., multi-encoder single-decoder setting where a single decoder serves multiple encoders concurrently for training purposes. In this contribution, we limit our focus on joint training of encoders and the decoder at the same time and from scratch. We also assume a dataset is shared among all parties involved in the training. The UEs provide the latent vectors to gNB, and gNB shares its gradient of input layer with all the UEs. In our pilot study, we use a joint loss that is simply calculated by averaging over all individual losses of UEs. The results of our evaluations are presented in Table ‎2‑9 to Table ‎2‑10 where decoder of each model is connected to encoders of all the AI/ML models (matched and unmatched encoders). 
[bookmark: _Ref118118793]Table ‎2‑9: Pair-to-pair comparison of multi-encoder and single-encoder settings with a single decoder for training type 2
	
	
	
	Decoder

	
	
	
	Model 1
	Model 2
	Model 3
	Model 4

	
	
	Type
	CNN
	CNN
	TF
	TF

	Encoder
	Model 1
	CNN
	-0.82%
	-0.70%
	-0.83%
	-2.76%

	
	Model 2
	CNN
	-0.82%
	-0.93%
	0.72%
	-1.09%

	
	Model 3
	TF
	0.71%
	0.94%
	-1.11%
	0.12%

	
	Model 4
	TF
	-0.81%
	-0.93%
	-0.35%
	-2.52%


[bookmark: _Ref115346790]
Resorting to Table ‎2‑9, multi-encoder training has inferior performance compared to joint training. This is expected as the optimization problem becomes more complex compared to a single-encoder single-decoder setting with joint training. Compared to matched pairs Table ‎2‑10 and Table ‎2‑11, both UE and gNB suffer from almost 2.4% performance loss, which is worse than both joint and separate training.
[bookmark: _Ref118118990]Table ‎2‑10: UE’s gain from multi-encoder single-decoder setting with training type 2
	
	
	
	Decoder

	
	
	
	Model 1
	Model 2
	Model 3
	Model 4

	
	
	Type
	CNN
	CNN
	TF
	TF

	Encoder
	Model 1
	CNN
	-0.82%
	-0.820%
	-0.35%
	-0.35%

	
	Model 2
	CNN
	-1.05%
	-0.940%
	-0.35%
	-0.23%

	
	Model 3
	TF
	-7.46%
	-7.35%
	-1.11%
	-7.24%

	
	Model 4
	TF
	-2.64%
	-2.64%
	-2.40%
	-2.52%


[bookmark: _Ref118118812]Table ‎2‑11:gNB’s gain from multi-encoder single-decoder setting with training type 2
	
	
	
	Decoder

	
	
	
	Model 1
	Model 2
	Model 3
	Model 4

	
	
	Type
	CNN
	CNN
	TF
	TF

	Encoder
	Model 1
	CNN
	-0.82%
	-1.05%
	-5.46%
	2.04%

	
	Model 2
	CNN
	-0.82%
	-0.94%
	-5.23%
	2.40%

	
	Model 3
	TF
	-2.46%
	-2.58%
	-1.11%
	0.12%

	
	Model 4
	TF
	-4.93%
	-5.15%
	-9.58%
	-2.52%



[bookmark: _Ref118137208]Single-Encoder Multi-Decoder Setting
We have evaluated a setting with more than one decoder, i.e., single-encoder multi-decoder setting where a single encoder serves multiple decoders concurrently for training purposes. The results of our evaluations are presented in Table ‎2‑12 to Table ‎2‑14, where encoder of each model is connected to decoders of all models (matched and unmatched decoders). As shown Table ‎2‑12, on average over all test settings, we observe 0.3% performance loss compared to the joint training, which is lower than the loss observed for multi-encoder single-decoder training. Considering Table ‎2‑13 and Table ‎2‑14, we calculate UE’s and gNBs’ gain from participating in single-encoder multi-decoder setting. The performance degradation for both UE and gNBs are almost equal to 2.0%, which again confirms superiority of single-encoder multi-decoder setting over multi-encoder single-decoder setting. On the other hand, given the larger number of UE vendors compared to gNB vendors, single-encoder multi-decoder setting is more feasible.
[bookmark: _Ref118136787]Table ‎2‑12: Pair-to-pair comparison of multi-decoder and single-decoder settings with a single encoder for training type 2
	
	
	
	Decoder

	
	
	
	Model 1
	Model 2
	Model 3
	Model 4

	
	
	Type
	CNN
	CNN
	TF
	TF

	Encoder
	Model 1
	CNN
	-1.88%
	-1.64%
	0.72%
	0.12%

	
	Model 2
	CNN
	-0.94%
	-1.40%
	2.30%
	2.07%

	
	Model 3
	TF
	-2.13%
	-2.13%
	-4.67%
	1.85%

	
	Model 4
	TF
	-0.35%
	-0.58%
	2.03%
	1.80%


[bookmark: _Ref118136842]Table ‎2‑13: UE’s gain from single-encoder multi-decoder training
	
	
	
	Decoder

	
	
	
	Model 1
	Model 2
	Model 3
	Model 4

	
	
	Type
	CNN
	CNN
	TF
	TF

	Encoder
	Model 1
	CNN
	-1.88%
	-1.76%
	-0.94%
	-2.11%

	
	Model 2
	CNN
	-1.17%
	-1.41%
	-1.05%%
	-2.11%

	
	Model 3
	TF
	-8.13%
	-8.13%
	-4.68%
	-8.02%

	
	Model 4
	TF
	2.52%
	2.76%
	2.52%
	1.8%


[bookmark: _Ref118136806]Table ‎2‑14: gNB’s gain from single-encoder multi-decoder training
	
	
	
	Decoder

	
	
	
	Model 1
	Model 2
	Model 3
	Model 4

	
	
	Type
	CNN
	CNN
	TF
	TF

	Encoder
	Model 1
	CNN
	-1.88%
	-1.99%
	-6.01%
	0.24%

	
	Model 2
	CNN
	-0.94%
	-1.41%
	-5.90%
	0.48%

	
	Model 3
	TF
	-3.17%
	-3.40%
	-4.68%
	-0.72%

	
	Model 4
	TF
	0.12%
	0.12%
	-5.01%
	1.80%



We also observed for both multi-encoder single-decoder and single-encoder multi-decoder setting with joint training strategies, there are cases that the matched encoder-decoder pairs promote themselves at the cost of degrading the performance of unmatched encoders or decoders. In this regard, we believe a simple average has the risk of biasing the common encoder/decoder to its matched decoder/encoder. It should be further studied how to avoid such biases when many parties are involved at UEs’ or gNBs’ side. 
Discuss how to calculate a joint loss to avoid adverse bias toward the matched pairs.
While we have assumed a common dataset among vendors and concurrent parameters update for UEs and gNBs in Section ‎2.5.1.2 and Section ‎2.5.1.3, the possible options for either datasets or update scheduling are more. The UEs can share a common dataset or employ UE-specific datasets, also UE/gNB vendors may undergo concurrent, alternating, and sequential updating schedules. Thereby, we suggest studying “update scheduling” as expressed in the following proposal.
Study different parameters’ update scheduling for multi-encoder or multi-decoder settings using any training strategy.

Training Type 3: UE-First Separate Training 
Training type 2 or joint training needs frequent latent/gradient exchange between UE and gNB vendors. Also, all vendors need to be synchronized at least at batch-level, as they jointly form a single forward and backpropagation loop. This requirement can be relaxed in training type 3, i.e., sequential separate training, where each vendor can form its own forward pass and backpropagation loop. As training is done in a sequential manner, the order of training categorizes the training type 3 into UE-first and gNB-first separate trainings. We first focus on different settings in UE-first separate training.  
Single-Encoder Single-Decoder Setting
For UE-first separate training strategy, the UE trains its matched encoder-decoder pair regardless of the AI/ML model that gNB intends to train or fine tune. Upon successful training of an AI/ML model by the UE, a common dataset (may be different from what UE uses for training) is used and the UE shares the latent outputs of encoder for the common dataset. gNB leverages the shared dataset and corresponding latent outputs for training/tuning gNB’s decoder. We compare performance of different pairs of encoder-decoder with: i) the same pair trained via joint training (in Table ‎2‑15), ii) corresponding matched pair of UE trained via joint training (to measure UE’s loss Table ‎2‑16), and iii) corresponding matched pair of gNB trained via joint training (to measure gNB’s loss in Table ‎2‑17). 
Looking into the diameter of Table 10, it is evident that UE-first separate training strategy is not necessarily underperforming joint training. In fact, matched pairs achieved 1.2% higher reconstruction accuracy using UE-first separate training strategy. This observation is consistent over all four AI/ML models. Even unmatched pairs experience 0.93% improvement compared to their performance when joint training is adopted. Another interesting result is the similar performance loss for gNB and UE while UE had the opportunity of training first.
The major performance loss is from the pairs using Model 3’s TF-based architecture at the encoder. As shown in Table ‎2‑16, once Model 3’s TF-based encoder is trained to provide some unique features to its paired decoder, other type of decoders having difficulty to interpret those features for CSI reconstruction. On average, both UE and gNB suffer from 2.78% performance loss for such pairings. Unlike Model 3’s TF-based encoders, CNN-based encoders offer stable pairing with other decoders. 
In the UE-first separate training strategy, UE should inform gNB about the type of its architecture.
[bookmark: _Ref115086581]Table ‎2‑15: UE-first separate training pair-to-pair comparison with joint training
	
	
	
	Decoder

	
	
	
	Model 1
	Model 2
	Model 3
	Model 4

	
	
	Type
	CNN
	CNN
	TF
	TF

	Encoder
	Model 1
	CNN
	1.06%
	0.82%
	0.24%
	2.16%

	
	Model 2
	CNN
	1.99%
	1.64%
	1.57%
	3.90%

	
	Model 3
	TF
	0.23%
	0.47%
	0.67%
	0.99%

	
	Model 4
	TF
	-0.82%
	-1.39%
	0.95%
	1.44%


[bookmark: _Ref115086628]Table ‎2‑16: UE’s gain from UE-first separate training (compared to its matched pair in the joint training)
	
	
	
	Decoder

	
	
	
	Model 1
	Model 2
	Model 3
	Model 4

	
	
	Type
	CNN
	CNN
	TF
	TF

	Encoder
	Model 1
	CNN
	1.06%
	0.70%
	-1.41%
	-0.12%

	
	Model 2
	CNN
	1.77%
	1.64%
	-1.76%
	-0.35%

	
	Model 3
	TF
	-5.90%
	-5.68%
	0.67%
	-8.80%

	
	Model 4
	TF
	2.04%
	1.92%
	1.44%
	1.44%


[bookmark: _Ref115086646]Table ‎2‑17: gNB’s gain from UE-first separate training (compared to its matched pair in the joint training)
	
	
	
	Decoder

	
	
	
	Model 1
	Model 2
	Model 3
	Model 4

	
	
	Type
	CNN
	CNN
	TF
	TF

	Encoder
	Model 1
	CNN
	1.06%
	0.47%
	-6.46%
	2.28%

	
	Model 2
	CNN
	1.99%
	1.64%
	-6.57%
	2.28%

	
	Model 3
	TF
	-0.82%
	-0.82%
	0.67%
	-1.56%

	
	Model 4
	TF
	-0.35%
	-0.70%
	-6.01%
	1.44%


Natural Extension of UE-First Separate Training over Multi-Decoder setting
The extension of UE-first separate training to multi-decoder setting (in presence of one or multiple UE vendors) is an intrinsic feature of this training type. After training encoders of UEs, the latent vectors and corresponding CSI samples from all UEs will be provided to gNBs. Thereafter, each gNB individually trains its own decoder through its dedicated forward pass and backpropagation loop without passing any information or altering parameters of other UE or gNB vendors’ AI/ML model. Therefore, for UE-first sequential separate training, single-encoder multi-decoder setting can be broken into multiple single-encoder single-decoder settings. Similarly, multi-encoder multi-decoder setting can be broken into multiple multi-encoder single-decoder setting. In lieu of this intrinsic extension, we only focus on multi-encoder single-decoder setting in our evaluation which provide a comprehensive assessment about the most general setting which is multi-encoder multi-decoder. 
An Example of UE-First Separate Training in Multi-Encoder Multi-Decoder Setting
The UE-first separate training in multi-encoder multi-decider setting entails the following steps:
Step 1: Each UE leverages training type 1 to train an AE.
Step 2: Each UE uses its trained encoder on an alignment dataset and generates latent vectors.
Step 3: UEs provide compound datasets including CSI samples and latent vectors to gNBs.
Step 4: gNBs collect compound datasets from all UEs and train their decoders.
The last step is essentially a multi-encoder single-decoder setting as the result of natural extension of UE-first separate training on decoders’ side. Therefore, to evaluate the most general setting, we evaluate multi-encoder single-decoder setting as its building block. 
Multi-Encoder Single-Decoder Setting
We have implemented UE-first separate training on multi-encoder single-decoder setting and evaluated its performance in five cases: i) comparison with single-encoder single-decoder using joint training, ii) comparison with similar setting (multi-encoder single-decoder) using joint training, iii) comparison with single-encoder single-decoder using UE-first separate training, iv) UE’s gain (compared to training type 1), and v) gNB’s gain (compared to training type 1). 
Comparison with single-encoder single-decoder setting using joint training: Table ‎2‑18 shows how much gain/loss is achieved compared to joint training for a single-encoder single-decoder setting. Our results indicate significant loss for all possible encoder-decoder pairs (matched and unmatched). On average over all pairs, using UE-first separate training for multi-encoder single-decoder setting degrades the performance by -36.82% compared to joint training for single-encoder single-decoder setting. 
[bookmark: _Ref118192252][bookmark: _Ref118192247]Table ‎2‑18: Comparison of multi-encoder single-decoder using UE-first separate training with single-encoder single-decoder using joint training
	
	
	
	Decoder

	
	
	
	Model 1
	Model 2
	Model 3
	Model 4

	
	
	Type
	CNN
	CNN
	TF
	TF

	Encoder
	Model 1
	CNN
	-32.16%
	-33.37%
	-28.64%
	-30.49%

	
	Model 2
	CNN
	-37.79%
	-41.57%
	-34.50%
	-41.15%

	
	Model 3
	TF
	-45.72%
	-48.75%
	-37.64%
	-33.66%

	
	Model 4
	TF
	-38.32%
	-38.84%
	-24.40%
	-42.31%



Comparison with multi-encoder single-decoder setting using joint training: Table ‎2‑19 shows how much gain/loss is achieved compared to joint training for a multi-encoder single-decoder setting. Our results indicate significant loss for all possible encoder-decoder pairs (matched and unmatched). On average over all pairs, using UE-first separate training for multi-encoder single-decoder setting degrades the performance by -36.66% compared to joint training for multi-encoder single-decoder setting.
[bookmark: _Ref118193628]Table ‎2‑19: Comparison of multi-encoder single-decoder using UE-first separate training and joint training
	
	
	
	Decoder

	
	
	
	Model 1
	Model 2
	Model 3
	Model 4

	
	
	Type
	CNN
	CNN
	TF
	TF

	Encoder
	Model 1
	CNN
	-30.86%
	-32.26%
	-29.15%
	-30.58%

	
	Model 2
	CNN
	-37.20%
	-40.74%
	-35.98%
	-42.34%

	
	Model 3
	TF
	-44.53%
	-47.64%
	-34.58%
	-34.87%

	
	Model 4
	TF
	-38.10%
	-38.48%
	-25.91%
	-43.33%


Comparison with single-encoder single-decoder setting using UE-first separate training: Table ‎2‑20 shows how the number of encoders affect the complication of training problem and cause significant performance degradation. On average over all pairs, using UE-first separate training for multi-encoder single-decoder setting degrades the performance by -37.45% compared to when it is used for single-encoder single-decoder setting. As degradation is almost similar to degradations of joint training on single-encoder single-decoder, we can conclude the significant contributor in this degradation is not the training type itself; it is indeed the number of encoders which makes the training difficult for the common decoder. 
Using UE-first separate training for multi-encoder single-decoder setting degrades the performance by -37.45% compared to single-encoder single-decoder setting.
[bookmark: _Ref118194239]Table ‎2‑20: Comparison of multi-encoder single-decoder and single-encoder single-decoder using UE-first separate Training
	
	
	
	Decoder

	
	
	
	Model 1
	Model 2
	Model 3
	Model 4

	
	
	Type
	CNN
	CNN
	TF
	TF

	Encoder
	Model 1
	CNN
	-32.87%
	-33.92%
	-28.81%
	-31.96%

	
	Model 2
	CNN
	-39.01%
	-42.51%
	-35.52%
	-43.36%

	
	Model 3
	TF
	-45.85%
	-49.00%
	-38.05%
	-34.31%

	
	Model 4
	TF
	-37.81%
	-37.97%
	-25.12%
	-43.13%


UE’s gain in multi-encoder single-decoder setting using UE-first separate training: Table ‎2‑21 shows the UE’s gain from multi-encoder single-decoder setting compared to its baseline which is using training type 1 for a matched AE at UE. On average over all pairs, UE’s gain is -37.84% from UE-first separate training for multi-encoder single-decoder setting. 
[bookmark: _Ref118195747]Table ‎2‑21: UE’s gain in multi-encoder single-decoder using UE-first separate training
	
	
	
	Decoder

	
	
	
	Model 1
	Model 2
	Model 3
	Model 4

	
	
	Type
	CNN
	CNN
	TF
	TF

	Encoder
	Model 1
	CNN
	-32.16%
	-33.45%
	-29.81%
	-32.04%

	
	Model 2
	CNN
	-37.94%
	-41.57%
	-36.65%
	-43.56%

	
	Model 3
	TF
	-49.04%
	-51.89%
	-37.64%
	-40.09%

	
	Model 4
	TF
	-36.54%
	-36.78%
	-24.04%
	-42.31%


gNB’s gain in multi-encoder single-decoder setting using UE-first separate training: Table ‎2‑22 shows the gNB’s gain from multi-encoder single-decoder setting compared to using training type 1 for a matched AE at gNB. On average over all pairs, gNB’s gain is -37.99% from UE-first separate training for multi-encoder single-decoder setting.
[bookmark: _Ref118195996]Table ‎2‑22: gNB’s loss in multi-encoder single-decoder using UE-first separate training
	
	
	
	Decoder

	
	
	
	Model 1
	Model 2
	Model 3
	Model 4

	
	
	Type
	CNN
	CNN
	TF
	TF

	Encoder
	Model 1
	CNN
	-32.16%
	-33.61%
	-33.41%
	-30.41%

	
	Model 2
	CNN
	-37.79%
	-41.57%
	-39.76%
	-42.07%

	
	Model 3
	TF
	-46.29%
	-49.41%
	-37.64%
	-35.34%

	
	Model 4
	TF
	-38.03%
	-38.41%
	-29.62%
	-42.31%



Training Type 3: gNB-First Separate Training 
In gNB-first separate training, the synchronization requirement is the same as UE-first separate training, and all UE/gNB vendors train their AI/ML model within their individual forward pass and backpropagation loop. The only difference with UE-first separate training is the order of training among UE and gNB vendors. In this contribution, we have evaluated gNB-first separate training for two major settings: single-encoder single-decoder and single-encoder multi-decoder settings.
Single-Encoder Single-Decoder Setting
In gNB-first separate training strategy, the gNB trains its matched encoder-decoder pair regardless of the AI/ML model that UE intends to train or fine tune. Upon successful training an AI/ML model by gNB, a CSI dataset is used by gNB to generate a latent dataset accordingly. gNB shares a compound dataset including CSI samples and latent outputs with the UE. The UE’s task is to train an encoder which imitates the gNB’s encoder sample-to-latent mapping. 
We conduct similar evaluation to what presented for UE-first training strategy. We specifically compare performance of different pairs of encoder-decoder with: i) the same pair trained via joint training (in Table ‎2‑23), ii) corresponding matched pair of UE trained via joint training (to measure UE’s gain in Table ‎2‑24), and iii) corresponding matched pair of gNB trained via joint training (to measure gNB’s gain in Table ‎2‑25).
[bookmark: _Ref115307334]Table ‎2‑23: gNB-first separate training pair-to-pair comparison with joint training for single-encoder single-decoder setting
	
	
	
	Decoder

	
	
	
	Model 1
	Model 2
	Model 3
	Model 4

	
	
	Type
	CNN
	CNN
	TF
	TF

	Encoder
	Model 1
	CNN
	1.17%
	1.50%
	-10.50%
	1.80%

	
	Model 2
	CNN
	1.17%
	1.75%
	-9.56%
	3.29%

	
	Model 3
	TF
	1.90%
	2.85%
	0.55%
	5.18%

	
	Model 4
	TF
	0.93%
	1.28%
	-4.19%
	3.72%


[bookmark: _Ref115307728]Table ‎2‑24: UE’s gain from gNB-first separate training for single-encoder single-decoder setting
	
	
	
	Decoder

	
	
	
	Model 1
	Model 2
	Model 3
	Model 4

	
	
	Type
	CNN
	CNN
	TF
	TF

	Encoder
	Model 1
	CNN
	1.17%
	1.41%
	-11.97%
	-0.47%

	
	Model 2
	CNN
	0.94%
	1.76%
	-12.53%
	-0.94%

	
	Model 3
	TF
	-4.34%
	-3.45%
	0.55%
	-5.01%

	
	Model 4
	TF
	3.84%
	4.68%
	-3.72%
	3.72%


[bookmark: _Ref115307737]Table ‎2‑25: gNB’s gain from gNB-first separate training for single-encoder single-decoder setting
	
	
	
	Decoder

	
	
	
	Model 1
	Model 2
	Model 3
	Model 4

	
	
	Type
	CNN
	CNN
	TF
	TF

	Encoder
	Model 1
	CNN
	1.17%
	1.17%
	-16.48%
	1.92%

	
	Model 2
	CNN
	1.17%
	1.76%
	-16.81%
	1.68%

	
	Model 3
	TF
	0.82%
	1.52%
	0.55%
	2.52%

	
	Model 4
	TF
	1.40%
	1.99%
	-10.80%
	3.72%



As shown in Table ‎2‑23, the gNB-first separate training is not intrinsically underperforming joint training strategy. Given the limits on the number of data samples and optimization steps, it shall not be viewed as a sub-optimal solution that always degrades the performance of matched and unmatched pairs compared to the joint training strategy. Considering the matched pairs of encoder-decoder in Table ‎2‑23, the performance has improved by 1.79%. However, for unmatched pairs the performance is degraded by 0.36% compared to the joint training. This stands in contradiction of what has been observed for UE-first separate training strategy. Also, considering Table ‎2‑24 and Table ‎2‑25, UE and gNB almost equally suffer from performance degradation in gNB-first separate training. UE and gNB respectively experience 1.52% and 1.42% performance loss compared to their corresponding matched designed trained via joint training strategy, which are higher than degradations they experience through UE-first separate training strategy. 
Considering Table ‎2‑24 and Table ‎2‑25, we also identify vulnerable pairs in gNB-first separate training. Vulnerable pairs are the ones pairing Model 3’s TF-based decoder to an unmatched encoder. This problem roots in the high learning capacity of Model 3’s encoder and the complicate features it offers to its matched decoder. In this scenario, UE may fail to replace TF-based encoder (offer the same complex features in the latent space). Thereby, it would be beneficial if the gNB informs UE about the architecture type it uses. Also, we observe this problem is more severe for gNB-first separate training, adding another drawback to this training strategy. In brief, our observations are all inclined toward UE-first separate training strategy, if a down selection is required between UE-first and gNB-first separate training strategies. 
In the gNB-first separate training strategy, gNB should inform UE vendor at least about the type of its dropped encoder’s architecture.
Natural Extension of gNB-First Separate Training over Multi-Encoder setting
The extension of gNB-first separate training to multi-encoder setting (in presence of one or multiple gNB vendors) is an intrinsic feature of this training type. After training encoders of gNBs, the latent vectors and corresponding CSI samples from all gNBs will be provided to UEs. Thereafter, each UE individually trains its own encoder through its dedicated forward pass and backpropagation loop without passing any information or altering parameters of other UE or gNB vendors’ AI/ML model. Thus, for gNB-first sequential separate training, multi-encoder single-decoder setting can be broken into multiple single-encoder single-decoder settings. Similarly, multi-encoder multi-decoder setting can be broken into multiple single-encoder multi-decoder setting. In lieu of this intrinsic extension, we only focus on single-encoder multi-decoder setting in our evaluation which provide a comprehensive assessment about the most general setting which is multi-encoder multi-decoder setting. 
An Example of gNB-First Separate Training in Multi-Encoder Multi-Decoder Setting
The UE-first separate training in multi-encoder multi-decider setting entails the following steps:
Step 1: Each gNB leverages training type 1 to train an AE.
Step 2: Each gNB uses its trained encoder on an alignment dataset and generates latent vectors.
Step 3: gNBs provide compound datasets including CSI samples and corresponding latent outputs to UEs.
Step 4: UEs collect compound datasets from all gNBs and train their encoders.
The last step is essentially a single-encoder multi-decoder setting as the result of natural extension of type 3 training on decoders’ side. Therefore, to evaluate the most general setting, we evaluate multi-encoder single-decoder setting as its building block. 
Evaluation of Single-Encoder Multi-Decoder Setting
We have implemented gNB-first separate training on multi-encoder single-decoder setting and evaluated its performance in five cases: i) comparison with single-encoder single-decoder using joint training, ii) comparison with similar setting (single-encoder multi-decoder) using joint training, iii) comparison with single-encoder single-decoder using gNB-first separate training, iv) UE’s gain (compared to training type 1), and v) gNB’s gain (compared to training type 1). 
[bookmark: _Hlk118205957]Comparison with single-encoder single-decoder setting using joint training: Table ‎2‑26 shows how much gain/loss is achieved compared to joint training for a single-encoder single-decoder setting. Our results indicate significant loss for all possible encoder-decoder pairs (matched and unmatched). On average over all pairs, using gNB-first separate training for single-encoder multi-decoder setting degrades the performance by -58.89% compared to joint training for single-encoder single-decoder setting. 
[bookmark: _Ref118206056]Table ‎2‑26:Comparison of single-encoder multi-decoder using gNB-first separate training with single-encoder single-decoder using joint training
	
	
	
	Decoder

	
	
	
	Model 1
	Model 2
	Model 3
	Model 4

	
	
	Type
	CNN
	CNN
	TF
	TF

	Encoder
	Model 1
	CNN
	-61.74%
	-59.81%
	-61.81%
	-51.98%

	
	Model 2
	CNN
	-61.97%
	-59.84%
	-61.14%
	-51.16%

	
	Model 3
	TF
	-62.04%
	-60.38%
	-62.69%
	-51.79%

	
	Model 4
	TF
	-62.15%
	-60.35%
	-61.24%
	-52.16%



Comparison with single-encoder multi-decoder setting using joint training: Table ‎2‑27 shows how much gain/loss is achieved compared to joint training for a multi-encoder single-decoder setting. Our results indicate significant loss for all possible encoder-decoder pairs (matched and unmatched). On average over all pairs, using gNB-first separate training for single-encoder multi-decoder setting degrades the performance by -58.63% compared to joint training for single-encoder multi-decoder setting.
[bookmark: _Ref118206156]Table ‎2‑27: Comparison of single-encoder multi-decoder using gNB-first separate training and joint training
	
	
	
	Decoder

	
	
	
	Model 1
	Model 2
	Model 3
	Model 4

	
	
	Type
	CNN
	CNN
	TF
	TF

	Encoder
	Model 1
	CNN
	-61.42%
	-59.53%
	-62.31%
	-52.89%

	
	Model 2
	CNN
	-61.66%
	-59.46%
	-62.28%
	-53.05%

	
	Model 3
	TF
	-61.49%
	-59.86%
	-62.27%
	-53.06%

	
	Model 4
	TF
	-60.00%
	-57.90%
	-60.10%
	-50.92%



Comparison with single-encoder single-decoder setting using gNB-first separate training: Table ‎2‑28 shows how the number of decoders affect the complication of training problem and cause significant degradation. On average over all pairs, using gNB-first separate training for multi-encoder single-decoder setting degrades the performance by -58.97% compared to when it is used for single-encoder single-decoder setting.  
On average, using gNB-first separate training for single-encoder multi-decoder setting degrades the performance by -58.97% compared to single-encoder single-decoder setting.
[bookmark: _Ref131587049]Table ‎2‑28: Comparison of single-encoder multi-decoder and single-encoder single-decoder using UE-first separate Training
	
	
	
	Decoder

	
	
	
	Model 1
	Model 2
	Model 3
	Model 4

	
	
	Type
	CNN
	CNN
	TF
	TF

	Encoder
	Model 1
	CNN
	-62.18%
	-60.42%
	-57.33%
	-52.83%

	
	Model 2
	CNN
	-62.41%
	-60.53%
	-57.03%
	-52.72%

	
	Model 3
	TF
	-62.75%
	-61.48%
	-62.90%
	-54.16%

	
	Model 4
	TF
	-62.50%
	-60.85%
	-59.55%
	-53.88%



[bookmark: _Hlk118206718][bookmark: _Hlk118206695]UE’s gain in single-encoder multi-decoder setting using gNB-first separate training: Table ‎2‑29 shows the UE’s gain from single-encoder multi-decoder setting compared to its baseline which is using training type 1 for a matched AE at UE. On average over all pairs, UE’s gain is -59.63% from gNB-first separate training for single-encoder multi-decoder. 
[bookmark: _Ref118206596]Table ‎2‑29: UE’s gain in single-encoder multi-decoder using UE-first separate training
	
	
	
	Decoder

	
	
	
	Model 1
	Model 2
	Model 3
	Model 4

	
	
	Type
	CNN
	CNN
	TF
	TF

	Encoder
	Model 1
	CNN
	-61.74%
	-59.86%
	-62.44%
	-53.05%

	
	Model 2
	CNN
	-62.06%
	-59.84%
	-62.41%
	-53.16%

	
	Model 3
	TF
	-64.37%
	-62.81%
	-62.69%
	-56.46%

	
	Model 4
	TF
	-61.06%
	-59.01%
	-61.06%
	-52.16%



gNB’s gain in single-encoder multi-decoder setting using gNB-first separate training: Table ‎2‑30 shows the gNB’s gain from single-encoder multi-decoder setting compared to using training type 1 for a matched AE at gNB. On average over all pairs, gNB’s gain is -59.57% from gNB-first separate training for single-encoder multi-decoder setting.
[bookmark: _Ref127485517]Table ‎2‑30: gNB’s loss in single-encoder multi-decoder using gNB-first separate training
	
	
	
	Decoder

	
	
	
	Model 1
	Model 2
	Model 3
	Model 4

	
	
	Type
	CNN
	CNN
	TF
	TF

	Encoder
	Model 1
	CNN
	-61.74%
	-59.95%
	-64.37%
	-51.92%

	
	Model 2
	CNN
	-61.97%
	-59.84%
	-64.25%
	-51.92%

	
	Model 3
	TF
	-62.44%
	-60.89%
	-62.69%
	-53.00%

	
	Model 4
	TF
	-61.97%
	-60.07%
	-63.92%
	-52.16%








Our findings indicate the gNB-first separate training has inferior performance compared to UE-first separate training regardless of the number of encoders and decoders participating in the training session.
 gNB-first separate training has inferior performance compared to UE-first separate training for any number of encoders and decoders participating in the training session.
Boundaries between training strategies
Until RAN1#112bis-e, new training schemes have been proposed such as parallel training, iterative separate training, and freeze-train scheme. Introduction of new schemes raises a new dilemma, whether these training schemes belong to one of the existing training types or new training types should be defined to accommodate them. This question specially raised due to lack of any clear boundary between training types, specially between training types 2 and 3. So far, the basis of discussions has mostly been the agreed implementation example of each training scheme which makes the confusion even worse. This also impacts our discussions in 9.2.2.2 for drawing any conclusion regarding training types. In what follows we elaborate on our view.
First, none of the existing solutions need to be defined as a new type of training as all can lie within one of the training types 1 to 3. In fact, we shall not define a new category whenever a new scheme is introduced. Instead with a bit of clarification about each training type, such problem should be permanently resolved. Maybe, most controversial scheme has been the scheme shown in Figure ‎2‑21(a), where in one of its possible realization, gNB can train a decoder in connection with a hypothetical encoder at the first stage. The trained decoder will be exposed to an actual encoder at the second stage, where the decoder is frozen while encoder’s parameters will be updated by using the gradient vectors passed by the decoder in BP. Although such a scheme does not exactly resemble the agreed example of type 2 or type 3, it still a variant of type 2 training. Figure ‎2‑21(b) is exact equivalent of the new scheme, so called “freeze-train”; however, it clearly falls within the training type 2. In Figure ‎2‑21(b), the decoder is initiated by pre-trained parameters and decides to put learning rate equal to zero. In our view, 3gpp discussions should not focus on training tricks, such as learning rate, finetuning, initialization, etc. It is up to company how set the training behaviours of their corresponding parts of AI/ML models. In this regard, focusing on behaviours such as freezing and finetuning should be avoided.  

	[image: ]

(a) An example of freeze-train scheme
	[image: ]
(b) An example of training type 2


[bookmark: _Ref134395120]Figure ‎2‑21: Equivalence of training type 2 with freeze-train scheme through an example
Second, the training types should be further clarified, and discussion on categorization of new scheme should be left to its proponent. In our view, the best points of classification are the number and types of entities (i.e., UE or gNB) involved in each BP session. As such, a clear boundary between training type 2 and 3 is whether each BP session is isolated in involved entities or it crosses different entities. We have the following proposal
· Training type 1: BP is isolated in a single entity (as shown in Figure ‎2‑22(a)) 
· Training type 2: BP is not isolated (as shown in Figure ‎2‑22(b))
· Training type 3: BP is isolated in multiple entities of different types (as shown in Figure ‎2‑22(c))
	[image: ]
(a) Training type 1
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(b) Training type 2
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(c) Training type 3


[bookmark: _Ref134786152]Figure ‎2‑22 Illustration of distinct BP behaviour in training types 1-3
Number and types of entities (i.e., UE and gNB) involved in BP sessions can draw a clear boundary between different training types:
· Training type 1: BP is isolated in a single entity
· Training type 2: BP is not isolated 
· Training type 3: BP is isolated in multiple entities of different types

Quantization of CSI Generation Part’s Output
In this contribution, we have followed the discussions on quantization of CSI generation part’s output as an essential step of CSI compression sub use case. In RAN WG1 #111 ‎[7], it is agreed to study the quantization schemes with various perspectives: i) Awareness of training; ii) conversion method of CSI generation part’s output; and iii) learnability of quantization configuration. 
	Agreement ‎[7] 
For the evaluation of quantization aware/non-aware training, the following cases are considered and reported by companies:
· Case 1: Quantization non-aware training, where the float-format variables are directly passed from CSI generation part to CSI reconstruction part during the training
· Fixed/pre-configured quantization method/parameters is applied for the inference phase
· Companies to report the design of the fixed/pre-configured quantization method/parameters, e.g., quantization resolution, vector quantization codebook, etc.
· Case 2: Quantization aware training, where quantization/dequantization is involved in the training process
· Case 2-1: Fixed/pre-configured quantization method/parameters are applied during the training phase; the same quantization codebook is applied for the inference phase
· Companies to report the design of the fixed/pre-configured quantization method/parameters, e.g., quantization resolution, vector quantization codebook, etc.
· Case 2-2: The quantization method/parameters are updated in together with the AI/ML models during the training; when training is finished, the final quantization codebook is applied for the inference phase
· Companies to report how to update the quantization method/parameters during the training



The purpose of quantization in CSI compression sub use case varies with that in its widespread use, as a method to quantize AI/ML model hyper parameters and to have an abstract representation of AI/ML model itself. In fact, our objective is to discretize the feasible space of CSI generation part’s output. Training strategies as we have already agreed as training type 1-3 disregard any quantization method, so attributing awareness to training is inaccurate and ambiguous. In CSI compression sub use case, quantization is tailored to fit the training style and precision requirements. It will be more accurate to attribute the awareness property to the quantization method, not the training strategy. We propose using “training-aware/non-aware quantization” instead of “quantization-aware/non-aware training”. Quantization methods can be classified into multiple categories depending on each of the aforementioned properties. 
Training awareness: Training awareness indicates whether the quantization has been exposed to the CSI generation and reconstruction parts of AI/ML model in the training stage or not. This exposure is challenging as the quantization is a non-differentiable function in essence, and its presence in the training stage cripples backpropagation loop. To raise the awareness of quantization methods, a backpropagation behavior should be meticulously defined for them to facilitate training of the AI/ML model. This procedure yields a training-aware (TA) quantization. On the other hand, if the quantization is only applied in the inference stage without exposing itself to the AI/ML model in the training stage, it can be referred as a training-non-aware (TNA) quantization method.
Learnability: Any quantization comes with unique configurations, such as intervals, levels, clipping, grouping, etc. These features can be learnt/adjusted in the course of training stage or remain unchanged regardless of the underlaying training. Therefore, TA quantization can be further grouped into to sub-classes: i) training-aware learnable (TA-L): A training-aware quantization whose parameters/configurations will be adjusted during the training stage; and ii) training-aware non-learnable (TA-NL): A training-aware quantization that it’s parameters/configurations do not alter during the entire training stage, and the same parameters/configurations will be finally used in the inference stage.
[bookmark: _Hlk127267654]Mapping/codeword assignment: Regardless of training awareness and learnability, any quantization method aims at discretizing the feasible space of CSI generation part’s output and mapping an entire sub-space into a single representative point (a.k.a. codeword). How to generate a codeword for each sub-space is another point of classification. There are two major approaches, “vector quantization (VQ)” and “scalar quantization (SQ)”. In the SQ, each element on the vector of CSI generation part’s output will be mapped to a new discretized element, and the final codeword will be vector of all individually discretized elements. In the VQ, however, there is unique mapping from multiple/all elements on CSI generation part’s output to the multiple/all elements of discretized/quantization space. 
We evaluate different methods for quantizing the CSI generation part’s output later in this section of our contribution.
Scalar Quantization
We first briefly describe three different SQ methods we have used in our evaluation which includes: TNA-NL-SQ, TA-NL-SQ, and TA-L-SQ 
Training-non-aware non-learnable scalar quantization (TNA-NL-SQ)
TNA-NL-SQ is adopted as our benchmark to evaluate the effectiveness of other quantization methods. As it is training-non-aware quantization, the AI/ML model is first trained, and TNA-NL-SQ will only be deployed at the inference stage. Also, it is a scalar quantization where the CSI generation part’s output is processed in an element-by-element manner. 
Training-aware non-learnable scalar quantization (TA-NL-SQ)
TA-NL-SQ will be exposed to AI/ML model in both training and inference stages. As it is an SQ, the CSI generation part’s output is processed in an element-by-element manner. Its parameters won’t change in the course of training as well.
Training-aware learnable scalar quantization (TA-L-SQ)
TA-L-SQ will be exposed to AI/ML model in both training and inference stages. During the training, TA-L-SQ adjusts its parameters to further minimize the task loss and evolves in the same manner that AI/ML model’s hyperparameters are optimized. As TA-L-SQ is an SQ, the CSI generation part’s output is processed in an element-by-element manner.
Vector Quantization
Unlike SQ, VQ maps multiple/all elements of CSI generation part’s output to multiple/all elements of discretized/quantization space. In its typical framework, VQ is usually a TNA quantization which is not used in the training stage. Once the AI/ML model is trained, the training data is used for generating a sufficiently large set of CSI generation part’s outputs. This set is used for designing VQ mapping (codebook), and later the VQ’s codebook can be used in the inference stage. However, there is a challenge ahead of designing VQ’s codebook, and it roots in in its huge complexity and demands for large dataset. First, size of the dataset has to be larger than the codebook size. Second, complexity of VQ significantly increases with the size of its codebook in both training and inference stages. Given the sheer size of feedback overhead, the size of codebook can be potentially too large, making it impossible to collect enough data or design codebook with a reasonable computational budget. Therefore, instead of having a one-to-one mapping from CSI generation part’s output to a sequence of quantized feedback, we segment the CSI generation part’s output into multiple segments, and design/apply VQ on each segment individually. During the inference stage, the final codeword assigned to CSI generation part’s output will be concatenation of what have been collected from applying VQ on each segment.
Training-non-aware vector quantization (TNA-VQ)
As the VQ is a training-non-aware method in essence, we only use it in the inference stage. Also, learnability is not the case for VQ as it is not in the training loop. It is a one-time design based on the outputs of trained CSI generation part of AI/ML model. However, we can further improve the overall performance of AI/ML model for CSI compression by fine-tuning/re-training the AI/ML model before going into the inference stage.
AI/ML model’s fine-tuning for TNA-VQ
To improve the performance of the AI/ML model in the presence of TNA-VQ, we have pursued the following approaches including approach 0, where we do not fine-tune/re-train the model at all. 

[image: ]
Figure ‎2‑23: Impact of AI/ML model’s fine-tuning/re-training after deploying VQ
Approach 0: TNA-VQ is design based on the output of CSI generation part of AI/ML model upon finishing the training stage. The codebook designed within this approach will be later used for other approaches as well.
Approach 1: Upon designing TNA-VQ, the entire AI/ML model is fine-tuned in its presence. The learning rate is much smaller than that of the training stage to make VQ design re-usable and avoid drastic changes in the distribution of CSI generation part’s output.
Approach 2: Upon designing TNA-VQ, only CSI reconstruction part of AI/ML model is fine-tuned in the presence of quantization. As there is no update on the CSI generation part of AI/ML model, the distribution of its outputs will not change, guaranteeing reusability of the designed TNA-VQ. It also should be noted that the learning rate of updating CSI reconstruction part is much less than that of the training stage.
Approach 3: Upon designing TNA-VQ, the entire AI/ML model will be re-initialized and trained from scratch in the presence of TNA-VQ. So, this approach can be regarded as TA-NL-VQ somehow. 
We have evaluated all these approaches and calculated the gain achieved by these approaches compared to TNA-NL-SQ, i.e., the quantization baseline. Our observations are as follows:
Updating the entire AI/ML model through re-training/fine-tuning in the presence of TNA-VQ will degrade overall CSI reconstruction accuracy.
Fine-tuning CSI reconstruction part of AI/ML model in the presence of TNA-VQ improves the CSI reconstruction accuracy gain over TNA-NL-SQ by 62.7%.  In overall, fine-tuning gain is not significant. It is 1.2% gain compared to non-tuned AI/ML model
VQ is very sensitive to small changes in the distribution of CSI generation part’s output.
Designing VQ should be done by UE, and gNB can optionally fine-tune its CSI reconstruction part.
On re-using VQ codebooks
As designing a codebook for a segment/entire CSI generation part’s output is a computationally expensive task, we may think of re-using a codebook in-part/entirely for the AI/ML models with the same dimensions or structures (or at least for the segments of the same size). Our next evaluation shows that VQ is too sensitive to be re-used without any further treatment. 


[image: ]
[bookmark: _Ref127272287]Figure ‎2‑24: Impact of re-using VQ codebook on non-reference model
To examine this hypothesis, we have trained five AI/ML models which are identical from training data, dimension, and structure perspectives. The only difference is that they belong to different training sessions, making it possible that different AI/ML models reach different solutions in the hyperparameters’ feasible space. The first AI/ML model (Ref. Model) is used for designing a VQ codebook, and the same codebook is re-used for other AI/ML models (Model 2 – Model 5). Our evaluation results are shown in Figure ‎2‑24. The results once again imply the sensitivity of VQ codebooks, making re-usage of codebooks challenging.
Re-using VQ codebook even for the AI/ML models of the same structure degrades its gain by 79.6% on average.
Our observations so far have criticized VQ in terms of re-using and re-training. In fact, VQ is expected to be too sensitive to tolerate any misalignment in codebook. As such. we believe the UE vendor should design its desired VQ codebook and disclose it to the gNB vendor.
The UE should inform gNB about its VQ design to maintain the alignment for quantization and dequantization parts.
Evaluation of Quantization Methods
We have finally implemented and evaluated different quantization methods for various CSI feedback overhead. We particularly measured the gain achieved by each method compared to the baseline, i.e., TNA-NL-SQ. Our experimental results are shown in Figure ‎2‑25.
[image: ]
[bookmark: _Ref127273734]Figure ‎2‑25: Evaluation of different quantization methods.


On average, TA-NL-SQ, TA-L-SQ, and TNA-VQ achieve 7.8%, 11.6%, and 4.1% gain over TNA-NL-SQ, respectively.
Training awareness improves the gain of quantization methods by 6.5%, Learnability improves the gain of quantization methods by 5.1%, and SQ methods of all kinds, on average, outperform VQ by 1.7%.
We suspect our latest observation is rooted in aggressive segmentation which naturally deteriorates the performance of VQ.  Nevertheless, given scalability issue, sensitivity, and alignment requirements of VQ, we suggest giving higher priority to realization of SQ methods in practice.
Give higher priority to SQ methods given their performance, less sensitivity, and less alignment efforts in multi-vendor ecosystems. 
Quantization in Data Collection
The data collection from UE is essential for gNB to implement training type 1-3. As the CSI samples come from RF measurements by UE, if gNB intends to train an AI/ML model, UE has to provide such CSI samples to the gNB. However, sending CSI samples with float 32/64 format impose a high overhead given the potential size of complexed-valued CSI samples. As such, offering a huge dataset in its ideal form (float format) is not practical. A natural approach to solve this issue is quantization of CSI samples such that the quantized samples carry most of the semantic features posed by ideal CSI samples while demanding much less storage requirement. One of the candidate methods for quantization is an eType II-like framework focusing on down-selection of CSI elements in beam and delay domains and quantization of dominant components. 
Using eType II-like framework  for quantization inevitably results in inferior performance for the resultant AI/ML model compared to the AI/ML model trained by ideal CSI samples. It is of our great interest to evaluate the feasibility of applying such a quantization scheme and measure the performance loss. On the other hand, some companies have reported the need for quantization resolutions beyond what is currently being offered by eType II pre-defined ParCombs. Therefore, we are also interested in confirming whether the need for such a higher resolution is pressing. Our evaluation results are presented in Table ‎2‑31.
[bookmark: _Ref131582396]Table ‎2‑31: Effect of quantization in data collection on training dataset and the performance of resultant AI/ML model
	Quant. CSI ratio
	Perf. loss (compared to reference result)
	Total dataset size (bits)
	Note

	100%
	-3.1%
	171M
	Case 1: No finetuning

	98%
	-1.9%
	511M
	Case 2: w/ finetuning

	95%
	-1.9%
	1022M
	Case 2: w/ finetuning

	90%
	-1.8%
	1874M
	Case 2: w/ finetuning

	0%
	0%
	17,203M
	Benchmark 



In our evaluation, we have used a fixed number of 600k CSI samples for training an AI/ML model which generates CSI feedback with 52bits length. We have considered the following three cases:
· Benchmark: AI/ML model is trained by a dataset consisting ideal (float 32) CSI samples.
· Case 1:  AI/ML model is trained by a dataset consisting quantized CSI samples using ParComb 8 of eType II
· Case 2: AI/ML model is trained with a dataset which consists of both ideal and quantized CSI samples while the total number of samples is kept fixed as 600k. For example, if quantized CSI ratio in dataset is 90%, it means 540k quantized CSI samples and 60k ideal CSI samples exist in the training dataset.
For Case 3, we have used a framework shown in Figure ‎2‑26, where the AI/ML model is first trained with the quantized CSI samples and then finetuned with a small portion of dataset consisting ideal CSI samples.  Our observations show that it is feasible to reduce the size of dataset 10 times with the aid of quantization while introducing a negligible SGCS loss of -3.1%. This gap can be further relaxed using the framework shown in Figure ‎2‑26 by incorporating ideal CSI samples in the dataset. It is shown that incorporating only 2% ideal CSI samples in the dataset can compensate 38.7% of SGCS loss caused by quantization. 
It is feasible to quantize entire dataset for training with negligible perf. loss. We observed 10x reduction in dataset size with only 3.1% SGCS performance loss
Incorporation of few ideal samples into quantized dataset can mitigate perf loss from quantization. Incorporation of 2% ideal CSI samples in the dataset can compensate 38.7% of SGCS loss caused by quantization.

[image: ]
[bookmark: _Ref131584099]Figure ‎2‑26: Using mixed ideal and quantized CSI samples for training AI/ML model
[bookmark: _Hlk131584907]Introducing higher resolution to the eType II is a setback to the overhead problem of dataset, and it also cripples current devices in the market. We have also observed ParComb 8 is sufficient for a massive gain in storage requirement while introducing small performance loss in the trained AI/ML model. As such, proponent of introducing higher resolution (i.e., larger values for , and ) to eType II framework should justify the need for resolutions beyond what is currently being offered by eType II. 
[bookmark: _Hlk131585119]Need for resolutions beyond what is currently being offered by eType II should be justified by evaluation.
Based on the framework we have shown in Figure ‎2‑26, there are two possible options to mitigate the performance loss caused by data quantization. Increasing the resolution of eType II and incorporation of ideal CSI samples. The pros and cons of each method should be studied.
Study and compare the following options for reducing overhead of data collection: 
· Quantization with eType II-like framework with higher resolutions
· Incorporation of ideal CSI samples for possible finetuning at the data collector side 
Model Monitoring for CSI Compression
Model monitoring is the essential step to register, switch, activate, and deactivate AI/ML models upon detecting a monitoring event which significantly impacts the performance of current AI/ML model. To detect a monitoring event, a candidate monitoring algorithm can track changes in input/output CSI, CSI reconstruction accuracy, or system-level indicators. In this regard, the tree major approaches of AI/ML model monitoring include I/O-based, intermediate-KPI-based, and system-level AI/ML model monitoring. Hereafter, we describe the intermediate-KPI-based model monitoring and I/O-based model monitoring with more details.
Power Spectral Entropy (PSE) for I/O-based Model Monitoring
I/O-based monitoring aims at tracking changes in RF environment based on some metrics which directly work on input or output CSI of the AI/ML model. I/O-based monitoring, if feasible, is very promising given no spec impact, low overhead, and capability of maintaining proprietariness of AI/ML models’ CSI generation and CSI reconstruction parts. In this section, we propose a metric called “power spectral entropy (PSE)” which enables I/O-based model monitoring. 
PSE calculation
Let us assume that a block of CSI samples is available with dimension of  𝑀×𝑁×𝑊 in time-spatial-frequency domain, i.e., 𝑥[𝑚,𝑛,𝑤]. Naturally,  in SF CSI compression and  in TSF CSI compression. Nevertheless, we explain the general case with arbitrary value of . For such CSI sample(s), PSE can be calculated through the following steps
· Conversion to spectral domain: 
· Normalized power profile:  
· Entropy of power profile: 
PSE is a normalized value between zero and one and it has a direct indication on compressibility of CSI samples. The two extreme cases of PSE are a fixed-valued input (DC signal on all dimensions) which results PSE=0 and white noise which results PSE=1 as shown in Figure ‎2‑27 for 2D input CSI (M=1).
[image: ]
[bookmark: _Ref134846042]Figure ‎2‑27: PSE’s extreme cases: DC input and noise input
We know DC signal is the most compressible signal as it can be represented by only one of its elements. On the other hand, white noise has no correlation among its elements, and it is not possible to provide any abstract representation of it; in fact, all elements should be represented to realize the white noise. As such, PSE has a reverse relation with compressibility of a signal. The physical notion behind PSE in SF compression is that it quantifies the  smoothness/correlation of CSI samples in spatial-frequency domain and quantifies the sparsity of CSI samples in delay-beam domain, both of which favour AI/ML models in compressing CSI samples. This motivates us to track the changes in RF environment based on PSE of input CSI at UE side or recovered CSI at the NW side.
As discussed, PSE quantifies sparsity of CSI samples in beam-delay domain and their smoothness in SF domain, which both finally will be translated to intermediate KPI achieved by an AI/ML model. We observed the average PSE of the samples in the training dataset finally determines the SGCS achieved by the AI/ML model. An evaluation with three datasets is shown in Table ‎2‑32.
[bookmark: _Ref134852234]Table ‎2‑32: Illustration of inverse relation between PSE and CSI compressibility
	
	Dataset 1
	Dataset 2
	Dataset 3

	Average PSE of dataset
	0.555
	0.531
	0.486

	SGCS
	0.890
	0.921
	0.937



PSE has inverse relation with compressibility of CSI samples
PSE-based model monitoring 
For the sake of evaluating feasibility of PSE-based monitoring, we have initially used a simple metric which is the absolute difference between PSE of two subsequent CSI samples, i.e.,  where  is the PSE calculated based on the CSI sample collected at time . We have also defined multiple evaluation scenarios through which UE moves from RF environment 1 to RF environment 2 at 300th sample and comes back to RF environment 1 again at 600th sample as shown in Figure ‎2‑28. 
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(a) Status of UE in course of time
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(b) UMA-LOSUMi-NLOSUMa-LOS
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(c) UMi-LOS UMa-NLOS  UMi-LOS
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(d) UMa-LOS UMa-NLOS -> UMa-LOS
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(e) UMa-LOS UMi-LOS  UMa-LOS
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(f) UMa-NLOS UMi-NLOS  UMa-NLOS


[bookmark: _Ref134849023]Figure ‎2‑28: Evaluation of PSE-based model monitoring when UE changes its RF environment at 300th and 600th CSI sample
[bookmark: _Hlk134852643]As shown in Figure ‎2‑28(b)-(e), if a threshold is set, PSE-based model monitoring can capture changes in RF environment successfully. In a rare event, we have observed in one of the scenarios, i.e., Figure ‎2‑28(f), the second change is not reflected in PSE changes. we should note that UMa and UMi channels are very similar in terms of statistics and semantic features; that is why the generalization of AI/ML model is easily possible over both UMa and UMi channels. Also, when such a similarity between two subsequent CSI samples exists, high likely AI/ML model won’t fail at all, and reporting a monitoring event would not be necessary. PSE-based monitoring is a feasible option for both input-based and output-based model monitoring.
For using PSE-based model monitoring we have few remarks: i) PSE-based model monitoring’s accuracy can be improved if we get deeper into historical PSE (higher observation window); ii) PSE-based monitoring can be used based on recovered CSI at NW and input CSI at UE. iii) PSE-based monitoring is a low complexity method with no spec impact that can trigger a complex or high-overhead intermediate-KPI-based monitoring method.
Study input/output-based model monitoring using power spectral entropy (PSE).
Study multi-stage monitoring with PSE-based monitoring as the first stage and a complex intermediate-KPI-based monitoring as the second stage. Second stage will be triggered by the monitoring method at first stage. 

Intermediate-KPI-based model monitoring
Intermediate-KPI-based monitoring focuses on tracking drastic changes in CSI reconstruction accuracy through intermediate KPIs, such as GCS, SGCS, and NMSE. Based on the entity that the monitoring approach will reside in, the Intermediate-KPI-based monitoring falls into two categories of UE-side and gNB-side monitoring. 
UE-side monitoring 
In this framework, as shown in Figure ‎2‑29, UE is able to keep track of changes in intermediate KPI. To enable UE to evaluate intermediate KPIs, the gNB has to transfer its actual CSI reconstruction part to the UE. This approach falls short in the following aspects: i) gNB cannot maintain proprietariness of its AI/ML model, ii) gNB does not consider UE’s computational and latency constraints in designing its CSI reconstruction part; so the model may not fit UE’s requirement and budget, and iii) UE’s may need to recompile, prune, quantize, etc. before deploying the received CSI reconstruction part for the sake of model monitoring. Another alternative is that gNB persistently sends back the recovered CSI to the UE. This approach comes with a large overhead which questions its effectiveness.
[image: ]
[bookmark: _Ref127283881]Figure ‎2‑29: An example of UE-side intermediate-KPI-based monitoring 

gNB-side monitoring
gNB can keep tracking the changes on intermediate KPI if it can access to input CSI as well. The gNB should be able to evaluate KPI through one of these solutions: i) UE transfer a replica of its encoder and periodically provide input/raw CSI samples to gNB, and ii) UE periodically append input/raw CSI to the compressed CSI in its reports to gNB. As shown Figure ‎2‑30, using either approach, the overhead from sending CSI can be significantly large. On the other hand, the first approach cannot maintain proprietariness of UE’s CSI generation part, let alone the fact that UE has not tailored it for gNB’s use. 
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[bookmark: _Ref127284886]Figure ‎2‑30: An example of gNB-side intermediate-KPI-based monitoring
UE-side monitoring with proxy CSI reconstruction
Instead of traversing input CSI to gNB or exchanging AI/ML model between gNB and UE, a promising approach is using a proxy decoder at UE side. Instead of using the actual CSI reconstruction part of the gNB, UE can use a simplified proxy CSI reconstruction which results lower, but drifted, intermediate KPI compared to the actual one. Either UE itself or gNB can come up with such a proxy, but it needs to be finally deployed at the UE to track drifted intermediate KPI. We expect any changes in the drifted KPI will indicate the similar changes in the actual KPI using actual CSI reconstruction part. 
We first show the feasibility of designing such a proxy. In our first evaluation, we have a proxy CSI reconstruction with the same structure type of the actual CSI reconstruction but 80 smaller in size. As shown in Figure ‎2‑31, we observe this drift behavior in both training setting and all test settings. It can be seen, by inspecting the drift distribution, the changes of environment can be captured.
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(a) Drift in a test setting similar to that in training
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(b) Drift in test environment 1 (different from training)
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(c) Drift in test environment 2 (different from training)
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(d) Drift distribution in a test setting similar to that in training
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(e) Drift distribution in test environment 1 (different from training)
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(f) Drift distribution in test environment 2 (different from training)


[bookmark: _Ref127286001]Figure ‎2‑31: Drift behaviour of a proxy decoder with a structure type similar to the actual decoder
The next question we intend to answer is whether there should be a match in structure type of the proxy and actual CSI reconstruction part of gNB. Therefore, we have designed a simple DNN-based proxy which is ~20 smaller than the actual CSI reconstruction part of AI/ML model in size. The drift behavior of the intermediate KPI from the proxy decoder and its distribution in different environments are shown in Figure ‎2‑32.
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(a) Drift in a test setting similar to that in training
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(b) Drift in test environment 1 (different from training)
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(c) Drift in test environment 2 (different from training)
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(d) Drift distribution in a test setting similar to that in training
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(e) Drift distribution in test environment 1 (different from training)
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(f) Drift distribution in test environment 2 (different from training)


[bookmark: _Ref127360351][bookmark: _Ref127360322]Figure ‎2‑32 Drift behaviour of a proxy decoder with a structure type different from actual decoder
As it can be seen from the above figure, even with a proxy CSI reconstruction with structure type other than that in the actual one, there is a visible drift in the actual and drifted intermediate KPI, which can be later use for detecting changes in the working environment.
The structures of the proxy and actual CSI reconstruction parts do not need to match either in size or type (which further secures proprietariness of gNB’s CSI reconstruction).
As it is feasible to perform model monitoring using a proxy CSI reconstruction part and it does not suffer from the shortcomings of its counterparts, we suggest promoting it as the first candidate for intermediate-KPI-based model monitoring.
If intermediate-KPI-based monitoring is adopted as the main monitoring method, prioritize UE-side monitoring with proxy CSI reconstruction.
CSI Prediction
In 3GPP RAN1 #111 meeting, time domain CSI prediction using UE sided model is selected as a representative sub-use case for CSI enhancement. CSI prediction in time domain can overcome the CSI aging problem to prevent the inaccurate channel conditions. In this section, we will discuss the evaluation of AI/ML based CSI prediction and provide our simulation results.
AI/ML Model
CSI prediction can be performed based on raw CSI channel response to allow more timely decisions for future channel conditions. When the UE receives the CSI-RS signal, it will perform the post-processing through descrambling, channel estimation, etc. Then, the UE can obtain the channel information, which can be CIR (channel impulse response) or CFR (channel frequency response) of CSI-RS. It can be an option for AI/ML model’s preprocessing.
Although CSI prediction has many advantages, it is quite difficult to predict the future CSI. Since each CSI instance is a complex-valued matrix with dimensions , where  and  are the numbers of RX and TX antennas, respectively, and  is the number of elements in the frequency dimension, which could be on subcarrier or PRB level. In other words, the number of parameters to be predicted for constructing future CSI is quite large.
CSI prediction can be performed based on a given recent history of CSI-RS samples, which forms a sequence. The following figure shows an example of CSI-RS availability (in yellow) in a time-slotted grid. The problem can be expressed as follows:
Problem statement: Given a sequence of CSI values, Predict future CSI.
[image: ]
[bookmark: _Ref127483662]Figure ‎3‑1: Illustration of CSI-RS samples
As depicted in Figure ‎3‑1, CSI-RS may not be available at every time slot. By ignoring the slots without CSI-RS, we obtain the Figure ‎3‑2, where  is the length of the input CSI sequence (the length of the observation window), and  is the length of the predicted CSI sequence (the length of the prediction window). 
[image: ]
[bookmark: _Ref126658063][bookmark: _Ref132877238]Figure ‎3‑2: Illustration of revised CSI-RS samples
In the discussion below, we show our performance results of different types of AI/ML structures. The MIMO-based CSI prediction will input the three-dimensional parameters (i.e., antenna, frequency, and time domain information) in the AI/ML model. The SISO-based CSI prediction will input only the two-dimensional parameters (i.e., frequency, and time domain information) in the AI/ML model. We will discuss and compare the differences, advantages, and disadvantages of the two methods.
MIMO-based CSI Prediction
The input of the AI/ML model for MIMO-based CSI prediction is 3D tensor, which includes the time, antenna and frequency domain information. In this case, we treat each CSI-RS instance as a 2D image, where the first axis is the frequency dimension, and the second axis is the antenna dimension with the real part and the imaginary part of the signal. A sequence of CSI-RS instances forms the input to our MIMO-based model and is depicted in Figure ‎3‑3. We treat the CSI sequence as frames in a video, and the prediction problem becomes a frame prediction problem. Therefore, the 3-D convolutional neural network (CNN) can be adopted in the MIMO-based CSI prediction.
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[bookmark: _Ref126670670][bookmark: _Hlk126670681]Figure ‎3‑3: Illustration of MIMO-based CSI prediction
The advantage of the MIMO-based model is it contains all channel information to conduct the CSI prediction. If the spatial correlation between different RX or TX antennas is high, it may be helpful for the prediction process. However, the MIMO-based model has low flexibility since we need to train the different models for different RX-TX pairs. For example, the AI/ML model for (32-TX, 4-RX) pair cannot be used for (16-TX, 8-RX) pair. The alternative way is to train the model of the largest (RX, TX) pair. In this way, the insufficient input can be filled with zero in the inference stage. But it will cause excessive waste, requiring large memory size and FLOPs to store and run the biggest model. 
SISO-based CSI Prediction
The input of the AI/ML model for SISO-based CSI prediction is also the 3D tensor, but only includes the time and frequency domain information. The last dimension is the real part and the imaginary part of the signal. Illustration of SISO-based CSI prediction shows in Figure ‎3‑4. In this case, we only need to adopt the 2-D CNN in the SISO-based CSI prediction to further reduce the complexity.
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[bookmark: _Ref126673360]Figure ‎3‑4: Illustration of SISO-based CSI prediction
The advantage of the SISO-based model is the higher flexibility. Model training for every TX-RX pair is not required. Moreover, compared with the architecture of MIMO-based model using 3D-CNN, SISO-based can use a smaller and simpler architecture to realize the CSI prediction. In addition to CNN-based architecture, we even use a simpler deep neural network (DNN) architecture to further reduce the computation complexity.
Performance comparison between AI/ML model and non-AI model
This section provides the evaluation results of AI/ML-based CSI prediction. To assess the performance of AI/ML-based CSI prediction, we compare it against the non-AI based prediction methods. The simulation parameters are shown in Table ‎6‑2 in Section 6.2. The periodicity of CSI-RS is 5ms and the UE speed is 30km/h. In this simulation, we assume the length of the observation window is 5 or 10 (=5 or 10) and the length of the prediction window is 3 (=3). It should be noted that the AI/ML model only considers one RB (that is, ), because the generalization over RB is good according to our observation in Section 3.2.1. The simulation result is shown in Table ‎3‑1, which depicts an intermediate KPI (NMSE) of the predicted instances with different prediction methods. 
[bookmark: _Ref132883393]Table ‎3‑1: CSI prediction results of different methods (NMSE in dB)
	[bookmark: _Hlk127178793]
	AI/ML-based model
	Non-AI based model

	
	MIMO-CNN
	MIMO-DNN
	SISO-CNN
	SISO-DNN
	AR
	Sample-and-hold

	 = 5
	-12.15
-4.11
-2.22
	-7.10
-1.38
-0.76
	-9.8
-2.87
-1.65
	-11.27
-3.51
-1.93
	-9.44
-2.98
-1.37
	-0.31
3.43
3.44

	 = 10
	-22.22
-10.45
-4.50
	-7.52
-1.43
-0.74
	-9.16
-3.42
-1.61
	-15.29
-5.85
-2.54
	-22.38
-9.90
-4.04
	-0.31
3.43
3.44



For the AI/ML-based model, we provide two MIMO-based and two SISO-based neural network models, namely CNN and DNN. For the non-AI based model, we use the sample-and-hold and the auto-regression (AR) method to compare the results with the AI/ML-based model. The order of AR is 3 and 8 corresponding to  = 5 and 10, respectively. The prediction coefficients of the AR model are obtained by least-square (LS) method on-the-fly, and the same coefficients will be applied to each antenna and each RB. According to simulation results, we have the following observations:
1. Both AI/ML-based CSI prediction and AR prediction are superior to sample-and-hold method.
2. Only MIMO-CNN can compete with the traditional AR method, but the gain is not significant (< 3dB).
3. When the length of the observation window is enough, the AR method outperforms most of the AI/ML-based methods. On the contrary, only when the length of the observation window is relatively short, AI/ML-based CSI prediction will outperform the AR prediction. 
4. The NMSE results of three different AI/ML models are similar. The performance of SISO-based CSI prediction can approach to the performance of MIMO-based CSI prediction in this scenario.
SISO-based CSI prediction has higher flexibility in different antenna pair.
Depending on the requirements on CSI prediction, for example the required prediction length, AI/ML-based solutions provide superior performance compared to sample-and-hold method.
When the length of the observation is enough, the classical non-AI based methods can outperform the AI/ML-based CSI prediction.
When the length of the observation is relatively short, AI/ML-based CSI prediction can slightly outperform the non-AI based methods.
In addition, we also provide the number of parameters and FLOPs for complexity analysis in Table ‎3‑2. It should be noted that we consider 2-RX, 32-TX and 1RB at inference stage.
[bookmark: _Ref126759858]Table ‎3‑2: Complexity of AI/ML-based and non-AI based models
	Length of the observation window / interval = 5 / 5ms

	
	AI/ML-based model
	Non-AI based model

	
	MIMO-CNN
	MIMO-DNN
	SISO-CNN
	SISO-DNN
	AR
	Sample-and-hold

	Params (K)
	751
	2361
	5.4
	15.6
	
	

	FLOPs (M)
	480
	2.4
	0.026
	0.0158
	0.1
	0

	Total FLOPs (M)
	
	
	1.67
	1.01
	
	

	

	Length of the observation window / interval = 10 / 5ms

	
	AI/ML-based model
	Non-AI based model

	
	MIMO-CNN
	MIMO-DNN
	SISO-CNN
	SISO-DNN
	AR
	Sample-and-hold

	Params (K)
	751
	3130
	5.6
	17.3
	
	

	FLOPs (M)
	960
	3.1
	0.05
	0.0174
	0.34
	0

	Total FLOPs (M)
	
	
	3.2
	1.11
	
	



The FLOP of MIMO-CNN model is the largest because it includes multiple Conv3D layers. Complex and massive convolution layer operations will lead to a large amount of computation. On the other hand, MIMO-DNN requires the highest number of parameters due to the characteristics of fully connected layers. This will cause the device to require a large amount of memory to store the coefficients.
The SISO-based model is applicable to the input of a single antenna. Therefore, if we receive channel matrices with multiple antenna ports, we need to predict the future channel of each pair of antennas. The total FLOPs in Table ‎3‑2 refers to the number that multiply FLOPs of SISO-based model with RX and TX antenna number. For example, the total FLOPs of SISO-DNN model with =10 are 0.0174M * 2-RX * 32-TX = 1.11M. Moreover, compared with the convolution layer, using a simple fully connected layer can effectively reduce the number of FLOPs. 
The FLOPs of the AR method include two processes. One is on-the-fly calculate the coefficients, and the other is linear prediction process. Most of the FLOPs come from the coefficient calculation since matrix operations (such as complex matrix multiplication and complex matrix inversion) are required. However, matrix inversion can be simplified through some mathematical methods, so the complexity of AR method is still lower than AI/ML-based CSI prediction.
MIMO-based CSI prediction can outperform SISO-based CSI prediction, but the computation complexity is too high.
Pre-processing and Post-processing
In this section, we attempt to apply the pre-processing and post-processing to the model inputs and outputs, respectively. To simplify our problem, we only consider the SISO-DNN model in this section. 
Previously, we always input the received raw channel without any pre-processing into the AI/ML model, which is a time-frequency domain channel. Figure ‎3‑5 shows the magnitude of the channels in the time-frequency domain with the 10 observation instances and 26 RBs. We can see that it is composed of irregular paths, and it is difficult to find the regularity of variation. Therefore, it may be difficult for model training with this dense matrix input.
[image: ]
[bookmark: _Ref131082027]Figure ‎3‑5: The magnitude of the channel in time-frequency domain

Based on the above reasons, we suggest converting the time-frequency domain channel into the Doppler-delay domain channel by simple two-dimensional (2D) discrete Fourier transform (DFT) matrix. Need to note that the phase shift in Doppler domain is needed to shift the zero-frequency component to the center. Figure 3‑6 shows the magnitude of the channels in the Doppler-delay domain. We can observe that the paths are more concentrated within a certain range of delay regions, and the Doppler frequency shift value is clearly displayed, reflecting the condition of the channels. It is expected that this sparse matrix may cause the prediction process more accurate and more friendly for model training.
[image: ]
[bookmark: _Ref131083456]Figure 3‑6: The magnitude of the channel in Doppler-delay domain

Table ‎3‑3 shows the simulation results compare to the original method. We consider 5ms and 10ms CSI-RS periodicity and the UE speed is 30km/h. In this simulation, we assume the length of the observation window is 10 (=10) and the length of the prediction window is 3 (=3). 
When the CSI-RS periodicity equals to 5ms, the result show that we can obtain the additional NMSE gain by 1~5dB depending on the time instance. However, the NMSE results are still unable to outperform the AR method. Need to note that the NMSE is calculated in the original channel matrix, which means that we need to recover the Doppler-delay domain output back to the time-frequency domain to obtain the NMSE.
When the CSI-RS periodicity changes to 10ms (similar to the CSI-RS with periodicity of 5ms but the UE speed of 60km/h), we can observe that if the time interval of the observation window is too long, applying the pre-processing cannot improve performance. Since if the observation interval is 10ms, the maximum observed Doppler shift is approximately equal to Hz. Therefore, under the 2GHz carrier frequency and 30km/k UE speed configuration, the Doppler shift is 55.6Hz (the coherence time is approximately equals to 9ms), which exceeds the available observed range, and it is difficult to accurately predict the channel. 
[bookmark: _Ref132891465]Table ‎3‑3: CSI prediction results of different methods (NMSE in dB)
	
	AI/ML-based model
	Non-AI based model

	
	SISO-DNN
(time-freq.)
	SISO-DNN (Doppler-delay)
	AR
	Sample-and-hold

	CSI-RS periodicity = 5ms
	-15.5
-5.89
-2.58
	-20.48
-9.30
-3.86
	-22.38
-9.90
-4.04
	-0.31
3.43
3.44

	CSI-RS periodicity = 10ms
	-1.91
-1.34
-1.08
	-1.87
-1.31
-1.06
	-1.31
0.16
0.68
	4.03
1.72
3.75



We also provide the complexity analysis of doing the pre-processing and post-processing in the following. If we consider 2-RX, 32-TX and 52RBs at inference stage, the total number of FLOPs we need is shown in Table ‎3‑4. In total, the pre-processing and post-processing only increased FLOP by 4.3M (7%). The main cost is matrix multiplication of 2D-DFT matrices, and under certain conditions, fast Fourier transform (FFT) can even be used to further reduce the computation complexity.
[bookmark: _Ref131153374]Table ‎3‑4: Complexity of AI/ML-based method
	AI/ML model
	SISO-DNN 
(time-frequency)
	SISO-DNN (Doppler-delay)

	Params (K)
	18.4
	18.4

	FLOPs (K)
	18.5
	18.5

	Total FLOPs (M)
	61.6
	65.9


Converting the time-frequency domain dense channels into Doppler-delay domain sparse channels can further improve the performance in the specific scenarios.
For CSI prediction, the Doppler frequency (affected by UE speed and carrier frequency) is the critical factor for prediction accuracy. 
When the coherence time is less than the CSI-RS periodicity, the CSI prediction performance will degrade rapidly.
[bookmark: _Hlk126917989]Generalization of CSI Prediction
[bookmark: _Hlk131079055]In this section, we discuss the generalization performance of the CSI prediction. The simulation parameters are shown in Table ‎6‑2 in Section ‎6.2, and the MIMO-CNN model is used for AI/ML-based CSI prediction.
[bookmark: _Ref127520167]Generalization Over RB
First, we want to observe the generalization characteristics over different RBs. Figure ‎3‑7 shows our concept of experiment. In the figure, the x-axis is the time samples, and the y-axis is the frequency domain granularity, which can be the subcarrier, RB, or subband. For training step, the first RB is applied to the training. Then the AI/ML training model will be tested on the middle and last RB to investigate the effectiveness. 
For the following results, the length of the observation window is 10 (=10), the length of prediction window is 3 (=3). Table ‎3‑5 shows the generalization performance results over single RB. We use NMSE to evaluate the performance. From the results, we can conclude that the AI/ML models trained in a specific RB can be applied to whole band because the performance is similar. In other words, in the whole frequency band, we can train only one AI/ML model by a specific RB (or a subcarrier) and use the same AI/ML model for other RBs. In this way, we can save the memory and computation complexity in the UE side.
[image: ]
[bookmark: _Ref127178867]Figure ‎3‑7: Illustration of training and inference

[bookmark: _Ref132901816]Table ‎3‑5: Generalization performance results over single RB (NMSE in dB)
	
	AI model training at first RB

	Inference at first RB
	-22.38, -10.39, -4.49

	Inference at middle RB
	-22.36, -10.36, -4.48

	Inference at last RB
	-22.35, -10.36, -4.47



In another experiment, we use a subband as the training granularity. The input of the AI/ML model is one subband (4 RBs in our setting), then output the one subband result of the predicted time samples as shown in Figure 3‑8. We expect that the joint prediction will have better results than the single RB prediction. However, we can see the results in Table ‎3‑6; the subband predication results are worse than the single RB results. The possible reason is that training multi-RB scenarios needs a larger input-output space and requires more complex AI/ML models for a better performance. Therefore, the trade-off between single RB and joint RBs needs to be further studied by UE implementation. 
In addition, we can also conclude that the AI/ML models trained in a specific subband can be applied to whole band. Therefore, the generalization over RB and subband is good for AI/ML-based CSI prediction.
[image: ]
[bookmark: _Ref127179051]Figure 3‑8: Illustration of training and inference of multiple RBs
[bookmark: _Ref132902126]Table ‎3‑6: Generalization performance results over multiple RBs (NMSE in dB)
	
	AI model training at the first subband

	Inference at the first subband
	-21.61, -9.87, -4.09

	Inference at middle subband
	-21.60, -9.86, -4.08

	Inference at the last subband
	-21.61, -9.87, -4.08



Compared with training at single RB, more complex models need to be considered when training at multiple RBs, otherwise the performance cannot be improved.
The AI/ML model trained on single/joint RB(s) can be generalized and inferenced on other single/joint RB(s).
[bookmark: _Ref127179833]Generalization Over Speed
In this section, we evaluate the generalization performance for UE speeds. Both uni-speed and mixed-speed datasets are used. UE speed is leveraged for evaluation with 10, 20, 30, 60, 120km/h, and the length of the observation window is 10 (=10), the length of prediction window is 1 (=1). We consider the following three cases agreed at RAN WG1 #110 ‎[3]:
· Case 1: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model performs inference/test on a dataset from the same Scenario#A/Configuration#A
For this case, the upper bound of the performance reference can be obtained. Table ‎3‑7 shows the performance of CSI prediction over speed. We can observe that when the UE speed is larger than (or equal to) 30km/h, the performance degrades rapidly. The reason is the Doppler effect and the corresponding coherence time of the channel. In our simulation, the CSI-RS periodicity is 5ms, and the coherence time of UE moving at 30km/h is about 4.5ms also. However, if the coherence time of the channel is less than CSI-RS periodicity, the channel variation will be more significant between two observed CSIs. This means the AI/ML is more difficult to learn the correlation between the CSI sets. Therefore, if we want to get better prediction accuracy at high speeds, the periodicity of CSI-RS should also be considered.
In addition, according to the results in Table ‎3‑7, we can also observe the AR-based prediction is superior to the AI/ML-based CSI prediction at lower speeds. Only at very high speeds can AI/ML-based prediction slightly outperform the AR method, but in this case, both have NMSE higher than -1dB, and their performance is very bad.
[bookmark: _Ref127179448]Table ‎3‑7: Case 1 performance results for CSI prediction over speed
	
	Speed (km/h)
	10
	20
	30
	60
	120

	AI/ML
	NMSE (dB)
	-32.83
	-30.79
	-23.62
	-0.87
	-0.5

	
	SGCS
	0.99993
	0.99971
	0.99636
	0.28792
	0.25479

	AR
	NMSE (dB)
	-89.77
	-43.99
	-22.38
	-1.18
	-0.14

	
	SGCS
	0.99999
	0.99996
	0.99474
	0.44556
	0.35749



· Case 2: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model performs inference/test on a different dataset than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B
For this case, the lower bound of the performance reference can be obtained. We conducted two experiments, namely training at 30km/h speed and training at 120km/h speed, and inference at all the candidate speeds. The NMSE and SGCS performance results are shown in Table ‎3‑8. Although training at medium speed can achieve robust performance at low speed, the training model cannot work at higher speed. In addition, if training at high-speed scenario, the performance will decrease a lot at low speed, while at high speed, the performance will not change a lot, because the features are similar and match to the training model. To sum up, if we train at a specific speed and inference at other speeds, the performance results will be much worse than the upper bound.
[bookmark: _Ref127179640]Table ‎3‑8: Case 2 performance results for CSI prediction over speed
	
	Training at speed 30 (medium speed)

	Inference 
speed (km/h)
	10
	20
	30
	60
	120

	NMSE (dB)
	-30.67
	-28.08
	-23.62
	19.3
	16.98

	SGCS
	0.99934
	0.99882
	0.99636
	0.20537
	0.07404

	
	Training at speed 120 (high speed)

	Inference
speed (km/h)
	10
	20
	30
	60
	120

	NMSE (dB)
	-5.33
	-3.01
	-1.77
	-0.87
	0.035

	SGCS
	0.78563
	0.58464
	0.44995
	0.28792
	0.21953



· Case 3: The AI/ML model is trained based on training dataset constructed by mixing datasets from multiple scenarios/configurations including Scenario#A/Configuration#A and a dataset different than Scenario#A/Configuration#A, and then the AI/ML model performs inference/test on a dataset from a single Scenario/Configuration from the multiple scenarios/configurations
For this case, we use the mixed speed dataset for training, and the contribution of each speed is equal into the mixed dataset. That is, the sub-dataset of each speed forms 1/5 of the mixed dataset, which will be shuffled before the training stage. As can be seen from Table 3‑9, compared with the upper bound performance, the NMSE difference is about 0.5 to 10dB, depending on the UE speed. How the degradation is ultimately reflected in the eventual KPIs needs to be further evaluated. Through the performance results, we know that if we train the corresponding models under different scenarios, we can obtain the optimal results. This means the importance of model switching for AI/ML-based CSI prediction.
[bookmark: _Ref127179751]Table 3‑9: Case 3 performance results for CSI prediction over speed
	
	Training at mixed [10, 20, 30, 60, 120] km/h 

	Inference speed (km/h)
	10
	20
	30
	60
	120

	NMSE (dB)
	-22.52
	-20.60
	-15.41
	-0.61
	-0.21

	SGCS
	0.99532
	0.99249
	0.97625
	0.22756
	0.21392



For AI/ML-based CSI prediction, the AI/ML model trained on a certain speed may not be generalized to other speeds.
Training at mixed speed can improve the performance, but it still has a difference of up to 10dB NMSE compared to optimal results.
Model switching process is essential for overcoming the generalization problem of speed.
Discuss the specific conditions for activating the CSI prediction process. For example, activate the AI/ML-based CSI prediction only when the speed is less than 60km/h.
Generalization Over Carrier Frequency
In this section, we evaluate the generalization performance over carrier frequency. The analysis is similar to Section 3.2.2, because the carrier frequency is also one of the main factors causing the Doppler effect. In this section, we set the UE speed at 30km/h and observe the performance changes under different carrier frequency values (including 2 and 3.5GHz). Table 3‑10 shows the performance results of case 1 over carrier frequency, which means we train based on a certain carrier frequency and then inference on the same carrier frequency. Therefore, the upper bound of the performance reference can be obtained. Table 3‑11 shows the performance results of case 2, that is, we train based on the training dataset of 3.5GHz carrier frequency and inference on the other carrier frequency. Table 3‑12 shows the performance results of case 3, we use the mixed carrier frequency dataset for training, and the ratio of each carrier frequency is equal. Same as the strategy of UE speed, because the case 2 performance of carrier frequency is not performed well, a mixed training of Doppler frequency (including the carrier frequency and UE speed) is suggested. In order to achieve better performance results, it is necessary to apply model switching.
[bookmark: _Ref127179971]Table 3‑10: Case 1 performance results f for CSI prediction over carrier frequency
	
	Carrier frequency
	2GHz
	3.5GHz

	
	Doppler frequency (Hz)
	55.6
	97.3

	AI/ML
	NMSE (dB) 
	-23.62
	-1.31

	
	SGCS
	0.99636
	0.35263

	AR
	NMSE (dB) 
	-22.38
	-1.78

	
	SGCS
	0.99474
	0.47777



[bookmark: _Ref127179976]Table 3‑11: Case 2 performance results f for CSI prediction over carrier frequency
	
	Training at 3.5GHz 
Inference at 2GHz
	Training at 2GHz 
Inference at 3.5GHz

	NMSE (dB) 
	-3.31
	23.13

	SGCS
	0.61166
	0.23116



[bookmark: _Ref127179982]Table 3‑12: Case 3 performance results f for CSI prediction over carrier frequency
	
	Training at mixed carrier frequency 

	Inference carrier frequency
	2GHz
	3.5GHz

	NMSE (dB) 
	-17.51
	-1.18

	SGCS
	0.98651
	0.34667



For AI/ML-based CSI prediction, the AI/ML model trained on a certain carrier frequency may not be generalized on other carrier frequencies.
Training at mixed carrier frequencies can improve the performance, but it still has a difference of up to 5dB NMSE compared to optimal results.
Generalization Over Deployment
In this section, we evaluate the generalization performance for the deployment. Based on the channel model in 3GPP 38.901, we consider two deployment scenarios for training: Urban macro (UMa) and Urban micro (UMi). Table 3‑13 shows the performance results of each deployment in case 1. We can observe that the performance result of the UMi is better than the UMa, one of the reasons may be the multipath effect. For UMa development, because the NLOS ratio is higher than the UMi development, more multipath effects will be introduced in UMa channel, resulting in greater channel variation. It will be more difficult to accurately predict the rich multipath channels.
[bookmark: _Ref127180154]Table 3‑13: Case 1 performance results for CSI prediction over deployment
	
	Deployment
	UMi
	UMa

	AI/ML
	NMSE (dB) 
	-28.94
	-23.62

	
	SGCS
	0.99901
	0.99636

	AR
	NMSE (dB) 
	-28.36
	-22.38

	
	SGCS
	0.99863
	0.99474



Table 3‑14 and Table 3‑15 show the performance of each deployment in case 2 and case 3, respectively. Whether it is UMa or UMi channel in the training phase, the performance mainly depends on the input of the inference phase, and the performance is similar with the upper bound results. Therefore, the training of AI/ML model may not need to consider the different deployment modes. In other words, the generalization over deployment is good.
[bookmark: _Ref127180161]Table 3‑14: Case 2 performance results for CSI prediction over deployment
	
	Training at UMa 
Inference at UMi
	Training at UMi 
Inference at UMa

	NMSE (dB) 
	-25.44
	-21.04

	SGCS
	0.99786
	0.99463



[bookmark: _Ref127180166]Table 3‑15: Case 3 performance results for CSI prediction over deployment
	
	Training at mixed UMi and UMa 

	Inference
deployment
	UMi
	UMa

	NMSE (dB) 
	-25.98
	-22.85

	SGCS
	0.99793
	0.99554



For AI/ML-based CSI prediction, the AI/ML model trained on a certain deployment (e.g., UMa/UMi) can be generalized and performed inference on other deployment (e.g., UMa/UMi).
Performance Evaluation in SLS
In the previous section, the results are based on the intermediate KPI (NMSE and SGCS). In this section, we will provide the SLS simulation results based on the eventual KPI (throughput). The simulation parameters are shown in Table ‎6‑2 in Section 6.2. The periodicity of CSI-RS is 5ms, the CSI feedback delay is 4ms and the UE speed is 30km/h. 
Compare with non-AI based CSI Prediction
In this section, we provide the throughput performance, including the simulation results of Rel-16 Type II codebook, results of Rel-18 Type II codebook with non-AI based CSI prediction and results of Rel-18 Type II codebook with AI/ML-based CSI prediction. For the AI/ML-based CSI prediction, the MIMO-CNN model is used. In addition, we assume the length of the observation window is 10 (=10) and the length of the prediction window is 1 or 3 (=1 or 3), depending on the codebook type. For the non-AI based CSI prediction, we use the AR with order = 8. The traffic models we apply are full buffer model and FTP mode 1 with packet size 0.5Mbytes.
Table 3‑16 shows the spectral efficient (SE) value of full buffer traffic model. We can observe that through the CSI prediction process, regardless of the reported codebook type, SE will increase compared to without CSI prediction. This indicates that CSI prediction effectively solves the CSI aging problem, and reports the Rel-18 codebook can further improve the performance. Therefore, the CSI prediction process is more suitable for pairing with Rel-18 codebook. However, we can also observe that the AR method can achieve SE that is almost identical to AI/ML-based CSI prediction. The result can be reflected in the intermediate KPIs, but the fact is further confirmed from the eventual KPIs.
Table 3‑17 shows the mean UPT value under FTP traffic model. Similar to the conclusion mentioned above, the AI/ML-based CSI prediction with Rel-16 codebook can improve 27% throughput compared to without CSI prediction, and the AI/ML-based CSI prediction with Rel-18 codebook can improve 40% throughput compared to without CSI prediction. Non-AI based CSI prediction can also achieve the similar results.
[bookmark: _Ref133593018]Table 3‑16: Performance results of full buffer traffic model
	SE (bps/Hz)

	Prediction Type
Codebook Type                  
	Without 
CSI prediction
	AI/ML-based CSI prediction
	Non-AI based CSI prediction

	Rel-16 Type II Codebook
(prediction window = 1/5ms)
	6.17
	7.22
	7.16

	Rel-18 Type II Codebook 
(prediction window = 3/5ms)
	
	7.93
	7.98



[bookmark: _Ref133593019]Table 3‑17: Performance results of FTP traffic model
	Mean UPT (Mbps)

	
Prediction Type

RU / Codebook Type                  
	Without 
CSI prediction
	AI/ML-based CSI prediction
	Non-AI based CSI prediction

	RU 30%
	Rel-16 Type II Codebook
	50.71
	62.17
	61.42

	
	Rel-18 Type II Codebook 
	
	65.46
	64.70

	RU 70%
	Rel-16 Type II Codebook
	31.74
	42.72
	41.99

	
	Rel-18 Type II Codebook 
	
	47.16
	47.23



The AI/ML-based CSI prediction with Rel-16 or Rel-18 Type II codebook can effectively solve the CSI aging problem under specific scenarios.
The performance of CSI prediction with Rel-18 codebook outperform than the performance of CSI prediction with Rel-16 codebook.
Using Rel-18 codebook as baseline for AI/ML-based CSI prediction.
Compare with Different Reporting Type
In this section, we provide the of different reporting type. Below are some explanations of the wordings we use in this document:
· Prediction perfect: Apply genie channel information to each sample in the reporting window. Figure ‎3‑9 shows the illustration of CSI prediction and reporting process. In this example, the length of the reporting window is 8, and the interval of the reporting window is 1 slot (equal to 1ms here since the subcarrier spacing assume 15kHz in this case). If we use the wording of “prediction perfect”, it means that we directly apply the 8 samples of ideal/genie channel values after the CSI feedback delay.
· Prediction imperfect: Apply AI/ML-based CSI prediction results in the reporting window. If the prediction interval is larger than TTI, the remaining samples are obtained from cubic interpolation. In the example in Figure ‎3‑9, assume our AI/ML-based CSI prediction is to predict the 3 instances of the CSI with 5ms intervals. We can obtain the 2 sample values in the reporting window, and the remaining 6 sample values are obtained through cubic interpolation. 
· No prediction: Temporal domain CSI prediction algorithm is not applied, or the future channel values are not applied in this scenario. Only spatial and frequency information are considered when reporting the CSI information.
· Reporting perfect: Report the ideal singular value decomposition (SVD) values directly to the gNB.
· Reporting imperfect: Report the codebook-based results to the gNB. In our simulation, we consider Rel-16 Type II codebook or Rel-18 Type II codebook with Doppler information.
[image: ]
[bookmark: _Ref126853321]Figure ‎3‑9: Illustration of CSI prediction and reporting process

The simulation result is shown in Figure ‎3‑10, which contains six bars. The throughput (%) refers to the target absolute throughput value divided by the baseline absolute throughput value. The baseline we use to compare is the Rel-16 codebook without time domain prediction (black bar in the figure). According to simulation results, we have the following observations:
1. Compare ⑤ and ⑥: At the UE speed of 30km/h, the CSI aging effect dominates the final performance. Therefore, both codebook-based reporting and ideal SVD reporting suffer the CSI aging problem. This results in no gain when using more accurate ideal SVD reporting at medium/high speeds.
2. Compare ④ and ⑤: In Rel-18, adopt AI/ML-based time domain CSI prediction and report the Doppler domain information can provide 60% throughput gain compared with Rel-16 codebook due to solving the CSI aging effect.
3. Compare ③ and ④: The AI/ML-based CSI prediction performance can approach perfect prediction results in this case. It should be noted that this is only an example. If the CSI-RS periodicity is greater than the coherence time of the channel, the channel variation will be more significant between two observed CSIs. This means the AI/ML model is more difficult to learn the correlation between the CSI sets, resulting in poor prediction results. Figure ‎3‑11 shows the simulation results under 10ms CSI-RS periodicity with UE speed 30km/h. In this case, the performance of AI/ML-based CSI prediction with Rel-18 codebook is greatly degraded. Therefore, if we want to get better prediction accuracy at medium/high speeds, the periodicity of CSI-RS should also be considered.
4. Compare ② and ③: Currently, there is still an 18% throughput disparity between Rel-18 codebook reporting and ideal SVD reporting. AI/ML-based temporal-special-frequency CSI compression may narrow the gap. Other non-AI/ML based methods are also not precluded (e.g., Rel-19 codebook).
[image: ]
[bookmark: _Ref126854250]Figure ‎3‑10: SLS throughput results in different prediction and reporting scenario
[image: ]
[bookmark: _Ref126920928]Figure ‎3‑11: SLS throughput results under 10ms CSI-RS periodicity
The AI/ML-based CSI prediction performance can approach the ideal prediction performance when the CSI-RS periodicity is within the coherence time.
Depending on different Doppler frequencies (e.g., UE speed and carrier frequency), configuring suitable CSI-RS periodicity can effectively solve the CSI aging problem.
Conclusion
In summary, based on the above discussions, we have the following observations:
1.   Generalization over carrier frequency is feasible. For 2GHz and 3.5GHz, the SGCS degradation is 0% for generalization case 2, and 0.3% for generalization case 3.
1.  For generalization case 2, generalization from a lower frequency to a higher frequency is more promising compared to the opposite direction.
1.  Generalization over UEs’ deployment is feasible. SGCS degradation is 1.1% for generalization case 2 and 0.6% for generalization case 3.
1.  In generalization case 2, generalization from UMa to UMi is more promising than generalization from UMi to UMa.
1.  SGCS loss from payload scalability is only -1.6% and -2.5% for two and three rates, respectively. The SGCS loss increases as the difference between payload lengths increases. 
1. Payload scalability saves 59.4% and 57.0% storage for two and three rates, respectively.
1. I/O-scalable AI/ML models obtained through padding and truncation degrades the SGCS by 1.8% and offers 54% parameters reduction compared to dedicated AI/ML models.
1.  I/O-scalable AI/ML models obtained through padding and truncation increases FLOPs between 0% to 54% and 21% on average compared to dedicated AI/ML models.
1.  I/O-scalable AI/ML models with adaptation layers degrades the SGCS by 1.0% and offers 40% parameters reduction compared to dedicated AI/ML models.
1. I/O-scalable AI/ML models obtained through padding and truncation increases FLOPs between 1% to 59% and 24% on average compared to dedicated AI/ML models.
1. Comparing adaptation layers and padding-truncation for I/O-scalable AI/ML models, adaptation layers offer better performance at the cost of less storage reduction and more FLOPs.
1. Using UE-first separate training for multi-encoder single-decoder setting degrades the performance by -37.45% compared to single-encoder single-decoder setting.
1. On average, using gNB-first separate training for single-encoder multi-decoder setting degrades the performance by -58.97% compared to single-encoder single-decoder setting.
1.  gNB-first separate training has inferior performance compared to UE-first separate training for any number of encoders and decoders participating in the training session.
1. Updating the entire AI/ML model through re-training/fine-tuning in the presence of TNA-VQ will degrade overall CSI reconstruction accuracy.
1. Fine-tuning CSI reconstruction part of AI/ML model in the presence of TNA-VQ improves the CSI reconstruction accuracy gain over TNA-NL-SQ by 62.7%.  In overall, fine-tuning gain is not significant. It is 1.2% gain compared to non-tuned AI/ML model
1. VQ is very sensitive to small changes in the distribution of CSI generation part’s output.
1. Re-using VQ codebook even for the AI/ML models of the same structure degrades its gain by 79.6% on average.
1. On average, TA-NL-SQ, TA-L-SQ, and TNA-VQ achieve 7.8%, 11.6%, and 4.1% gain over TNA-NL-SQ, respectively.
1. Training awareness improves the gain of quantization methods by 6.5%, Learnability improves the gain of quantization methods by 5.1%, and SQ methods of all kinds, on average, outperform VQ by 1.7%.
1. It is feasible to quantize entire dataset for training with negligible perf. loss. We observed 10x reduction in dataset size with only 3.1% SGCS performance loss
1. Incorporation of few ideal samples into quantized dataset can mitigate perf loss from quantization. Incorporation of 2% ideal CSI samples in the dataset can compensate 38.7% of SGCS loss caused by quantization.
1. PSE has inverse relation with compressibility of CSI samples
1. The structures of the proxy and actual CSI reconstruction parts do not need to match either in size or type (which further secures proprietariness of gNB’s CSI reconstruction).
1. SISO-based CSI prediction has higher flexibility in different antenna pair.
1. Depending on the requirements on CSI prediction, for example the required prediction length, AI/ML-based solutions provide superior performance compared to sample-and-hold method.
1. When the length of the observation is enough, the classical non-AI based methods can outperform the AI/ML-based CSI prediction.
1. When the length of the observation is relatively short, AI/ML-based CSI prediction can slightly outperform the non-AI based methods.
1. MIMO-based CSI prediction can outperform SISO-based CSI prediction, but the computation complexity is too high.
1. Converting the time-frequency domain dense channels into Doppler-delay domain sparse channels can further improve the performance in the specific scenarios.
1. For CSI prediction, the Doppler frequency (affected by UE speed and carrier frequency) is the critical factor for prediction accuracy. 
1. When the coherence time is less than the CSI-RS periodicity, the CSI prediction performance will degrade rapidly.
1. Compared with training at single RB, more complex models need to be considered when training at multiple RBs, otherwise the performance cannot be improved.
1. The AI/ML model trained on single/joint RB(s) can be generalized and inferenced on other single/joint RB(s).
1. For AI/ML-based CSI prediction, the AI/ML model trained on a certain speed may not be generalized to other speeds.
1. Training at mixed speed can improve the performance, but it still has a difference of up to 10dB NMSE compared to optimal results.
1. For AI/ML-based CSI prediction, the AI/ML model trained on a certain carrier frequency may not be generalized on other carrier frequencies.
1. Training at mixed carrier frequencies can improve the performance, but it still has a difference of up to 5dB NMSE compared to optimal results.
1. For AI/ML-based CSI prediction, the AI/ML model trained on a certain deployment (e.g., UMa/UMi) can be generalized and performed inference on other deployment (e.g., UMa/UMi).
1. The AI/ML-based CSI prediction with Rel-16 or Rel-18 Type II codebook can effectively solve the CSI aging problem under specific scenarios.
1. The performance of CSI prediction with Rel-18 codebook outperform than the performance of CSI prediction with Rel-16 codebook.
1. The AI/ML-based CSI prediction performance can approach the ideal prediction performance when the CSI-RS periodicity is within the coherence time.
We have also the following proposals based on our observations:
1. [bookmark: _In-sequence_SDU_delivery]Study alignment requirement for payload-scalability methods between CSI generation and CSI reconstruction parts of AI/ML models.
Discuss model ID assignment and relevant LCM issues for payload-scalable AI/ML models.
Study padding-truncation approach as the main framework for building I/O-scalable AI/ML models.
Study the trade-off between parameters reduction and FLOPs increase for I/O-scalable and payload-scalable AI/ML models.
Define a mechanism/threshold to identify and avoid certain vulnerable pairings of encoders and decoders.
Discuss how to calculate a joint loss to avoid adverse bias toward the matched pairs.
Study different parameters’ update scheduling for multi-encoder or multi-decoder settings using any training strategy.
In the UE-first separate training strategy, UE should inform gNB about the type of its architecture.
In the gNB-first separate training strategy, gNB should inform UE vendor at least about the type of its dropped encoder’s architecture.
Number and types of entities (i.e., UE and gNB) involved in BP sessions can draw a clear boundary between different training types:
· Training type 1: BP is isolated in a single entity
· Training type 2: BP is not isolated 
· Training type 3: BP is isolated in multiple entities of different types

Designing VQ should be done by UE, and gNB can optionally fine-tune its CSI reconstruction part.
The UE should inform gNB about its VQ design to maintain the alignment for quantization and dequantization parts.
Give higher priority to SQ methods given their performance, less sensitivity, and less alignment efforts in multi-vendor ecosystems. 
Need for resolutions beyond what is currently being offered by eType II should be justified by evaluation.
Study and compare the following options for reducing overhead of data collection: 
· Quantization with eType II-like framework with higher resolutions
· Incorporation of ideal CSI samples for possible finetuning at the data collector side 
Prioritize input/output-based model monitoring using power spectral entropy (PSE).
Discuss multi-stage monitoring with PSE-based monitoring as the first stage and a complex intermediate-KPI-based monitoring as the second stage. Second stage will be triggered by the monitoring method at first stage. 
If intermediate-KPI-based monitoring is adopted as the main monitoring method, prioritize UE-side monitoring with proxy CSI reconstruction.
Model switching process is essential for overcoming the generalization problem of speed.
Discuss the specific conditions for activating the CSI prediction process. For example, activate the AI/ML-based CSI prediction only when the speed is less than 60km/h.
Using Rel-18 codebook as baseline for AI/ML-based CSI prediction.
Depending on different Doppler frequencies (e.g., UE speed and carrier frequency), configuring suitable CSI-RS periodicity can effectively solve the CSI aging problem.
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[bookmark: _Ref101361592]Appendix
[bookmark: _Ref111112082]Simulation Assumptions for CSI Compression
[bookmark: _Ref127484838][bookmark: _Ref111117830]Table ‎6‑1: SLS/LLS parameter configuration used in generating datasets for CSI Compression
	
	Dataset 1
	Dataset 2
	Dataset 3

	Carrier frequency
	4 GHz
	3.5 GHz
	3.5 GHz

	Bandwidth
	10MHz
	10MHz
	10MHz

	SCS
	15 kHz
	15 kHz
	15 kHz

	PRB
	52
	48
	48

	Sub-band
	13
	12
	12

	Channel model
	UMa
	CDL-A (30ns delay spread)
	CDL-C (300ns delay spread)

	UE distribution
	80% indoor + 20% outdoor
	N/A
	N/A

	UE speed
	3 km/h indoor,30 km/h outdoor
	3 km/h
	3 km/h

	Tx antennas
	32 Tx ports: (8,8,2,1,1,2,8)
	32 Tx ports: (8,8,2,1,1,2,8)
	32 Tx ports: (8,8,2,1,1,2,8)

	Rx antennas
	4 Rx ports: (1,2,2,1,1,1,2)
	4 Rx ports: (1,2,2,1,1,1,2)
	4 Rx ports: (1,2,2,1,1,1,2)

	Rank
	1, 2
	1, 2
	1, 2

	Estimation
	ideal
	ideal
	ideal



[bookmark: _Ref111112156]Simulation Assumptions for CSI Prediction
[bookmark: _Ref131078899]Table ‎6‑2: SLS parameter configuration used in generating datasets for CSI prediction
	
	Dataset 4

	Channel model
	TR 38.901 Dense Urban (@2GHz)

	Sub-carrier spacing
	15kHz

	Antenna setup and port layouts at gNB
	32 ports: (8,8,2,1,1,2,8), (dH,dV) = (0.5, 0.8)λ, Cross-polarization

	Antenna setup and port layouts at UE
	2RX: (1,1,2,1,1,1,1), (dH,dV) = (0.5, 0.5)λ, Cross-polarization

	Operating BW
	10MHz

	UE distribution
	100% outdoor with UE speed 30km/h

	Number of input CSI samples
	10

	Number of output CSI samples
	5

	CSI-RS periodicity
	4ms


[bookmark: _Ref111188417]
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