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[bookmark: _Ref5850594]Introduction
At RAN #94, a new study on artificial intelligence/machine learning for NR air interface has been approved [1] with the following goals briefly summarized as below. 
 
Study the 3GPP framework for AI/ML for air-interface corresponding to each target use case regarding aspects such as performance, complexity, and potential specification impact. 
 
Use cases to focus on:  
· Initial set of use cases includes:  
· CSI feedback enhancement, e.g., overhead reduction, improved accuracy, prediction [RAN1] 
· Beam management, e.g., beam prediction in time, and/or spatial domain for overhead and latency reduction, beam selection accuracy improvement [RAN1] 
· Positioning accuracy enhancements for different scenarios including, e.g., those with heavy NLOS conditions [RAN1]  
· Finalize representative sub use cases for each use case for characterization and baseline performance evaluations by RAN#98 
· The AI/ML approaches for the selected sub use cases need to be diverse enough to support various requirements on the gNB-UE collaboration levels 
Evaluate performance benefits of AI/ML based algorithms for the agreed use cases in the final representative set: 
· Methodology based on statistical models (from TR 38.901 and TR 38.857 [positioning]), for link and system level simulations.  
· Extensions of 3GPP evaluation methodology for better suitability to AI/ML based techniques should be considered as needed. 
· Whether field data are optionally needed to further assess the performance and robustness in real-world environments should be discussed as part of the study.  
· Need for common assumptions in dataset construction for training, validation and test for the selected use cases.  
· Consider adequate model training strategy, collaboration levels and associated implications 
· Consider agreed-upon base AI model(s) for calibration 
· AI model description and training methodology used for evaluation should be reported for information and cross-checking purposes 
1. KPIs: Determine the common KPIs and corresponding requirements for the AI/ML operations. Determine the use-case specific KPIs and benchmarks of the selected use-cases. 
· Performance, inference latency and computational complexity of AI/ML based algorithms should be compared to that of a state-of-the-art baseline 
· Overhead, power consumption (including computational), memory storage, and hardware requirements (including for given processing delays) associated with enabling respective AI/ML scheme, as well as generalization capability should be considered. 

Some progress has been made in RAN1 meetings so far, towards achieving the SI objectives. In this contribution, we discuss various aspects of the above-mentioned goals for the beam management use case evaluation. 

Evaluation methodology
In the following subsections, we discuss different aspects related to evaluation of BM-Case1 and BM-Case2.
[bookmark: _Hlk100867512]
UE-side versus gNB-side AI/ML models
Beam prediction at UE and gNB have different requirements in terms of signalling overhead and the associated beam prediction accuracy. For instance, gNB only has access to a subset of UE measurements and having access to more beam measurements may improve gNB-side beam prediction accuracy. On the other hand, in order for gNB to have access to more UE beam measurements the UE report overhead would inevitably need to increase. The trade-off between beam prediction accuracy and required signalling overhead should be considered in the study for UE-side and gNB-side prediction, and the benefits and drawbacks of beam prediction at each side should be identified.

In many of the existing evaluation results across companies, certain assumptions are made regarding the availability of some information as inputs to the AI/ML model without explicitly stating whether those sets of assumptions are applicable to UE-side AI/ML models and/or NW-side AI/ML models. Also, when considering the inputs to the AI/ML models, we should take this into account whether we are considering UE-side versus gNB-side AI/ML models, as some variations (e.g., RX beam prediction at NW side) is not feasible. The following proposal addresses the above-mentioned aspects by suggesting a targeted set of evaluations for the purpose of better alignment and translation of evaluation results to realistic and practical use cases.
Proposal 1 
[bookmark: _Hlk127485794]For BM-Case1 and BM-Case2, consider the following factors for UE-side and gNB-side AI/ML models:
· Feasibility and availability of inputs to the AI/ML model at each side
· If feasible, study the benefits, impact on system operation, and trade-offs for making a given set of inputs available at each side


Temporal Beam Prediction Notation  
One of the aspects that has been of interest to multiple companies is using L1-RSRP measurements from  contiguous beam management cycles out of every  contiguous cycles as input to the AI/ML model, which then provides predictions for the best L1 beams for the following  cycles, as depicted below.
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[bookmark: _Ref127487045]Figure 1 MxPy terminology for BM-Case2

As an example, let us consider the following illustration which depicts M1P5 based on the above terminology.
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Figure 2 Illustration for M1P5


To unify and align the terminology across companies, we propose the following:
Proposal 2
[bookmark: _Hlk127485840]For BM-Case2, adopt the following notation:



MP: AI/ML model is given as input L1-RSRP measurements from  contiguous beam management cycles out of every  contiguous cycles, then provides predictions for the following  cycles.


- 74/262 


Spatiotemporal beam prediction
Within the context of RAN1 AI/ML for BM SI two primary use cases were agreed to be studied, namely temporal (BM-Case2) and spatial (BM-Case1) domain beam prediction. Particularly, to facilitate the evaluations, most (if not all) of the evaluations regarding BM-Case1 do not consider the temporal aspect at all. Now, if we consider realistic operations, we do not have such a scenario as “spatial-only” beam prediction and to draw realistic observations, the temporal aspect always needs to be incorporated. On the other hand, majority of the evaluations so far for BM-Case2 assume Set A is the same as Set B (which would correspond to “temporal-only” beam prediction) which is again far from being practical. The following proposal is meant to encourage companies to evaluate spatiotemporal beam prediction which would give us useful realistic insights about beam prediction performance.
Proposal 3
[bookmark: _Hlk127485887]For BM-Case2, consider the following sub-use cases for evaluations:
Set B is not a subset of Set A (Set B is composed of wide beams and Set A is composed of narrow beams)
Set B is a subset of Set A

Evaluation results for these sub-use cases can give valuable and more realistic insights into usefulness of AI/ML-based methods in practical scenarios.

Assistance information for beam prediction evaluations
In the following, we consider the two agreed use cases (BM-Case1 and BM-Case2) and describe what signaling aspects can be enabled by beam prediction at UE for each use case, and how this signaling may be beneficial.

UE-side temporal beam prediction: Consider temporal beam prediction being carried out at the UE side. One factor which may impact the prediction performance of UE-side AI/ML models is the prospect of “assistance information”. Some examples of such assistance information are gNB beam boresight directions, 3dB beamwidth or beam shape of gNB beams. Such assistance information may be used as an auxiliary input to on-device models for beam prediction. As an illustrative example, if the UE knows the relative direction of gNB beams, given the history of previous beam measurements, it may perform a more informed prediction compared to the scenario in which UE does not have this information.

UE-side spatial domain beam prediction: Let us consider Alt.1 (Set B consists of wide beams and Set A consists of narrow beams) and Alt. 2 (Set B is a subset of Set A) agreed for BM-Case1 in RAN1 110. UE may measure only Set B of beams and predict the strongest beam ID(s) optionally along with the corresponding predicted RSRPs for Set A and can report the predicted strongest beam ID(s) optionally along with the corresponding predicted RSRPs to gNB. For this sub-use case, having information about gNB beam shapes such as knowing the gNB beam boresight directions (along with 3dB beamwidth) for beams from Set A and Set B could enhance the prediction quality and additionally enable richer UE report containing information about gNB beams from Set A (with higher angular resolution). Such assistance information may be used as an auxiliary input to on-device models for beam prediction.

Other than potential improvements to the standalone performance of AI/ML models with assistance information (compared to without assistance information) – for which we have provided simulation results in Section 3.2.1 (Use Case 2 therein) to show the usefulness of signaling gNB beam pointing angles – assistance information can also be beneficial in boosting the generalization performance of AI/ML models (either through UE-side model switching based on assistance information or by using assistance information as auxiliary input to an AI/ML model), as illustrated in the evaluation results in Section 3.3.2. Based on these observations, we propose the following:

Proposal 4
[bookmark: _Hlk127485923]For BM-Case1 and BM-Case2, study the performance of AI/ML models with and without incorporating assistance information and compare the performance.
· Study the existing trade-offs including overhead required for signalling of assistance information and corresponding performance benefits.
· The agreed KPIs related to beam prediction accuracy and RS overhead reduction can be used for performance evaluation.
· Examples of such assistance information: Relative beam pointing angles of beams within Set A and beams within Set B, relative beam pointing angles of beams across Set A and Set B
· In addition to the above-mentioned beam shape-related information, assistance information can be in the form of gNB codebook ID, gNB antenna configuration ID, etc.
· Study the impact of assistance information on generalization performance.

The results of this study and the set of evaluations can inform the community about potential benefits of signalling certain information in the form of assistance information and if the performance benefits are justified, can be considered in the 9.2.3.2 agenda item for study of signalling implications.

KPIs 
[bookmark: _Hlk115384580]For spatial domain beam prediction and SLS evaluations, one metric that can give useful intuitions about the overall performance of the system is spectral efficiency CDF across UEs in the system.
Proposal 5
At least for BM-Case1, consider spectral efficiency CDF for SLS evaluations as a KPI.

Performance Results
We present our simulation results for temporal and spatial domain beam prediction in this section. 

Temporal beam prediction 
Here we present results for temporal beam prediction, comparing predictions from ML methods to a sample-and-hold baseline for UE Rx beam and gNB Tx beam prediction on RSRP data collected from mobile UEs.

Simulation Assumptions  
This section details the process for generating mobile UE random trajectories for temporal beam prediction simulations as well as the simulation assumptions used in data generation for training/testing ML methods.

UE random trajectory generation
The following random trajectory generation process is based on Option 3 in the agreed methods for trajectory generation in RAN1 109e, with some modifications based on Option 4.

A UE has initial position , initial orientation , constant forward velocity , and initial azimuthal velocity angle . Temporal granularity  is defined as the smallest unit of time considered in random walk generation and mean temporal step size   is defined as the mean travel time for walk steps along the random trajectory.  is chosen such that it will be a whole-number multiple of the temporal granularity:


where  is the mean number of sub-steps per walk step.
Maximum walk time  is likewise chosen to be a whole-number multiple of .
Distance granularity  is computed as


[bookmark: _Hlk111193215]For the purposes of random trajectory generation for urban macro and urban micro simulations, a geometric sector is defined as a geometric area in which the random trajectory will be constrained, consisting of the intersection of two regions: the first region consists of one third of the hexagonal cell surrounding the UE’s serving gNB and symmetric with respect to the gNB’s azimuthal orientation, , and the second region consists of the area outside a circle with radius  centred on the serving gNB. Figure 3 provides a diagram of an example sector for a scenario with an ISD of 200 m, a serving gNB positioned at the origin with , and a chosen 10 m.
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[bookmark: _Ref111128162][bookmark: _Ref111128139]Figure 3 Example sector
Two schemes for updating UE orientation changes throughout the trajectory are proposed:
1. Matched-to-walk orientation change scheme: follows changes to the UE’s azimuthal velocity angle, while  and  remain constant.
2. Constant-angular-velocity orientation change scheme: , , and  all update with constant angular velocity  with sign decided randomly for each angle.

Given the above setup, the following algorithm is used to generate a random trajectory for a particular UE:
1. Initialize total sub-step counter .
2. If constant-angular-velocity orientation change is specified, choose orientation angle update directions  to each be either  or  with equal probability.
3. For walk step 
3.1. Draw number of sub-steps for the th step  from a geometric distribution with probability of success .
3.2. Draw azimuthal velocity angle delta for the th walk step  from a uniform distribution in the range .
3.3. Compute sub-step velocity angle delta:  = .
3.4. For each sub-step :
3.4.1. Increment total sub-step counter  If the UE’s total travel time thus far  is greater than , terminate the walk. Otherwise, continue.
3.4.2. Update the UE’s sub-step velocity angle: .
3.4.3. Compute potential updated UE position: .
If is outside the geometric sector, terminate the walk. Otherwise, update the UE’s position.
3.4.4. Update the UE’s orientation depending on orientation change scheme:
a. If using constant-angular-velocity orientation change, .
b. If using matched-to-walk orientation change .

Figure 4 shows a randomly set of randomly generated UE walks with the following parameters:
·  = 1 m
·  = 30 km/h
·  = 35 m
· gNB positioned at the origin with 
· ISD = 200 m

[image: ]
[bookmark: _Ref111128303]Figure 4 Example random UE trajectories
Figure 5 displays orientation changes for a particular random walk the matched-to-walk orientation change scheme, while Figure 6 displays the same random walk generated with the constant-angular-velocity orientation change scheme. For both examples,  and .

[image: ]
[bookmark: _Ref111128595]Figure 5 Random walk with matched-to-walk orientation changes
[image: ]
[bookmark: _Ref111128613]Figure 6 Random walk with constant-angular-velocity orientation changes

Assumptions for data generation simulations
Table 1 summarizes the details for the simulation assumptions for temporal beam prediction, and Table 2 summarizes the random trajectory parameters.

[bookmark: _Ref111130031]Table 1 Temporal beam prediction simulation assumptions
	Parameters
	Value

	Scenario
	Uma, outdoor

	Carrier frequency
	28 GHz

	ISD
	200 m

	BS antenna cfg.
	(M, N, P, Mg, Ng) = (4, 8, 2, 1, 1), (dV, dH) = (0.5, 0.5) λ

	BS codebook
	12 beams (DFT codebook), 
6 azimuth beams (22.5 degree separation) and 
2 elevation beams (45 degree separation)

	UE antenna cfg.
	(M,N,P) = (1,4,2), 2 panels (left, right)

	UE codebook
	4 beams (DFT codebook) with 45-degree separation

	gNB antenna gain
	8 dBi

	BS Tx power
	28 dBm for 80 MHz bandwidth, 60 dBm EIRP

	UE Rx. noise figure
	9 dB

	SCS
	120 KHz

	Car penetration loss
	Included

	Beam management frequency
	40 ms




[bookmark: _Ref111130607]Table 2 Random trajectory parameters
	Parameters
	Value

	
	1 s

	
	0.1 s

	
	40 s

	
	30 km/h

	
	35 m

	Orientation change scheme
	Constant-azimuthal-velocity,  = 10, 100 RPM



Measured data subsampling schemes
The term subsampled beam prediction describes beam prediction in a setting where there is a restriction on the number/combination of beams/beam pair links at which RSRP data is measured/reported at any given measured beam management cycle, as contrasted with non-subsampled beam prediction, where RSRP data is available for every beam pair link at every measured beam management cycle. That is, for any given measured beam management cycle, set B is some proper subset of set A, as established in agreement 9.2.3.2, Option 2.

Considering the limitation of exactly one Rx beam being measured on each Tx beam at each beam management cycle, we define more precisely the agreement’s notion of a “set of pre-configured patterns” as follows:
Define  as the set of all possible beam pair links for a given Nb-UE link, where  is the number of gNB-Tx beams,  is the number of UE Rx beams, and  represents the beam pair link between gNB-Tx beam  and UE-Rx beam . Then define the matrix



where each column  represents the beam pairs for a given Rx beam. Define a subsample  as a subset of the beam pair links constructed by selecting exactly one element from each row of , such that  and , and define a beam pattern set  as a set of subsamples whose union covers every beam pair link (.) We add the additional constraint that , so that  forms a partition of . Each element of  represents the set of beams to be measured at a particular beam management cycle; if, over the course of  beam management cycles, every element of the beam pattern set is used for measurement, every beam pair link will have been measured exactly once.

With this definition, we consider two beam pattern set constructions in our studies:

1. Non-permuted  column partition: this beam pattern set is built from the columns of  as 
2. Permuted  column partition: define  as an operation that randomly permutes the elements of each row of a matrix (without swapping elements between rows.) Apply this operation to  to form a row-permuted version :

Then construct a beam pattern set from the columns of this matrix as .

In addition to the beam pattern set constructions, we must also consider the order in which the elements of the beam pattern set are traversed over the course of  beam management cycles. We consider two options here:

1. Round robin: traverse the beam pattern set periodically in the order in which the columns appear in the matrix.
2. Random permutation: pick a random ordering for the elements of the beam pattern set, the traverse the elements of the set in that order. Once every element has been visited (after  beam management cycles), pick a new random ordering and repeat.

The above subsampling options define subsampling schemes that approximate the non-ideal Rx beam measurements that may occur in a real-world system. However, it is also useful to consider predictions in a context where the Rx beams are subsampled perfectly – that is, the Rx beams are subsampled with genie knowledge of which beam would provide the highest RSRP for a given Tx beam. The best-Rx beam subsampling option forgoes the notion of beam pattern sets, and instead is designed as follows: given a matrix  of RSRP measurements across all beam pair links at a particular measured beam management cycle



construct a subsampling  by choosing the highest RSRP value in each row: 



Now, let us consider the following agreement:





	Agreement (RAN1 #112bis-e)
For performance evaluation of AI/ML based DL Tx beam prediction for BM-Case1 and BM-Case2, optionally study the performance with a quasi-optimal Rx beam (i.e., not all the measurements as inputs of AI/ML are from the “best” Rx beam) with less measurement/RS overhead compared to exhaustive Rx beam sweeping. 
· At least the following options can be considered:
· Opt A: Identify the quasi-optimal Rx beams to be utilized for measuring Set B/Set C based on the previous measurements.
· Companies can report the time information and beam type (e.g., whether the same Tx beam(s) in Set B) of the reference signal to use. 
· Companies report how to find the quasi-optimal Rx beam with “previous measurement”
· FFS: Opt B: The Rx beams for measuring Set B/Set C consist of the X% of “best” Rx beam exhaustive Rx beam sweeping and (1-X%) of random Rx beams [or the adjacent Rx beam to the “best” Rx beam].
· X%= 80% or 90%, or other values reported by companies. 
· Note: X% is the percentage of measurements with “best” Rx beams out of all measurements   
· Other options are not precluded.
· Companies report the measurement/RS overhead together with beam prediction accuracy. 



For BM-Case2 evaluations, in addition to optimal Rx beam subsampling described above, we also introduce a quasi-optimal Rx beam subsampling based on the principle of Opt A in the above agreement. Our method uses an algorithm that first measures beam pair link RSRPs in a round-robin sweep then uses the beam pairs with highest RSRPs for measurement over a set number of cycles. Defining  as the total number of beam management cycles in a trajectory and  as quasi-optimal beam hold length, the algorithm for generating a quasi-optimal beam subsampling is as follows:
1. Initialize beam management cycle index .
2. For :
2.1. At beam management cycle for Tx beam , choose to measure beam pair and store the corresponding RSRP measurement 
2.2. If , exit.
3. Increment .
4. Choose quasi-optimal best beam pairs , where .
5. For 
5.1. At beam management cycle , for Tx beam  choose to measure beam pair .
5.2. If , exit.

We picked the following beam pattern set constructions and beam pattern element traversals for our studies (the name in quotes corresponds to the name used to refer to the scheme in the results that follow):
1. “Round-robin”: Non-permuted  column partition + round robin
2. “Random permutation”: Permuted  column partition + random permutation 
3. “Best Rx beam”: Best Rx beam subsampling (no beam set)
4. “Quasi-optimal best Rx beam”: Quasi-optimal best Rx beam subsampling with 
Evaluation results 
In this section, we present evaluation results based on the assumption of non-subsampled and subsampled beam prediction in Sections 3.1.2.1 and 3.1.2.2, respectively. The subsampling terminology/methods have been spelled out in Section 3.1.1.

Beam prediction formulation
[bookmark: _Hlk126685553]For this set of results, an MP beam prediction formulation was used: in this formulation, the prediction algorithm is given as input L1-RSRP measurements from  contiguous beam management cycles out of every  contiguous cycles, then provides predictions for the best L1 beams for the following  cycles. We consider three separate sets of UE-side predictions and one set of gNB-side predictions:

1. UE-side Rx beam prediction: given the best RSRP values for each UE Rx beam at each measured beam management cycle, predict the best UE Rx beams at each predicted beam management cycle
2. UE-side gNB Tx beam prediction: given the best RSRP values for gNB Tx beam at each measured beam management cycle, predict the best gNB Tx beams at each predicted beam management cycle
3. UE-side Rx-Tx beam pair link prediction: given the best RSRP values for each Rx-Tx beam pair link at each measured beam management cycle, predict the best Rx-Tx beam pair links at each predicted beam management cycle
4. gNB-side Tx beam prediction: given the UE-reported RSRP values for the top 2 gNB Tx beams at each measured beam management cycle, predict the top 2 gNB Tx beams at each predicted beam management cycle

In non-subsampled settings, for  = 10 RPM, we present results for M1P5 (representing an 83.3% reduction in beam measurements) as well as M1P10 (representing a 90.9% reduction in beam measurements.) For  = 100 RPM, we present results for M1P5 only.

In subsampled settings, we present results for M1P4, representing an 80% reduction in beam measurements,  = 10 RPM only.

Machine learning and baseline methods
For each beam prediction formulation, either one or both of long-short-term-memory recurrent neural networks (LSTMs) and transformers were trained for each prediction problem.

Results from these ML methods are compared to a sample-and-hold comparison baseline, where the best beams from the final cycle in each contiguous set of measured beam management cycles are predicted to be the best beams for the entire following set of prediction cycles.

Best-beam KPIs
For non-subsampled settings, we compare results using the set of agreed KPIs so far:
· Mean RSRP difference (dB): The mean difference between the RSRP of the genie best beam and the predicted best beam
· The options to evaluate beam prediction accuracy (%):
· Top-1 (%): the percentage of “the Top-1 genie beam is Top-1 predicted beam”
· Top-K/1 (%): the percentage of “the Top-1 genie beam is one of the Top-K predicted beams”
· Top-1/K (%) (Optional): the percentage of “the Top-1 predicted beam is one of the Top-K genie beams”
· Where K >1 and values can be reported by companies.
· 1-dB marginal beam prediction accuracy (%): the percentage of predictions in which the ideal L1-RSRP of the top-1 predicted beam is within 1 dB of the ideal L1-RSRP of the top-1 genie beam

For subsampled settings, we consider two sets of KPIs as per the following agreement in RAN1 #112:

	Agreement (RAN1 #112)
· For DL Tx beam prediction, the definition of Top-1 genie-aided Tx beam is defined as
· Option A (baseline): the Top-1 genie-aided Tx beam is the Tx beam that results in the largest L1-RSRP over all Tx and Rx beams
· Option B (optional), the Top-1 genie-aided Tx beam is the Tx beam that results in the largest L1-RSRP over all Tx beams with specific Rx beam(s)
· FFS on specific Rx beam(s)
· Note: specific Rx beams are subset of all Rx beams
· For DL Tx-Rx beam pair prediction, the definition of Top-1 genie-aided Tx-Rx beam pair is defined as
· Option A: The Tx-Rx beam pair that results in the largest L1-RSRP over all Tx and Rx beams
· Other options are not precluded and can be reported by companies. 
· Note: This is only for evaluation discussion 





1. Option A KPIs: genie Top-1 and Top-K beams are the top genie Tx beams over all Tx and Rx beams.
2. Option B KPIs: genie Top-1 and Top-K beams are the top genie Tx beams over all Tx beams and a subset of the Rx beams as selected by the subsampling approach at the particular beam management cycle being considered. (Refer to Section 3.1.1, “Measured Data Subsampling Schemes”)



3.1.2.1 Evaluation results for non-subsampled beam prediction

UE Rx beam prediction results,  RPM
Table 3 provides a summary of the KPI results for non-subsampled M1P5 and M1P10 beam prediction for a UE rotation speed of 10 RPM. Figure 7 and Figure 8 plot these KPIs for M1P5 and M1P10, respectively.

Table 3 KPI results for LSTM vs. sample-and-hold baseline, UE Rx beam prediction,  = 10 RPM (UE-side AI/ML model)
	
	
	
	Qualcomm
	Qualcomm

	Assumptions
	Number of beams [beams/beam pairs] in Set A
	8
	8

	
	Number of beams [beams/beam pairs] in Set B
	8
	8

	
	Baseline scheme
	Sample-and-hold
	Sample-and-hold

	AI/ML model input/output
	Model input
	Standardized best UE Rx RSRP values (dB)
	Standardized best UE Rx RSRP values (dB)

	
	Model output
	Predictions for best UE Rx beams
	Predictions for best UE Rx beams

	Data size
	Training
	1847 random walks
	1847 random walks

	
	Testing
	467 random walks
	467 random walks

	AI/ML model
	Model description
	3-layer LSTM, hidden/cell size = 128
	3-layer LSTM, hidden/cell size = 128

	
	Model complexity
	340k parameters
	345k parameters

	
	Computational complexity
	O(n), where n is input sequence length
	O(n), where n is input sequence length

	Beam prediction formulation
	Consecutive measured (M) and predicted (N) beam management cycles
	M1P5
	M1P10

	Evaluation results [with AI/ML / baseline]
	Beam prediction accuracy (%)
	Top-1 (%)
	77.34 / 72.77
	62.75 / 61.35

	
	
	Top-1/2 (%)
	92.15 / 88.11
	81.79 / 77.97

	
	
	Top-1/3 (%)
	96.77 / 94.49
	90.04 / 87.26

	
	
	Top-2/1 (%)
	92.23 / 87.96
	83.61 / 77.44

	
	
	Top-3/1 (%)
	96.87 / 94.51
	91.29 / 86.84

	
	
	1-dB marginal accuracy (%)
	84.36 / 78.96
	69.72 / 66.95

	
	L1-RSRP diff.
	Avg. L1-RSRP diff. (dB)
	0.65 / 1.21
	1.99 / 2.65

	
	System performance
	[RS overhead reduction / RS overhead] (%)
	83.30
	90.90
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[bookmark: _Ref111137052][bookmark: _Ref111136845]Figure 7 M1P5 KPI results for beam prediction LSTM vs. sample-and-hold baseline, UE Rx beam prediction,  = 10 RPM
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[bookmark: _Ref111137071]Figure 8 M1P10 KPI results for beam prediction LSTM vs. sample-and-hold baseline, UE Rx beam prediction,  = 10 RPM

For UE Rx beam prediction,  = 10 RPM, the ML method outperforms the sample-and-hold baseline for both M1P5 and M1P10 beam prediction formulations, showing a 4.57% gain in top-1 beam prediction accuracy, a 5.4% gain in 1-dB marginal beam prediction accuracy, and a 0.56-dB reduction in mean predicted best beam RSRP error in the M1P5 case.

gNB Tx beam prediction results,  = 10 RPM

Table 4 provides a summary of the KPI results for M1P5 and M1P10 beam prediction. Figure 9 and Figure 10 plot these KPIs for M1P5 and M1P10, respectively.


[bookmark: _Ref118462663]Table 4 KPI results for LSTM vs. sample-and-hold baseline, gNB Tx beam prediction,  = 10 RPM (UE-side AI/ML model)
	
	
	Qualcomm
	Qualcomm

	Assumptions
	Number of beams [beams/beam pairs] in Set A
	12
	12

	
	Number of beams [beams/beam pairs] in Set B
	12
	12

	
	Baseline scheme
	Sample-and-hold
	Sample-and-hold

	AI/ML model input/output
	Model input
	Standardized best gNB Tx RSRP values (dB)
	Standardized best UE Rx RSRP values (dB)

	
	Model output
	Predictions for best gNB Tx beams
	Predictions for best UE Rx beams

	Data size
	Training
	1847 random walks
	1847 random walks

	
	Testing
	467 random walks
	467 random walks

	AI/ML model
	Model description
	3-layer LSTM, hidden/cell size = 128
	3-layer LSTM, hidden/cell size = 128

	
	Model complexity
	342k parameters
	347k parameters

	
	Computational complexity
	O(n), where n is input sequence length
	O(n), where n is input sequence length

	Beam prediction formulation
	Consecutive measured (M) and predicted (N) beam management cycles
	M1P5
	M1P10

	Evaluation results [with AI/ML / baseline]
	Beam prediction accuracy (%)
	Top-1 (%)
	88.50 / 87.96
	85.98 / 86.41

	
	
	Top-1/2 (%)
	97.33 / 97.24
	96.52 / 96.77

	
	
	Top-1/3 (%)
	99.30 / 99.23
	98.85 / 99.00

	
	
	Top-2/1 (%)
	97.32 / 97.23
	96.49 / 96.67

	
	
	Top-3/1 (%)
	99.32 / 99.24
	98.88 / 99.04

	
	
	1-dB marginal accuracy (%)
	91.94 / 91.43
	89.49 / 89.88

	
	L1-RSRP diff.
	Avg. L1-RSRP diff. (dB)
	0.28 / 0.31
	0.43 / 0.39

	
	System performance
	[RS overhead reduction / RS overhead] (%)
	83.30
	90.90
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[bookmark: _Ref111138081]Figure 9 M1P5 KPI results for beam prediction LSTM vs. sample-and-hold baseline, gNB Tx beam prediction,  = 10 RPM
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[bookmark: _Ref111138100]Figure 10 M1P10 KPI results for beam prediction LSTM vs. sample-and-hold baseline, gNB Tx beam prediction,  = 10 RPM



For gNB Tx beam prediction,  = 10 RPM, our ML methods do not strongly outperform the sample-and-hold baseline in the M1P5 formulation and are somewhat weaker than the baseline in the M1P10 formulation.


M1P5 gNB Tx Beam prediction results,  = 100 RPM

Table 5 provides a summary of the KPI results for M1P5 beam prediction. Figure 11 plots these KPIs.

[bookmark: _Ref118463568]Table 5 Combined KPI results for LSTM vs. sample-and-hold baseline,  = 100 RPM (UE-side AI/ML model)
	
	
	Qualcomm
	Qualcomm
	Qualcomm

	Assumptions
	Number of beams [beams/beam pairs] in Set A
	12
	96
	8

	
	Number of beams [beams/beam pairs] in Set B
	12
	96
	8

	
	Baseline scheme
	Sample-and-hold
	Sample-and-hold
	Sample-and-hold

	AI/ML model input/output
	Model input
	Standardized best gNB Tx RSRP values (dB)
	Standardized best Tx-Rx beam pair link RSRP values (dB)
	Standardized best UE Rx RSRP values (dB)

	
	Model output
	Predictions for best gNB Tx beams
	Predictions for best Tx-Rx beam pair links
	Predictions for best UE Rx beams

	Data size
	Training
	2160 random walks
	2160 random walks
	2160 random walks

	
	Testing
	540 random walks
	540 random walks
	540 random walks

	AI/ML model
	Model description
	3-layer LSTM, hidden/cell size = 128
	3-layer LSTM, hidden/cell size = 128
	3-layer LSTM, hidden/cell size = 128

	
	Model complexity
	340k parameters
	385k parameters
	342k parameters

	
	Computational complexity
	O(n), where n is input sequence length
	O(n), where n is input sequence length
	O(n), where n is input sequence length

	Beam prediction formulation
	Consecutive measured (M) and predicted (N) beam management cycles
	M1P5
	M1P5Option
	M1P5

	Evaluation results [with AI/ML / baseline]
	Beam prediction accuracy (%)
	Top-1 (%)
	81.60 / 78.28
	40.47 / 17.49
	51.44 / 21.06

	
	
	Top-1/2 (%)
	94.65 / 91.76
	56.96 / 27.00
	71.75 / 34.83

	
	
	Top-1/3 (%)
	98.55 / 96.91
	66.04 / 35.06
	82.18 / 47.88

	
	
	Top-2/1 (%)
	94.57 / 91.66
	60.58 / 27.37
	74.19 / 35.35

	
	
	Top-3/1 (%)
	98.44 / 96.94
	70.89 / 35.42
	83.88 / 48.41

	
	
	1-dB marginal accuracy (%)
	86.19 / 82.57
	47.00 / 20.63
	58.49 / 24.59

	
	L1-RSRP diff.
	Avg. L1-RSRP diff. (dB)
	0.55 / 0.84
	4.54 / 10.80
	3.21 / 9.65

	
	System performance
	[RS overhead reduction / RS overhead] (%)
	83.30
	83.30
	83.30
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[bookmark: _Ref115381914]Figure 11 M1P5 KPI results for beam prediction LSTM vs. sample-and-hold baseline, gNB Tx beam prediction, ω = 100 RPM

M1P5 Tx-Rx beam pair link prediction results,  = 100 RPM

Table 5 provides a summary of the KPI results for M1P5 beam prediction. Figure 12 plots these KPIs.
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[bookmark: _Ref115382763]Figure 12 M1P5 KPI results for beam prediction LSTM vs. sample-and-hold baseline, Tx-Rx beam pair link prediction,  = 100 RPM

M1P5 UE Rx Beam prediction results,  = 100 RPM

Table 5 provides a summary of the KPI results for M1P5 beam prediction. Figure 13 plots these KPIs.
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[bookmark: _Ref115382970]Figure 13 M1P5 KPI results for beam prediction LSTM vs. sample-and-hold baseline, UE Rx beam prediction, ω = 100 RPM

We note that in the  = 100-RPM cases, the LSTM strongly outperforms the sample-and-hold baseline, especially in the UE Rx beam and Tx-Rx beam pair link cases. The rapid rotation leads to significant changes in best-beam RSRPs between measured cycles; the LSTM is able to predict for these changes, while the sample-and-hold scheme breaks down. However, in the  = 10 RPM cases, the improvement is less dramatic, as sample-and-hold provides much stronger predictions. We further note that for both the  = 10 RPM and 100 RPM, the sample-and-hold baseline is significantly more accurate for gNB Tx beam prediction than sample-and-hold for Tx-Rx beam pair or UE Rx beam prediction. This gNB Tx beam advantage for the baseline can be explained by the fact that the constant-azimuthal-speed orientation changes experienced by the mobile UEs lead to frequent changes in the best UE Rx beams, but do not significantly impact the frequency of best-beam change for gNB Tx beams. Our results indicate that ML methods will provide an advantage in high-stress scenarios where frequent UE orientation changes lead to rapid changes in the best beams. ML methods may also provide an advantage in predictions for L2 and L3 beams, which for mobile UEs would experience more rapid changes than L1 beams.

Observation 1 
[bookmark: _Hlk118474958]At least for BM-Case2, AI/ML-based methods will provide an advantage in high-stress scenarios where frequent UE orientation changes lead to rapid changes in the best beams.

Observation 2
[bookmark: _Hlk127486068]For BM-Case2 with high UE rotation speeds, the AI/ML-based method (LSTM) strongly outperforms the sample-and-hold baseline, especially in the UE Rx beam prediction and Tx-Rx beam pair prediction use cases. 

· The rapid rotation leads to significant changes in best-beam RSRPs between measured cycles; the LSTM can predict for these changes, while the sample-and-hold scheme breaks down.

3.1.2.2 Evaluation results for sub-sampled beam prediction

UE-side Tx beam prediction sample and hold formulations
In the special case of UE-side Tx beam prediction, we considered 3 separate sample-and-hold formulations:
1. Naïve sample-and-hold: at any given measured beam management cycle, for each Tx beam, choose the corresponding Tx-Rx beam pair RSRP measurement at that cycle as the predicted RSRP value for that Tx beam.
2. Argmax sample-and-hold: given the matrix  consisting of the most recent measured RSRP values across all beam pair links up to time  (measurements coming from both the current and previous measured beam management cycles):



For the th Tx beam, choose as the predicted RSRP  for the next set of predicted cycles the maximum measured RSRP across all Rx beams:

3. Probability summation sample-and-hold: given the matrix  of most recent measured RSRPs as defined above, convert to a matrix of probabilities via a softmax function with tuneable scaling factor :

Find per-Tx-beam probabilities  as the sum of probabilities across Rx beams, then choose the predicted best beam as the Tx beam with the maximum summed probability:

Predict the RSRP for the chosen Tx beam as the maximum RSRP among the most recent measured RSRP values for the chosen Tx beam:

Finally, predict RSRPs for the non-top beams by scaling the maximum Tx beam RSRP prediction by the relative strengths of the non-top Tx beam probabilities (in the linear domain):


UE-side Tx beam prediction results

Table 6 provides a summary of subsampling results for UE-side Tx beam prediction; the entire set of UE-side Tx beam prediction results has been included in this table for the purpose of conciseness. Figures 14 through 20 plot these KPIs for the different subsampling schemes and KPI interpretations explored. (Note that in the case of best-Rx subsampling, the measured beam KPIs are identical to the genie beam KPIs, as the measured beams in this case are guaranteed to be identical to the best genie beams.) For each case, we see that both the LSTM and the transformer provide a clear advantage over the sample-and-hold baselines, especially in the round-robin and random permutation subsampling schemes. We also see that the argmax and probability summation sample-and-hold formulations outperform the naïve formulation except in the case of best Rx beam subsampling, where naïve sample-and-hold is competitive with the ML results.

These results demonstrate that sophisticated predictive models, especially ML, are especially useful in cases when the measured subset of beams is not guaranteed to be the best.


[bookmark: _Ref131719755]Table 6 combined results for UE-side Tx beam prediction in a subsampled setting, ω = 10 RPM
	
	
	Qualcomm

	Assumptions
	Number of beams [beams/beam pairs] in Set A
	12

	
	Number of beams [beams/beam pairs] in Set B
	12

	
	Baseline schemes
	Sample-and-hold (naïve)

	
	
	Sample-and-hold (argmax)

	
	
	Sample-and-hold (probability summation),  = 0.05

	AI/ML model input/output
	Model input
	Standardized best gNB Tx RSRP values (dB)

	
	Model output
	Predictions for best gNB Tx beams

	Data size
	Training
	15901 random walks

	
	Testing
	3892 random walks

	AI/ML models
	Model description
	3-layer LSTM, hidden/cell size = 128 (quasi-optimal best Rx beam)
2-layer LSTM, hidden/cell size = 128 (all other cases)
	Encoder-only transformer

	
	Model complexity
	349k parameters (quasi-optimal best Rx beam)
217k parameters (all other cases)
	541k parameters (quasi-optimal best Rx beam)
572k parameters (all other cases)

	
	Computational complexity
	O(n), where n is input sequence length
	O(n), where n is input sequence length

	Beam prediction formulation
	Consecutive measured (M) and predicted (N) beam management cycles
	M1P4 (80% overhead reduction)

	Evaluation results [with AI/ML / baseline]
	Subsampling scheme
	Model
	Option A KPIs
	Option B KPIs

	
	Round robin
	
	Top 1 (%)
	Top 1/3 (%)
	Top 3/1 (%)
	1-dB marginal acc. (%)
	Avg. L1-RSRP diff. (dB)
	Top 1 (%)
	Top 1/3 (%)
	Top 3/1 (%)
	1-dB marginal acc. (%)
	Avg. L1-RSRP diff. (dB)

	
	
	Transformer
	81.3
	97.4
	97.3
	84.8
	0.785
	79.0
	96.6
	96.4
	82.5
	0.946

	
	
	LSTM
	83.0
	98.0
	97.9
	86.5
	0.625
	79.3
	96.5
	96.3
	88.4
	0.944

	
	
	Sample-and hold (naïve)
	78.2
	95.1
	95.0
	81.5
	1.283
	73.9
	92.7
	92.7
	82.7
	1.695

	
	
	Sample-and hold (argmax)
	74.8
	95.1
	96.5
	78.3
	1.467
	69.6
	92.2
	93.2
	79.1
	1.993

	
	
	Sample-and hold (prob. distribution)
	76.7
	96.4
	97.6
	80.3
	1.208
	72.0
	93.9
	95.2
	81.8
	1.658

	
	Random permutation
	
	Top 1 (%)
	Top 1/3 (%)
	Top 3/1 (%)
	1-dB marginal acc. (%)
	Avg. L1-RSRP diff. (dB)
	Top 1 (%)
	Top 1/3 (%)
	Top 3/1 (%)
	1-dB marginal acc. (%)
	Avg. L1-RSRP diff. (dB)

	
	
	Transformer
	79.1
	97.2
	97.3
	82.5
	0.936
	52.5
	81.1
	82.5
	56.1

	4.486

	
	
	LSTM
	81.3
	97.8

	97.8

	84.9
	0.732
	53.4
	81.6
	83.3
	57.0

	4.318

	
	
	Sample-and hold (naïve)
	54.9

	84.9

	81.9

	57.9
	4.296
	38.7
	67.7
	67.7
	41.8

	8.362

	
	
	Sample-and hold (argmax)
	64.4
	89.9
	92.6
	67.7
	2.995
	44.2
	73.7

	76.4
	47.5
	6.568

	
	
	Sample-and hold (prob. distribution)
	70.4
	94.0
	96.2
	74.0

	2.001
	48.3
	77.8
	80.0
	51.7
	5.521

	
	Best Rx beam
	
	Top 1 (%)
	Top 1/3 (%)
	Top 3/1 (%)
	1-dB marginal acc. (%)
	Avg. L1-RSRP diff. (dB)
	Top 1 (%)
	Top 1/3 (%)
	Top 3/1 (%)
	1-dB marginal acc. (%)
	Avg. L1-RSRP diff. (dB)

	
	
	Transformer
	87.2

	99.0

	99.1

	90.7

	0.337
	87.2

	99.0

	99.1

	90.7

	0.337


	
	
	LSTM
	87.2

	99.0

	99.1

	90.7

	0.337
	87.2

	99.0

	99.1

	90.7

	0.337


	
	
	Sample-and hold (naïve)
	86.0

	98.8

	98.9

	89.6

	0.401
	86.0

	98.8

	98.9

	89.6

	0.401

	
	
	Sample-and hold (argmax)
	68.1
	90.4
	96.2
	71.4
	2.752
	68.1
	90.4
	96.2
	71.4
	2.752

	
	
	Sample-and hold (prob. distribution)
	66.2
	91.2
	94.5
	69.6
	2.604
	66.2
	91.2
	94.5
	69.6
	2.604

	
	Quasi-optimal best Rx beam
	
	Top 1 (%)
	Top 1/3 (%)
	Top 3/1 (%)
	1-dB marginal acc. (%)
	Avg. L1-RSRP diff. (dB)
	Top 1 (%)
	Top 1/3 (%)
	Top 3/1 (%)
	1-dB marginal acc. (%)
	Avg. L1-RSRP diff. (dB)

	
	
	Transformer
	83.1
	98.1
	98.0
	86.6
	0.609
	79.6
	96.5
	96.6
	83.1
	0.932

	
	
	LSTM
	83.8
	98.4
	98.2
	87.3
	0.548
	79.8
	96.4
	96.6

	83.2
	0.929

	
	
	Sample-and hold (naïve)
	79.1
	95.9
	95.4
	82.5
	1.132
	77.2
	94.5
	94.5
	80.6
	1.330

	
	
	Sample-and hold (argmax)
	73.4
	94.4
	96.2
	76.9
	1.744
	69.7
	91.9
	94.0
	73.0
	2.168

	
	
	Sample-and hold (prob. distribution)
	72.7
	94.9
	97.3
	76.3
	1.707
	68.9
	92.4
	95.3
	72.3
	2.139
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[bookmark: _Ref131720520]Figure 14 M1P4 Option A beam KPI results for UE-side Tx beam prediction – round robin subsampling
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[bookmark: _Ref131720582]Figure 15 M1P4 Option B KPI results for UE-side Tx beam prediction – round robin subsampling
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Figure 16 M1P4 Option A KPI results for UE-side Tx beam prediction – random permutation subsampling
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Figure 17 M1P4 Option B KPI results for UE-side Tx beam prediction – random permutation subsampling
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Figure 18 M1P4 Option A/B beam KPI results for UE-side Tx beam prediction – best Rx beam subsampling (due to this subsampling, Option A/B KPI results are identical)
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Figure 19 M1P4 Option A beam KPI results for UE-side Tx beam prediction – quasi-optimal best Rx beam subsampling
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[bookmark: _Ref134956273]Figure 20 M1P4 Option B beam KPI results for UE-side Tx beam prediction – quasi-optimal best Rx beam subsampling

[bookmark: _Hlk131726294]Observation 3
[bookmark: _Hlk131757859]For BM-Case2 with sub-sampled measurements and UE-side DL TX beam prediction, AI/ML based methods provide a clear advantage in beam prediction accuracy performance over the sample-and-hold baselines, especially in cases when the measured subset of beams is not guaranteed to be the best.

Observation 4
For BM-Case2 with sub-sampled measurements and UE-side DL TX beam prediction and quasi-optimal Rx beam selection based on Opt. A, AI/ML based methods outperform sample-and-hold baselines in terms of beam prediction accuracy and average L1-RSRP difference.


gNB-side Tx beam prediction results

Table 7 provides a summary of subsampling results for gNB-side Tx beam prediction; as with UE-side prediction, the entire set of gNB-side Tx beam prediction results has been included in this table for the purpose of conciseness. Figures 21 through 27 plot these KPIs for the different subsampling schemes and KPI interpretations explored. (As with UE-side prediction, in the case of best-Rx subsampling, the measured beam KPIs are identical to the genie beam KPIs.) For each case, we see that both the LSTM and the transformer provide a clear advantage over the sample-and-hold baselines across almost all KPIs aside from the best Rx beam prediction case, where sample-and-hold provides a slight advantage in the Top-1 prediction KPI.

[bookmark: _Ref131721691]Table 7 combined results for gNB-side Tx beam prediction in a subsampled setting, ω = 10 RPM
	
	
	Qualcomm

	Assumptions
	Number of beams [beams/beam pairs] in Set A
	12

	
	Number of beams [beams/beam pairs] in Set B
	2

	
	Baseline schemes
	Sample-and-hold (naïve)

	AI/ML model input/output
	Model input
	Standardized best gNB Tx RSRP values (dB)

	
	Model output
	Predictions for best gNB Tx beams

	Data size
	Training
	15901 random walks

	
	Testing
	3892 random walks

	AI/ML models
	Model description
	2-layer LSTM, hidden/cell size = 128
	Encoder-only transformer

	
	Model complexity
	349k parameters (round-robin, random permutation)
93k parameters (quasi-optimal best Rx beam)
217k parameters (best Rx beam)
	541k parameters (quasi-optimal best Rx beam)
292k parameters (round-robin)
572k parameters (all other cases)

	
	Computational complexity
	O(n), where n is input sequence length
	O(n), where n is input sequence length

	Beam prediction formulation
	Consecutive measured (M) and predicted (N) beam management cycles
	M1P4 (80% overhead reduction)

	Evaluation results [with AI/ML / baseline]
	Subsampling scheme
	Model
	Option A
	Option B

	
	Round robin
	
	Top 1 (%)
	Top 1/3 (%)
	Top 3/1 (%)
	1-dB marginal acc. (%)
	Avg. L1-RSRP diff. (dB)
	Top 1 (%)
	Top 1/3 (%)
	Top 3/1 (%)
	1-dB marginal acc. (%)
	Avg. L1-RSRP diff. (dB)

	
	
	Transformer
	81.69
	97.38
	97.63
	85.13
	0.75
	78.26
	95.79
	95.51
	81.69
	1.05

	
	
	LSTM
	82.82
	97.57
	97.60
	86.26
	0.67
	78.93
	95.97
	95.66
	82.35
	1.00

	
	
	Sample-and hold (naïve)
	78.20
	95.07
	91.53
	81.50
	1.28
	73.93
	92.70
	88.52
	77.22
	1.69

	
	Random permutation
	
	Top 1 (%)
	Top 1/3 (%)
	Top 3/1 (%)
	1-dB marginal acc. (%)
	Avg. L1-RSRP diff. (dB)
	Top 1 (%)
	Top 1/3 (%)
	Top 3/1 (%)
	1-dB marginal acc. (%)
	Avg. L1-RSRP diff. (dB)

	
	
	Transformer
	77.11
	96.57
	97.34
	80.62
	1.15
	51.49
	80.16
	81.43
	55.04
	4.74

	
	
	LSTM
	78.9
	96.97
	97.57
	82.39
	0.98
	51.93
	80.3
	81.93
	55.43
	4.63

	
	
	Sample-and hold (naïve)
	54.88
	84.86
	75.71
	57.88
	4.30
	38.69
	67.72
	60.63
	41.75
	8.36

	
	Best Rx beam
	
	Top 1 (%)
	Top 1/3 (%)
	Top 3/1 (%)
	1-dB marginal acc. (%)
	Avg. L1-RSRP diff. (dB)
	Top 1 (%)
	Top 1/3 (%)
	Top 3/1 (%)
	1-dB marginal acc. (%)
	Avg. L1-RSRP diff. (dB)

	
	
	Transformer
	86.15
	98.81
	98.48
	89.75
	0.39
	86.15
	98.81
	98.48
	89.75
	0.40

	
	
	LSTM
	86.28
	98.94
	98.83
	89.86
	0.38
	86.28
	98.94
	98.83
	89.86
	0.38

	
	
	Sample-and hold (naïve)
	86.04
	98.82
	96.63
	89.58
	0.40
	86.04
	98.82
	96.63
	89.58
	0.40

	
	Quasi-optimal best beam
	
	Top 1 (%)
	Top 1/3 (%)
	Top 3/1 (%)
	1-dB marginal acc. (%)
	Avg. L1-RSRP diff. (dB)
	Top 1 (%)
	Top 1/3 (%)
	Top 3/1 (%)
	1-dB marginal acc. (%)
	Avg. L1-RSRP diff. (dB)

	
	
	Transformer
	82.42
	97.65
	97.23
	85.94
	0.71
	79.6
	96.29
	95.91
	83.03
	0.96

	
	
	LSTM
	83.16
	98.00
	97.81
	86.69
	0.61
	78.74
	95.74
	95.54
	82.11
	1.05

	
	
	Sample-and hold (naïve)
	79.10
	95.94
	92.25
	82.5
	1.13
	77.21
	94.54
	90.98
	80.57
	1.33
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[bookmark: _Ref134956375]Figure 21 M1P4 Option A beam KPI results for gNB-side Tx beam prediction – round robin subsampling
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Figure 22 M1P4 Option B KPI results for gNB-side Tx beam prediction – round robin subsampling
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Figure 23 M1P4 Option A KPI results for gNB-side Tx beam prediction – random permutation subsampling
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Figure 24 M1P4 Option B KPI results for gNB-side Tx beam prediction – random permutation subsampling
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Figure 25 M1P4 Option A/B beam KPI results for gNB-side Tx beam prediction – best Rx beam subsampling (due to this subsampling, Option A/B KPI results are identical)
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Figure 26 M1P4 Option A beam KPI results for gNB-side Tx beam prediction – quasi-optimal best Rx beam subsampling
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[bookmark: _Ref134956420]Figure 27 M1P4 Option B beam KPI results for gNB-side Tx beam prediction – quasi-optimal best Rx beam subsampling

[bookmark: _Hlk131757889]Observation 5
For BM-Case2 with sub-sampled measurements and NW-side DL TX beam prediction, AI/ML based methods provide a clear advantage in beam prediction accuracy performance over the sample-and-hold baselines, particularly in cases when the subsampling method does not pick the best Rx beam for each Tx beam.

Observation 6
For BM-Case2 with sub-sampled measurements and NW-side DL TX beam prediction with quasi-optimal Rx beam selection based on Opt A, AI/ML based methods outperform sample-and-hold baselines in terms of beam prediction accuracy and average L1-RSRP difference.


Spatial domain beam prediction
In this section we present simulation results for spatial domain beam prediction. We reuse the terminology agreed in RAN1 109e to refer to the agreed use cases.

[bookmark: _Ref118472405]Set B is a subset of Set A
We consider two scenarios for this sub-use case (Alt. 1 of BM-case1 agreed in RAN1 109e), which we call Use case 1 and Use case 2. For Use case 1, we do not assume signalling of assistance information and rely on L1-RSRP values as inputs to the AI/ML model. For Use case 2, we assume signalling of assistance information and rely on channel impulse responses (CIRs) of top- beam pairs as inputs to the AI/ML model. We have different simulation assumptions for Use case 1 and Use case 2, and our goal in this section is to illustrate the merits of spatial domain beam prediction for each use case, rather than comparative analysis of Use case 1 and Use case 2.

[bookmark: _Ref111156551][bookmark: _Ref115392731]3.2.1.1 Use case 1 (i.e., no assistance information)
We consider Alt.1 of spatial domain beam prediction agreed in RAN1 109e and present our evaluations. For Use case 1, we do not assume the availability of ‘assistance information’.

Simulation Assumptions
For use case 1, we predict the best gNB beam ID in Set A based on the measured RSRPs of Set B. In simulations, we focus on the UMa scenario, and follow the agreed SLS simulation assumptions so far as summarized in Table 8. We assume there is no UE mobility. The dataset is generated from random UE location drops in a cell with three sectors. Spatial consistency procedure is performed based on 38.901 [2], to ensure the channel characteristics between neighbouring UEs are appropriately correlated. Key assumptions for the simulations are summarized in Table 6. The datasets used for training and testing correspond to different sets of UE locations. The gNB array has 32 antennas, 8 on azimuth and 4 on elevation. We assume 192 DFT beams in Set A in the cell, and 24 beams are down-selected for Set B. In Figure 28, we illustrate the beam pointing angles of Set A and Set B beams in a sector. We select the Set B in a way that the measured beams cover as much space in both elevation and azimuth directions as possible.

[bookmark: _Ref111140057][bookmark: _Ref111140050]Table 8 Simulation assumptions for Use case1
	Parameters
	Value

	Scenario
	Uma, outdoor

	Carrier frequency
	30 GHz

	ISD
	200 m

	BS antenna cfg
	(M, N, P, Mg, Ng) = (4, 8, 2, 1, 1), (dV, dH) = (0.5, 0.5) λ

	gNB codebook (Set A)
	16 (azimuth) by 4 (elevation) beams per sector,
in total Set A has 192 beams per cell 

	gNB codebook (Set B)
	8 beams down-selected from Set A per sector, as shown in Figure 28 (or in Figure 29 for Set B1),
in total set B has 24 beams per cell

	gNB antenna gain
	8 dBi

	BS Tx power
	30 dBm for 20 RB bandwidth

	SCS
	120KHz

	Car penetration loss
	Included

	UE mobility and rotation
	Not assumed, only consider a single time shot




For the AI/ML based approach, we apply a fully connected (FC) layer based NN to predict the best beam in Set A. We also consider the following 2 baseline approaches to predict the best beam ID, in addition to a NN-based AI/ML model:
· Baseline-1 (linear interpolation-based approach): For the non-measured beams in Set A, we estimate their RSRPs by performing a 2D linear interpolation (and extrapolation, when applicable) based on the measured RSRPs and the pointing angle of the beams. We select the top K predicted beams based on the interpolated RSRPs.
· Baseline-2 (empirical PMF-based approach): We derive an empirical probability distribution of the best beam ID in Set A, given the best beam ID in Set B, based on the training dataset. For testing, we select the top K predicted beams based on the derived empirical distribution.
[image: ]
[bookmark: _Ref111140842][bookmark: _Ref127486963]Figure 28 Illustration of pointing angles of Set A and Set B beams in a sector of the cell.

Evaluation results
We present the beam prediction performance for use case1 in Table 9. For Top-K beam selection accuracy, we follow the KPIs for beam prediction accuracy as described in Section 3.2.1. Compared with the baseline approach, our results show that NN based AI/ML model provide a significant performance gain, in terms of both beam selection accuracy and L1 RSRP difference. The linear interpolation-based approach (Baseline-1) provides the worst performance, as Set B beams are sparsely sampled from Set A, and the RSRPs in general cannot be approximated by a linear fit. 

[bookmark: _Ref118479376]Table 9 Evaluation results for BM-Case1 (Use case 1) without model generalization for DL Tx beam prediction at UE side (Results for Set B, Set B subset of Set A)
	                                                                                                    Qualcomm
	

	Assumptions
	Number of beams [beams/beam pairs] in Set A
	192
	192

	
	Number of beams [beams/beam pairs] in Set B
	24
	24

	
	Baseline scheme
	Empirical PMF-based approach
	linear interpolation-based approach

	AI/ML model input/output
	Model input
	RSRPs of Set B beams
	RSRPs of Set B beams

	
	Model output
	Best Tx beam ID
	Best Tx beam ID

	Data size
	Training
	4000
	4000

	
	Testing
	600
	600

	AI/ML model
	Model description
	FC layer based NN
	FC layer based NN

	
	Model complexity
	4.6K parameters
	4.6K parameters

	
	Computational complexity
	9.8K FLOPs
	9.8K FLOPs

	Evaluation results [with AI/ML/baseline
(Baseline-2)]
	Beam prediction accuracy (%)
	Top-1 (%)
	63.5 / 28.3
	63.5 / 10.7

	
	
	Top-2/1 (%)
	80.0 / 46.1
	80.0 / 16.3

	
	
	Top-5/1 (%)
	92.5 / 79.2
	92.5 / 31.8

	
	
	1-dB marginal accuracy (%)
	90.4 / 59.0
	90.4 / 32.8

	
	L1-RSRP diff.
	Avg. L1-RSRP difference in dB
	0.36 / 1.27
	0.36 / 4.22

	
	System performance
	RS overhead Reduction (%)
	87.5
	87.5




We further compare the NN based prediction performance between different selections of Set B beams. We define an alternative Set B of measured beam as Set B1. The pointing angles of Set B1 is illustrated in Figure 29. Note that Set B1 contains the same number of measured beams as the original Set B. To illustrate the impact of Set B beam selection, Set B1 only contains the beams of the same elevation pointing angles, while the original Set B uniformly down-selects beams along the elevation direction. As expected, comparing the results at Table 9 and Table 10 show that the original set B outperforms Set B1, e.g., by more than 8% in Top-1 beam selection accuracy as the beams in the original Set B capture more spatial domain features on elevation. This comparison indicates that beam prediction performance largely depends on the selection of Set B beams. To select the optimal Set B as the input for beam prediction algorithm, it is essential to have the knowledge of the gNB beam pattern, e.g., the pointing angles and beam shapes of Set A beams.
[bookmark: _Ref118479638]Table 10 Evaluation results for BM-Case1 (Use case 1) without model generalization for DL Tx beam prediction at UE side (Results for Set B1, Set B1 subset of Set A)
	                                                                                                    Qualcomm
	

	Assumptions
	Number of beams [beams/beam pairs] in Set A
	192
	192

	
	Number of beams [beams/beam pairs] in Set B
	24
	24

	
	Baseline scheme
	Empirical PMF-based approach
	linear interpolation-based approach

	AI/ML model input/output
	Model input
	RSRPs of Set B beams
	RSRPs of Set B beams

	
	Model output
	Best Tx beam ID
	Best Tx beam ID

	Data size
	Training
	4000
	4000

	
	Testing
	600
	600

	AI/ML model
	Model description
	FC layer based NN
	FC layer based NN

	
	Model complexity
	4.6K parameters
	4.6K parameters

	
	Computational complexity
	9.8K FLOPs
	9.8K FLOPs

	Evaluation results [with AI/ML/baseline
(Baseline-2)]
	Beam prediction accuracy (%)
	Top-1 (%)
	55.2 / 28.3
	55.2 / 10.7

	
	
	Top-2/1 (%)
	73.6 / 46.1
	73.6 / 16.3

	
	
	Top-5/1 (%)
	87.5 / 79.2
	87.5 / 31.8

	
	
	1-dB marginal accuracy (%)
	86.0 / 59.0
	86.0 / 32.8

	
	L1-RSRP diff.
	Avg. L1-RSRP difference in dB
	0.57 / 1.27
	0.57 / 4.22

	
	System performance
	RS overhead Reduction (%)
	87.5
	87.5


[image: ]
[bookmark: _Ref111141146]Figure 29 Illustration of pointing angles of Set A and Set B1 in a sector.

Observation 7
For BM-Case1 and the sub use case of “Set B is a subset of Set A”, and for a fixed Set B pattern option, the beam prediction performance largely depends on how Set B is selected.
· For instance, if set A includes beams in both azimuth and elevation, selecting Set B beams only in azimuth dimension may adversely impact prediction performance.


Effect of L1-RSRP quantization on beam prediction performance

In light of the following agreement, we evaluate the impact of L1-RSRP quantization on beam prediction performance, given the evaluation assumptions mentioned earlier in Section 3.2.1.1.

	Agreement (RAN1 #112)
· Further study the impact of quantization error of inputed L1-RSRP (for training and inference) for AI/ML model for beam management. 
· [bookmark: _Hlk131725293]Existing quantization granularity of L1-RSRP (i.e., 1dB for the best beam, 2dB for the difference to the best beam) is the starting point for evaluation at least for network-sided model. 



We consider two types of quantization for the RSRPs of Set B as follows:
1. Absolute quantization: the RSRPs of all the beams are quantized based on their absolute RSRP values. The range of quantization is assumed to be 128 dBm, while the quantization step size X varies. The total UCI payload to report RSRPs of all 24 beams is 
2. Differential quantization: similar to the approach for L1-RSRP report in the current 3GPP standards, the strongest RSRP is quantized based on its absolute value, while differential quantization is applied to all other RSRPs. The range of the absolute quantization for the strongest RSRP is 128 dBm with a quantization step size X, and the range of differential quantization is 32 dBm with a quantization step size of Y. Note that in this case, UE also need to feedback the index of the strongest beam, which requires 5 bits. Therefore, the total UCI payload to report all 24 beams is .
In Table 11, we show the prediction performance with different quantization assumptions. The results show that with reasonable quantization step sizes, e.g., when X=1 dBm, Y=2 dBm as in current 3GPP standards, quantization on the RSRPs of Set B may cause a minor loss in the prediction performance. Further, for the differential quantization approach, our results indicate that the quantization step size on the non-strongest beams may also have a noticeable impact on the prediction accuracy.
[bookmark: _Ref131724679]Table 11 Evaluation results for effect of L1-RSRP quantization on beam prediction performance
	Quantization assumptions
	Average L1-RSRP difference (in dB)
	Top-1 accuracy
	Top-2/1 accuracy
	Top-5/1 accuracy
	1dB margin accuracy
	UCI payload in bits

	Unquantized
	0.51
	63.7%
	82.0%
	92.9%
	84.7%
	Infinity

	Absolute X=1
	0.49
	63.6%
	82.1%
	93.0%
	85.0%
	7*24=168

	Absolute X=2
	0.52
	61.7%
	81.2%
	93.2%
	84.1%
	6*24=144

	Absolute X=4
	0.57
	58.9%
	78.5%
	92.4%
	82.0%
	5*24=120

	Differential
X=1, Y=2
	0.53
	62.0%
	81.0%
	92.7%
	84.0%
	5+7+4*23=104

	Differential
X=1, Y=4
	0.58
	59.6%
	77.9%
	91.8%
	82.4%
	5+7+3*23=81

	Differential
X=1, Y=8
	0.94
	49.0%
	70.1%
	89.1%
	73.1%
	5+7+2*23=58

	Differential
X=2, Y=4
	0.59
	59.4%
	77.9%
	91.6%
	82.2%
	5+6+3*23=80

	Differential
X=4, Y=4
	0.60
	59.4%
	77.6%
	91.6%
	82.1%
	5+5+3*23=79



Observation 8
At least for BM-Case1 and for differential quantization approach, existing quantization granularity of L1-RSRP (i.e., 1dB for the best beam, 2dB for the difference to the best beam) causes a minor loss in prediction performance compared to unquantized L1-RSRPs of beams in Set B.
· This is based on the assumption that all measured beams in Set B are reported, which may lead to excessive UCI payload overhead

Observation 9
At least for BM-Case1 and for differential quantization approach, increasing the quantization step size for the difference to the best beam (e.g., from 2 to 4,8) decreases overhead, but may lead to noticeable performance degradation (assuming quantization step size for the best beam is fixed).

Observation 10
[bookmark: _Hlk131758398]At least for BM-Case1 and for differential quantization approach, increasing the quantization step size for the best beam (e.g., from 1 to 2,4) does not have much impact on the beam prediction performance (assuming quantization step size for the difference to the best beam is fixed).

3.2.1.2 Use case 2 (i.e., with assistance information)
We consider Alt.1 of spatial domain beam prediction agreed in RAN1 109e and present our evaluations. The main distinction of these sets of results with Use case 1 is that we assume the availability of some assistance information from gNB at the UE side. We assume no UE mobility for this use case. We consider UE-side AI/ML models and define the following terminologies. 
· At UE side: Set  (solid in Figure 30) is the set of beams over which the measurements are made and Set  (dashed in Figure 30) is the set of beams over which predictions are made
· At gNB side: Set  is the set of beams over which the measurements are made and Set  is the set of beams over which we predict.
· Method 1A: pick best beam from Set  ( in Figure 30) and Set  ( in Figure 30) at UE & gNB, respectively, using UE-side AI/ML model (TX-RX beam pair prediction at UE). As AI/ML inference is being done at the UE side, UE needs to feedback best beam index from beam set  to gNB.


[image: ]
[bookmark: _Ref111141565]Figure 30 Method 1A: UE-side and gNB-side beam update

· Method 1B: gNB uses best beam from its codebook (Set ) and UE uses best beam from Set  ( in Figure 31), using UE-side AI/ML model (RX-only beam prediction at UE)
[image: ]
[bookmark: _Ref111141733]Figure 31 Method 1B: UE-side only beam update

Simulation Assumptions
We provide simulation results for InH and UMa (outdoor) deployments. 

Signaling of assistance information
As mentioned in the beginning of this section, we consider UE-side AI/ML models and assume signaling of assistance information from gNB to UE. The assistance information includes beam boresight directions of beams from Set  and , and also location vector of gNB panel antenna elements, from gNB to UE. Please note that this assistance information is used for both Method 1A and Method 1B.

Simulation assumptions for InH 
The simulation assumptions for InH have been summarized in Table 12.
[bookmark: _Hlk111069397]As the input to the AI/ML model, we feed channel impulse responses corresponding to beam pairs having top-5 RSRPs (from Set , Set ). As the output of the AI/ML model, we get the predicted beam indices from Set , Set .
[bookmark: _Ref115383176]Table 12 Simulation assumptions for InH deployment
	Parameters
	Value

	Carrier frequency
	30 GHz

	BS antenna cfg.
	(M, N, P, Mg, Ng) = (4, 8, 2, 1, 1), (dV, dH) = (0.5, 0.5) λ

	BS codebook (Set )
	8 beams (azimuth), 4 beams (elevation)

	BS codebook (Set )
	32 beams (azimuth), 16 beams (elevation)

	UE antenna cfg.
	(M,N,P) = (2,2,2), 2 panels (front, back)

	UE codebook (Set B)
	2 beams (azimuth), 2 beams (elevation)

	UE codebook (Set A)
	8 beams (azimuth), 8 beams (elevation)

	gNB antenna gain
	5dBi 

	BS Tx power
	18 dBm for 80 MHz bandwidth 

	UE Rx. noise figure
	10 dB

	SCS 
	120 kHz



The input and output to the AI/ML model is illustrated in Figure 32.


[image: ]
[bookmark: _Ref115386694][bookmark: _Ref115386471]Figure 32 Inputs and outputs of AI/ML model for Use case 2
In Figure 33 we plot the spectral efficiency for the methods described earlier in this section, as well. The leftmost curve indicates the best performance we can achieve using beam measurements from Set  and . We observe the spectral efficiency improvement across UEs for UE-side only (Method 1B) and joint UE-side and gNB-side beam update (Method 1A) based on measurements from beam sets  and . Looking at the comparative performance of Method 1A and Method 1B, we see the benefit that UE feedback of the best gNB beam index from beam Set  brings into the table. 

 [image: ] 
[bookmark: _Ref111142609]Figure 33 Spectral efficiency CDF across all UEs for InH deployment
Simulation assumptions for UMa (outdoor)
[bookmark: _Ref118481525][bookmark: _Ref115383481]The simulation assumptions for UMa have been summarized in Table 13. In Figure 34 we plot the spectral efficiency for the methods described earlier in this section. Also, for the UMa deployment we see the spectral efficiency gains associated with Methods 1A and 1B which highlight the benefits associated with predicting beams with higher angular resolution (from Set  and ) at UE (and gNB) using measured beams with lower angular resolution (from Set  and )

[bookmark: _Ref131756387]Table 13 Simulation assumptions for UMa (outdoor) deployment
	Parameters
	Value

	Carrier frequency
	30 GHz

	ISD
	200m

	BS antenna cfg.
	(M, N, P, Mg, Ng) = (4, 8, 2, 2, 2)

	BS codebook (Set )
	12 beams (azimuth), 3 beams (elevation)

	BS codebook (Set )
	24 beams (azimuth), 6 beams (elevation)

	UE antenna cfg.
	(M,N,P) = (2,2,2), 2 panels (front, back)

	UE codebook (Set B)
	2 beams (azimuth), 2 beams (elevation)

	UE codebook (Set A)
	8 beams (azimuth), 8 beams (elevation)

	gNB antenna gain
	8dBi 

	BS Tx power
	23 dBm for 80 MHz bandwidth 

	UE Rx. noise figure
	10 dB

	SCS 
	120 kHz



















  [image: ] 
[bookmark: _Ref115383530]Figure 34 Spectral efficiency CDF across all UEs for UMa (outdoor) deployment

Observation 11
For spatial domain beam prediction (BM-Case1), for at least the case in which Set B is a subset of Set A, assistance information from gNB about gNB beam boresight directions and information about gNB antenna array structure is beneficial in boosting spectral efficiency across UEs.

Wide to narrow beam prediction
We present evaluation results for Alt.2 of spatial domain beam prediction (BM-Case1) agreed in RAN1 109e in this section.


Simulation Assumptions
In this section, we study the use case of wide to narrow beam prediction, wherein Set A is consisted of narrow beams, and Set B is consisted of wide beams. Key simulation assumptions are summarized in Table 14. We assume the wide beams in Set B have the same elevation beamwidth and twice the azimuth beamwidth as the narrow beams in Set A.  The beam pointing angles of Set A and Set B beams within a sector are shown in Figure 35. In the cell, there are 192 narrow beams in Set A, and 24 wide beams in Set B. As a benchmark, the non-NN based baseline approach follows the Baseline-2 procedure described in Section 3.2.1.
[bookmark: _Ref115386782]Table 14 Simulation assumptions for wide-to-narrow beam prediction
	[bookmark: _Hlk127448947]Parameters
	Value

	Scenario
	Uma, outdoor

	Carrier frequency
	30 GHz

	ISD
	200 m

	BS antenna cfg.
	(M, N, P, Mg, Ng) = (4, 8, 2, 1, 1), (dV, dH) = (0.5, 0.5) λ

	gNB codebook (Set A)
	16 (azimuth) by 4 (elevation) narrow beams per sector,
in total Set A has 192 narrow beams per cell 

	gNB codebook (Set B)
	8 wide beams of the same elevation angle per sector,
in total Set B has 24 wide beams per cell,
compared with narrow beam, wide beam has 2x azimuth beamwidth and 3dB weaker directivity gain

	gNB antenna gain
	8 dBi

	BS Tx power
	30 dBm for 20 RB bandwidth

	SCS
	120KHz

	Car penetration loss
	Included

	UE mobility and rotation
	Not assumed, only consider a single time shot



[image: ]
[bookmark: _Ref111144216][bookmark: _Ref111144210]Figure 35 Illustration of pointing angles of wide and narrow beams in a sector.


Evaluation Results
We show a comparison of wide-to-narrow beam prediction performance in Table 15. The results show that NN-based AI/ ML model can predict the best beam ID significantly more accurate than the non-NN based baseline approach. For instance, in terms of the 1dB margin accuracy, with the NN based approach, the predicted beam is within 1 dB difference from the genie best beam with almost 90% chance, while the non-NN based approach only offers less than 50% accuracy.

[bookmark: _Ref118472280]Table 15 Evaluation results for BM-Case1 without model generalization for DL Tx beam prediction at UE side (wide to narrow beam prediction)
	
	Qualcomm

	Assumptions
	Number of beams [beams/beam pairs] in Set A
	192

	
	Number of beams [beams/beam pairs] in Set B
	24

	
	Baseline scheme
	Empirical PMF-based approach

	AI/ML model input/output
	Model input
	RSRPs of Set B beams

	
	Model output
	Best Tx beam ID

	Data size
	Training
	4000

	
	Testing
	600

	AI/ML model
	Model description
	FC layer based NN

	
	Model complexity
	4.6K parameters

	
	Computational complexity
	9.8K FLOPs

	Evaluation results [with AI/ML/baseline]
	Beam prediction accuracy (%)
	Top-1 (%)
	59.9/ 24.6

	
	
	Top-2/1 (%)
	76.5/ 41.4

	
	
	Top-5/1 (%)
	91.2/ 73.6

	
	
	1-dB marginal accuracy (%)
	88.1/ 48.5

	
	L1-RSRP diff.
	Avg. L1-RSRP difference in dB
	0.43/ 2.08

	
	System performance
	RS overhead Reduction (%)
	87.5




Evaluation results for quasi-optimal Rx beam selection for BM-Case1
In this section, we utilize the scenario and evaluation assumptions for the problem setup in Section 3.2.1.1, and we study the impact of quasi-optimal Rx beam selection at UE side for BM-Case1. For the previous spatial domain beam prediction results, we assume that for each gNB Tx beam, UE always pick up the genie best Rx beam corresponding to the largest RSRP value. Now we propose a stochastic model where the UE Rx beam is randomly selected, and the selection probability for each UE Rx beam is an increasing function of the corresponding RSRP. More specifically, given a gNB Tx beam, denote  as the RSRP vector for all UE Rx beams, and the probability distribution to select UE Rx beam is modelled as , where C is the parameter to control the “steepness” of the probability distribution: the larger the C value, the larger the probability to select the genie best Rx beam. The output probability distribution of the proposed stochastic model is then applied to randomly select the Rx beam for the corresponding gNB beam. The results in Table 16 show that compared with the genie Rx beam selection case, quasi-Rx beam selection will lead to a performance degradation. The performance loss, however, can be minor, as long as the UE Rx beam selection algorithm picks up the genie best Rx beam with a reasonable chance, e.g., more than 75%. We also observe that the beam prediction performance continues to degrade further as the chance that the UE Rx selection algorithm misses the genie Rx beam increases. 

[bookmark: _Ref134957600]Table 16 Evaluation results for effect of quasi-Rx beam selection on beam prediction performance for BM-Case1
	Avg. probability that the best Rx beam is selected (%)
	C
	Average L1-RSRP difference (in dB)
	Top-1 accuracy
	Top-2/1 accuracy
	Top-5/1 accuracy
	1dB margin accuracy

	100
	Infinity
	0.51
	63.7%
	82.0%
	92.9%
	84.7%

	87.1
	10
	0.64
	57.1%
	77.2%
	91.2%
	80.3%

	75.1
	5
	0.66
	56.8%
	75.9%
	89.4%
	81.1%

	34.3
	1
	2.64
	31.6%
	50.0%
	73.8%
	51.8%

	10.9
	0.1
	5.14
	18.7%
	32.6%
	57.3%
	33.7%



Observation 12
For BM-Case1 with quasi-optimal Rx beam selection based on a probabilistic model for DL Tx beam prediction, AI/ML-based methods provide a clear advantage over baseline methods (even baseline methods assuming genie best Rx beam), as long as the quasi-optimal genie Rx beam selection methods lead to selecting the genie best Rx beam, e.g., with probability more than [75%].


Evaluations for generalization capability of AI/ML models
Let us consider the agreement from RAN1 #111 below

Agreement
· For generalization performance verification, consider the following
· Scenarios
· Various deployment scenarios,
· e.g., UMa, UMi and others,
· e.g., 200m ISD or 500m ISD and others
· e.g., same deployment, different cells with different configuration/assumption
· e.g., gNB height and UE height
· FFS: e.g., Carrier frequencies
· Various outdoor/indoor UE distributions, e.g., 100%/0%, 20%/80%, and others
· Various UE mobility, 
· e.g., 3km/h, 30km/h, 60km/h and others
· Configurations (parameters and settings)
· Various UE parameters, e.g., number of UE Rx beams (including number of panels and UE antenna array dimensions)
· Various gNB settings, e.g., DL Tx beam codebook (including various Set A of beam(pairs) and gNB antenna array dimensions)
· Various Set B of beam (pairs)
· T1 for measurement /T2 for prediction for BM-Case2
· Other scenarios/configurations (parameters and settings) are not precluded and can be reported by companies.


Along the lines of the above agreement, we have provided two sets of simulation results in the following two subsections. In Section 3.3.1, we provide simulation results for generalization performance across different scenarios in which different scenarios correspond to different deployments or different cells within a deployment. Then, in Section 3.3.2, we investigate generalization across different configurations in which configurations correspond to UE or gNB codebooks.
Generalization across different deployments
In this section, we present the inter-site generalization results for spatial domain beam prediction. We show how the spatial beam prediction module trained with the data from a first set of cells perform in an unseen cell. The unseen cell for generalization test can be a cell from the same deployment type (homogenous inter-site case) or from a different deployment (heterogenous inter-site case). 

[bookmark: _Hlk127450730]Using the same assumptions in Section 3.2.1 (e.g., as illustrated in Table 8 and Figure 28), we generate RSRP datasets for multiple cells in both Uma and Umi deployments. Different random seeds are assumed to generate data in difference cells, and the corresponding dataset in each cell is labelled with deployment type plus random seed ID, e.g., Umi 1-10 and Uma 1-10. Spatial consistency is assumed only between UEs in the same cell. The training, validation, and test datasets for each cell are taken from different UE locations in the cell. Similar to Section 3.2.1, we apply a FC layer based NN in the simulations. For all the simulations below, we assume the same NN size for a fair comparison.

We present the homogenous inter-site generalization results for Uma cells in Table 17, wherein the datasets used for training and testing are from different Uma cells. In the results, the performance of the ideal case where the training and testing datasets are all from the same cell Uma0 is provided as a comparison benchmark. Compared with the ideal case, we observe a noticeable performance degradation when the NN is tested on an unseen cell of the same deployment type. For example, when the NN is trained with dataset from Uma cell 0, the top 1 beam selection accuracy performance may drop from 62.7% in the same cell to 27.9% in an unseen cell Uma cell 10. Further, diversifying the training dataset by including data from more cells may improve the generalization performance. But still, in the Uma deployment, even after the NN is trained with data from 10 difference cells, the NN may not work as well in an unseen Uma cell.

[bookmark: _Ref131756545]Table 17 Homogenous inter-site generalization performance for Uma cells
	Training cell
	Test cell
	Average L1-RSRP difference (in dB)
	Top-1 accuracy
	Top-2/1 accuracy
	Top-5/1 accuracy
	1dB margin accuracy

	Uma cell 0
	Uma cell 0
	0.38
	62.7%
	84.8%
	96.1%
	90.0%

	Uma cell 0
	Uma 1-9
	1.60
	31.1%
	51.2%
	77.2%
	61.2%

	Uma cell 0
	Uma cell 10
	1.45
	27.9%
	45.0%
	67.3%
	62.2%

	Uma cell 0-9
	Uma cell 0
	0.49
	56.0%
	79.2%
	93.4%
	88.5%

	Uma cell 0-9
	Uma 1-9
	0.53
	59.2%
	78.0%
	91.3%
	86.4%

	Uma cell 0-9
	Uma cell 10
	1.16
	38.5%
	59.6%
	79.5%
	68.4%



Next, we perform similar simulations of homogenous inter-site generalization for Umi cases, and the results are presented in Table 18. Unlike the Uma results, it is observed that when the NN is trained with data from 10 Umi cells, the NN shows good generalization to an unseen Umi cell. For example, in terms of Top1 beam selection accuracy, the performance degradation from seen cells Umi 1-9 in the training to an unseen cell Umi10 is less than 5%. The reason for different generalization performance between the Uma and Umi deployments is that a larger correlation distance in spatial consistency is assumed for Uma cases, and hence given the same amount of training data, there are fewer independent realizations that the NN can see in the Uma deployment during the training.

[bookmark: _Ref131756648]Table 18 Homogenous inter-site generalization performance for Umi cells
	Training cell
	Test cell
	Average L1-RSRP difference (in dB)
	Top-1 accuracy
	Top-2/1 accuracy
	Top-5/1 accuracy
	1dB margin accuracy

	Umi cell 0
	Umi cell 0
	0.50
	64.3%
	83.7%
	94.2%
	85.8%

	Umi cell 0
	Umi 1-9
	0.75
	53.9%
	74.6%
	89.5%
	77.4%

	Umi cell 0
	Umi cell 10
	0.74
	54.6%
	73.2%
	88.4%
	76.6%

	Umi cell 0-9
	Umi cell 0
	0.37
	69.1%
	86.4%
	95.0%
	87.8%

	Umi cell 0-9
	Umi 1-9
	0.51
	63.7%
	82.0%
	92.9%
	84.7%

	Umi cell 0-9
	Umi cell 10
	0.53
	60.0%
	79.0%
	92.0%
	83.3%




Last, we present the results for heterogenous inter-site generalization in Table 19, where the datasets used for training and testing are from different deployment. The results show that when the NN is trained with datasets from a single deployment scenario, e.g., Umi or Uma only, the trained NN generally works poorly with the testing data from another deployment: a larger performance degradation than the case of homogenous inter-site case is observed. 

[bookmark: _Ref127487275]Table 19 Heterogenous inter-site generalization performance for Uma and Umi cells
	Training cell
	Test cell
	Average L1-RSRP difference (in dB)
	Top-1 accuracy
	Top-2/1 accuracy
	Top-5/1 accuracy
	1dB margin accuracy

	Umi cell 0
	Uma cell 10
	1.17
	34.5%
	59.2%
	81.1%
	67.1%

	Umi cell 0-9
	Uma cell 10
	0.95
	44.9%
	68.8%
	84.6%
	72.4%

	Uma cell 0
	Umi cell 10
	2.55
	23.6%
	39.7%
	61.9%
	41.7%

	Uma cell 0-9
	Umi cell 10
	1.74
	34.5%
	51.6%
	69.3%
	54.8%




Increasing the number of cells used in the training from a single deployment may improve the generalization capability to some limited extent: the improved performance is still far worse than the ideal case where training and testing data are from the same cell. In Table 20, we show that incorporating datasets from different deployments may improve the heterogenous inter-site generalization without significantly affecting the performance in the seen cells.

[bookmark: _Ref131756694]Table 20 Performance for NN trained with both Uma and Umi cell datasets
	Training cell
	Test cell
	Average L1-RSRP difference (in dB)
	Top-1 accuracy
	Top-2/1 accuracy
	Top-5/1 accuracy
	1dB margin accuracy

	Umi cell 0-9 + Uma1-9
	Uma 0-9
	0.70
	56.7%
	75.5%
	90.0%
	83.1%

	Umi cell 0-9 + Uma0-9
	Uma cell 10
	0.88
	44.7%
	66.3%
	82.7%
	71.2%

	Umi cell 0-9 + Uma0-9
	Umi cell 0-9
	0.50
	62.7%
	81.2%
	93.1%
	84.9%

	Umi cell 0-9 + Uma0-9
	Umi cell 10
	0.52
	60.1%
	78.7%
	91.3%
	82.5%



Observation 13
Homogeneous inter-site scenarios (e.g., same deployment, different cells) have generally better generalization performance compared to heterogeneous inter-site scenarios (e.g., cells from different deployments).


Observation 14
For heterogeneous inter-site scenarios (e.g., cells from different deployments), incorporating datasets from different deployments in the training may improve the heterogenous inter-site generalization without significantly affecting the performance in the seen cells.

[bookmark: _Ref127519993]Generalization across different gNB/UE codebooks
Now, we investigate the generalization performance within the same deployment across different gNB or UE configurations/settings. First, we consider generalization across different gNB codebooks and then we study generalization performance across different UE codebooks.

Generalization across different gNB codebooks

One aspect that is of practical significance, is how well a UE-side AI/ML model generalizes to different gNB codebooks. This aspect is both applicable to inter-site and intra-site generalization within which gNB array structures (and hence codebooks) may be different. Inter-site gNB array difference is applicable to scenarios in which UE moves into a new site, with a different gNB array. The intra-site array difference is applicable to scenarios in which gNB has multiple sub-arrays, and at different time, gNB may use different numbers of sub-arrays for a specific UE. For instance, for the purpose of power saving, gNB may turn off some sub-arrays; and for better coverage, gNB may use a number of available sub-arrays for a cell edge UE. gNB may alter the number of subarrays for a given UE based on the number of UEs it is serving. UE may not have visibility into the number of sub-arrays the gNB is using to serve the UE, and the purpose of this study is to try to identify the impact of array change (hence codebook change) as well as the potential impact of UE’s knowledge of this array change in the generalization performance. To this end, we consider two array structures named as regular and large array, and summarize the simulation assumptions in Table 21:

[bookmark: _Ref131757078]Table 21 Simulation assumptions for generalization across different gNB codebooks
	Parameters
	Value

	Scenario
	Umi, outdoor

	Carrier frequency
	30 GHz

	ISD
	200 m

	BS antenna cfg.
	regular array (Codebook A): (M, N, P, Mg, Ng) = (4, 8, 2, 1, 1), (dV, dH) = (0.5, 0.5) λ
large array (Codebook B): (M, N, P, Mg, Ng) = (8, 16, 2, 1, 1), (dV, dH) = (0.5, 0.5) λ

	gNB codebook (Set A)
	16 (azimuth) by 4 (elevation) beams per sector,
in total Set A has 192 beams per cell 

	gNB codebook (Set B)
	8 beams down-selected from Set A per sector, as shown in Figure 28,
in total set B has 24 beams per cell

	gNB antenna gain
	8 dBi

	BS Tx power
	40 dBm for 20 RB bandwidth

	SCS
	120KHz

	Car penetration loss
	Included

	UE mobility and rotation
	Not assumed, only consider a single time shot



Consider problem in Section 3.2.1 (Figure 28). We have generated the dataset assuming UE uses the best RX beam (having highest L1-RSRP) per gNB TX beam. We generated two datasets assuming regular and large gNB array structures, respectively. The gNB codebooks for the two gNB array structures are assumed to have the same number of beams with the same set of pointing angles. The beams with the same pointing angle from the two gNB codebooks are labelled with the same gNB beam ID. We name the codebook generated using the regular array and the large array as Codebook A and Codebook B, respectively. Even though the pointing angles of the beams from Codebook A and Codebook B are the same, the beamwidths are different due to different array structures.

We present the generalization performance in Table 22. Numerical results show that the prediction performance deteriorates significantly when different gNB arrays (hance different codebooks) are assumed in the training and test datasets. We reiterate the fact that we observe this large performance degradation despite the fact that the beam pointing angles of the two codebooks (Codebook A and Codebook B) are the same. As we had highlighted in our previous contributions, generalization study and analysis should not be limited to considering only a single AI/ML model and expecting the AI/ML model to generalize to deployed scenarios/configurations. In other words, if an AI/ML model does not generalize well to new scenarios/configurations, we cannot conclude that AI/ML methods cannot perform well in new deployments, as there are other methods that could address the generalization issue. For instance, if a UE has two trained models: one for regular array and one for large array and if gNB sends assistance information to UE notifying UE of the change, then UE can switch to the corresponding AI/ML model for that scenario/configuration without experiencing the aforementioned performance degradation.

Observation 15
The focus of generalization study and analysis for BM use cases should not be solely on a single AI/ML model generalizing to new scenarios/configurations. Other alternatives such as training multiple AI/ML models each tailored to a specific scenario/configuration and switching among those AI/ML models based on the deployed scenario should also be considered.

Observation 16
A single UE-side AI/ML model trained using a first gNB codebook does not generally generalize well to “unseen” gNB codebooks.

Observation 17
Signalling of assistance information can have a monumental role in “scenario discovery” and improving model generalization through model switching, for UE-side AI/ML models.

Now, if we use mixed datasets composed of the two gNB array sizes (hence two codebooks) when training the AI/ML model, we see that the generalization performance when deployed using each array size improves compared to the case in which the array size during deployment has not been encountered during the training process. For this, we need to be wary of the complexity associated with the AI/ML model and the training process. If we want to train a single AI/ML model using datasets from multiple gNB codebooks, we need to consider the fact that the complexity of the AI/ML model scales with the number of different gNB codebooks.

Observation 18
Using a mixed dataset from multiple gNB codebooks when training a UE-side AI/ML model improves generalization performance if the deployment codebook was in the mixed dataset during training, compared to the case in which the deployment codebook was not encountered during training.

Observation 19
While training an AI/ML model on mixed datasets related to different gNB codebooks improves performance compared to training an AI/ML model with a first codebook and testing on a second (unseen) codebook, the corresponding performance is worse than training two models (one per gNB codebook) and using the applicable trained model during inference based on assistance information from gNB in the form of codebook index.
Observation 20
When using a mixed dataset from multiple gNB codebooks for training a UE-side AI/ML model, signalling of codebook index from gNB to UE and incorporation of this information at the UE side (e.g., as an auxiliary input) can boost the generalization performance. 



[bookmark: _Ref127487160]Table 22 generalization across different gNB codebooks
	
	Training
	Test
	Average L1-RSRP difference (in dB)
	Top-1 accuracy
	Top-2/1 accuracy
	Top-5/1 accuracy
	1dB margin accuracy

	
Without
codebook index
indicator
	Codebook A
	Codebook A
	0.51
	63.7%
	82.0%
	92.9%
	84.7%

	
	Codebook B
	Codebook B
	1.96
	50.0%
	69.5%
	86.9%
	62.0%

	
	Codebook A
	Codebook B
	4.05
	27.2%
	41.8%
	62.7%
	37.3%

	
	Codebook B
	Codebook A
	2.05
	28.9%
	51.5%
	79.7%
	50.0%

	
	Codebook A + Codebook B
	Codebook A
	0.73
	54.5%
	75.6%
	91.0%
	77.8%

	
	Codebook A + Codebook B
	Codebook B
	1.98
	47.8%
	67.6%
	86.4%
	60.0%

	With 
codebook index
indicator
	Codebook A + Codebook B
	Codebook A
	0.51
	62.0%
	82.2%
	92.9%
	84.3%

	
	Codebook A + Codebook B
	Codebook B
	1.91
	50.1%
	69.1%
	86.9%
	62.0%




Generalization across different UE codebooks

Now we study the generalization performance to predict gNB DL Tx beam across different UE array (hence codebook) configurations. This is more relevant for NW-side AI/ML models in which the UE array (hence codebook) information is transparent to NW. We generated two datasets from the same cells with two different UE Rx array (hence codebook) configurations, as illustrated in Table 23. In Table 24, numerical results show that the mismatch of UE array assumptions between training and test datasets only results in a minor performance loss, e.g., less than 5% loss in Top-1 beam selection accuracy, which is much less significant than the performance loss due to gNB array mismatch. Training with mixed dataset of different UE array assumptions helps recover the above performance loss due to dataset mismatch.

Observation 21

For DL Tx beam prediction for BM-Case1, mismatch of UE codebook assumptions between training and test datasets (for NW-side models) results in a minor performance loss, e.g., less than 5% loss in Top-1 beam prediction accuracy, which is much less significant than the performance loss due to gNB codebook mismatch (for UE-side models).

[bookmark: _Ref127487221]Table 23 Simulation assumptions for generalization across different UE codebooks
	Parameters
	Value

	Scenario
	Umi, outdoor

	Carrier frequency
	30 GHz

	ISD
	200 m

	BS antenna cfg.
	(M, N, P, Mg, Ng) = (4, 8, 2, 1, 1), (dV, dH) = (0.5, 0.5) λ

	UE antenna and codebook configs
	UE Config. 1(left-right panels) Codebook C: 2 panels on the left and right edges of the UE, each panel is  uniformly linear array; for each array, UE has a codebook of 8 beams to uniformly cover the 180-degree space
UE Config. 2 (front-back panels) Codebook D: 2 panels on the front and back surface of the UE, each panel is  uniform planar array; for each array, UE has a codebook of 4 beams to cover the half sphere towards the front/back direction

	gNB codebook (Set A)
	16 (azimuth) by 4 (elevation) beams per sector,
in total Set A has 192 beams per cell 

	gNB codebook (Set B)
	8 beams down-selected from Set A per sector, as shown in Figure 28,
in total set B has 24 beams per cell

	gNB antenna gain
	8 dBi

	BS Tx power
	40 dBm for 20 RB bandwidth

	SCS
	120KHz

	Car penetration loss
	Included

	UE mobility and rotation
	Not assumed, only consider a single time shot





[bookmark: _Ref127487302]Table 24 generalization across different UE codebooks
	Training
	Test
	Average L1-RSRP difference (in dB)
	Top-1 accuracy
	Top-2/1 accuracy
	Top-5/1 accuracy
	1dB margin accuracy

	Codebook C
	Codebook C
	0.51
	63.7%
	82.0%
	92.9%
	84.7%

	Codebook C
	Codebook D
	0.54
	59.6%
	77.9%
	90.0%
	82.9%

	Codebook C + Codebook D
	Codebook C
	0.47
	64.8%
	83.1%
	93.2%
	85.5%

	Codebook C + Codebook D
	Codebook D
	0.51
	61.1%
	79.3%
	90.7%
	83.5%




Conclusions
In this document, we have discussed aspects related to evaluation methodology for the beam prediction use case. We also presented initial results highlighting the benefits of AI/ML-based approaches for beam prediction. We made the following proposals and observations.

Proposal 1: For BM-Case1 and BM-Case2, consider the following factors for UE-side and gNB-side AI/ML models:
· Feasibility and availability of inputs to the AI/ML model at each side
· If feasible, study the benefits, impact on system operation, and trade-offs for making a given set of inputs available at each side

Proposal 2: For BM-Case2, adopt the following notation:



MP: AI/ML model is given as input L1-RSRP measurements from  contiguous beam management cycles out of every  contiguous cycles, then provides predictions for the following  cycles.


- 74/262 

Proposal 3: For BM-Case2, consider the following sub-use cases for evaluations:
Set B is not a subset of Set A (Set B is composed of wide beams and Set A is composed of narrow beams)
Set B is a subset of Set A

Proposal 4: For BM-Case1 and BM-Case2, study the performance of AI/ML models with and without incorporating assistance information and compare the performance.
· Study the existing trade-offs including overhead required for signalling of assistance information and corresponding performance benefits.
· The agreed KPIs related to beam prediction accuracy and RS overhead reduction can be used for performance evaluation.
· Examples of such assistance information: Relative beam pointing angles of beams within Set A and beams within Set B, relative beam pointing angles of beams across Set A and Set B
· In addition to the above-mentioned beam shape-related information, assistance information can be in the form of gNB codebook ID, gNB antenna configuration ID, etc.
· Study the impact of assistance information on generalization performance.

Proposal 5: At least for BM-Case1, consider spectral efficiency CDF for SLS evaluations as a KPI.


Observation 1: At least for BM-Case2, AI/ML-based methods will provide an advantage in high-stress scenarios where frequent UE orientation changes lead to rapid changes in the best beams.


Observation 2: For BM-Case2 with high UE rotation speeds, the AI/ML-based method (LSTM) strongly outperforms the sample-and-hold baseline, especially in the UE Rx beam prediction and Tx-Rx beam pair prediction use cases.

· The rapid rotation leads to significant changes in best-beam RSRPs between measured cycles; the LSTM can predict for these changes, while the sample-and-hold scheme breaks down.

Observation 3: For BM-Case2 with sub-sampled measurements and UE-side DL TX beam prediction, AI/ML based methods provide a clear advantage in beam prediction accuracy performance over the sample-and-hold baselines, especially in cases when the measured subset of beams is not guaranteed to be the best.

Observation 4: For BM-Case2 with sub-sampled measurements and UE-side DL TX beam prediction and quasi-optimal Rx beam selection based on Opt. A, AI/ML based methods outperform sample-and-hold baselines in terms of beam prediction accuracy and average L1-RSRP difference.

Observation 5: For BM-Case2 with sub-sampled measurements and NW-side DL TX beam prediction, AI/ML based methods provide a clear advantage in beam prediction accuracy performance over the sample-and-hold baselines.

Observation 6: For BM-Case2 with sub-sampled measurements and NW-side DL TX beam prediction with quasi-optimal Rx beam selection based on Opt A, AI/ML based methods outperform sample-and-hold baselines in terms of beam prediction accuracy and average L1-RSRP difference.

Observation 7: For BM-Case1 and the sub use case of “Set B is a subset of Set A”, and for a fixed Set B pattern option, the beam prediction performance largely depends on how Set B is selected.
· For instance, if set A includes beams in both azimuth and elevation, selecting Set B beams only in azimuth dimension may adversely impact prediction performance.

Observation 8: At least for BM-Case1 and for differential quantization approach, existing quantization granularity of L1-RSRP (i.e., 1dB for the best beam, 2dB for the difference to the best beam) causes a minor loss in prediction performance compared to unquantized L1-RSRPs of beams in Set B.
· This is based on the assumption that all measured beams in Set B are reported, which may lead to excessive UCI payload overhead

Observation 9: At least for BM-Case1 and for differential quantization approach, increasing the quantization step size for the difference to the best beam (e.g., from 2 to 4,8) decreases overhead, but may lead to noticeable performance degradation (assuming quantization step size for the best beam is fixed).

Observation 10: At least for BM-Case1 and for differential quantization approach, increasing the quantization step size for the best beam (e.g., from 1 to 2,4) does not have much impact on the beam prediction performance (assuming quantization step size for the difference to the best beam is fixed).

Observation 11: For spatial domain beam prediction (BM-Case1), for at least the case in which Set B is a subset of Set A, assistance information from gNB about gNB beam boresight directions and information about gNB antenna array structure is beneficial in boosting spectral efficiency across UEs.

Observation 12: For BM-Case1 with quasi-optimal Rx beam selection based on a probabilistic model for DL Tx beam prediction, AI/ML-based methods provide a clear advantage over baseline methods (even baseline methods assuming genie best Rx beam), as long as the quasi-optimal genie Rx beam selection methods lead to selecting the genie best Rx beam, e.g., with probability more than [75%].

Observation 13: Homogeneous inter-site scenarios (e.g., same deployment, different cells) have generally better generalization performance compared to heterogeneous inter-site scenarios (e.g., cells from different deployments).

Observation 14: For heterogeneous inter-site scenarios (e.g., cells from different deployments), incorporating datasets from different deployments in the training may improve the heterogenous inter-site generalization without significantly affecting the performance in the seen cells.


Observation 15: The focus of generalization study and analysis for BM use cases should not be solely on a single AI/ML model generalizing to new scenarios/configurations. Other alternatives such as training multiple AI/ML models each tailored to a specific scenario/configuration and switching among those AI/ML models based on the deployed scenario should also be considered.

Observation 16: A single UE-side AI/ML model trained using a first gNB codebook does not generally generalize well to “unseen” gNB codebooks.

Observation 17: Signalling of assistance information can have a monumental role in “scenario discovery” and improving model generalization through model switching, for UE-side AI/ML models.

Observation 18: Using a mixed dataset from multiple gNB codebooks when training a UE-side AI/ML model improves generalization performance if the deployment codebook was in the mixed dataset during training, compared to the case in which the deployment codebook was not encountered during training.

Observation 19: While training an AI/ML model on mixed datasets related to different gNB codebooks improves performance compared to training an AI/ML model with a fist codebook and testing on a second (unseen) codebook, the corresponding performance is worse than training two models (one per gNB codebook) and using the applicable trained model during inference based on assistance information from gNB in the form of codebook index.

Observation 20: When using a mixed dataset from multiple gNB codebooks for training a UE-side AI/ML model, signalling of codebook index from gNB to UE and incorporation of this information at the UE side (e.g., as an auxiliary input) can boost the generalization performance. 

Observation 21: For DL Tx beam prediction for BM-Case1, mismatch of UE codebook assumptions between training and test datasets (for NW-side models) results in a minor performance loss, e.g., less than 5% loss in Top-1 beam prediction accuracy, which is much less significant than the performance loss due to gNB codebook mismatch (for UE-side models).
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