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Introduction
RAN1 agreements that are related to evaluation on AI/ML for beam management can be found in Annex I. Based on the discussion in previous RAN1 meetings, the focus of the study should be on BM-Case1 and BM-Case2. In this contribution, we discuss the characterization and baseline performance evaluations for sub-use case BM-Case1 and for sub-use case BM-Case2. We discuss different alternatives for each sub-use case including the details of simulation assumptions, baseline assumptions, and KPIs. We also provide simulation results for various alternatives. 

[bookmark: _Hlk510705081]Discussion
Common Assumptions for Beam Management Use Case
1.1.1 [bookmark: _Ref101443687]KPIs and Corresponding Requirements
[bookmark: _Hlt135039519]To evaluate the performance of AI/ML in beam management, in the RAN1 #109-e meeting the agreement [1] was made to further study the following KPI options: Beam prediction accuracy-related KPIs, which may include the options specified in Table 2.11, and System performance related KPIs, which may include the options listed in Table 2.12.
[bookmark: _Ref101387491][bookmark: _Ref101867971]Table 2.11: List of Beam prediction accuracy related KPIs to evaluate the performance of AI/ML in beam management.
	KPIs
	KPI description
	Notes

	Beam prediction accuracy Top-1 (%)
	the percentage of “the Top-1 genie-aided beam is Top-1 predicted beam”  
	

Where  is the index of the Top-1 predicted beam and  is the index of the Top-1 genie-aided beam. 
 is the number of data points for obtaining the ML model performance,  is the indicator function. If , then . Otherwise, . Top-1 genie-aided beam index is selected based on  for , where are all the beams in SetA. 

	Beam prediction accuracy Top-K/1 (%) 
	the percentage of “the Top-1 genie-aided beam is one of the Top-K predicted beams”  
	

Where  is the index of the k-th beam in the Top-K predicted beams and  is the index of the Top-1 genie-aided beam. 

	Beam prediction accuracy (%) with 1dB margin for Top-1 beam

	The beam prediction accuracy (%) with 1dB margin is the percentage of the Top-1 predicted beam “whose ideal L1-RSRP is within 1dB of the ideal L1-RSRP of the Top-1 genie-aided beam”  
	

Where  is the RSRP of the Top-1 genie-aided beam and  is the RSRP of the Top-1 predicted beam. 

	Average L1-RSRP difference of Top-1 predicted beam
	 The difference between the ideal L1-RSRP of Top-1 predicted beam and the ideal L1-RSRP of the Top-1 genie-aided beam 
	



[bookmark: _Ref110604347]Table 2.12: List of System performance related KPIs to evaluate the performance of AI/ML in beam management.
	KPIs
	KPI description
	Notes

	UE throughput
	CDF of UE throughput, Average throughput and 5%-tile UE throughput
	A similar mechanism as in Rel-16/17 MIMO BM simulations 

	RS overhead reduction 
	RS overhead reduction at least for spatial-domain beam prediction at least for Top-1 beam
	For the evaluation of the overhead for BM-Case1, adoption the Opt1 metric:

•	where N is the number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement for AI/ML
•	where M is the total number of beams (pairs) to be predicted
For the evaluation of the overhead for BM-Case2, adoption the Opt3 metric:

•	where N is the number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement for AI/ML in each time instance
•	where M is the total number of beams (pairs) to be predicted for each time instance
•	where L is ratio of periodicity of time instance for measurements to periodicity of time instance for prediction

	UCI Report 
	Total UCI payload size for AI/ML
	Detailed assumption of UCI for AI/ML, including quantization mechanism for NW-side model inference



[bookmark: _Ref110988984]BM Case-1: Spatial Domain Beam Prediction 
[bookmark: _Ref111112482]Set A/B are DL Tx Beams
Here, we provide the characterization and baseline performance evaluations for Spatial-domain DL Tx beam prediction for Set A of beams based on measurement results of Set B of beams. 
Baseline Assumptions
Based on the agreed baselines from RAN1#109e, the following options are considered:
· BM-Case1 Baseline-option 1: Select the best beam within Set A of beams based on the measurement of all RS resources or all possible beams of beam Set A (exhaustive beam sweeping)
· BM-Case1 Baseline-option 2-1 (Set B is a subset of Set A/ Set B is different from Set A): Select the best beam within Set B
· BM-Case1 Baseline-option 2-2 (Set B is different from Set A): Hierarchical search for the best narrow beam from the best wide beam.

[bookmark: _Ref110848946]Evaluation Results for Set B is a Subset of Set A  
In this section, the following BM-Case alternative has been considered for evaluation:
BM- Alt. 1-1 - Set B is a subset of Set A
· ML model input: Set B beam L1-RSRP
· ML model output: Set A best beam ID
· Model training and testing with the same Set B

[bookmark: _Ref118319324]Table 2.21: Evaluation results for BM-Case1 DL Tx beam prediction with Set B is subset of Set A.
	Assumptions
	Fixed Set B (SetB subset of SetA)
	Fixed Set B (SetB subset of SetA)
	Fixed Set B (SetB subset of SetA)

	Number of beams in Set A
	64
	64
	64

	Number of beams in Set B

	F32
	F16
	F8

	[Pattern of Set B]
	Tx ID=[ 0, 2, 4, … ]
	Tx ID=[ 0, 4, 8, … , 61]
	Tx ID=[6, 14, 20, 28, 34, 42, 48, 56]

	[Rx beam assumption]
	Best Rx Opt 1
	Best Rx Opt 1
	Best Rx Opt 1

	Baseline scheme
	Option 2
	Option 2
	Option 2

	Model input, 
	Alt2: L1-RSRP, implicty  Tx beam ID
	Alt2: L1-RSRP, implicty  Tx beam ID
	Alt2: L1-RSRP, implicty  Tx beam ID

	Model output, 
	Probabilities of Top-1 beam for all Tx beam in Set A
	Probabilities of Top-1 beam for all Tx beam in Set A
	Probabilities of Top-1 beam for all Tx beam in Set A

	Model label
	Top-1 genie-aided beam ID
	Top-1 genie-aided beam ID
	Top-1 genie-aided beam ID

	Training
	~38K
	~38K
	~38K

	Testing
	~4K
	~4K
	~4K

	model description
	CNN
	CNN
	CNN

	[Model complexity
in a number of model parameters (M)]
	~80K
	~160K
	~80K

	[Model complexity
in a number of model size (e.g. Mbyte)]
	0.32M
	0.65M
	0.32M

	Computational complexity [FLOPs]
		1.11M
	1.28M
		1.11M

	Top-1(%)
	94.5 / 49.3
	92.6 / 24.3
	83.44 / 11.64

	Top-1(%) with 1dB margin
	99.4 / 70.8
	98.37 / 38.2
	91 / 19.0

	Top-2/1(%) , Top-4/1(%) , other values 
	99.1, 99.9
	98.4, 99.7
	93.04, 97.5

	Top-1/2(%), Top-1/4(%), other values (Optional)
	-
	-
	-

	Average L1-RSRP diff (dB)
	0.022 / 0.68
	0.058 / 2.53
	0.57 / 6.24

	[5%ile of L1-RSRP diff (dB)]
	0.02 / 2.75
	0.15 / 8.19
	2.98 / 15.2

	[e.g., Predicted L1-RSRP] (Optional)
	-
	-
	-

	RS overhead Reduction (%)
(Opt 1/2/3 reported by companies)
	50
(Opt1)
	75
(Opt1)
	87.5
(Opt1)

	[avg. UE throughput]
	100% / 98%
[100% represents the throughput of Opt1 Baseline (exhaustive search over Set A)]
	100% / 85%
[100% represents the throughput of Opt1 Baseline (exhaustive search over Set A)]
	98% / 73%
[100% represents the throughput of Opt1 Baseline (exhaustive search over Set A)]

	[5%ile UE throughput]
	100% / 97%
[100% represents the throughput of Opt1 Baseline (exhaustive search over Set A)]
	99% / 97%
[100% represents the throughput of Opt1 Baseline (exhaustive search over Set A)]
	84% / 75%
[100% represents the throughput of Opt1 Baseline (exhaustive search over Set A)]

	[UCI report]
	-
	-
	-



[bookmark: _Ref111208906]From Table 2.21, we have the following observations:
1. When using 32 beams Set B RSRP to predict the best beam in 64 beams Set A, the prediction accuracy is 99% and the prediction RSRP error mean is 0.03 dB, which is negligible. However, when using 16/8 beam Set B RSRP to predict 64 beams Set A, the prediction accuracy drops, and the prediction RSRP error mean increases.
The 32 beams baseline has a similar throughput to the 64 beams baseline, and the 16/8 beams baseline has worse throughput than the 64/32 beams baseline. This indicates that given the current agreed antenna configuration setup, using a large number of beams in Set A (i.e. 64 beams) is not useful as it may not provide any additional system throughput gain but introduce latency. Also, using many beams in Set A may cause misinterpretation of the beam prediction performance as they are too correlated (too close to each other). For example, if Set A has 128 beams and Set B has 32 beams, now  but the prediction accuracy can still be close to 100%. 

2. From Table 2.21, ML-based 16 beams have high prediction accuracy (>95%) and the prediction RSRP error mean is lower than 1 dB, and its good prediction performance is also reflected in the throughput that it has similar system throughput compared to the ideal baseline. On the other hand, from ML-based 8 beams, the prediction accuracy drops by a significant margin, and the ML-based 8 beams start losing nonnegligible cell-edge UE throughput compared to the ideal case. Therefore, if the beam prediction model input ONLY uses a “sparse” Set B or a poor Set B pattern design for the UE, may cause throughput loss, especially for the cell-edge UE. By this point, we understand that in certain cases, Set B RSRP may not be sufficient for beam prediction input, and additional assistant info may be needed to improve the prediction performance. 

Observation 1:  For BM-Case1 DL Tx beam prediction, when Set B is subset of Set A, with measurements of fixed Set B of beams that are 1/4 of Set A beams when Set A has 64 Tx beams:
· evaluation results indicate that, AI/ML can achieve [93%] beam prediction accuracy of Top-1 DL Tx beam, evaluation results indicate that AI/ML can achieve [98%] beam prediction accuracy of Top-1 DL Tx beam with 1dB margin.
· evaluation results indicate that, AI/ML can achieve [100%] beam prediction accuracy of Top-4 DL Tx beam.
· evaluation results indicate that, the average L1-RSRP difference (dB) of Top-1 predicted beam can be [0.058], evaluation results indicate that the 5%ile of L1-RSRP diff (dB) can be [0.15].
· evaluation results indicate that, AI/ML achieves [99%] of the UE average throughput of the BMCase1 baseline Opt1 (exhaustive search over Set A beams), evaluation results indicate that, AI/ML achieves 97% of the UE 5%ile throughput of the BMCase1 baseline Opt1.

Observation 2:  For BM-Case1 DL Tx beam prediction, when Set B is subset of Set A, with measurements of fixed Set B of beams that are 1/8 of Set A beams when Set A has 64 Tx beams:
· [bookmark: _Hlk134817216]evaluation results indicate that, AI/ML can achieve [83%] beam prediction accuracy of Top-1 DL Tx beam, evaluation results indicate that AI/ML can achieve [91%] beam prediction accuracy of Top-1 DL Tx beam with 1dB margin.
· evaluation results indicate that, AI/ML can achieve [97%] beam prediction accuracy of Top-4 DL Tx beam.
· evaluation results indicate that, the average L1-RSRP difference (dB) of Top-1 predicted beam can be [0.57], evaluation results indicate that the 5%ile of L1-RSRP diff (dB) can be [3].
· evaluation results indicate that, AI/ML achieves [98%] of the UE average throughput of the BMCase1 baseline Opt1 (exhaustive search over Set A beams), evaluation results indicate that, AI/ML achieves [84%] of the UE 5%ile throughput of the BMCase1 baseline Opt1.

Evaluation Results for Set B is Different to Set A  
As mentioned in our other BM paper [4], for BM-Case- Set B is different from Set A, we consider Set B to be a wide beam codebook, and Set A is a refined (narrow) beam codebook. In the following, we will try to compare the Set A prediction performance based on different choices of Set B wide beam codebook, and we consider the following wide beam construction methods:
· [bookmark: _Hlk111107667]Wide beam codebook#1 - baseline
· The wide beam codebook construction aggregates 4 adjacent narrow beams in one wide beam [3]

· Wide beam codebook#4
· The wide beam codebook is constructed in a hybrid fashion - some wide beams are constructed based on the wide beam codebook#1 method while other wide beams are constructed randomly selecting refined beams in Set A. The hybrid wide beam codebook has the same coverage as Set A. 

All wide beam codebooks combine 4 refined beams into 1 wide beam. In the following, we consider Set A with 64 and 32 refined beams, and Set B will have 16 and 8 wide beams correspondingly. Table 2.22 shows the model performance KPI for different wide beam codebooks.
[bookmark: _Ref118325602]Table 2.22: Evaluation results for BM-Case1 DL Tx beam prediction with Set B different to Set A .
	Assumptions
	Widebeam and Narrow beam
	Widebeam and Narrow beam
	Widebeam and Narrow beam
	Widebeam and Narrow beam

	Number of beams in Set A
	64 narrow beam
	64 narrow beam
	32 narrow beam
	32 narrow beam

	Number of beams in Set B

	16 widebeams (wide beam codebook #1)
	16 widebeams (wide beam codebook #4)
	8 widebeams (wide beam codebook #1)
	8 widebeams (wide beam codebook #4)

	[Pattern of Set B]
	All widebams
	All widebams
	All widebams
	All widebams

	[Rx beam assumption]
	Best Rx Opt 1
	Best Rx Opt 1
	Best Rx Opt 1
	Best Rx Opt 1

	Baseline scheme
	Option 2
	Option 2
	Option 2
	Option 2

	Model input, 
	Alt2: L1-RSRP, implicty Tx beam ID
	Alt2: L1-RSRP, implicty Tx beam ID
	Alt2: L1-RSRP, implicty Tx beam ID
	Alt2: L1-RSRP, implicty Tx beam ID

	Model output, 
	Probablities of Top-1 beam for all Tx beam in Set A
	Probablities of Top-1 beam for all Tx beam in Set A
	Probablities of Top-1 beam for all Tx beam in Set A
	Probablities of Top-1 beam for all Tx beam in Set A

	Model label
	Top-1 genie-aided beam ID
	Top-1 genie-aided beam ID
	Top-1 genie-aided beam ID
	Top-1 genie-aided beam ID

	Training
	~33K
	~33K
	~33K
	~33K

	Testing
	~4K
	~4K
	~4K
	~4K

	model description
	DNN
	DNN

	DNN

	DNN


	[Model complexity
in a number of model parameters (M)]
	~0.03M
	 ~0.03M


	~0.007M
	~0.007M


	[Model complexity
in a number of model size (e.g. Mbyte)]
	~0.12M
	~0.12M

	~0.028M

	~0.028M

	Computational complexity [FLOPs]
	132M

	132M

	35M
	35M

	Top-1(%)
	80.5
	84.19
	68.5
	88.1

	Top-1(%) with 1dB margin
	92.1
	95.3
	73
	93.5

	Top-2/1(%) , Top-4/1(%) , other values 
	Top-2/1(%) , Top-3/1(%) ,Top-5/1(%)
93.57
96.6
98.5

	Top-2/1(%) , Top-3/1(%) ,Top-5/1(%)
95.64
97.8
99.4

	Top-2/1(%) , Top-3/1(%) ,Top-5/1(%)
85.52
93.19
97.83

	Top-2/1(%) , Top-3/1(%) ,Top-5/1(%)
96.5
98.6
99.6


	Top-1/2(%), Top-1/4(%), other values (Optional)
	NA
	NA
	NA
	NA

	Average L1-RSRP diff (dB)
	0.334
	0.17
	3.007
	0.4

	[5%ile of L1-RSRP diff (dB)]
	2.067
	0.93
	16.83
	1.84

	[e.g., Predicted L1-RSRP] (Optional)
	NA
	NA
	NA
	NA

	RS overhead Reduction (%)

	75% (Opt 1)
	75% (Opt 1)
	75% (Opt 1)
	75% (Opt 1)

	[avg. UE throughput]
	NA
	NA
	92%
[100% represents the throughput of Opt1 Baseline (exhaustive search over Set A)]
	99%
[100% represents the throughput of Opt1 Baseline (exhaustive search over Set A)]

	[5%ile UE throughput]
	NA
	NA
	71%
[100% represents the throughput of Opt1 Baseline (exhaustive search over Set A)]
	94%
[100% represents the throughput of Opt1 Baseline (exhaustive search over Set A)]

	[UCI report]
	NA
	NA
	NA
	NA



From Table 2.22, we have the following observations:
1. For Set A with 64 beams, the designed wide beam codebooks #4 have marginal performance gain compared to the baseline wide beam codebook#1. This is mainly because of the large/oversampled beam number 64 in Set A for the current antenna configurations - with a 1 dB error margin, the wrong refined beam prediction may highly possibly has less than 1 dB RSRP difference compared to the actual best beam since the refined beams now are too close to each other.
2. For Set A with 32 beams, the designed wide beam codebooks #4 perform significantly better than the baseline wide beam. The idea behind the wide beam codebook #4 can be found in our other BM paper [4]. And as expected, randomly combining the refined beam to form the wide beam can provide the richest correlation between the refined beam and the wide beam codebook.
3. From Table 2.22, one can see that the refined beam prediction with WB#1 has significantly worse throughputs than the baseline. On the other hand, the suggested WB#4 has comparable throughput to the baseline. One should notice that the assumption for WB#4 is using the wide beam codebook for SSB and using the SSB measurements to predict the refined beams, while the hierarchical search will additionally require UE-specific CSI-RS for P2 beam management. For Set B is different to Set A with Set B is wide beam, the KPI for the wide beam codebook design should be both prediction accuracy and throughput performance. 

Observation 3: [bookmark: _Hlk134778507] For BM-Case1 DL Tx beam prediction, when Set B is different to Set A, with measurements of Set B of wide beams that are 1/4 of Set A beams when Set A has 64 Tx beams: 
· Advance Set B designs (codebook#4) achieve better evaluation results over basic Set B designs (codebook#1) for all KPIs.
· evaluation results indicate that, AI/ML can achieve [84%] beam prediction accuracy of Top-1 DL Tx beam. evaluation results indicate that, AI/ML can achieve [95%] beam prediction accuracy of Top-1 DL Tx beam with 1dB margin.
· evaluation results indicate that, AI/ML can achieve [98%] beam prediction accuracy for Top-3 DL Tx beam.
· evaluation results indicate that, the average L1-RSRP difference (dB) of Top-1 predicted beam can be [0.1], whereas the 5%ile of L1-RSRP diff (dB) can be [0.9].


Observation 4:  For BM-Case1 DL Tx beam prediction, when Set B is different to Set A, with measurements of Set B of wide beams that are 1/4 of Set A beams when Set A has 32 Tx beams: 
· Advance Set B designs (codebook#4) achieve better evaluation results over basic Set B designs (codebook#1) for all KPIs.
· evaluation results indicate that, AI/ML can achieve [88%] beam prediction accuracy of Top-1 DL Tx beam, evaluation results indicate that, AI/ML can achieve [93%] beam prediction accuracy of Top-1 DL Tx beam with 1dB margin. 
· evaluation results indicate that, AI/ML can achieve [99%] beam prediction accuracy for Top-3 DL Tx beam. 
· evaluation results indicate that, the average L1-RSRP difference (dB) of Top-1 predicted beam can be [0.4], whereas the 5%ile of L1-RSRP diff (dB) can be [0.3dB].
· evaluation results indicate that, AI/ML achieves [99%] of the UE average throughput of the BMCase1 baseline Opt1 (exhaustive search over Set A beams), evaluation results indicate that, AI/ML achieves [94%] of the UE 5%ile throughput of the BMCase1 baseline Opt1.

Proposal 1: For BM-Case1, RAN1 may further study the case of Set A/B are DL Tx and Set B/Set A are different.
· Set B is a wide beam codebook and Set A is a refined beam codebook
· Advance Set B designs are needed to provide sufficient refined beam prediction performance.
[bookmark: _Ref127116545]Evaluation Results for Various Set B of Beams  
In this section, we study the selection of SetB of Tx beams as well as the performances with different patterns of SetB and different pre-configured patterns of Set B. The following configurations were considered:
· Opt1: SetB is fixed across training and inference. For this option we studied several combinations for selecting the 16 Tx beams in SetB from all the Tx beams in SetA.
Among the different combinations of various SetB of beams, we heuristically selected the SetB beams with indexes [ 0, 4, 8, 12, 18, 22, 26, 30, 35, 39, 43, 47, 49, 53, 57, 61] corresponding to different azimuth and elevation angle directions as shown in Figure 22.

· Opt 2B: SetB is randomly changed among pre-configured patterns. We generate a set of pre-configured SetB patterns with size 24 by permuting some of the azimuth and elevation angle directions of the fixed SetB pattern defined in Opt1. We assume that each UE is configured with a pre-configured SetB pattern selected randomly from the set of pre-configured SetB patterns and the UE uses the same pre-configured SetB pattern over time. Training and inference consider different UEs. For model input, we consider to use the implicit information of Tx beam ID. When considering NW side model, Tx beam ID could be derived from the CSI reports which may include CRI to identify the strongest CSI-RSs. The number of best reported Tx beams is also the objective of studies considered in Opt 2D. 

· Opt 2C: SetB is randomly changed among the SetA beams. We assume that each UE randomly selects 16 Tx beams out of 64 Tx beams for measurements. In successive time instances the UE repeats the random selection of the 16 Tx beams out of 64 Tx beams and measures the corresponding beams. Training and inference consider different UEs. The same assumptions of Opt2B can be applied for NW side models to derive the Tx beam ID.

· Opt 2D: Set B is a subset of measured beams (pairs) Set C (including Set B = Set C), e.g. Top-K beams(pairs) of Set C.

[bookmark: _Hlt135039539]For training we considered a dataset size specified in Table 2.21 formed by ~40,000 UEs and for each UE we considered ~10 reporting instances. In total ~400,000 random SetB patterns were generated for simulating the Opt2C configuration.
[image: ]
[bookmark: _Ref127114598]Figure 22: Representation of the 64 Tx beams in the Grid of Beams (GoB) and their corresponding azimuth and elevation angle directions. 

[bookmark: _Ref127118462]Different SetB Assumptions (Opt2B, Opt2C, Opt2D)
In this subsection, we consider the NW indicates the UE to measure and report Set B beams measurements. SetB may be fixed by the NW, randomly picked by UE among pre-configured patterns or randomly changed by UE among the SetA beams. Full reporting would require the UE reports more than 4 beams (16 beams) in one reporting instance. 
Part (a) of Figure 23 shows the Top-1 Tx beam prediction accuracy for the different configuration of SetB patters described in Section 2.2.1.4. Fixed SetB (Opt1) outperforms Pre-configured SetB (Opt2B) by small margin, and both Fixed/Pre-configured SetBs outperform random SetB (Opt2C). Part (b) of Figure 23 shows the Top-2 Tx beam prediction accuracy above 95% for all three configurations. 
It is worth to mention that model performances for random SetB (Opt2C) are sensitive to the size of the dataset used for training. High accuracy is atteneined when the number of combinations of 16 Tx beams in SetB over the 64 Tx beams in SetA is large enough.
[image: ][image: ]
(a)                                                (b)
[bookmark: _Ref127116474]Figure 23: Top-1 and Top-2 Tx beam prediction results for different configuration of SetB patters: in Opt1 SetB is fixed across training and inference, in Opt2B SetB is randomly changed among pre-configured patterns, and in Opt2C SetB is randomly changed among the SetA beams. Model training/inference at NW side assuming reporting of all 16 measurements. 

Next, we investigate the model performance for Set B is a subset of measured beams Set C (Opt2D) , i.e.the number of beams for the UE to report in one instance is limited. We experimented with UE reporting the N-best beams with N=8 (Set B = 8) and N=4 (Set B = 4, current option supported by the standard). 
Part (a) of Figure 24 shows the Top-1 beam prediction accuracy results with N=8 reporting. Fixed/Pre-configured SetBs decrease the beam prediction accuracy at 1db by 1.7% and 2.7% compared to the full-beam reporting, respectively. A larger degradation of 4.4% it is observed for the random SetB, indicating that is more sensitive to the number of reported beams. 
The resulst when N=4 reporting, are shown in Part (c) of Figure 24. Fixed/Pre-configured SetBs decrease the beam prediction accuracy at 1db by 5% and by 7% compared to the full-beam reporting, respectively. Conversely, for the random SetB the beam prediction accuracy at 1 dB decreases by 12%, confirming the observation above. 
As shown in Part (d) of Figure 24, with N=4 further measurements for the Top-2 beams are required to achieve Fixed/Pre-configured SetBs prediction accuracy above the 90-th percentile, indicating that 4-best beams may not be sufficient for training and inference at NW side the model for DL Tx beam prediction. Finally, random SetB does not achieve a prediction accuracy above the 90-th percentile even with the further measurements for the Top-2. Suggesting that random SetB requires reporting at least 8 beams. 
[bookmark: _Hlt135039552]Moreover from Table 2.23, we have the following observations:
Observation 5:  For BM-Case1 DL Tx beam prediction, when Set B is a subset of Set A without considering other generalization aspects with the measurements from the best Rx beam without UE rotation.
a. (Opt 2B) For the case that Set B of beams is changed among 24 pre-configured patterns, evaluation results show that the beam prediction accuracy degrades [5%] in terms of Top-1 beam prediction accuracy than when Set B is fixed across training and inference. 
b. (Opt 2C) For the case that Set B of beams is randomly changed in Set A of beams, the beam prediction accuracy degrades [10%] in terms of Top-1 beam prediction accuracy than the case that Set B is fixed across training and inference. 
c. (Opt 2D) For the case that Set B is 8 reported beams of the measured beams Set C, the Top-1 beam prediction accuracy degrades [2%] than the case that Set B is fixed across training and inference. For the case that Set B is 4 reported beams of the measured beams Set C, the Top-1 beam prediction accuracy degrades [7%] than the case that Set B is fixed across training and inference.

Proposal 2: For evaluation of BM-Case1, RAN1 may consider not to limit the number of pre-configured SetB patterns in Opt2B. 

[image: ] [image: ]
(a)                                               (b)
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                        (c)                                                (d)
[bookmark: _Ref135039346]Figure 24: Top-1 and Top-2 Tx beam prediction results for Set B is a subset of measured beams Set C. Model training/inference at NW side assuming in (a) and (b) the UE reporting the 8-best beams (Set B=8) and in (c) and (d) the UE reporting the 4-best beams (Set B=4).            
 
[bookmark: _Ref134811894]Table 2.23: Evaluation Results for different Set B assumption (Opt2B, Opt2C, Opt2D).
	Assumptions
	Fixed Set B Opt1
	PreConf Set B Opt2B
	Random Set B Opt2C
R16
	Report 8 beams of 16 fixed beams in SetB
Opt2D
	Report 8 beams of 16 PreConf beams in SetB
Opt2D
	Report 4 beams of 16 fixed beams in SetB
Opt2D
	Report 4 beams of 16 PreConf beams in SetB
Opt2D

	Number of beams in Set A
	64
	64
	64
	64
	64
	64
	64

	Number of beams in Set B

	F16
	P24N16R
	R16
	R8N16
	Report 8 beams of 16 PreConf beams in SetB
	R4N16
	Report 4 beams of 16 PreConf beams in SetB

	[Pattern of Set B]

	Tx ID=[ 0, 4, 8, … , 61] 
	SetB#1: Tx ID=[ 0  4  8 12 18 22 26 … 61]
SetB#2: Tx ID=[ 0  4  8 12 19 23 27 ... 61]
….
SetB#24: Tx ID=[ 1  5  9 13 18 22 26 ... 63]
	Select 16 Tx ID from 0 to 63
	Tx ID=[ 0, 4, 8, … , 61] 
	SetB#1: Tx ID=[ 0  4  8 12 18 22 26 … 61]
SetB#2: Tx ID=[ 0  4  8 12 19 23 27 ... 61]
….
SetB#24: Tx ID=[ 1  5  9 13 18 22 26 ... 63]
	Tx ID=[ 0, 4, 8, … , 61] 
	SetB#1: Tx ID=[ 0  4  8 12 18 22 26 … 61]
SetB#2: Tx ID=[ 0  4  8 12 19 23 27 ... 61]
….
SetB#24: Tx ID=[ 1  5  9 13 18 22 26 ... 63]

	[Rx beam assumption]
	Best Rx Opt 1
	Best Rx Opt 1
	Best Rx Opt 1
	Best Rx Opt 1
	Best Rx Opt 1
	Best Rx Opt 1
	Best Rx Opt 1

	Baseline scheme
	Option 2
	Option 2
	Option 2
	Option 2
	Option 2
	Option 2
	Option 2

	Model input, 
	Alt2: L1-RSRP, implicty  Tx beam ID
	Alt2: L1-RSRP, implicty  Tx beam ID
	Alt2: L1-RSRP, implicty  Tx beam ID
	Alt2: L1-RSRP, implicty  Tx beam ID
	Alt2: L1-RSRP, implicty  Tx beam ID
	Alt2: L1-RSRP, implicty  Tx beam ID
	Alt2: L1-RSRP, implicty  Tx beam ID

	Model output, 
	Probabilities of Top-1 beam for all Tx beam in Set A
	Probabilities of Top-1 beam for all Tx beam in Set A
	Probabilities of Top-1 beam for all Tx beam in Set A
	Probabilities of Top-1 beam for all Tx beam in Set A
	Probabilities of Top-1 beam for all Tx beam in Set A
	Probabilities of Top-1 beam for all Tx beam in Set A
	Probabilities of Top-1 beam for all Tx beam in Set A

	Model label
	Top-1 genie-aided beam ID
	Top-1 genie-aided beam ID
	Top-1 genie-aided beam ID
	Top-1 genie-aided beam ID
	Top-1 genie-aided beam ID
	Top-1 genie-aided beam ID
	Top-1 genie-aided beam ID

	Training
	~38K
	~38K
	~38K
	~38K
	~38K
	~38K
	~38K

	Testing
	~4K
	~4K
	~4K
	~4K
	~4K
	~4K
	~4K

	model description
	CNN
	CNN
	CNN
	CNN
	CNN
	CNN
	CNN

	[complexity parameters (M)]
	~100K
	~100K
	~100K
	~100K
	~100K
	~100K
	~100K

	[complexity model size 
	0.4Mbyte
	0.4Mbyte
	0.4Mbyte
	~0.4MB
	~0.4MB
	~0.4MB
	~0.4MB

	Computational complexity [FLOPs]
	1.01M
	1.01M
	1.01M
	1.01M
	1.01M
	1.01M
	1.01M

	Top-1(%)
	85.2
	80.7
	74.8
	83.1 
	76.3 
	78.3 
	70.74 

	Top-1(%) with 1dB margin
	95.3
	92.7
	87.7
	93.68
	89.9 
	90.35 
	85.62 

	Top-2/1(%) , Top-4/1(%) , other values 
	Top-2/1(%) , Top-3/1(%) ,Top-5/1(%)
[95.8, 97.9, 99.2]
	Top-2/1(%) , Top-3/1(%) ,Top-5/1(%)
[93.7, 96.8, 98.6]
	Top-2/1(%) , Top-3/1(%) ,Top-5/1(%)
[90.1, 94.6, 97.5]
	94.91, 98.44
	91.6, 97.3
	92.82, 97.79
	88.9, 96.1

	Top-1/2(%), Top-1/4(%), other values (Optional)
	-
	-
	-
	-
	-
	-
	-

	Average L1-RSRP diff (dB)
	0.2
	1.2
	0.7
	0.24
	0.405
	0.385
	0.59

	[5%ile of L1-RSRP diff (dB)]
	0.9
	1.5
	3.2
	1.32
	2.1
	2.1
	3.166

	[e.g., Predicted L1-RSRP] (Optional)
	-
	-
	-
	-
	-
	-
	-

	RS overhead Reduction (%)
	75% (Opt 1)
	75% (Opt 1)
	75% (Opt 1)
	75% (Opt 1)
	75% (Opt 1)
	75% (Opt 1)
	75% (Opt 1)

	[avg. UE throughput]
	-
	-
	-
	-
	-
	-
	-

	[5%ile UE throughput]
	-
	-
	-
	-
	-
	-
	-

	[UCI report]
	-
	-
	-
	-
	-
	-
	-


Variable Number of Beams in Set B
Considering the SetA beams are fixed, and SetB has beams randomly changed among SetA beams, we show the beam prediction performance in Table 2.24.
[bookmark: _Ref118705548]Table 2.24: Evaluation results for variable number of beams in Set B.
	Assumptions
	Random Set B Opt2C
R32
	Random Set B Opt2C R32 -
Training with Random number in [32,64] 
	Random Set B Opt2C
R16
	Random Set B Opt2C R32 -
Training with Random number in [16,64]
	Random Set B Opt2C R16 -
Training with Random number in [16,64]

	Number of beams in Set A
	64
	64
	64
	64
	64

	Number of beams in Set B

	R32
	R32
	R16
	R32
	R16

	[Pattern of Set B]

	Select 16 Tx ID from 0 to 63
	Select 16 Tx ID from 0 to 63
	Select 16 Tx ID from 0 to 63
	Select 16 Tx ID from 0 to 63
	Select 16 Tx ID from 0 to 63

	[Rx beam assumption]
	Best Rx Opt 1
	Best Rx Opt 1
	Best Rx Opt 1
	Best Rx Opt 1
	Best Rx Opt 1

	Baseline scheme
	Option 2
	Option 2
	Option 2
	Option 2
	Option 2

	Model input, 
	Alt2: L1-RSRP, implicty  Tx beam ID
	Alt2: L1-RSRP, implicty  Tx beam ID
	Alt2: L1-RSRP, implicty  Tx beam ID
	Alt2: L1-RSRP, implicty  Tx beam ID
	Alt2: L1-RSRP, implicty  Tx beam ID

	Model output, 
	Probabilities of Top-1 beam for all Tx beam in Set A
	Probabilities of Top-1 beam for all Tx beam in Set A
	Probabilities of Top-1 beam for all Tx beam in Set A
	Probabilities of Top-1 beam for all Tx beam in Set A
	Probabilities of Top-1 beam for all Tx beam in Set A

	Model label
	Top-1 genie-aided beam ID
	Top-1 genie-aided beam ID
	Top-1 genie-aided beam ID
	Top-1 genie-aided beam ID
	Top-1 genie-aided beam ID

	Training
	~38K
	~38K
	~38K
	~38K
	~38K

	Testing
	~4K
	~4K
	~4K
	~4K
	~4K

	model description
	CNN
	CNN
	CNN
	CNN
	CNN

	[complexity parameters (M)]
	~108k
	~108k
	~108k
	~108k
	~108k

	[complexity model size 
	~0.4Mbyte
	~0.4Mbyte
	~0.4Mbyte
	~0.4Mbyte
	~0.4Mbyte

	Computational complexity [FLOPs]
	1.01M
	1.01M
	1.01M
	1.01M
	1.01M

	Top-1(%)
	-
	-
	-
	-
	-

	Top-1(%) with 1dB margin
	95
	95
	87
	95
	85

	Top-2/1(%) , Top-4/1(%) , other values 
	Top-4/1(%) 
99
	Top-4/1(%) 
98
	Top-4/1(%) 
95
	Top-4/1(%) 
98
	Top-4/1(%) 
94

	Top-1/2(%), Top-1/4(%), other values (Optional)
	-
	-
	-
	-
	-

	Average L1-RSRP diff (dB)
	0.2
	0.2
	0.9
	0.2
	1

	[5%ile of L1-RSRP diff (dB)]
	-
	-
	-
	-
	-

	[e.g., Predicted L1-RSRP] (Optional)
	-
	-
	-
	-
	-

	RS overhead Reduction (%)
	75% (Opt 1)
	75% (Opt 1)
	75% (Opt 1)
	75% (Opt 1)
	75% (Opt 1)

	[avg. UE throughput]
	-
	-
	-
	-
	-

	[5%ile UE throughput]
	-
	-
	-
	-
	-

	[UCI report]
	-
	-
	-
	-
	-



From Table 2.24 we have the following observations:
· The model trained with fixed number of beams in SetB outperforms the model trained with variable number of beams in Set B.

Observation 6:  In BM-Case1 DL TX beam prediction, training model with fixed number of beams in Set B outperforms the training model with variable number of beams in Set B.

· Compared to the fixed Set B results in Table 2.21, for DL Tx beam prediction, the model trained with variable number of beams in Set B has similar performance at the testing configuration of |Set B|/|Set A|/ = 32/64 but decreased performance at the testing configuration of |Set B|/|Set A| = 16/64. However, with top K/1 metric (i.e., K=4), the performance of the model trained with random Set B improved significantly. In other words, having random Set B feature implemented for UE side model the beam measurement overhead needs to be increased to have comparable performance with the NW side model trained with fixed Set B.   

Observation 7:  In BM-Case1 DL TX beam prediction, compared to training model with fixed Set B, training model with variable number of beams in Set B can provide similar performance when |Set B|/|Set A| is large (i.e., 32/64) but the performance will become inferior when |Set B|/|Set A| is small.

Observation 8:  In BM-Case1 DL TX beam prediction, the top-K beam search is needed for the model trained with variable number of beams in Set B.
Impact of Measurement Errors and Quantization Errors
In the RAN1 #112 meeting two agreements were made to further study the impact of quantization error of input L1-RSRP and whether and how evaluate the performance impact with L1-RSRP measurement accuracy. Based on these agreements we present in the sections that follows some evaluation results. 

L1-RSRP Measurement Errors
Both BM-Case 1 and BM-Case 2 sub use cases utilize L1-RSRP measurements for the input/output of the ML model. However, due to the RF impairments and other non-ideal components at the UE receiver, the L1-RSRP measurements are affected by errors. The range of measurement errors for FR2 is set by current L1-RSRP requirements defined in Clauses 10.1.20 of TS 38.133. Therefore, in the evaluation, we assume that the measurements error can be modelled with a normal distribution with zero mean and standard deviation that allows with a 95% probability to keep the measurement errors within a range. Then, we repeat the evaluation with different ranges of measurement errors. All Tx beams are assumed with the same range of measurements error, nonetheless the measurement errors are independently generated between one and other beams because the UE may perform the beams’ measurements in different time instances. 
For both BS and UE side models, the measurement errors affect the input L1-RSRPs for SetB beams. At the same time, during training, measurement errors also affect the output since the labels are determined based on the non-ideal L1-RSRP of SetA beams. Therefore, we use as model input the non-ideal L1-RSRP values for both training and inference operations. On the other hand, for the model output, during training, we determine the labels from the non-ideal L1-RSRP, whereas during inference we use the ideal L1-RSRP for assessing model performance. A summary is provided in Table 2.25. We use the BM-Case1 model described in Table 2.21 with fixed Set B pattern and 16 Tx beams input to predict SetA with 64 Tx beams.
[bookmark: _Ref131582462]Table 2.25: Evaluation assumptions for model input/output with measurement errors.
	
	Model Input
	Model Output

	Training
	L1-RSRP with measurement errors
	L1-RSRP with measurement errors

	Inference
	L1-RSRP with measurement errors
	Based on ideal L1-RSRP (for assessing model performance)




Figure 25 shows the CDFs of the difference between the ideal L1-RSRP of predicted beam and the ideal L1-RSRP of the genie-aided beam. Several ranges including 95% of measurement errors are tested: ± 0 dB, ± 2 dB, ± 4 dB, ± 6 dB. Ideal quantization it is assumed to evaluate the measurement error effect only. The range of ± 6 dB introduces an RSRP difference of 3.6 dB at the 95%-tile of the CDF. This degrades the RSRP difference by 2.8 dB compared to the model that uses ideal measurements. Differently, with ± 4 dB and ± 2 dB ranges, the RSRP differences at the 95%-tile are 2.6 dB and 1.4 dB, respectively. Hence, the RSRP difference increases by 1.7 dB and by 0.5 dB wrt ideal measurements. 
Observation 9:  Increasing the range of the measurement errors degrades the L1-RSRP difference due to predictions compared to the results with ideal L1-RSRP expecially at high percentiles of the CDF (e.g. 95%-tile). 

Moreover from Table 2.26, we have the following observations:
Observation 10:  For BM-Case1 DL Tx beam prediction, when Set B is a subset of Set A considering measurement error:
a. For the case measurement error is within ±2 dB range with 95% confidence level, evaluation results show that the beam prediction accuracy degrades [7%] in terms of Top-1 beam prediction accuracy than without measurement error, evaluation results indicate that the 5%ile of L1-RSRP diff (dB) can be [1.4]. 
b. For the case measurement error is within ±4 dB range with 95% confidence level, evaluation results show that the beam prediction accuracy degrades [17%] in terms of Top-1 beam prediction accuracy than without measurement error, evaluation results indicate that the 5%ile of L1-RSRP diff (dB) can be [2.6]. 
c. For the case measurement error is within ±6 dB range with 95% confidence level, evaluation results show that the beam prediction accuracy degrades [26%] in terms of Top-1 beam prediction accuracy than without measurement error, evaluation results indicate that the 5%ile of L1-RSRP diff (dB) can be [3.7]. 

Proposal 3: RAN1 to evaluate model trained with non-ideal measurements considering values of measurement errors ranges tighter than the current L1-RSRP requirements. 
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[bookmark: _Ref131583553]Figure 25: Representation of the Tx beam prediction results for different ranges of measurement errors: ± 0 dB, ± 2 dB, ± 4 dB, ± 6 dB and ideal quantization (step size 0 dB).

[bookmark: _Ref134798537]Table 2.26: Tx beam prediction results for different ranges of measurement errors: ± 0 dB, ± 2 dB, ± 4 dB, ± 6 dB and ideal quantization (step size 0 dB)
	Assumptions
	Measurement error
±0 dB
	Measurement error
±2 dB
	Measurement error
±4 dB
	Measurement error
±6 dB

	Number of beams in Set A
	64
	64
	64
	64

	Number of beams in Set B

	F16
	F16
	F16
	F16

	[Pattern of Set B]
	Tx ID=[ 0, 4, 8, … , 61] 
	Tx ID=[ 0, 4, 8, … , 61] 
	Tx ID=[ 0, 4, 8, … , 61] 
	Tx ID=[ 0, 4, 8, … , 61] 

	[Rx beam assumption]
	Opt 1 Best Rx beam for each input sample
	Opt 2 one specific Rx beam for specif panel for all input samples
	Opt 2 one specific Rx beam per panel for all input samples
	Opt 3 random Rx beam for each input sample 

	[Quantization error]
	0 dB
	0 dB
	0 dB
	0 dB

	[Measurement error]
	±0 dB
	±2 dB
	±4 dB
	±6 dB

	Baseline scheme
	Option 2
	Option 2
	Option 2
	Option 2

	Model input, 
	Alt2: L1-RSRP, implicty  Tx beam ID
	Alt2: L1-RSRP, implicty  Tx beam ID
	Alt2: L1-RSRP, implicty  Tx beam ID
	Alt2: L1-RSRP, implicty  Tx beam ID

	Model output, 
	Probabilities of Top-1 beam for all Tx beam in Set A
	Probabilities of Top-1 beam for all Tx beam in Set A
	Probabilities of Top-1 beam for all Tx beam in Set A
	Probabilities of Top-1 beam for all Tx beam in Set A

	Model label
	Top-1 genie-aided beam ID
(Option A)
	Top-1 genie-aided beam ID
(Option A)
	Top-1 genie-aided beam ID
(Option A)
	Top-1 genie-aided beam ID
(Option A)

	Training
	~38K
	~38K
	~38K
	~38K

	Testing
	~4K
	~4K
	~4K
	~4K

	model description
	CNN
	CNN
	CNN
	CNN

	[Model complexity
in a number of model parameters (M)]
	~100K
	~100K
	~100K
	~100K

	[Model complexity
in a number of model size (e.g. Mbyte)]
	~0.4MB
	~0.4MB
	~0.4MB
	~0.4MB

	Computational complexity [FLOPs]
	1.3M
	1.3M
	1.3M
	1.3M

	Top-1(%)
	85.49 
	78.49 
	67.83 
	59.34 

	Top-1(%) with 1dB margin
	95.31 
	92.77 
	84.13 
	76.4 

	Top-2/1(%) , Top-4/1(%) , other values 
	95.94, 98.88
	93.89, 98.32
	89.51, 96.29
	83.43, 93.43

	Top-1/2(%), Top-1/4(%), other values (Optional)
	-
	-
	-
	-

	Average L1-RSRP diff (dB)
	0.17
	0.24
	0.48
	0.76

	[5%ile of L1-RSRP diff (dB)]
	0.92
	1.38
	2.58
	3.68

	[e.g., Predicted L1-RSRP] (Optional)
	-
	-
	-
	-

	RS overhead Reduction (%)
(Opt 1/2/3 reported by companies)
	75% (Opt 1)
	75% (Opt 1)
	75% (Opt 1)
	75% (Opt 1)

	[avg. UE throughput]
	-
	-
	-
	-

	[5%ile UE throughput]
	-
	-
	-
	-

	[UCI report]
	-
	-
	-
	-



L1-RSRP Quantization Errors
Another agreement in RAN1 #112 meeting indicates to study the impact of the quantization error on L1-RSRP measurements. Depending by the configuration report, the existing approach indicates the UE to either report L1-RSRP values with 1 dB step size (see Table 10.1.6.1-1 of TS 38.133) or to use the differential L1-RSRP based reporting as defined in Table 10.1.6.1-2 of TS 38.133. The differential L1-RSRP is quantized with 2 dB step size. 
For the NW side model, quantization of L1-RSRP measurements may impact the L1-RSRP for SetB beams in both training and inference operations. At the same time, during the training, the model may use the L1-RSRP of the SetA beams, which may also be reported with quantized values. Therefore, for training, we assume that both the input samples of the model and the ground truth are affected by the quantization error. On the other hand, for inference we use quantized L1-RSRP as input whereas we use the ideal L1-RSRP to compute the RSRP error between the predicted and actual best beams. A summary is provided in Table 2.27. We use the BM-Case1 model described in Table 2.21 with fixed Set B pattern and 16 Tx beams input to predict SetA with 64 Tx beams.
[bookmark: _Ref131583034]Table 2.27: Evaluation assumptions for model input/output with quantized L1-RSRPs.
	
	Model Input
	Model Output

	Training
	Quantized L1-RSRP
	Based on quantized L1-RSRP

	Inference
	Quantized L1-RSRP
	Based on non-quantized L1-RSRP (for assessing model performance)



Figure 26 shows the CDFs of the difference between the ideal L1-RSRP of Top-1 predicted beam and the ideal L1-RSRP of the Top-1 genie-aided beam. We repeat the evaluation with several quantization step sizes: 0 dB, 1 dB, 2dB, and 4 dB. Note that the ideal measurement error is assumed to evaluate the quantization error effect only. 
For the 1 dB step size, the quantization introduces a L1-RSRP difference of 0.2 dB at the 95%-tile of the CDF wrt the non-quantized measurements. Conversely, using the step sizes of 2 dB and 4 dB increases the L1-RSRP prediction difference to 0.65 dB and 2 dB at the 95%-tile of the CDF wrt the non-quantized measurements. Therefore, the 1 dB and 2 dB step sizes may be sufficient for the AI/ML beam management as they do not much affect the prediction performances. 
Moreover from Table 2.28, we have the following observations:
Observation 11:  For BM-Case1 DL Tx beam prediction, when Set B is a subset of Set A considering quantization error:
a. For the case quantization step is 1 dB, evaluation results show that the beam prediction accuracy degrades [5%] in terms of Top-1 beam prediction accuracy compared to unquantized L1-RSRPs of beams in Set B, evaluation results indicate that the 5%ile of L1-RSRP diff (dB) can be [1]. 
b. For the case quantization step is 2 dB, evaluation results show that the beam prediction accuracy degrades [15%] in terms of Top-1 beam prediction accuracy compared to unquantized L1-RSRPs of beams in Set B, evaluation results indicate that the 5%ile of L1-RSRP diff (dB) can be [1.5]. 
c. For the case quantization step is 4 dB, evaluation results show that the beam prediction accuracy degrades [32%] in terms of Top-1 beam prediction accuracy compared to unquantized L1-RSRPs of beams in Set B, evaluation results indicate that the 5%ile of L1-RSRP diff (dB) can be [3]. 
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[bookmark: _Ref131582776]Figure 26: Representation of the Tx beam prediction results for different quantization step sizes: 0 dB, 1 dB, 2dB, 4 dB and ideal measurement error range ± 0 dB.

[bookmark: _Ref134800412]Table 2.28: Tx beam prediction results for different quantization step sizes: 0 dB, 1 dB, 2dB, 4 dB and ideal measurement error range ± 0 dB.
	Assumptions
	Quantization step
0 dB
	Quantization step 
1 dB
	Quantization step 
2 dB
	Quantization step 
4 dB

	Number of beams in Set A
	64
	64
	64
	64

	Number of beams in Set B

	F16
	F16
	F16
	F16

	[Pattern of Set B]
	Tx ID=[ 0, 4, 8, … , 61] 
	Tx ID=[ 0, 4, 8, … , 61] 
	Tx ID=[ 0, 4, 8, … , 61] 
	Tx ID=[ 0, 4, 8, … , 61] 

	[Rx beam assumption]
	Opt 1 Best Rx beam for each input sample
	Opt 2 one specific Rx beam for specif panel for all input samples
	Opt 2 one specific Rx beam per panel for all input samples
	Opt 3 random Rx beam for each input sample 

	[Quantization error]
	0 dB
	1 dB
	2 dB
	4 dB

	[Measurement error]
	±0 dB
	±0 dB
	±0 dB
	±0 dB

	Baseline scheme
	Option 2
	Option 2
	Option 2
	Option 2

	Model input, 
	Alt2: L1-RSRP, implicty  Tx beam ID
	Alt2: L1-RSRP, implicty  Tx beam ID
	Alt2: L1-RSRP, implicty  Tx beam ID
	Alt2: L1-RSRP, implicty  Tx beam ID

	Model output, 
	Probabilities of Top-1 beam for all Tx beam in Set A
	Probabilities of Top-1 beam for all Tx beam in Set A
	Probabilities of Top-1 beam for all Tx beam in Set A
	Probabilities of Top-1 beam for all Tx beam in Set A

	Model label
	Top-1 genie-aided beam ID
(Option A)
	Top-1 genie-aided beam ID
(Option A)
	Top-1 genie-aided beam ID
(Option A)
	Top-1 genie-aided beam ID
(Option A)

	Training
	~38K
	~38K
	~38K
	~38K

	Testing
	~4K
	~4K
	~4K
	~4K

	model description
	CNN
	CNN
	CNN
	CNN

	[Model complexity
in a number of model parameters (M)]
	~100K
	~100K
	~100K
	~100K

	[Model complexity
in a number of model size (e.g. Mbyte)]
	~0.4MB
	~0.4MB
	~0.4MB
	~0.4MB

	Computational complexity [FLOPs]
	1.3M
	1.3M
	1.3M
	1.3M

	Top-1(%)
	85.49 
	79.8
	70.55 
	53.44

	Top-1(%) with 1dB margin
	95.31 
	94.6
	89.87 
	72.83

	Top-2/1(%) , Top-4/1(%) , other values 
	-
	-
	-
	-

	Top-1/2(%), Top-1/4(%), other values (Optional)
	95.94, 98.88
	95.1, 98.67
	92.46, 98.12
	85.3, 96.2

	Average L1-RSRP diff (dB)
	0.17
	0.20
	0.31
	0.72

	[5%ile of L1-RSRP diff (dB)]
	0.92
	1.08
	1.57
	2.95

	[e.g., Predicted L1-RSRP] (Optional)
	-
	-
	-
	-

	RS overhead Reduction (%)
(Opt 1/2/3 reported by companies)
	75% (Opt 1)
	75% (Opt 1)
	75% (Opt 1)
	75% (Opt 1)

	[avg. UE throughput]
	-
	-
	-
	-

	[5%ile UE throughput]
	-
	-
	-
	-

	[UCI report]
	-
	-
	-
	-



Combined Measurement Errors and Quantization Errors
In this section, we study the combined effect of measurement errors and quantization errors. For the measurement errors, we use the range ± 2 dB including 95% of measurement errors and repeat the evaluation with quantization step sizes: 0 dB, 1 dB, and 2 dB. Figure 27 shows that for a 2 dB quantization step size, the L1-RSRP difference wrt the ideal measurement case is about 1 dB at the 95%-tile of the CDF. Reducing the quantization step size to 1 dB reduces the L1-RSRP difference wrt the ideal measurement to 0.6 dB. However, it cannot completely eliminate the L1-RSRP difference as the prediction errors are limited by the measurement errors.
Observation 12:  The performance of the model trained with data affected by both measurement errors and quantization errors cannot be improved by only reducing the quantization step size as the prediction performances are limited by the measurement errors.
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[bookmark: _Ref131583079]Figure 27: Tx beam prediction results for different quantization step sizes: 0 dB, 1 dB, 2dB and measurement error range ± 2 dB.
RX Beam Assumptions for DL Tx Beam Evaluation
In this section, we verify the performance of DL Tx beam prediction assuming the same configuration for AI/ML model for training and inference and considering the following options as agreed in RAN1-111-RAN1-112bis: 
•	Option 1: Measurements of the “best” Rx beam with exhaustive beam sweeping for each model input sample
•	Option 2: Measurements of specific Rx beam(s)
o	Option 2a: Measurements of specific Rx beam(s) per model input sample 
o	Option 2b: Measurements of specific Rx beam(s) for all model input sample
•	Option 3: Measurements of random Rx beam(s) per model input sample
Note that we used Option A, the Top-1 genie-aided Tx beam is the Tx beam that results in the largest L1-RSRP over all Tx and Rx beams. Regarding Option B, the Top-1 genie-aided Tx beam is the Tx beam that results in the largest L1-RSRP over all Tx beams with specific Rx beam(s), we believe that this option applied for Option 2s and 3 when the best Tx beam is selected based on random and fixed Rx beam becomes less feasible as the model may learn a sub-optimal Tx beam. Thus, it may provide prediction accuracy results closer to the Option 1, although with a degradation of the absolute value of L1-RSRP of the Tx beam due to a sub-otpimal labelling of the Tx beam. 
Based on the results shown in Figure 28 and reported in Table 2.29, we made the following observations: 
Observation 13:  For BM-Case1 DL Tx beam prediction, when Set B is a subset of Set A without considering other generalization aspects and considering different Rx beam assumptions:
a. (Option 2a) For the measurements of specific Rx beam is selected among 2 Rx beams for each model input sample, evaluation results show that the beam prediction accuracy degrades [12%] in terms of Top-1 beam prediction accuracy than when measurements of ”best” Rx beam are used for each model input sample. 
b. (Option 2b) For the measurements of specific Rx beam is fixed for all input samples, evaluation results show that the beam prediction accuracy degrades [25%] in terms of Top-1 beam prediction accuracy than when measurements of ”best” Rx beam are used for each model input sample. 
c. (Option 3) For the measurements of random Rx beam per model input sample, evaluation results show that the beam prediction accuracy degrades [25%] in terms of Top-1 beam prediction accuracy than when measurements of ”best” Rx beam are used for each model input sample. 
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[bookmark: _Ref134803463]Figure 28: Evaluation results for BM-Case1 DL Tx beam with different Rx beam assumptions.

[bookmark: _Ref134803446]Table 2.29: Evaluation results for BM-Case1 DL Tx beam with different Rx beam assumptions.
	Assumptions
	Opt1: “best” Rx Beam
	Opt 2b - specific Rx beam for all input sample 
	Opt 2a - specific Rx bea m per model input sample
	Opt3: random Rx beam

	Number of beams in Set A
	64
	64
	64
	64

	Number of beams in Set B

	F16
	F16
	F16
	F16

	[Pattern of Set B]
	Tx ID=[ 0, 4, 8, … , 61] 
	Tx ID=[ 0, 4, 8, … , 61] 
	Tx ID=[ 0, 4, 8, … , 61] 
	Tx ID=[ 0, 4, 8, … , 61] 

	[Rx beam assumption]
	Opt 1 Best Rx beam for each input sample
	Opt 2 one specific Rx beam for specif panel for all input samples
	Opt 2 one specific Rx beam per panel per model input sample
	Opt 3 random Rx beam for each input sample 

	Baseline scheme
	Option 2
	Option 2
	Option 2
	Option 2

	Model input, 
	Alt2: L1-RSRP, implicty  Tx beam ID
	Alt2: L1-RSRP, implicty  Tx beam ID
	Alt2: L1-RSRP, implicty  Tx beam ID
	Alt2: L1-RSRP, implicty  Tx beam ID

	Model output, 
	Probabilities of Top-1 beam for all Tx beam in Set A
	Probabilities of Top-1 beam for all Tx beam in Set A
	Probabilities of Top-1 beam for all Tx beam in Set A
	Probabilities of Top-1 beam for all Tx beam in Set A

	Model label
	Top-1 genie-aided beam ID
(Option A)
	Top-1 genie-aided beam ID
(Option A)
	Top-1 genie-aided beam ID
(Option A)
	Top-1 genie-aided beam ID
(Option A)

	Training
	~38K
	~38K
	~38K
	~38K

	Testing
	~4K
	~4K
	~4K
	~4K

	model description
	CNN
	CNN
	CNN
	CNN

	[Model complexity
in a number of model parameters (M)]
	~100K
	~100K
	~100K
	~100K

	[Model complexity
in a number of model size (e.g. Mbyte)]
	~0.4MB
	~0.4MB
	~0.4MB
	~0.4MB

	Computational complexity [FLOPs]
	1.1M
	1.1M
	1.1M
	1.1M

	Top-1(%)
	92.6 / 24.3
	67.87 / 24.3
	80.36 / 24.3
	68.0 / 24.3

	Top-1(%) with 1dB margin
	98.3 / 38.2
	76.7 / 38.2
	88.89 / 38.2
	77.0 / 38.2

	Top-2/1(%) , Top-4/1(%) , other values 
	[98.43, 99.70]
	[79.68, 88.81]
	[90.71, 96.26]
	[80.02, 89.19]

	Top-1/2(%), Top-1/4(%), other values (Optional)
	-
	-
	
	-

	Average L1-RSRP diff (dB)
	0.058/ 2.535
	2.06 / 2.535
	0.68 / 2.535
	2.011/2.535

	[5%ile of L1-RSRP diff (dB)]
	0.153/ 8.197
	14.74 / 8.197
	3.991 / 8.197 
	14.5/8.197

	[e.g., Predicted L1-RSRP] (Optional)
	-
	-
	-
	-

	RS overhead Reduction (%)
(Opt 1/2/3 reported by companies)
	75% (Opt 1)
	75% (Opt 1)
	75% (Opt 1)
	75% (Opt 1)

	[avg. UE throughput]
	-
	-
	-
	-

	[5%ile UE throughput]
	-
	-
	-
	-

	[UCI report]
	-
	-
	-
	-


Note: Non-ML baseline performances reported after separation “/”.
DL Tx Beam Model Generalization for Different Scenarios/Configurations
In this section, we verify the generalization performance with different cases (Case 1, Case 2, Case 3, Case 2a) as agreed in RAN1- 111 and based on the simulation assumptions detailed in Table A.II-1. 
For BM Case-1, we considered as a starting point the following set of scenarios/configurations:
· Scenarios
· Various outdoor/indoor UE distributions 
· Various deployment of gNB (ISD=200 m, ISD=1000 m)
· Configurations
· Various Tx settings (gNB antenna array elements)
· Different SetB assumptions (Opt1, Opt2B, Opt2C)

Moreover, for BM Case-2, various scenarios with different UE speeds are considered for evaluation and the results are detailed in Section 2.3.1.4. 
Model Generalization for Different UE distribution 
In this subsection, we study the model generalization capabilities for different distributions of indoor (In) and outdoor (Out) UEs. The following scenarios have been considered for evaluation:
-Scenario#A: 100% Out UEs
-Scenario#B: 60% In UEs - 40% Out UEs
-Scenario#C: 80% In UEs - 20% Out UEs
Next, we evaluate the various cases combining the different scenarios in multiple ways during training and inference operations. Figure 29(a) shows the CDFs of the RSRP error for the following cases: 
· Case#1 (solid red line) when the ML model is trained with Scenario#A (100% Out UEs) and tested with the same Scenario#A (100% Out UEs). 
· Case#2 (solid blue/green lines) when the ML model is trained with Scenario#A and tested with different Scenario#B and #C (60% In UEs - 40% Out UEs and 80% In UEs - 20% Out UEs).
· Case#3 (dashed lines) when the ML model is trained mixing data from Scenario#A#B#C (1/3 split) and tested with different Scenarios.
Case#2 always has worse performance than Case#3, especially when the percentage of In UEs is larger. Case#3 has performance that improves Case#1, due to the larger number of Out UEs in the combined dataset. Therefore, we make the following observation. 
Figure 29(b) shows the CDFs of the RSRP error for the following cases: 
· Case#1 (solid green line) when the ML model is trained with Scenario#A (80% In UEs - 20% Out UEs) and tested with the same Scenario#A (80% In UEs - 20% Out UEs). 
· Case#2 (solid red/blu lines) when the ML model is trained with Scenario#A and tested with different Scenario#B and #C (60% In UEs - 40% Out UEs and 100% Out UEs).
· Case#3 (dashed line) when the ML model is trained mixing data from Scenario#A#B#C (1/3 split) and tested with different Scenarios.
Case#2 has a slightly lower performance than Case#3, but overall, the ML model trained with only In UEs seems to generalize for outdoor UEs. Therefore, we make the following observation. 
Moreover, based on the results reported in Table 2.210, we made the following observations: 
Observation 14:  For BM-Case1 DL Tx beam prediction, AI/ML may have different performance for different UE distributions scenarios. Based on the evaluation results:
a. (Case 1) For generalization Case 1, the evaluation results show that the beam prediction accuracy is higher by [7%] with 100% outdoor UE distribution than with UE distribution 80% indoor and 20% outdoor. 
b. (Case 2) For generalization Case 2, the evaluation results show that the Top-1 beam prediction accuracy degradates [2.5%] compared to the Case 1 when AI/ML is trained with UE distribution 80% indoor and 20% outdoor and tested with 100% outdoor UE distribution, the evaluation results show that the Top-1 beam prediction accuracy is similar to the Case 1 when AI/ML is trained with 100% outdoor UE distribution and tested with UE distribution 80% indoor and 20% outdoor.
c. (Case 3) For generalization Case 3, the evaluation results show that the Top-1 beam prediction accuracy is similar to the Case 1 when AI/ML is trained by mixing data with 100% outdoor UE distribution and with UE distribution 80% indoor and 20%, then tested with either 100% outdoor UE distribution or UE distribution 80% indoor and 20% outdoor. 
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                         (a)                                            (b)
[bookmark: _Ref134803531]Figure 29: (a) ML model trained with 100% Out UEs and tested with different In/Out scenarios. (b) ML model trained with 80%/20% In/Out UEs and tested with different In/Out scenarios. Both (a) and (b) show the ML model trained with a mixed dataset and tested with different In/Out scenarios.

[bookmark: _Ref134803594]Table 2.210: Evaluation results for BM-Case1 DL Tx beam with different UE distributions.
	Configuration/Scenario #A
	-
	
	UE distribution 0:100
	UE distribution 80:20
	Mixed (UE distributions 0:100+80:20 )
	Mixed (UE distributions 0:100+80:20 )

	Configuration/Scenario #B
	UE distribution 0:100
	UE distribution 80:20
	UE distribution 80:20
	UE distribution 0:100
	UE distribution 0:100
	UE distribution 80:20

	Case 1/Case 2/Case 3:
	Case 1: trained by #B => tested by #B
	Case 1: trained by #B => tested by #B
	Case 2: trained by #A => tested by #B
	Case 2: trained by #A => tested by #B
	Case 3-1: Trained with mixed #A and #B=> tested with #B
	Case 3-2: Trained with mixed #A and #B=> tested with #B

	Training[/finetune(if applicable)]
	~38K
	~38K
	~38K
	~38K
	~76K
	~76K

	Testing
	~4K
	~4K
	~4K
	~4K
	~4K
	~4K

	Number of beams in Set A
	64
	64
	64
	64
	64
	64

	Number of beams in Set B
	F16
	F16
	F16
	F16
	F16
	F16

	Set A and Set B relationship 
	Set B subset of Set A
	B subset of Set A
	B subset of Set A
	B subset of Set A
	B subset of Set A
	B subset of Set A

	Pattern of Set B
	Tx ID=[ 0, 4, 8, … , 61]
	Tx ID=[ 0, 4, 8, … , 61]
	Tx ID=[ 0, 4, 8, … , 61]
	Tx ID=[ 0, 4, 8, … , 61]
	Tx ID=[ 0, 4, 8, … , 61]
	Tx ID=[ 0, 4, 8, … , 61]

	Rx beam assumption
	Best Rx Opt 1
	Best Rx Opt 1
	Best Rx Opt 1
	Best Rx Opt 1
	Best Rx Opt 1
	Best Rx Opt 1

	Quantization error
	0
	0
	0
	0
	0
	0

	Measurement error
	0
	0
	0
	0
	0
	0

	Baseline scheme
	Option 2
	Option 2
	Option 2
	Option 2
	Option 2
	Option 2

	Model input, 
	Alt2: L1-RSRP, implicty  Tx beam ID
	Alt2: L1-RSRP, implicty  Tx beam ID
	Alt2: L1-RSRP, implicty  Tx beam ID
	Alt2: L1-RSRP, implicty  Tx beam ID
	Alt2: L1-RSRP, implicty  Tx beam ID
	Alt2: L1-RSRP, implicty  Tx beam ID

	Model output, 
	Probabilities of Top-1 beam for all Tx beam in Set A
	Probabilities of Top-1 beam for all Tx beam in Set A
	Probabilities of Top-1 beam for all Tx beam in Set A
	Probabilities of Top-1 beam for all Tx beam in Set A
	Probabilities of Top-1 beam for all Tx beam in Set A
	Probabilities of Top-1 beam for all Tx beam in Set A

	[Model label]
	Top-1 genie-aided beam ID
	Top-1 genie-aided beam ID
	Top-1 genie-aided beam ID
	Top-1 genie-aided beam ID
	Top-1 genie-aided beam ID
	Top-1 genie-aided beam ID

	[Short model description, e.g., CNN, LSTM]
	CNN
	CNN
	CNN
	CNN
	CNN
	CNN

	[Model complexity
in a number of model parameters (M)]
	~160K
	~160K
	~160K
	~160K
	~160K
	~160K

	[Model complexity
in a number of model size (e.g. Mbyte)]
	0.64Mbyte
	0.64Mbyte
	0.64Mbyte
	0.64Mbyte
	0.64Mbyte
	0.64Mbyte

	Computational complexity [FLOPs]
	1.28M
	1.28M
	1.28M
	1.28M
	1.28M
	1.28M

	Top-1(%)
	84.81
	76.32
	74.5
	83.5
	85.7
	77.2

	Top-1(%) with 1dB margin
	94.97
	91.5
	89
	94.59
	95.3
	91.9

	Top-2/1(%) , Top-4/1(%) , other values
	95.5, 98.7
	92.5, 97.5
	91.1, 96.8
	95.4, 98.5
	95.9, 98.8
	92.8, 96.97

	Top-1/2(%), Top-1/4(%), other values
	-
	-
	-
	-
	-
	-

	Average L1-RSRP diff (dB) 
	0.19
	0.35
	0.45
	0.2
	0.17
	0.34

	[5%ile of L1-RSRP diff (dB)]
	1
	1.7
	2.2
	1.09
	0.91
	1.66

	[e.g., Predicted L1-RSRP] (Optional)
	-
	-
	-
	-
	-
	-

	RS overhead Reduction (%)
(Opt 1/2/3 reported by companies)
	75% (Opt 1)
	75% (Opt 1)
	75% (Opt 1)
	75% (Opt 1)
	75% (Opt 1)
	75% (Opt 1)

	[avg. UE throughput]
	-
	-
	-
	-
	-
	-

	[5%ile UE throughput]
	-
	-
	-
	-
	-
	-

	UCI report
	-
	-
	-
	-
	-
	-



Model Generalization for Different Deployments
In this subsection, we study the model generalization capabilities for three different deployment scenarios with ISD=200 m and 1000m, both with 100% outdoor UE distribution. Based on the results shown in Figure 210 and reported in Table 2.211, we made the following observations: 
Observation 15:  For BM-Case1 DL Tx beam prediction, AI/ML may have different performance for different deployment scenarios. Based on the evaluation results:
a. (Case 1) For generalization Case 1, the evaluation results show that the Top-1 beam prediction accuracy is higher by [6%] with ISD 200m than with ISD 1000m, evaluation results show that the Top-1 beam prediction accuracy with 1 dB margin is similar between ISD 200m and ISD 1000m.
b. (Case 2) For generalization Case 2, the evaluation results show that the Top-1 beam prediction accuracy with 1 dB margin degradates [5%] compared to the Case 1 when AI/ML is trained with ISD 200m and tested with ISD 1000m, the evaluation results show that the Top-1 beam prediction accuracy with 1 dB margin is similar to the Case 1 when AI/ML is trained with ISD 1000m and tested with ISD 200m.
c. (Case 3) For generalization Case 3, the evaluation results show that the Top-1 beam prediction accuracy with 1 dB margin is slightly higher to the Case 1 when AI/ML is trained by mixing data with ISDs 200m, 500m, 1000m, then tested with either ISD=200m or ISD=1000m. 
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(a)                                               (b)
[bookmark: _Ref134809097]Figure 210: Evaluation results for BM-Case1 DL Tx beam with different ISD. (a) Generalization results for Case 1 and Case 2, (b) Generalization results for Case 1 and Case 3. 
[bookmark: _Ref134809122]Table 2.211: Results for BM-Case1 DL Tx beam model generalization with different deployment (ISDs).
	Configuration/Scenario #A
	-
	-
	ISD=200
	ISD=1000
	Mixed (deployments ISD=200+ ISD=500+ISD=1000) 
	Mixed (deployments ISD=200+ ISD=500+ISD=1000)

	Configuration/Scenario #B
	ISD=200
	ISD=1000
	ISD=1000
	ISD=200
	ISD=200
	ISD=1000

	Case 1/Case 2/Case 3:
	Case 1: trained by #B => tested by #B
	Case 1: trained by #B => tested by #B
	Case 2: trained by #A => tested by #B
	Case 2: trained by #A => tested by #B
	Case 3-1: Trained with mixed #A and #B=> tested with #B
	Case 3-2: Trained with mixed #A and #B=> tested with #B

	Training[/finetune(if applicable)]
	~19K
	~19K
	~19K
	~19K
	~57K
	~57K

	Testing
	~2K
	~2K
	~2K
	~2K
	~2K
	~2K

	Number of beams in Set A
	64
	64
	64
	64
	64
	64

	Number of beams in Set B
	F16
	F16
	F16
	F16
	F16
	F16

	Set A and Set B relationship 
	Set B subset of Set A
	B subset of Set A
	B subset of Set A
	B subset of Set A
	B subset of Set A
	B subset of Set A

	Pattern of Set B
	Tx ID=[ 0, 4, 8, … , 61]
	Tx ID=[ 0, 4, 8, … , 61]
	Tx ID=[ 0, 4, 8, … , 61]
	Tx ID=[ 0, 4, 8, … , 61]
	Tx ID=[ 0, 4, 8, … , 61]
	Tx ID=[ 0, 4, 8, … , 61]

	Rx beam assumption
	Best Rx Opt 1
	Best Rx Opt 1
	Best Rx Opt 1
	Best Rx Opt 1
	Best Rx Opt 1
	Best Rx Opt 1

	Quantization error
	0
	0
	0
	0
	0
	0

	Measurement error
	0
	0
	0
	0
	0
	0

	Baseline scheme
	Option 2
	Option 2
	Option 2
	Option 2
	Option 2
	Option 2

	Model input, 
	Alt2: L1-RSRP, implicty  Tx beam ID
	Alt2: L1-RSRP, implicty  Tx beam ID
	Alt2: L1-RSRP, implicty  Tx beam ID
	Alt2: L1-RSRP, implicty  Tx beam ID
	Alt2: L1-RSRP, implicty  Tx beam ID
	Alt2: L1-RSRP, implicty  Tx beam ID

	Model output, 
	Probabilities of Top-1 beam for all Tx beam in Set A
	Probabilities of Top-1 beam for all Tx beam in Set A
	Probabilities of Top-1 beam for all Tx beam in Set A
	Probabilities of Top-1 beam for all Tx beam in Set A
	Probabilities of Top-1 beam for all Tx beam in Set A
	Probabilities of Top-1 beam for all Tx beam in Set A

	[Model label]
	Top-1 genie-aided beam ID
	Top-1 genie-aided beam ID
	Top-1 genie-aided beam ID
	Top-1 genie-aided beam ID
	Top-1 genie-aided beam ID
	Top-1 genie-aided beam ID

	[Short model description]
	CNN
	CNN
	CNN
	CNN
	CNN
	CNN

	[Model complexity
in a number of model parameters (M)]
	81K
	81K
	81K
	81K
	81K
	81K

	[Model complexity
in a number of model size (e.g. Mbyte)]
	0.3M
	0.3M
	0.3M
	0.3M
	0.3M
	0.3M

	Computational complexity [FLOPs]
	1.11M
	1.11M
	1.11M
	1.11M
	1.11M
	1.11M

	Top-1(%)
	91.1
	84.8
	76.3
	84.9
	92.08
	86.9

	Top-1(%) with 1dB margin
	97.6
	96.4
	90.9
	95.5
	98.24
	97.0

	Top-2/1(%) , Top-4/1(%) , other values
	97.5, 99.4
	96.1, 99.27
	91.6, 98.06
	94.8, 98.4
	98.0, 99.61
	96.9, 99.4

	Top-1/2(%), Top-1/4(%), other values
	-
	-
	-
	-
	-
	-

	Average L1-RSRP diff (dB) 
	0.08
	0.14
	0.34
	0.2
	0.07
	0.117

	[5%ile of L1-RSRP diff (dB)]
	0.3
	0.72
	1.76
	0.9
	0.22
	0.53

	[e.g., Predicted L1-RSRP] (Optional)
	-
	-
	-
	-
	-
	-

	RS overhead Reduction (%)
(Opt 1/2/3 reported by companies)
	75% (Opt 1)
	75% (Opt 1)
	75% (Opt 1)
	75% (Opt 1)
	75% (Opt 1)
	75% (Opt 1)

	[avg. UE throughput]
	-
	-
	-
	-
	-
	-

	[5%ile UE throughput]
	-
	-
	-
	-
	-
	-

	UCI report
	-
	-
	-
	-
	-
	-



Model Generalization for Different gNB Antenna Array Configurations
In this subsection, we verify the model generalization capabilities with different gNB antenna array configurations:
· Configuration-A : 
· One panel: (M, N, P, Mg, Ng) = (4, 8, 2, 1, 1), (dV, dH) = (0.5, 0.5) λ
· Set A = 64 Tx Beams 
· Set B = 16 Tx Beams 
· Configuration-B:
· One panel: (M, N, P, Mg, Ng) = (8, 16, 2,1, 1), (dV, dH) = (0.5, 0.5) λ
· Set A = 64 Tx Beams 
· Set B = 16 Tx Beams 
We summarize in the list of results obtained by combining the configurations in separate ways during training and inference operations.
Table 2.212: BM Case-1(DL TX) training/testing configuration for evaluating ML model generalization. In all configurations Set A = 64 Tx Beams and Set B = 16 Tx Beams.
	
	ML Model Training Configuration
	ML Model Testing Configuration
	Results 

	Case 1 
	Configuration-A 
	Configuration-A 
	 (a)

	
	Configuration-B
	Configuration-B
	 (b)

	Case 2

	Configuration-A 
	Configuration-B
	 (a)

	
	Configuration-B
	Configuration-A 
	 (b)

	Case 3 

	Configuration-A + Configuration-B (50% split)
	Configuration-A 
	 (c)

	
	Configuration-A + Configuration-B (50% split)
	Configuration-B
	 (c)

	Case 2A
	Configuration-A + Fine-tuning on Configuration-B 
	Configuration-B 
	 (d)

	
	Configuration-A + Fine-tuning on Configuration-B 
	Configuration-A
	 (d)



Figure 211(a) shows the CDF of the RSRP error for the case when the ML model is trained and tested on the same configuration of the gNB antenna array (Case 1) and for the case when the ML model is trained on the configuration with 4x8 antenna elements and tested with a larger antenna configuration of 8x16 antenna elements (Case 2). Note that the ML model does not generalize well for the larger antenna array size and the beam prediction accuracy falls below 50%. This is due to the different gaps between beams when the antenna configuration changes from 4x8 to 8x16, which modifies the distribution of the RSRP measurements for the ML model input, making the beam difficult to predict. 
A similar trend can be observed in Figure 211(b) where the ML model is trained with the configuration of 8x16 antenna elements and tested with a smaller antenna configuration of 4x8 antenna elements. Also, in this case, the beam prediction accuracy for the unseen antenna configuration of 4x8 has particularly low performance, whereas the prediction accuracy for the trained antenna configuration of 8x16 is about 85% with a 1 dB margin.
Therefore, with Case 2 for supporting the two gNB antenna array configurations, two ML models may be required, and a switching mechanism should be in place to change between different ML models.
On the other hand, Figure 211(c) shows the case when a dataset generated with mixed configurations is used for training a single ML model (Case 3). Performances are slightly lower than the case when the ML model is trained and tested on the same configuration of the gNB antenna array.
With Case 3 for supporting the two gNB antenna array configurations a single ML model can be used. Nevertheless, some performance degradations are expected compared to the case when the ML model is trained with data from only one configuration of the gNB antenna array. Supporting multiple configurations may further reduce ML performance.
Finally, we show in Figure 211(d), the case 2A when the model was trained with gNB antenna array 8x16 and fine-tuned for gNB antenna array 4x8, using different dataset sizes. Solid curves represent the model tested with antenna array of 4x8 (same configuration used for fine-tuning). Results show that decreasing the number of data samples in the dataset, the model accuracy slightly degradates. Even if the dataset is 10%, predictions are still closer (2% difference) to case 1. Nevertherless, this is due to fixed pattern B, which requires fewer samples than the random pattern B for the model training to converge. 
On the other hand, we show in Figure 211(d) with dashed curves the testing of the fine-tuned model with the original gNB antenna array 8x16 used for training the model before fine-tuning. Prediction accuracy is no longer at the same level as before fine-tuning and degradates increasing the dataset sizes used for fine-tuning, suggesting that the model may easily forget the previously learned task when fine-tuned with new data. The model may easily forget the previously learned task when fine-tuned with new data.
Next, based on the results reported in Table 2.213, we made the following observations: 
Observation 16: For BM-Case1 DL Tx beam prediction, AI/ML may have different performance for different DL Tx antenna array configurations. Based on the evaluation results:
a. (Case 1) For generalization Case 1, the evaluation results show that the Top-1 beam prediction accuracy is higher by [10%] with DL Tx antenna array 4x8 than with DL Tx antenna array 8x16.
b. (Case 2) For generalization Case 2, the evaluation results show that the Top-1 beam prediction accuracy significantly degradates [51%] compared to the Case 1 when AI/ML is trained with DL Tx antenna array 2x4 and tested with DL Tx antenna array 4x8, the evaluation results show that the Top-1 beam prediction accuracy significantly degradates [37%] compared to the Case 1 when AI/ML is trained with DL Tx antenna array 8x16 and tested with DL Tx antenna array 4x8.
c. (Case 2A) For generalization Case 2A, the model generalizes well when a reduced dataset for a different DL Tx antenna array configuration is used for fine-tuning the model. 
d. (Case 3) For generalization Case 3, the evaluation results show that the Top-1 beam prediction accuracy is slightly lower to the Case 1 when AI/ML is trained by mixing data with DL Tx antenna arrays 2x4, 4x8 and 8x16 then tested with DL Tx antenna array 8x16. Similar results are found when testing with other DL Tx antenna array configurations.

Proposal 4: RAN1 prioritizes model generalization studies for case 3 and case 2a.

Proposal 5: Support RAN1 to further study fine-tuning (case 2a), including assessing the performance on previously learned scenarios/configurations.
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(c)                                          (d)
[bookmark: _Ref134868834]Figure 211: (a) model is trained with gNB antenna array 4x8 and tested with gNB antenna arrays of 4x8 and 8x16. (b) model is trained with a gNB antenna array of 8x16 and tested with gNB antenna arrays of 4x8 and 8x16. (c) model is trained with mixed data with gNB antenna arrays of 4x8 and 8x16, then tested with gNB antenna arrays of 4x8 and 8x16. (d) model was trained with gNB antenna array 8x16 and fine-tuned for gNB antenna array 4x8, using different dataset sizes. Then, the model is tested with antenna arrays of 4x8 and 8x16. 

[bookmark: _Ref134809516]Table 2.213: Results for BM-Case1 DL Tx beam model generalization with different gNB antenna configurations.
	Configuration/Scenario #A
	
	gNB antenna array 4x8 
	gNB antenna array 4x8 
	Mixed 
	Mixed
	Mixed

	Configuration/Scenario #B
	gNB antenna array 4x8
	gNB antenna array 2x4
	gNB antenna array 8x16
	gNB antenna array 2x4
	gNB antenna array 4x8
	gNB antenna array 8x16

	Case 1/Case 2/Case 3:
	Case 1: trained by #A => tested by #B
	Case 2: trained by #A => tested by #B
	Case 2: trained by #A => tested by #B
	Case 3: Trained with mixed #A and #B=> tested with #B
	Case 3: Trained with mixed #A and #B=> tested with #B
	Case 3: Trained with mixed #A and #B=> tested with #B

	Training[/finetune(if applicable)]
	~19K
	~19K
	~19K
	~19K
	~57K
	~57K

	Testing
	~2K
	~2K
	~2K
	~2K
	~2K
	~2K

	Number of beams in Set A
	64
	64
	64
	64
	64
	64

	Number of beams in Set B
	F16
	F16
	F16
	F16
	F16
	F16

	Set A and Set B relationship 
	B subset of Set A
	Set B subset of Set A
	B subset of Set A
	B subset of Set A
	B subset of Set A
	B subset of Set A

	Pattern of Set B
	Tx ID=[ 0, 4, 8, … , 61]
	Tx ID=[ 0, 4, 8, … , 61]
	Tx ID=[ 0, 4, 8, … , 61]
	Tx ID=[ 0, 4, 8, … , 61]
	Tx ID=[ 0, 4, 8, … , 61]
	Tx ID=[ 0, 4, 8, … , 61]

	Rx beam assumption
	Best Rx Opt 1
	Best Rx Opt 1
	Best Rx Opt 1
	Best Rx Opt 1
	Best Rx Opt 1
	Best Rx Opt 1

	Quantization error
	0
	0
	0
	0
	0
	0

	Measurement error
	0
	0
	0
	0
	0
	0

	Baseline scheme
	Option 2
	Option 2
	Option 2
	Option 2
	Option 2
	Option 2

	Model input, 
	Alt2: L1-RSRP, implicty  Tx beam ID
	Alt2: L1-RSRP, implicty  Tx beam ID
	Alt2: L1-RSRP, implicty  Tx beam ID
	Alt2: L1-RSRP, implicty  Tx beam ID
	Alt2: L1-RSRP, implicty  Tx beam ID
	Alt2: L1-RSRP, implicty  Tx beam ID

	Model output, 
	Probabilities of Top-1 beam for all Tx beam in Set A
	Probabilities of Top-1 beam for all Tx beam in Set A
	Probabilities of Top-1 beam for all Tx beam in Set A
	Probabilities of Top-1 beam for all Tx beam in Set A
	Probabilities of Top-1 beam for all Tx beam in Set A
	Probabilities of Top-1 beam for all Tx beam in Set A

	[Model label]
	Top-1 genie-aided beam ID
	Top-1 genie-aided beam ID
	Top-1 genie-aided beam ID
	Top-1 genie-aided beam ID
	Top-1 genie-aided beam ID
	Top-1 genie-aided beam ID

	[Short model description]
	DNN
	DNN
	DNN
	DNN
	DNN
	DNN

	[Model complexity
in a number of model parameters (M)]
	~160K
	~160K
	~160K
	~160K
	~160K
	~160K

	[Model complexity
in a number of model size (e.g. Mbyte)]
	~0.8M
	~0.8M
	~0.8M
	~0.8M
	~0.8M
	~0.8M

	Computational complexity [FLOPs]
	0.33M
	0.33M
	0.33M
	0.33M
	0.33M
	0.33M

	Top-1(%)
	83.86
	32.6
	46.0
	71.6
	82.7
	77.6

	Top-1(%) with 1dB margin
	94.3
	68.3
	51.7
	93.9
	93.4
	83.6

	Top-2/1(%) , Top-4/1(%) , other values
	95.0, 98.4
	53.3, 75.7
	68.8, 86.1
	89.1, 96.2
	94.24, 98.2
	90.1, 96.43

	Top-1/2(%), Top-1/4(%), other values
	-
	-
	-
	-
	-
	-

	Average L1-RSRP diff (dB) 
	0.227
	0.87
	4.03
	0.22
	0.254
	0.96

	[5%ile of L1-RSRP diff (dB)]
	1.17
	3.03
	17.8
	1.192
	1.38
	6.25

	[e.g., Predicted L1-RSRP] (Optional)
	-
	-
	-
	-
	-
	-

	RS overhead Reduction (%)
(Opt 1/2/3 reported by companies)
	75% (Opt 1)
	75% (Opt 1)
	75% (Opt 1)
	75% (Opt 1)
	75% (Opt 1)
	75% (Opt 1)

	[avg. UE throughput]
	-
	-
	-
	-
	-
	-

	[5%ile UE throughput]
	-
	-
	-
	-
	-
	-

	UCI report
	-
	-
	-
	-
	-
	-



Model Generalization for Different Set B Assumptions 
In this subsection, we verify the model generalization capabilities with different configurations of SetB patterns detailed in Section 2.2.1.4. All the results refer to model generalization case 2, where the model is trained based on a SetB configuration that is different from the SetB configuration used for testing. All 16 measurements from Tx beams are used as input of the DL Tx prediction model. 
The best results shown in Figure 212 are obtained by training the model with a set of pre-configured SetB patterns and testing with the fixed SetB pattern. This is because the pre-configured SetB patterns contain the fixed SetB pattern. Similarly, even with random SetB patterns, there is a high probability of measuring all the beams included in pre-configured/fixed SetB patterns. Therefore, as shown in Figure 212 also training the model with a Random SetB pattern, provides good results when testing the model with pre-configured/fixed SetB patterns. 
In contrast, when the SetB pattern is fixed and pre-configured it is likely that it has no experience measuring all the beams included in a random SetB pattern. Consequently, as shown at the bottom of doing training with pre-configured/fixed SetB patterns and testing with random SetB patterns does not provide good prediction accuracy, as well as the case of training with fixed and testing with pre-configured SetB patterns. 
[bookmark: _Hlt135039845]Next, based on the results reported in Table 2.214, we made the following observations: 
Observation 17: For BM-Case1 DL Tx beam prediction, AI/ML may have different performance when training and testing with different SetB assumptions. Based on the evaluation results:
a. (Case 2) For generalization Case 2, the evaluation results show that the Top-1 beam prediction accuracy degradates [3%-8%] compared to the Case 1 when AI/ML is trained with fixed SetB and tested with pre-configured SetB or random SetB or when AI/ML is trained with pre-configured SetB and tested with random SetB, the evaluation results show that the Top-1 beam prediction accuracy has high values [90%-93%] similar to the Case 1 when AI/ML is trained with pre-configured SetB or random SetB and tested with fixed SetB or pre-configured SetB.

Proposal 6: For BM-Case1, RAN1 may prioritize the measurements of Random SetB (Opt2C) to be used at UE side for input to model training and the measurements of Fixed/Pre-configured SetBs (Opt1 and Opt2B) to be used at UE side for model inference. 

[image: Chart

Description automatically generated]
[bookmark: _Ref134868947]Figure 212: Top-1 DL Tx beam prediction results for different configurations of SetB patterns for model generalization Case 2. 

[bookmark: _Ref135039840]Table 2.214: DL Tx beam prediction results for different configurations of SetB patterns for model generalization.
	Configuration/Scenario #A
	Fixed Set B (SetB subset of SetA)
	Fixed Set B (SetB subset of SetA)
	PreConf Set B opt2B
	PreConf Set B opt2B
	Random Set B opt2C
	Random Set B opt2C

	Configuration/Scenario #B
	PreConf Set B opt2B
	Random Set B opt2C
	Fixed Set B (SetB subset of SetA)
	Random Set B opt2C
	Fixed Set B (SetB subset of SetA)
	PreConf Set B opt2B

	Case 1/Case 2/Case 3:
	Case 2: trained by #A => tested by #B
	Case 2: trained by #A => tested by #B
	Case 2: trained by #A => tested by #B
	Case 2: trained by #A => tested by #B
	Case 2: trained by #A => tested by #B
	Case 2: trained by #A => tested by #B

	Training[/finetune(if applicable)]
	~38K
	~38K
	~38K
	~38K
	~38K
	~38K

	Testing
	~4K
	~4K
	~4K
	~4K
	~4K
	~4K

	Number of beams in Set A
	64
	64
	64
	64
	64
	64

	Number of beams in Set B
	P24N16R
	R16
	F16
	R16
	F16
	P24N16R

	Set A and Set B relationship 
	Set B subset of Set A
	B subset of Set A
	B subset of Set A
	B subset of Set A
	B subset of Set A
	B subset of Set A

	Pattern of Set B
	SetB#1: Tx ID=[ 0  4  8 12 18 22 26 … 61]
SetB#2: Tx ID=[ 0  4  8 12 19 23 27 ... 61]
….
SetB#24: Tx ID=[ 1  5  9 13 18 22 26 ... 63]
	Select 16 Tx ID from 0 to 63
	Tx ID=[ 0, 4, 8, … , 61]
	Select 16 Tx ID from 0 to 63
	Tx ID=[ 0, 4, 8, … , 61]
	SetB#1: Tx ID=[ 0  4  8 12 18 22 26 … 61]
SetB#2: Tx ID=[ 0  4  8 12 19 23 27 ... 61]
….
SetB#24: Tx ID=[ 1  5  9 13 18 22 26 ... 63]

	Rx beam assumption
	Best Rx Opt 1
	Best Rx Opt 1
	Best Rx Opt 1
	Best Rx Opt 1
	Best Rx Opt 1
	Best Rx Opt 1

	Quantization error
	0
	0
	0
	0
	0
	0

	Measurement error
	0
	0
	0
	0
	0
	0

	Baseline scheme
	Option 2
	Option 2
	Option 2
	Option 2
	Option 2
	Option 2

	Model input, 
	Alt2: L1-RSRP, implicty  Tx beam ID
	Alt2: L1-RSRP, implicty  Tx beam ID
	Alt2: L1-RSRP, implicty  Tx beam ID
	Alt2: L1-RSRP, implicty  Tx beam ID
	Alt2: L1-RSRP, implicty  Tx beam ID
	Alt2: L1-RSRP, implicty  Tx beam ID

	Model output, 
	Probabilities of Top-1 beam for all Tx beam in Set A
	Probabilities of Top-1 beam for all Tx beam in Set A
	Probabilities of Top-1 beam for all Tx beam in Set A
	Probabilities of Top-1 beam for all Tx beam in Set A
	Probabilities of Top-1 beam for all Tx beam in Set A
	Probabilities of Top-1 beam for all Tx beam in Set A

	[Model label]
	Top-1 genie-aided beam ID
	Top-1 genie-aided beam ID
	Top-1 genie-aided beam ID
	Top-1 genie-aided beam ID
	Top-1 genie-aided beam ID
	Top-1 genie-aided beam ID

	[Short model description, e.g., CNN, LSTM]
	CNN
	CNN
	CNN
	CNN
	CNN
	CNN

	[Model complexity
in a number of model parameters (M)]
	~100K
	~100K
	~100K
	~100K
	~100K
	~100K

	[Model complexity
in a number of model size (e.g. Mbyte)]
	0.4Mbyte
	0.4Mbyte
	0.4Mbyte
	0.4Mbyte
	0.4Mbyte
	0.4Mbyte

	Computational complexity [FLOPs]
	1.01M
	1.01M
	1.01M
	1.01M
	1.01M
	1.01M

	Top-1(%)
	7.55
	2.75
	81.06
	2.75
	76.6
	76.71

	Top-1(%) with 1dB margin
	9.84
	4.2
	93.2
	4.17
	90.58
	90.21

	Top-2/1(%) , Top-4/1(%) , other values
	11.26, 17.42
	5.3, 10.5
	93.9, 98.19
	5.07, 9.27
	92.37, 97.77
	92.17, 97.59

	Top-1/2(%), Top-1/4(%), other values
	-
	-
	-
	-
	-
	-

	Average L1-RSRP diff (dB) 
	18.19
	19.57
	0.25
	20.36
	0.334
	0.38

	[5%ile of L1-RSRP diff (dB)]
	37.6
	38.0
	1.39
	38.75
	1.84
	2.02

	[e.g., Predicted L1-RSRP] (Optional)
	-
	-
	-
	-
	-
	-

	RS overhead Reduction (%)
(Opt 1/2/3 reported by companies)
	75% (Opt 1)
	75% (Opt 1)
	75% (Opt 1)
	75% (Opt 1)
	75% (Opt 1)
	75% (Opt 1)

	[avg. UE throughput]
	-
	-
	-
	-
	-
	-

	[5%ile UE throughput]
	-
	-
	-
	-
	-
	-

	UCI report
	-
	-
	-
	-
	-
	-



Set A/B are DL Tx-Rx Beam Pairs 
For the beam pair prediction, the data generation and the simulation assumption are reported in Table A.II-1. The only difference for DL Tx-Rx beam pairs is that the training data includes the UE Rx beams information from the best UE panel.  
Evaluation Results for Set B is a Subset of Set A  
The simulation results of fixed Set B for training and testing are shown in Table 2.215
[bookmark: _Ref118705329]Table 2.215: Evaluation results for BM-Case1 for DL Tx-Rx beam pair prediction
	Assumptions
	BM-Case1
[fixed Set B]

	BM-Case1
[fixed Set B]

	BM-Case1
[fixed Set B]


	Number of beams in Set A
	256 (64 Tx and 4 Rx)
	256 (64 Tx and 4 Rx)
	256 (64 Tx and 4 Rx)

	Number of beams in Set B

	F64
	F32
	F16

	[Pattern of Set B]
	TX ID: Select different Tx ID for each beam pair
RX ID: Circulating all Rx beams over different beam pairs

	TX ID: Select different Tx ID for each beam pair
RX ID: Circulating all Rx beams over different beam pairs

	TX ID: Select different Tx ID for each beam pair
RX ID: Circulating all Rx beams over different beam pairs


	[Rx beam assumption]
	Specific Rx beam for each Tx-Rx beam pair
	Specific Rx beam for each Tx-Rx beam pair
	Specific Rx beam for each Tx-Rx beam pair

	Baseline scheme
	Option 2
	Option 2
	Option 2

	Model input, 
	L1-RSRP, implicitly Tx beam ID, and Rx beam ID
	L1-RSRP, implicitly Tx beam ID, and Rx beam ID
	L1-RSRP, implicitly Tx beam ID, and Rx beam ID

	Model output, 
	Probabilities of Top-1 beam for all Tx-Rx beam pairs in Set A
	Probabilities of Top-1 beam for all Tx-Rx beam pairs in Set A
	Probabilities of Top-1 beam for all Tx-Rx beam pairs in Set A

	Model label
	Top-1 genie-aided beam ID
	Top-1 genie-aided beam ID
	Top-1 genie-aided beam ID

	Training
	~33K
	~33K
	~33K

	Testing
	~4K
	~4K
	~4K

	model description
	CNN
	CNN
	CNN

	[Model complexity
in a number of model parameters (M)]
	~0.584M
	~0.584M
	~0.584M

	[Model complexity
in a number of model size (e.g. Mbyte)]
	~2.33M
	~2.33M
	~2.33M

	Computational complexity [FLOPs]
	-
	-
	-

	Top-1(%)
	79.14
	72.2
	62.21

	Top-1(%) with 1dB margin
	90.04
	82.8
	72.54

	Top-2/1(%) , Top-4/1(%) , other values 
	Top-2/1(%) , Top-3/1(%) ,Top-5/1(%)
91.04
 94.16
 96.64
	Top-2/1(%) , Top-3/1(%) ,Top-5/1(%)
85.19 
89.8 
93.78
	Top-2/1(%) , Top-3/1(%) ,Top-5/1(%)
76.78 
82.619
88.28

	Top-1/2(%), Top-1/4(%), other values (Optional)
	NA
	NA
	NA

	Average L1-RSRP diff (dB)
	0.37

	0.84
	1.93

	[5%ile of L1-RSRP diff (dB)]
	2.248
	4.96
	11.35

	[e.g., Predicted L1-RSRP] (Optional)
	NA
	NA
	NA

	RS overhead Reduction (%)
(Opt 1/2/3 reported by companies)
	75%(Opt 1)
	87.5% (Opt 1)
	93.75% (Opt 1)

	[avg. UE throughput]
	NA
	NA
	NA

	[5%ile UE throughput]
	NA
	NA
	NA

	[UCI report]
	-
	-
	-



From Table 2.215 we have the following observations:
· The results shown in Table 2.215 assume that UE has a model trained with the data perfectly coupled to the gNB beam shape, which is the ideal case.

· No Rx beam repetition procedure is considered in Table 2.215 so each beam pair has a distinct Tx beam. Under such assumption, the Rx beam selection is critical for beam pair prediction performance. Therefore, selecting the Rx beam by following the configured QCL-D info may or may not be the optimum choice for the beam pair prediction. In Table 2.215, we apply circular Rx beam selection for each beam pair. 

·  With the same RS resources (i.e., same DL Tx beam number), the DL Tx beam prediction results shown in Table 2.215 (i.e. |Set A|/|Set B| = 64/32, 64/16) have better performance. 

Observation 18: For BM-Case1 DL Tx-Rx beam pairs prediction, when Set B is a subset of Set A, AI/ML can provide good beam prediction performance with less measurement/RS overhead without considering other generalization aspects:
· (A) With measurements of fixed Set B of beams that are 1/4 of Set A beams with 64 Tx Beams
· evaluation results indicate that, AI/ML can achieve [79%] beam prediction accuracy of Top-1 DL Tx-Rx beam pair and that, and [90%] beam prediction accuracy for Top-1 DL Tx-Rx beam pair with 1dB margin. 
· evaluation results indicate that, AI/ML can achieve [91%] beam prediction accuracy for Top-2 DL Tx-Rx beam pair. The beam prediction accuracy increases with K.  
· evaluation results indicate that, the average L1-RSRP difference of Top-1 predicted beam can be [0.37dB] whereas the 5%ile of L1-RSRP diff (dB) can be [2dB].
· Evaluation results indicate that with the same RS resources, the DL Tx beam prediction has better beam performance regarding the model intermediate KPIs.
· (B) With measurements of fixed Set B of beams that are 1/8 of Set A beams and 64 Tx Beams
· evaluation results indicate that, AI/ML can achieve [72%] beam prediction accuracy of Top-1 DL Tx-Rx beam pair
· evaluation results indicate that, AI/ML can achieve [ 82%] beam prediction accuracy for Top-1 DL Tx-Rx beam pair with 1dB margin
· evaluation results indicate that, AI/ML can achieve [85% for Top-2] beam prediction accuracy for Top-K DL Tx-Rx beam pair. The beam prediction accuracy increases with K.  
· evaluation results indicate that, the average L1-RSRP difference of Top-1 predicted beam can be [ 0.8dB] whereas the 5%ile of L1-RSRP diff (dB) can be [5dB].
· Evaluation results indicate that with the same RS resources, the DL Tx beam prediction has better beam performance regarding the model intermediate KPIs.
· (C) With measurements of fixed Set B of beams that are 1/16 of Set A beams and 64 Tx Beams
· evaluation results indicate that, AI/ML can achieve [62%] beam prediction accuracy of Top-1 DL Tx-Rx beam pair
· evaluation results indicate that, AI/ML can achieve [72%] beam prediction accuracy for Top-1 DL Tx-Rx beam pair with 1dB margin
· evaluation results indicate that, AI/ML can achieve [77% for Top-2] beam prediction accuracy for Top-K DL Tx-Rx beam pair. The beam prediction accuracy increases with K and higher values of Top-K predicted beam pairs can be used to significantly improve the model performance when the number of beam pairs in SetB is reduced.
· evaluation results indicate that, the average L1-RSRP difference of Top-1 predicted beam can be [2dB] whereas the 5%ile of L1-RSRP diff (dB) can be [11dB].
· Note that ideal measurements are assumed 
Proposal 7: Advanced Rx beam selection procedure other than following the configured QCL-D info should be considered for beam pair prediction.
Proposal 8: Investigate the feasibility of measuring the top-K predicted beam pairs since it is needed for improving the model performance for the Tx-Rx beam pair prediction.

Proposal 9: To support RAN1 comparing DL Tx-Rx beam pair prediction (substituting P2-P3) and Tx beam prediction companies may report the assumptions for obtaining top-K predicted/measured Tx-Rx beam pairs with Tx beam prediction.

Model Generalization for Variable Number of Set B Beams 
Considering the Set A beams are fixed, and Set B beams are randomly changed among Set A beams, we show the beam pair prediction performance in Table 2.216.
[bookmark: _Ref134869072]Table 2.216: Evaluation results for BMCase-1 with variable number of SetB beams.
	Configuration/Scenario #A
	-
	Set B size randomly selected in [32,64]
	-
	Set B size randomly selected in [16,64]
	Set B size randomly selected in [16,64]

	Configuration/Scenario #B
	Set B size fixed (R32)
	Set B size fixed (R32)
	Set B size fixed (R16)
	Set B size fixed (R32)
	Set B size fixed (R16)

	Case 1/Case 2/Case 3
	Case 1 trained by #B => tested by #B
	Case 2: trained by #A => tested by #B
	Case 1 trained by #B => tested by #B
	Case 2: trained by #A => tested by #B
	Case 2: trained by #A => tested by #B

	Training
	~33K
	~33K
	~33K
	~33K
	~33K

	Testing
	~4K
	~4K
	~4K
	~4K
	~4K

	Number of beam pairs in Set A
	256 (64 Tx and 4 Rx)
	256 (64 Tx and 4 Rx)
	256 (64 Tx and 4 Rx)
	256 (64 Tx and 4 Rx)
	256 (64 Tx and 4 Rx)

	Number of beam paris in Set B
	R32
	R32
	R16
	R16
	R16

	[Set A and Set B relationship, e.g., Ratio of Set B/Set A or Wide/narrow beam]
	SetB subset SetA
	SetB subset SetA
	SetB subset SetA
	SetB subset SetA
	SetB subset SetA

	[Pattern of Set B]
	Select 32 Tx-Rx IDs from SetA
	Select 32 Tx-Rx IDs from SetA
	Select 16 Tx-Rx IDs from SetA
	Select 16 Tx-Rx IDs from SetA
	Select 16 Tx-Rx IDs from SetA

	[Quantization error]
	0
	0
	0
	0
	0

	[Measurement error]
	0
	0
	0
	0
	0

	Baseline scheme
	Option 2
	Option 2
	Option 2
	Option 2
	Option 2

	Model input, 
	L1-RSRPs of beam/beam pairs in Set B
	L1-RSRPs of beam/beam pairs in Set B
	L1-RSRPs of beam/beam pairs in Set B
	L1-RSRPs of beam/beam pairs in Set B
	L1-RSRPs of beam/beam pairs in Set B

	Model output, 
	best Tx-Rx beam pair ID
	best Tx-Rx beam pair ID
	best Tx-Rx beam pair ID
	best Tx-Rx beam pair ID
	best Tx-Rx beam pair ID

	[Model label]
	Top-1 Tx-Rx beam pair ID
	Top-1 Tx-Rx beam pair ID
	Top-1 Tx-Rx beam pair ID
	Top-1 Tx-Rx beam pair ID
	Top-1 Tx-Rx beam pair ID

	[Short model description, e.g., CNN, LSTM]
	CNN
	CNN
	CNN
	CNN
	CNN

	[Model complexity
in a number of model parameters (M)]
	~500K
	~500K
	~500K
	~500K
	~500K

	[Model complexity
in a number of model size (e.g. Mbyte)]
	~2.3M
	~2.3M
	~2.3M
	~2.3M
	~2.3M

	Computational complexity [FLOPs]
	-
	-
	-
	-
	-

	Top-1(%)
	47
	42.09
	28.61
	-
	12.2

	Top-1(%) with 1dB margin
	58
	52.4
	36.42
	49
	16.5

	Top-2/1(%) , Top-4/1(%) , other values
	Top-2/1(%) , Top-3/1(%) ,Top-5/1(%)
66.33 
75
 84.40
	Top-2/1(%) , Top-3/1(%) ,Top-5/1(%)
62
70.5
79.2
	Top-2/1(%) , Top-3/1(%) ,Top-5/1(%)
43 
52.35 
65.11
	Top-2/1(%) , Top-3/1(%) ,Top-5/1(%)
58.64
68.16
79
	Top-2/1(%) , Top-3/1(%) ,Top-5/1(%)
24.52
32.11
44.57

	Top-1/2(%), Top-1/4(%), other values
	-
	-
	-
	-
	-

	Average L1-RSRP diff (dB)
	2.6
	3.37
	7.1
	3.7
	10.9

	[5%ile of L1-RSRP diff (dB)]
	12
	14.18
	24.4
	14.6
	29.35

	[e.g., Predicted L1-RSRP] (Optional)
	-
	-
	-
	-
	-

	RS overhead Reduction (%)
(Opt 1/2/3 reported by companies)
	87.5% (Opt 1)
	87.5% (Opt 1)
	93.75% (Opt 1)
	87.5% (Opt 1)
	93.75% (Opt 1)

	[avg. UE throughput]
	-
	-
	-
	-
	-

	[5%ile UE throughput]
	-
	-
	-
	-
	-

	UCI report
	-
	-
	-
	-
	-



From Table 2.216 we have the following observations:
1. Like DL Tx beam prediction, training model with fixed number random Set B outperforms training model with varied number random Set B.


Observation 19: In BM-Case1 DL Tx- Rx beam pair prediction, training model with fixed beam number in random Set B outperforms the training model with varied beam number in random Set B.

2. For beam pair prediction, the model trained with random Set B is significantly worse than the model trained with fixed Set B. We think such behavior is mainly because the signal space now is 256 and it is much larger than the signal space of 64 in DL Tx beam prediction. Even with top-K/1 metric, for small K (i.e. K=4) the performance of the beam pair prediction model trained with random Set B is still not sufficient. A large K is needed to provide comparable model performance and system throughput performance for beam pair prediction with random Set B.

Observation 20: In BM-Case1 DL Tx-Rx beam pair prediction, the use of random SetB provides a nonnegligible performance drop compared to the use of fixed SetB. Top-K beam search may not be sufficient to achieve sufficient intermediate performance KPIs.

Observation 21: For BM-Case1 DL Tx-Rx beam pair prediction, when Set B is a subset of Set A with the measurements from the best Rx beam.
a. (Case 1) For generalization Case 1, the evaluation results show that the Top-1 beam prediction accuracy is higher by [18%] for SetB beams 1/8 of SetA beams than SetB beams 1/16 of SetA beams when fixed number of SetB beams between training and inference is considered. 
b. (Case 2) For generalization Case 2, the evaluation results show that the Top-1 beam prediction accuracy degradates by [5%] when training with variable number of SetB beams and testing with SetB beams 1/8 of SetA beams, the evaluation results show that the Top-1 beam prediction accuracy degradates by [16%] when training with variable number of SetB beams and testing with SetB beams 1/16 of SetA. 

Proposal 10: RAN1 prioritizes fixed or pre-configured SetB patterns for further investigations of DL Tx-Rx beam pair prediction.


BM Case-2: Temporal Domain Beam Prediction
Set A/B are DL Tx Beams
In this section, we provide the characterization and baseline performance evaluations for Temporal DL Tx beam prediction for Set A of beams based on the historical measurement results of Set B of beams. 
Baseline Assumption
Based on the agreements in RAN1#109, we have the baseline method shown in Table 2.31.
[bookmark: _Ref118706979]Table 2.31: Baseline for BM-Case2.
	Benchmarks
	Method description

	BM- Case2 baseline Option 2
	Select the best beam for T2 within Set A of beams based on the measurements of all the RS resources from Set B of beams at the time instants within T1.



With BM- Case2 baseline Option 2, the simple baseline method we use is to apply the best beam measured at the current time instant from Set A to all the future time instants. Table 2.34 reports the performance of the baseline method.

Evaluation Results for Set B is the Same as Set A
[bookmark: _Hlt135039499][bookmark: _Hlt135040094]Figure 213 shows a diagram of BM-Case 2 simulation configuration, where  is the CSI measurement/reporting periodicity, t is the model inference time instant, M is the observation window length used during training and inference, P is the model prediction window length used during training and P’ is model prediction window length used during inference. The simulation configuration for Set B is the same as Set A are shown in Table 2.32.
[bookmark: _Hlt135040098][bookmark: _Hlt135040005]The simulation results for Set B is the same as Set A are shown in Table 2.33.



(a)


(b)
[bookmark: _Ref134811957]Figure 213: BM-Case2 simulation configuration during (a) training and (b) inference.

[bookmark: _Ref118706536][bookmark: _Ref135040091]Table 2.32: Simulation configuration for Set B is the same as Set A.
	
	Method 1

	Assumptions
	Number of beams in Set A
	64

	
	Number of beams in Set B
	64

	
	Rx beam selection 
	Optimal Rx beams 

	
	Baseline scheme
	-

	
	UE speed (km/h)
	30

	
	CSI measure/report period  [ms]
	160

	
	Observation Window (M) [ms]
	[bookmark: _Hlt135039929]Table 2.33

	
	Prediction Window (P) [ms]
	

	
	UE trajectory
	Option 4

	AI/ML model
input/output
	Model input
	RSRP

	
	Model output
	Beam ID

	Data Size
	Training
	80k UE trajectories

	
	Testing
	10k UE trajectories

	AI/ML model
	Model structure
	LSTM-based, Conv2D

	
	Optimizer
	Adam

	
	Scheduler
	StepLR

	
	Model complexity
	~360k

	Evaluation results

	Beam prediction accuracy 
	Top-1 beam Prediction Accuracy (1 dB RSRP Margin) [%]
	[bookmark: _Hlt135040016]Table 2.33

	
	L1-RSRP Diff
	Top-1 beam prediction average RSRP Error [dB]
	



[bookmark: _Ref118706580][bookmark: _Ref135040002]Table 2.33: Evaluation results for BM-Case2 DL Tx beam prediction, when Set B is the same as Set A for UE speed of 30 Km/h and different configurations of MyPx. 
	BM-Case2
[fixed Set B – 30Km/h]
	30Km/h - Config 1
	30Km/h - Config 2
	30Km/h - Config 3
	30Km/h - Config 4
	30Km/h - Config 5

	UE speed
	30 Km/h
	30 Km/h
	30 Km/h
	30 Km/h
	30 Km/h

	[UE rotation]
	Initially random and keeps fixed
	Initially random and keeps fixed
	Initially random and keeps fixed
	Initially random and keeps fixed
	Initially random and keeps fixed

	[UE trajectory]
	Option 4 (random direction straight-line trajectory)
	Option 4 (random direction straight-line trajectory)
	Option 4 (random direction straight-line trajectory)
	Option 4 (random direction straight-line trajectory)
	Option 4 (random direction straight-line trajectory)

	Number of beams in Set A
	64
	64
	64
	64
	64

	Number of beams in Set B
	F64
	F64
	F64
	F64
	F64

	[Set A and Set B relationship] 
	SetB same as SetA
	SetB same as SetA
	SetB same as SetA
	SetB same as SetA
	SetB same as SetA

	[Pattern of Set B]
	All Tx IDs 
	All Tx IDs 
	All Tx IDs 
	All Tx IDs 
	All Tx IDs 

	[Rx beam assumption]
	Best Rx Opt 1
	Best Rx Opt 1
	Best Rx Opt 1
	Best Rx Opt 1
	Best Rx Opt 1

	[Periodicity in T1]
	160 ms
	160 ms
	160 ms
	160 ms
	160 ms

	[Number of time instances M in T1] 
	2
	2
	2
	2
	2

	[Time instance(s) for prediction T2 (ms)](per model)
	160 ms
	320 ms
	480 ms
	640 ms
	800 ms

	[the number of time instance(s) P for prediction]
	1
	2
	3
	4
	5

	[Ratio of T1/T2 for one inference]
	2 
	1
	2/3
	2/4
	2/5

	[Minimal periodicity for measurement(s) and prediction(s)] 
	160 ms
	160 ms
	160 ms
	160 ms
	160 ms

	[the number of prediction instance(s) Y for every number of measurement instance(s) X as MyPx]
	1
	2
	3
	4
	5

	Baseline scheme 
	Option 2
	Option 2
	Option 2
	Option 2
	Option 2

	[Quantization error]
	0
	0
	0
	0
	0

	[Measurement error]
	0
	0
	0
	0
	0

	Model input
	L1-RSRP, implicitly Tx beam ID
	L1-RSRP, implicitly Tx beam ID
	L1-RSRP, implicitly Tx beam ID
	L1-RSRP, implicitly Tx beam ID
	L1-RSRP, implicitly Tx beam ID

	Model output, [output type(s), e.g., the best DL Tx and/or Rx beam ID, and/or L1-RSRPs of N beams(pairs)]
	Probabilities of Top-1 beam for all Tx beam in Set A
	Probabilities of Top-1 beam for all Tx beam in Set A
	Probabilities of Top-1 beam for all Tx beam in Set A
	Probabilities of Top-1 beam for all Tx beam in Set A
	Probabilities of Top-1 beam for all Tx beam in Set A

	[Model label]
	Top-1 genie-aided beam ID
	Top-1 genie-aided beam ID
	Top-1 genie-aided beam ID
	Top-1 genie-aided beam ID
	Top-1 genie-aided beam ID

	[Short model description, e.g., CNN, LSTM]
	LSTM-based, Conv2D
	LSTM-based, Conv2D

	LSTM-based, Conv2D

	LSTM-based, Conv2D

	LSTM-based, Conv2D


	[Model complexity
in a number of model parameters (M)]
	~360k
	~360k
	~360k
	~360k
	~360k

	[Model complexity-model size]
	~1.2M
	~1.2M
	~1.2M
	~1.2M
	~1.2M

	Computational complexity [FLOPs]
	-
	-
	-
	-
	-

	Training
	80k UE trajectories
	80k UE trajectories
	80k UE trajectories
	80k UE trajectories
	80k UE trajectories

	Testing
	10k UE trajectories
	10k UE trajectories
	10k UE trajectories
	10k UE trajectories
	10k UE trajectories

	Top-1(%)
	56.62 / 52.33
	45.19 / 39.71
	43.38 / 35.23
	39.42 / 31.9
	34.61 / 31.14

	Top-1(%) with 1dB margin
	71.19 / 66.61
	59.80 / 52.61
	58.76 / 48.95
	53.09 / 44.95
	48.19 / 42.85

	Top-2/1(%) , Top-4/1(%) , other values
	Top-2/1 , Top-3/1 ,Top-5/1
79.19, 88.52, 95.85
	Top-2/1 , Top-3/1 ,Top-5/1
70.76, 81.47, 90.80
	Top-2/1 , Top-3/1 ,Top-5/1
66.7, 78, 89.42
	Top-2/1 , Top-3/1 ,Top-5/1
64.14, 76.80, 87.1
	Top-2/1 , Top-3/1 ,Top-5/1
59.38, 73.19, 85.0

	Top-1/2(%), Top-1/4(%), other values
	-
	-
	-
	-
	-

	Average L1-RSRP diff (dB) 
	0.9436 
	1.48 
	1.67
	1.97
	2.4

	[5%ile of L1-RSRP diff (dB)]
	4.49 
	6.24 
	6.48
	7.52
	9.37

	[e.g., Predicted L1-RSRP] (Optional)
	-
	-
	-
	-
	-

	RS overhead Reduction (%)
(Opt 1/2/3 reported by companies)
	33% (Opt3)
	50% (Opt3)
	60% (Opt3)
	66% (Opt3)
	71% (Opt3)

	[avg. UE throughput]
	-
	-
	-
	-
	-

	[5%ile UE throughput]
	-
	-
	-
	-
	-

	UCI report
	-
	-
	-
	-
	-



From Table 2.33 we have the following observations:
Observation 22: For BM-Case2 DL Tx beam prediction, when Set B is the same as Set A and [160 ms] minimal periodicity for measurement(s) and predictions. 
· (A) With measurements at UE speed of [30 Km/h] with 64 Tx Beams for Ratio [2] of T1/T2
· evaluation results indicate that, AI/ML can improve [4%] beam prediction accuracy of Top-1 DL Tx beam compared to baseline option 2, evaluation results indicate that, AI/ML can improve [5%] beam prediction accuracy with 1 dB margin of Top-1 DL Tx beam compared to baseline option 2.
· evaluation results indicate that, AI/ML can achieve [89%] beam prediction accuracy of Top-3 DL Tx beam.
· evaluation results indicate that, the average L1-RSRP difference (dB) of Top-1 predicted beam can be [1], evaluation results indicate that the 5%ile of L1-RSRP diff (dB) can be [4.5].
· (B) With measurements at UE speed of [30 Km/h] with 64 Tx Beams for Ratio [2/3] of T1/T2 
· evaluation results indicate that, AI/ML can improve [8%] beam prediction accuracy of Top-1 DL Tx beam compared to baseline option 2, evaluation results indicate that, AI/ML can improve [10%] beam prediction accuracy with 1 dB margin of Top-1 DL Tx beam compared to baseline option 2.
· evaluation results indicate that, AI/ML can achieve [78%] beam prediction accuracy of Top-3 DL Tx beam.
· evaluation results indicate that, the average L1-RSRP difference (dB) of Top-1 predicted beam can be [1.7], evaluation results indicate that the 5%ile of L1-RSRP diff (dB) can be [6.5].
· (C) With measurements at UE speed of [30 Km/h] with 64 Tx Beams for Ratio [2/5] of T1/T2 
· evaluation results indicate that, AI/ML can improve [3%] beam prediction accuracy of Top-1 DL Tx beam compared to baseline option 2, evaluation results indicate that, AI/ML can improve [5%] beam prediction accuracy with 1 dB margin of Top-1 DL Tx beam compared to baseline option 2.
· evaluation results indicate that, AI/ML can achieve [73%] beam prediction accuracy of Top-3 DL Tx beam.
· evaluation results indicate that, the average L1-RSRP difference (dB) of Top-1 predicted beam can be [2.4], evaluation results indicate that the 5%ile of L1-RSRP diff (dB) can be [9].

Evaluation Results for Set B is a Subset of Set A
[bookmark: _Hlt135040149]The following section is focused on the evaluation results considering the Set B subset of Set A. The results are obtained using two values for M/P, either 200ms/40ms or 200ms/80ms. In Table 2.35 we compare the results with Set B fixed to 32 beams.
[bookmark: _Ref135040146]Table 2.35: Evaluation results for BM-Case2 for DL Tx beam with Set B subset Set A.
	BM-Case2
[fixed Set B – 30Km/h]
	SetB subset SetA – T1=40ms
	SetB subset SetA – T1=80ms

	UE speed
	30 Km/h
	30 Km/h

	[UE rotation]
	Initially random and keeps fixed
	Initially random and keeps fixed

	[UE trajectory]
	Option 4 (random direction straight-line trajectory)
	Option 4 (random direction straight-line trajectory)

	Number of beams in Set A
	64
	64

	Number of beams in Set B
	F32
	F32

	[Set A and Set B relationship] 
	SetB subset of SetA
	SetB subset of SetA

	[Pattern of Set B]
	Tx ID=[ 0, 2, 4, … ]
	Tx ID=[ 0, 2, 4, … ]

	[Rx beam assumption]
	Best Rx Opt 1
	Best Rx Opt 1

	[Periodicity in T1]
	40 ms
	40 ms

	[Number of time instances M in T1] 
	5
	5

	[Time instance(s) for prediction T2 (ms)](per model)
	40 ms
	80 ms

	[the number of time instance(s) P for prediction]
	1
	2

	[Ratio of T1/T2 for one inference]
	5
	5

	[Minimal periodicity for measurement(s) and prediction(s)] 
	40 ms
	40 ms

	[the number of prediction instance(s) Y for every number of measurement instance(s) X as MyPx]
	1
	2

	Baseline scheme 
	Option 2
	Option 2

	[Quantization error]
	0
	0

	[Measurement error]
	0
	0

	Model input
	L1-RSRP, implicitly Tx beam ID
	L1-RSRP, implicitly Tx beam ID

	Model output, 
	best DL Tx beam ID
	best DL Tx beam ID

	[Model label]
	Top-1 genie-aided beam ID
	Top-1 genie-aided beam ID

	[Short model description,]
	LSTM-based, Conv2D
	LSTM-based, Conv2D


	[Model complexity
in a number of model parameters (M)]
	~180k
	~180k

	[Model complexity-model size]
	-
	-

	Computational complexity [FLOPs]
	-
	-

	Training
	10k trajectoires
	10k trajectoires

	Testing
	1k trajectoires
	1k trajectoires

	Top-1(%)
	-
	-

	Top-1(%) with 1dB margin
	74.83
	70.77

	Top-2/1(%) , Top-4/1(%) , other values
	-
	-

	Top-1/2(%), Top-1/4(%), other values
	-
	-

	Average L1-RSRP diff (dB) 
	0.76
	0.95

	[5%ile of L1-RSRP diff (dB)]
	-
	-

	[e.g., Predicted L1-RSRP] (Optional)
	-
	-

	RS overhead Reduction (%)
(Opt 1/2/3 reported by companies)
	60% (Opt3)
	60% (Opt3)

	[avg. UE throughput]
	-
	-

	[5%ile UE throughput]
	-
	-

	UCI report
	-
	-



From Table 2.35, we make the following observations:
· The ML model using as input only RSRPs has performance that decreases when reducing the number of measurements from 64 to 32 or when increasing the length of the prediction window. This is expected because a smaller number of measurements reduces the number of beams tracked and thus the possibility to predict which one would be the best in the future time instance. At the same time, a larger prediction window makes the prediction tasks more challenging as beam behavior is more unpredictable with a larger prediction horizon.  

Observation 23: For BM-Case2 DL Tx beam prediction, when Set B is subset of Set A and minimal periodicity for measurement(s) and predictions is 40 ms. At UE speed of [30 Km/h] with 64 Tx Beams 
a. For ratio [5] of T1/T2, evaluation results indicate that, AI/ML can achieve [74%] beam prediction accuracy of Top-1 DL Tx beam with 1 dB margin
b. For ratio [5/2] of T1/T2, evaluation results indicate that, AI/ML can achieve [70%] beam prediction accuracy of Top-1 DL Tx beam with 1 dB margin.

[bookmark: _Ref118655110]Model Generalization for Different UE Speeds 
In this subsection, we study the model generalization capabilities for different UE speeds. The following four scenarios have been considered for evaluation: Scenario#A for UE speed 30 Km/h, Scenario#B for UE speed 60 Km/h, Scenario#C for UE speed 120 Kmh. 
For this study, we consider Set B the same as Set A. The prediction window is considered fixed P=1 (160 ms) between training and testing as well as the observation window M=3 (480 ms). 
At first, we verify the generalization capabilities of the different ML models trained at different UE speeds by comparing the performances for generalization Case#1 (same UE speed for training/testing) to the ones obtained for generalization Case #2 (different UE speed for training/testing). 
[bookmark: _Hlt135039507]As shown in Figure 214(a), the performances of the ML model for Case#1 represented with solid lines are very similar for the different UE speeds. The ML model for the lower speed, i.e. 30 Km/h performs slightly better than the ones for the higher speed of 120 Km/h. 
Differently, when the ML model trained at a specific UE speed is applied to a different UE speed (Case #2), the performance degrades if the model is trained with a slower UE speed of 30 Km/h then tested with a higher UE speed of 120 Km/h. 
On the other hand, Figure 214(b) shows the generalization performance when the model is trained with a dataset containing a mix of scenarios with UE moving at different speeds. In this case, the model tested on different speeds generalizes well and performance remains high independently by the UE speed. 
Based on the results shown in Figure 214(b) and reported in Table 2.36 we derive the following observations:
Observation 24: For BM-Case2 DL Tx beam prediction, AI/ML may have different performance for different UE speeds. Based on the evaluation results:
a. (Case 1) For generalization Case 1, the evaluation results show that the Top-1 beam prediction accuracy is higher by [4%] with UE speed 30 Km/h than with UE speed 120 Km/h.
b. (Case 2) For generalization Case 2, the evaluation results show that the Top-1 beam prediction accuracy significantly degradates [10%] compared to the Case 1 when AI/ML is trained with UE speed 30 Km/h and tested UE speed 120 Km/h, the evaluation results show that the Top-1 beam prediction accuracy degradates [2%] when AI/ML is trained with UE speed 120 Km/h and tested with UE speed 30 Km/h.
c. (Case 3) For generalization Case 3, the evaluation results show that the Top-1 beam prediction accuracy is similar to the Case 1 when AI/ML is trained by mixing data with different UE speeds.

 [image: ][image: ]
(a)                                             (b)
[bookmark: _Ref118663472]Figure 214: (a) Case 1 and Case 2 model generalization for different UE speeds. (b) Case 3 model generalization for different UE speeds.

[bookmark: _Ref134969087]Table 2.36: Evaluation results for BM-Case2 DL Tx beam with different UE speeds.
	Configuration/Scenario #A
	
	30Km/h
	
	120Km/h
	Mixed (30 Km/h, 60 Km/h, 120 Kmh)
	Mixed (30 Km/h, 60 Km/h, 120 Kmh)

	Configuration/Scenario #B
	30 Km/h
	120 Km/h
	120 Km/h
	30 Km/h
	30 Km/h
	120 Km/h

	Case 1/Case 2/Case 3
	Case1 (trained by #B => tested by #B)
	Case2 (trained by #A => tested by #B)
	Case1 (trained by #B => tested by #B)
	Case2 (trained by #A => tested by #B)
	Case3
	Case3

	Training
	20k trajectoires
	20k trajectoires
	20k trajectoires
	20k trajectoires
	20k trajectoires
	20k trajectoires

	Testing
	2k trajectoires
	2k trajectoires
	2k trajectoires
	2k trajectoires
	2k trajectoires
	2k trajectoires

	UE speed
	30 Km/h
	120 Km/h
	120 Km/h
	30 Km/h
	120 Km/h
	30 Km/h

	[UE rotation]
	Initially random and keeps fixed
	Initially random and keeps fixed
	Initially random and keeps fixed
	Initially random and keeps fixed
	Initially random and keeps fixed
	Initially random and keeps fixed

	[UE trajectory]
	Option 4 
	Option 4 
	Option 4 
	Option 4 
	Option 4 
	Option 4 

	Number of beams in Set A
	64
	64
	64
	64
	64
	64

	Number of beams in Set B 
	F64
	F64
	F64
	F64
	F64
	F64

	[Set A and Set B relationship] 
	SetB same as SetA
	SetB same as SetA
	SetB same as SetA
	SetB same as SetA
	SetB same as SetA
	SetB same as SetA

	[Pattern of Set B]
	All Tx IDs
	All Tx IDs
	All Tx IDs
	All Tx IDs
	All Tx IDs
	All Tx IDs

	[Rx beam assumption]
	Best Rx Opt 1
	Best Rx Opt 1
	Best Rx Opt 1
	Best Rx Opt 1
	Best Rx Opt 1
	Best Rx Opt 1

	[Periodicity  of time instance in T1]
	160 ms
	160 ms
	160 ms
	160 ms
	160 ms
	160 ms

	[M] 
	3
	3
	3
	3
	3
	3

	[Time instance(s) for prediction T2 (ms)](per model)
	160 ms
	160 ms
	160 ms
	160 ms
	160 ms
	160 ms

	[the number of time instance(s) P]
	1
	1
	1
	1
	1
	1

	[Ratio of T1/T2 for one inference]
	3
	3
	3
	3
	3
	3

	[Minimal periodicity] 
	160 ms
	160 ms
	160 ms
	160 ms
	160 ms
	160 ms

	[Y]
	1
	1
	1
	1
	1
	1

	[P]
	1
	1
	1
	1
	1
	1

	Baseline scheme
	Option 2
	Option 2
	Option 2
	Option 2
	Option 2
	Option 2

	[Quantization error]
	0
	0
	0
	0
	0
	0

	[Measurement error]
	0
	0
	0
	0
	0
	0

	Model input, 
	L1-RSRP+ ID
	L1-RSRP+ ID
	L1-RSRP+ ID
	L1-RSRP+ ID
	L1-RSRP+ ID
	L1-RSRP+ ID

	Model output, 
	best DL Tx beam ID
	best DL Tx beam ID
	best DL Tx beam ID
	best DL Tx beam ID
	best DL Tx beam ID
	best DL Tx beam ID

	[Model label]
	Top-1 genie-aided beam ID
	Top-1 genie-aided beam ID
	Top-1 genie-aided beam ID
	Top-1 genie-aided beam ID
	Top-1 genie-aided beam ID
	Top-1 genie-aided beam ID

	[Short model description]
	LSTM-based, Conv2D
	LSTM-based, Conv2D
	LSTM-based, Conv2D
	LSTM-based, Conv2D
	LSTM-based, Conv2D
	LSTM-based, Conv2D

	[ number of model parameters (M)]
	~200k
	~200k
	~200k
	~200k
	~200k
	~200k

	[number of model size (e.g. Mbyte)]
	1M
	1M
	1M
	1M
	1M
	1M

	Computational complexity [FLOPs]
	-
	-
	-
	-
	-
	-

	Top-1(%)
	56.12
	46.4
	52.3
	54.2
	57.1
	53.5

	Top-1(%) with 1dB margin
	72.07
	60.3
	67.5
	69.8
	73.1
	68.6

	Top-2/1(%) , Top-4/1(%) , other values
	78.7, 92.0
	68.9, 85.9
	74.7, 89.2
	76.8, 91.3
	79.7, 92.7
	75.8, 89.8

	Top-1/2(%), Top-1/4(%), other values
	-
	-
	-
	-
	-
	-

	Average L1-RSRP diff (dB) 
	0.9
	1.4
	1.1
	0.98
	0.85
	1.04

	[5%ile of L1-RSRP diff (dB)]
	4.2
	5.8
	5.06
	4.5
	4.19
	4.8

	[e.g., Predicted L1-RSRP] (Optional)
	-
	-
	-
	-
	-
	-

	RS overhead Reduction (%)
	25% (Opt3)
	25% (Opt3)
	25% (Opt3)
	25% (Opt3)
	25% (Opt3)
	25% (Opt3)



Conclusion
In this contribution, we discuss the remaining details of the evaluation assumption of ML for Beam management. In particular, we have following observations and proposals: 
Observation 1:  For BM-Case1 DL Tx beam prediction, when Set B is subset of Set A, with measurements of fixed Set B of beams that are 1/4 of Set A beams when Set A has 64 Tx beams:
· evaluation results indicate that, AI/ML can achieve [93%] beam prediction accuracy of Top-1 DL Tx beam, evaluation results indicate that AI/ML can achieve [98%] beam prediction accuracy of Top-1 DL Tx beam with 1dB margin.
· evaluation results indicate that, AI/ML can achieve [100%] beam prediction accuracy of Top-4 DL Tx beam.
· evaluation results indicate that, the average L1-RSRP difference (dB) of Top-1 predicted beam can be [0.058], evaluation results indicate that the 5%ile of L1-RSRP diff (dB) can be [0.15].
· evaluation results indicate that, AI/ML achieves [99%] of the UE average throughput of the BMCase1 baseline Opt1 (exhaustive search over Set A beams), evaluation results indicate that, AI/ML achieves 97% of the UE 5%ile throughput of the BMCase1 baseline Opt1.

Observation 2:  For BM-Case1 DL Tx beam prediction, when Set B is subset of Set A, with measurements of fixed Set B of beams that are 1/8 of Set A beams when Set A has 64 Tx beams:
· evaluation results indicate that, AI/ML can achieve [83%] beam prediction accuracy of Top-1 DL Tx beam, evaluation results indicate that AI/ML can achieve [91%] beam prediction accuracy of Top-1 DL Tx beam with 1dB margin.
· evaluation results indicate that, AI/ML can achieve [97%] beam prediction accuracy of Top-4 DL Tx beam.
· evaluation results indicate that, the average L1-RSRP difference (dB) of Top-1 predicted beam can be [0.57], evaluation results indicate that the 5%ile of L1-RSRP diff (dB) can be [3].
· evaluation results indicate that, AI/ML achieves [98%] of the UE average throughput of the BMCase1 baseline Opt1 (exhaustive search over Set A beams), evaluation results indicate that, AI/ML achieves [84%] of the UE 5%ile throughput of the BMCase1 baseline Opt1.

Observation 3:  For BM-Case1 DL Tx beam prediction, when Set B is different to Set A, with measurements of Set B of wide beams that are 1/4 of Set A beams when Set A has 64 Tx beams: 
· Advance Set B designs (codebook#4) achieve better evaluation results over basic Set B designs (codebook#1) for all KPIs.
· evaluation results indicate that, AI/ML can achieve [84%] beam prediction accuracy of Top-1 DL Tx beam. evaluation results indicate that, AI/ML can achieve [95%] beam prediction accuracy of Top-1 DL Tx beam with 1dB margin.
· evaluation results indicate that, AI/ML can achieve [98%] beam prediction accuracy for Top-3 DL Tx beam.
· evaluation results indicate that, the average L1-RSRP difference (dB) of Top-1 predicted beam can be [0.1], whereas the 5%ile of L1-RSRP diff (dB) can be [0.9].


Observation 4:  For BM-Case1 DL Tx beam prediction, when Set B is different to Set A, with measurements of Set B of wide beams that are 1/4 of Set A beams when Set A has 32 Tx beams: 
· Advance Set B designs (codebook#4) achieve better evaluation results over basic Set B designs (codebook#1) for all KPIs.
· evaluation results indicate that, AI/ML can achieve [88%] beam prediction accuracy of Top-1 DL Tx beam, evaluation results indicate that, AI/ML can achieve [93%] beam prediction accuracy of Top-1 DL Tx beam with 1dB margin. 
· evaluation results indicate that, AI/ML can achieve [99%] beam prediction accuracy for Top-3 DL Tx beam. 
· evaluation results indicate that, the average L1-RSRP difference (dB) of Top-1 predicted beam can be [0.4], whereas the 5%ile of L1-RSRP diff (dB) can be [0.3dB].
· evaluation results indicate that, AI/ML achieves [99%] of the UE average throughput of the BMCase1 baseline Opt1 (exhaustive search over Set A beams), evaluation results indicate that, AI/ML achieves [94%] of the UE 5%ile throughput of the BMCase1 baseline Opt1.

Proposal 1: For BM-Case1, RAN1 may further study the case of Set A/B are DL Tx and Set B/Set A are different.
· Set B is a wide beam codebook and Set A is a refined beam codebook
· Advance Set B designs are needed to provide sufficient refined beam prediction performance.

Observation 5:  For BM-Case1 DL Tx beam prediction, when Set B is a subset of Set A without considering other generalization aspects with the measurements from the best Rx beam without UE rotation.
a. (Opt 2B) For the case that Set B of beams is changed among 24 pre-configured patterns, evaluation results show that the beam prediction accuracy degrades [5%] in terms of Top-1 beam prediction accuracy than when Set B is fixed across training and inference. 
b. (Opt 2C) For the case that Set B of beams is randomly changed in Set A of beams, the beam prediction accuracy degrades [10%] in terms of Top-1 beam prediction accuracy than the case that Set B is fixed across training and inference. 
c. (Opt 2D) For the case that Set B is 8 reported beams of the measured beams Set C, the Top-1 beam prediction accuracy degrades [2%] than the case that Set B is fixed across training and inference. For the case that Set B is 4 reported beams of the measured beams Set C, the Top-1 beam prediction accuracy degrades [7%] than the case that Set B is fixed across training and inference.

Proposal 2: For evaluation of BM-Case1, RAN1 may consider not to limit the number of pre-configured SetB patterns in Opt2B. 

Observation 6:  In BM-Case1 DL TX beam prediction, training model with fixed number of beams in Set B outperforms the training model with variable number of beams in Set B.

Observation 7: In BM-Case1 DL TX beam prediction, compared to training model with fixed Set B, training model with variable number of beams in Set B can provide similar performance when |Set B|/|Set A| is large (i.e., 32/64) but the performance will become inferior when |Set B|/|Set A| is small.

Observation 8:  In BM-Case1 DL TX beam prediction, the top-K beam search is needed for the model trained with variable number of beams in Set B.

Observation 9:  Increasing the range of the measurement errors degrades the L1-RSRP difference due to predictions compared to the results with ideal L1-RSRP expecially at high percentiles of the CDF (e.g. 95%-tile). 

Observation 10: For BM-Case1 DL Tx beam prediction, when Set B is a subset of Set A considering measurement error:
a. For the case measurement error is within ±2 dB range with 95% confidence level, evaluation results show that the beam prediction accuracy degrades [7%] in terms of Top-1 beam prediction accuracy than without measurement error, evaluation results indicate that the 5%ile of L1-RSRP diff (dB) can be [1.4]. 
b. For the case measurement error is within ±4 dB range with 95% confidence level, evaluation results show that the beam prediction accuracy degrades [17%] in terms of Top-1 beam prediction accuracy than without measurement error, evaluation results indicate that the 5%ile of L1-RSRP diff (dB) can be [2.6]. 
c. For the case measurement error is within ±6 dB range with 95% confidence level, evaluation results show that the beam prediction accuracy degrades [26%] in terms of Top-1 beam prediction accuracy than without measurement error, evaluation results indicate that the 5%ile of L1-RSRP diff (dB) can be [3.7]. 

Proposal 3: RAN1 to evaluate model trained with non-ideal measurements considering values of measurement errors ranges tighter than the current L1-RSRP requirements. 

Observation 11: For BM-Case1 DL Tx beam prediction, when Set B is a subset of Set A considering quantization error:
a. For the case quantization step is 1 dB, evaluation results show that the beam prediction accuracy degrades [5%] in terms of Top-1 beam prediction accuracy compared to unquantized L1-RSRPs of beams in Set B, evaluation results indicate that the 5%ile of L1-RSRP diff (dB) can be [1]. 
b. For the case quantization step is 2 dB, evaluation results show that the beam prediction accuracy degrades [15%] in terms of Top-1 beam prediction accuracy compared to unquantized L1-RSRPs of beams in Set B, evaluation results indicate that the 5%ile of L1-RSRP diff (dB) can be [1.5]. 
c. For the case quantization step is 4 dB, evaluation results show that the beam prediction accuracy degrades [32%] in terms of Top-1 beam prediction accuracy compared to unquantized L1-RSRPs of beams in Set B, evaluation results indicate that the 5%ile of L1-RSRP diff (dB) can be [3]. 

Observation 12: The performance of the model trained with data affected by both measurement errors and quantization errors can’t be improved by only reducing the quantization step size as the prediction performances are limited by the measurement errors.

Observation 13: For BM-Case1 DL Tx beam prediction, when Set B is a subset of Set A without considering other generalization aspects and considering different Rx beam assumptions:
a. (Option 2a) For the measurements of specific Rx beam is selected among 2 Rx beams for each model input sample, evaluation results show that the beam prediction accuracy degrades [12%] in terms of Top-1 beam prediction accuracy than when measurements of ”best” Rx beam are used for each model input sample. 
b. (Option 2b) For the measurements of specific Rx beam is fixed for all input samples, evaluation results show that the beam prediction accuracy degrades [25%] in terms of Top-1 beam prediction accuracy than when measurements of ”best” Rx beam are used for each model input sample. 
c. (Option 3) For the measurements of random Rx beam per model input sample, evaluation results show that the beam prediction accuracy degrades [25%] in terms of Top-1 beam prediction accuracy than when measurements of ”best” Rx beam are used for each model input sample. 

Observation 14: For BM-Case1 DL Tx beam prediction, AI/ML may have different performance for different UE distributions scenarios. Based on the evaluation results:
a. (Case 1) For generalization Case 1, the evaluation results show that the beam prediction accuracy is higher by [7%] with 100% outdoor UE distribution than with UE distribution 80% indoor and 20% outdoor. 
b. (Case 2) For generalization Case 2, the evaluation results show that the Top-1 beam prediction accuracy degradates [2.5%] compared to the Case 1 when AI/ML is trained with UE distribution 80% indoor and 20% outdoor and tested with 100% outdoor UE distribution, the evaluation results show that the Top-1 beam prediction accuracy is similar to the Case 1 when AI/ML is trained with 100% outdoor UE distribution and tested with UE distribution 80% indoor and 20% outdoor.
c. (Case 3) For generalization Case 3, the evaluation results show that the Top-1 beam prediction accuracy is similar to the Case 1 when AI/ML is trained by mixing data with 100% outdoor UE distribution and with UE distribution 80% indoor and 20%, then tested with either 100% outdoor UE distribution or UE distribution 80% indoor and 20% outdoor. 

Observation 15: For BM-Case1 DL Tx beam prediction, AI/ML may have different performance for different deployment scenarios. Based on the evaluation results:
a. (Case 1) For generalization Case 1, the evaluation results show that the Top-1 beam prediction accuracy is higher by [6%] with ISD 200m than with ISD 1000m, evaluation results show that the Top-1 beam prediction accuracy with 1 dB margin is similar between ISD 200m and ISD 1000m.
b. (Case 2) For generalization Case 2, the evaluation results show that the Top-1 beam prediction accuracy with 1 dB margin degradates [5%] compared to the Case 1 when AI/ML is trained with ISD 200m and tested with ISD 1000m, the evaluation results show that the Top-1 beam prediction accuracy with 1 dB margin is similar to the Case 1 when AI/ML is trained with ISD 1000m and tested with ISD 200m.
c. (Case 3) For generalization Case 3, the evaluation results show that the Top-1 beam prediction accuracy with 1 dB margin is slightly higher to the Case 1 when AI/ML is trained by mixing data with ISDs 200m, 500m, 1000m, then tested with either ISD=200m or ISD=1000m. 

Observation 16: For BM-Case1 DL Tx beam prediction, AI/ML may have different performance for different DL Tx antenna array configurations. Based on the evaluation results:
a. (Case 1) For generalization Case 1, the evaluation results show that the Top-1 beam prediction accuracy is higher by [10%] with DL Tx antenna array 4x8 than with DL Tx antenna array 8x16.
b. (Case 2) For generalization Case 2, the evaluation results show that the Top-1 beam prediction accuracy significantly degradates [51%] compared to the Case 1 when AI/ML is trained with DL Tx antenna array 2x4 and tested with DL Tx antenna array 4x8, the evaluation results show that the Top-1 beam prediction accuracy significantly degradates [37%] compared to the Case 1 when AI/ML is trained with DL Tx antenna array 8x16 and tested with DL Tx antenna array 4x8.
c. (Case 2A) For generalization Case 2A, the model generalizes well when a reduced dataset for a different DL Tx antenna array configuration is used for fine-tuning the model. 
d. (Case 3) For generalization Case 3, the evaluation results show that the Top-1 beam prediction accuracy is slightly lower to the Case 1 when AI/ML is trained by mixing data with DL Tx antenna arrays 2x4, 4x8 and 8x16 then tested with DL Tx antenna array 8x16. Similar results are found when testing with other DL Tx antenna array configurations.

Proposal 4: RAN1 prioritizes model generalization studies for case 3 and case 2a.

Proposal 5: Support RAN1 to further study fine-tuning (case 2a), including assessing the performance on previously learned scenarios/configurations.

Observation 17: For BM-Case1 DL Tx beam prediction, AI/ML may have different performance when training and testing with different SetB assumptions. Based on the evaluation results:
a. (Case 2) For generalization Case 2, the evaluation results show that the Top-1 beam prediction accuracy degradates [3%-8%] compared to the Case 1 when AI/ML is trained with fixed SetB and tested with pre-configured SetB or random SetB or when AI/ML is trained with pre-configured SetB and tested with random SetB, the evaluation results show that the Top-1 beam prediction accuracy has high values [90%-93%] similar to the Case 1 when AI/ML is trained with pre-configured SetB or random SetB and tested with fixed SetB or pre-configured SetB.

Proposal 6: For BM-Case1, RAN1 may prioritize the measurements of Random SetB (Opt2C) to be used at UE side for input to model training and the measurements of Fixed/Pre-configured SetBs (Opt1 and Opt2B) to be used at UE side for model inference. 

Observation 18: For BM-Case1 DL Tx-Rx beam pairs prediction, when Set B is a subset of Set A, AI/ML can provide good beam prediction performance with less measurement/RS overhead without considering other generalization aspects:
· (A) With measurements of fixed Set B of beams that are 1/4 of Set A beams with 64 Tx Beams
· evaluation results indicate that, AI/ML can achieve [79%] beam prediction accuracy of Top-1 DL Tx-Rx beam pair and that, and [90%] beam prediction accuracy for Top-1 DL Tx-Rx beam pair with 1dB margin. 
· evaluation results indicate that, AI/ML can achieve [91%] beam prediction accuracy for Top-2 DL Tx-Rx beam pair. The beam prediction accuracy increases with K.  
· evaluation results indicate that, the average L1-RSRP difference of Top-1 predicted beam can be [0.37dB] whereas the 5%ile of L1-RSRP diff (dB) can be [2dB].
· Evaluation results indicate that with the same RS resources, the DL Tx beam prediction has better beam performance regarding the model intermediate KPIs.
· (B) With measurements of fixed Set B of beams that are 1/8 of Set A beams and 64 Tx Beams
· evaluation results indicate that, AI/ML can achieve [72%] beam prediction accuracy of Top-1 DL Tx-Rx beam pair
· evaluation results indicate that, AI/ML can achieve[ 82%] beam prediction accuracy for Top-1 DL Tx-Rx beam pair with 1dB margin
· evaluation results indicate that, AI/ML can achieve [85% for Top-2] beam prediction accuracy for Top-K DL Tx-Rx beam pair. The beam prediction accuracy increases with K.  
· evaluation results indicate that, the average L1-RSRP difference of Top-1 predicted beam can be [ 0.8dB] whereas the 5%ile of L1-RSRP diff (dB) can be [5dB].
· Evaluation results indicate that with the same RS resources, the DL Tx beam prediction has better beam performance regarding the model intermediate KPIs.
· (C) With measurements of fixed Set B of beams that are 1/16 of Set A beams and 64 Tx Beams
· evaluation results indicate that, AI/ML can achieve [62%] beam prediction accuracy of Top-1 DL Tx-Rx beam pair
· evaluation results indicate that, AI/ML can achieve [72%] beam prediction accuracy for Top-1 DL Tx-Rx beam pair with 1dB margin
· evaluation results indicate that, AI/ML can achieve [77% for Top-2] beam prediction accuracy for Top-K DL Tx-Rx beam pair. The beam prediction accuracy increases with K and higher values of Top-K predicted beam pairs can be used to significantly improve the model performance when the number of beam pairs in SetB is reduced.
· evaluation results indicate that, the average L1-RSRP difference of Top-1 predicted beam can be [2dB] whereas the 5%ile of L1-RSRP diff (dB) can be [11dB].
· Note that ideal measurements are assumed 
Proposal 7: Advanced Rx beam selection procedure other than following the configured QCL-D info should be considered for beam pair prediction.

Proposal 8: Investigate the feasibility to measure the top-K predicted beam pairs since it is needed for improving the model performance for the Tx-Rx beam pair prediction.

Proposal 9: To support RAN1 comparing DL Tx-Rx beam pair prediction (substituting P2-P3) and Tx beam prediction companies may report the assumptions for obtaining top-K predicted/measured Tx-Rx beam pairs with Tx beam prediction.

Observation 19: In BM-Case1 DL Tx- Rx beam pair prediction, training model with fixed beam number in random Set B outperforms the training model with varied beam number in random Set B.

Observation 20: In BM-Case1 DL Tx-Rx beam pair prediction, the use of random SetB provides a nonnegligible performance drop compared to the use of fixed SetB. Top-K beam search may not be sufficient to achieve sufficient intermediate performance KPIs.

Observation 21: For BM-Case1 DL Tx-Rx beam pair prediction, when Set B is a subset of Set A with the measurements from the best Rx beam.
a. (Case 1) For generalization Case 1, the evaluation results show that the Top-1 beam prediction accuracy is higher by [18%] for SetB beams 1/8 of SetA beams than SetB beams 1/16 of SetA beams when fixed number of SetB beams between training and inference is considered. 
b. (Case 2) For generalization Case 2, the evaluation results show that the Top-1 beam prediction accuracy degradates by [5%] when training with variable number of SetB beams and testing with SetB beams 1/8 of SetA beams, the evaluation results show that the Top-1 beam prediction accuracy degradates by [16%] when training with variable number of SetB beams and testing with SetB beams 1/16 of SetA. 

Proposal 10: RAN1 prioritizes fixed or pre-configured SetB patterns for further investigations of DL Tx-Rx beam pair prediction.


Observation 22: For BM-Case2 DL Tx beam prediction, when Set B is the same as Set A and [160 ms] minimal periodicity for measurement(s) and predictions. 
· (A) With measurements at UE speed of [30 Km/h] with 64 Tx Beams for Ratio [2] of T1/T2
· evaluation results indicate that, AI/ML can improve [4%] beam prediction accuracy of Top-1 DL Tx beam compared to baseline option 2, evaluation results indicate that, AI/ML can improve [5%] beam prediction accuracy with 1 dB margin of Top-1 DL Tx beam compared to baseline option 2.
· evaluation results indicate that, AI/ML can achieve [89%] beam prediction accuracy of Top-3 DL Tx beam.
· evaluation results indicate that, the average L1-RSRP difference (dB) of Top-1 predicted beam can be [1], evaluation results indicate that the 5%ile of L1-RSRP diff (dB) can be [4.5].
· (B) With measurements at UE speed of [30 Km/h] with 64 Tx Beams for Ratio [2/3] of T1/T2 
· evaluation results indicate that, AI/ML can improve [8%] beam prediction accuracy of Top-1 DL Tx beam compared to baseline option 2, evaluation results indicate that, AI/ML can improve [10%] beam prediction accuracy with 1 dB margin of Top-1 DL Tx beam compared to baseline option 2.
· evaluation results indicate that, AI/ML can achieve [78%] beam prediction accuracy of Top-3 DL Tx beam.
· evaluation results indicate that, the average L1-RSRP difference (dB) of Top-1 predicted beam can be [1.7], evaluation results indicate that the 5%ile of L1-RSRP diff (dB) can be [6.5].
· (C) With measurements at UE speed of [30 Km/h] with 64 Tx Beams for Ratio [2/5] of T1/T2 
· evaluation results indicate that, AI/ML can improve [3%] beam prediction accuracy of Top-1 DL Tx beam compared to baseline option 2, evaluation results indicate that, AI/ML can improve [5%] beam prediction accuracy with 1 dB margin of Top-1 DL Tx beam compared to baseline option 2.
· evaluation results indicate that, AI/ML can achieve [73%] beam prediction accuracy of Top-3 DL Tx beam.
· evaluation results indicate that, the average L1-RSRP difference (dB) of Top-1 predicted beam can be [2.4], evaluation results indicate that the 5%ile of L1-RSRP diff (dB) can be [9].

Observation 23: For BM-Case2 DL Tx beam prediction, when Set B is subset of Set A and minimal periodicity for measurement(s) and predictions is 40 ms. At UE speed of [30 Km/h] with 64 Tx Beams 
a. For ratio [5] of T1/T2, evaluation results indicate that, AI/ML can achieve [74%] beam prediction accuracy of Top-1 DL Tx beam with 1 dB margin
b. For ratio [5/2] of T1/T2, evaluation results indicate that, AI/ML can achieve [70%] beam prediction accuracy of Top-1 DL Tx beam with 1 dB margin.

Observation 24: For BM-Case2 DL Tx beam prediction, AI/ML may have different performance for different UE speeds. Based on the evaluation results:
a. (Case 1) For generalization Case 1, the evaluation results show that the Top-1 beam prediction accuracy is higher by [4%] with UE speed 30 Km/h than with UE speed 120 Km/h.
b. (Case 2) For generalization Case 2, the evaluation results show that the Top-1 beam prediction accuracy significantly degradates [10%] compared to the Case 1 when AI/ML is trained with UE speed 30 Km/h and tested UE speed 120 Km/h, the evaluation results show that the Top-1 beam prediction accuracy degradates [2%] when AI/ML is trained with UE speed 120 Km/h and tested with UE speed 30 Km/h.
c. (Case 3) For generalization Case 3, the evaluation results show that the Top-1 beam prediction accuracy is similar to the Case 1 when AI/ML is trained by mixing data with different UE speeds.
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Annex I (Earlier agreements on 9.2.3.1)
Agreement
· For dataset construction and performance evaluation (if applicable) for the AI/ML in beam management, system level simulation approach is adopted as baseline
· Link level simulation is optionally adopted

Agreement
· At least for temporal beam prediction, companies report the one of spatial consistency procedures: 
· Procedure A in TR38.901
· Procedure B in TR38.901
Agreement
· At least for temporal beam prediction, Dense Urban (macro-layer only, TR 38.913) is the basic scenario for dataset generation and performance evaluation. 
· Other scenarios are not precluded.
· For spatial-domain beam prediction, Dense Urban (macro-layer only, TR 38.913) is the basic scenario for dataset generation and performance evaluation. 
· Other scenarios are not precluded.

Agreement
· At least for spatial-domain beam prediction in initial phase of the evaluation, UE trajectory model is not necessarily to be defined.

Agreement
· At least for temporal beam prediction in initial phase of the evaluation, UE trajectory model is defined. FFS on the details.


Agreement
UE rotation speed is reported by companies.
Note: UE rotation speed = 0, i.e., no UE rotation, is not precluded.

Agreement
For AI/ML in beam management evaluation, RAN1 does not attempt to define any common AI/ML model as a baseline.

Conclusion
· Further study AI/ML model generalization in beam management evaluating the inference performance of beam prediction under multiple different scenarios/configurations.
· FFS on different scenarios/configurations
· Companies report the training approach, at least including the dataset assumption for training
Agreement
For evaluation of AI/ML in BM, the KPI may include the model complexity and computational complexity.
FFS: the details of model complexity and computational complexity
Agreement
For spatial-domain beam prediction, further study the following options as baseline performance
Option 1: Select the best beam within Set A of beams based on the measurement of all RS resources or all possible beams of beam Set A (exhaustive beam sweeping)  
FFS CSI-RS/SSB as the RS resources
Option 2: Select the best beam within Set A of beams based on the measurement of RS resources from Set B of beams
FFS: Set B is a subset of Set A and/or Set A consists of narrow beams and Set B consists of wide beams
FFS: how conventional scheme to obtain performance KPIs
FFS: how to determine the subset of RS resources is reported by companies
Other options are not precluded.

Agreement
· For dataset generation and performance evaluation for AI/ML in beam management, take the parameters (if applicable) in Table 1.2-1b for Dense Urban scenario for SLS
Table 1.2-1b Assumptions for Dense Urban scenario for AI/ML in beam management
	Parameters
	Values

	Frequency Range
	FR2 @ 30 GHz
· SCS: 120 kHz

	Deployment
	200m ISD,
· 2-tier model with wrap-around (7 sites, 3 sectors/cells per site)
Other deployment assumption is not precluded

	Channel mode
	UMa with distance-dependent LoS probability function defined in Table 7.4.2-1 in TR 38.901.

	System BW
	80MHz

	UE Speed
	For spatial domain beam prediction, 3km/h
For time domain beam prediction: 30km/h (baseline), 60km/h (optional)
Other values are not precluded

	UE distribution
	· FFS UEs per sector/cell for evaluation. More UEs per sector/cell for data generation is not precluded.For spatial domain beam prediction: FFS:
· Option 1: 80% indoor ,20% outdoor as in TR 38.901
· Option 2: 100% outdoor
· For time domain prediction: 100% outdoor

	Transmission Power
	Maximum Power and Maximum EIRP for base station and UE as given by corresponding scenario in 38.802 (Table A.2.1-1 and Table A.2.1-2)

	BS Antenna Configuration
	         [One panel: (M, N, P, Mg, Ng) = (4, 8, 2, 1, 1), (dV, dH) = (0.5, 0.5) λ as baseline]
         [Four panels: (M, N, P, Mg, Ng) = (4, 8, 2, 2, 2), (dV, dH) = (0.5, 0.5) λ. (dg,V, dg,H) = (2.0, 4.0) λ as optional]
         Other assumptions are not precluded.
 
Companies to explain TXRU weights mapping.
Companies to explain beam selection.
Companies to explain number of BS beams

	BS Antenna radiation pattern
	TR 38.802 Table A.2.1-6, Table A.2.1-7

	UE Antenna Configuration
	[Panel structure: (M,N,P) = (1,4,2)]
         2 panels (left, right) with (Mg, Ng) = (1, 2) as baseline
         Other assumptions are not precluded
 
Companies to explain TXRU weights mapping.
Companies to explain beam and panel selection.
Companies to explain number of UE beams

	UE Antenna radiation pattern
	TR 38.802 Table A.2.1-8, Table A.2.1-10

	Beam correspondence
	Companies to explain beam correspondence assumptions (in accordance to the two types agreed in RAN4)

	Link adaptation
	Based on CSI-RS

	Traffic Model
	FFS:
· Option 1: Full buffer
· Option 2: FTP model
Other options are not precluded

	Inter-panel calibration for UE
	Ideal, non-ideal following 38.802 (optional) – Explain any errors

	Control and RS overhead
	Companies report details of the assumptions

	Control channel decoding
	Ideal or Non-ideal (Companies explain how it is modelled)

	UE receiver type
	MMSE-IRC as the baseline, other advanced receiver is not precluded

	BF scheme
	Companies explain what scheme is used

	Transmission scheme
	Multi-antenna port transmission schemes
Note: Companies explain details of the using transmission scheme.

	Other simulation assumptions
	Companies to explain serving TRP selection
Companies to explain scheduling algorithm

	Other potential impairments
	Not modelled (assumed ideal).
If impairments are included, companies will report the details of the assumed impairments

	BS Tx Power
	[40 dBm]

	Maximum UE Tx Power
	23 dBm

	BS receiver Noise Figure
	7 dB

	UE receiver Noise Figure
	10 dB

	Inter site distance
	200m

	BS Antenna height
	25m

	UE Antenna height
	1.5 m

	Car penetration Loss
	38.901, sec 7.4.3.2: μ = 9 dB, σp = 5 dB





Agreement
· For temporal beam prediction, the following options can be considered as a starting point for UE trajectory model for further study. Companies report further changes or modifications based on the following options for UE trajectory model. Other options are not precluded. 
· Option #2: Linear trajectory model with random direction change.
· UE moving trajectory: UE will move straightly along the selected direction to the end of an time interval, where the length of the time interval is provided by using an exponential distribution with average interval length, e.g., 5s, with granularity of 100 ms. 
· UE moving direction change: At the end of the time interval, UE will change the moving direction with the angle difference A_diff from the beginning of the time interval, provided by using a uniform distribution within [-45°, 45°].
· UE move straightly within the time interval with the fixed speed.
· FFS on UE orientation
· Option #3: Linear trajectory model with random and smooth direction change.
· UE moving trajectory: UE will change the moving direction by multiple steps within an time internal, where the length of the time interval is provided by using an exponential distribution with average interval length, e.g., 5s, with granularity of 100 ms.
· UE moving direction change: At the end of the time interval, UE will change the moving direction with the angle difference A_diff from the beginning of the time interval, provided by using a uniform distribution within [-45°, 45°].
· The time interval is further broken into N sub-intervals, e.g. 100ms per sub-interval, and at the end of each sub-interval, UE change the direction by the angle of A_diff/N.  
· UE move straightly within the time sub-interval with the fixed speed.
· FFS on UE orientation

· Option #4: Random direction straight-line trajectories. 
· Initial UE location, moving direction and speed: UE is randomly dropped in a cell, and an initial moving direction is randomly selected, with a fixed speed.
· The initial UE location should be randomly drop within the following blue area

where d1 is the minimum distance that UE should be away from the BS. 
· Each sector is a cell and that the cell association is geometry based.
· During the simulation, inter-cell handover or switching should be disabled.
For training data generation
· For each UE moving trajectory: the total length of the UE trajectory can be set as T second if it is in time, of set as D meter if it is in distance.
· The value of T (or D) can be further discussed
· The trajectory sampling interval granularity depends on UE speed and it can be further discussed. 
· UE can move straightly along the entire trajectory, or
· UE can move straightly during the time interval, where the time interval is provided by using an exponential distribution with average interval length 
· UE may change the moving direction at the end of the time interval. UE will change the moving direction with the angle difference A_diff from the beginning of the time interval, provided by using a uniform distribution within [-45°, 45°]
· If the UE trajectory hit the cell boundary (the red line), the trajectory should be terminated. 
· If the trajectory length (in time) is less than the length of observation window + prediction window, the trajectory should be discarded. 
· At the current stage, the length of observation window + prediction window is not fixed and the companies can report their values.
· FFS on UE orientation
· Generalization issue is FFS 

Agreement
· For temporal beam prediction, further study the following options as baseline performance
· Option 1a: Select the best beam for T2 within Set A of beams based on the measurements of all the RS resources or all possible beams from Set A of beams at the time instants within T2 
· Option 2: Select the best beam for T2 within Set A of beams based on the measurements of all the RS resources from Set B of beams at the time instants within T1 
· Companies explain the detail on how to select the best beam for T2 from Set A based on the measurements in T1
· Where T2 is the time duration for the best beam selection, and T1 is a time duration to obtain the measurements of all the RS resource from Set B of beams.
· T1 and T2 are aligned with those for AI/ML based methods
· Whether Set A and Set B are the same or different depend on the sub-use case
· Other options are not precluded.  


Agreement
· For dataset generation and performance evaluation for AI/ML in beam management, take the following assumption for LLS as optional methodology
	Parameter
	Value

	Frequency
	30GHz.

	Subcarrier spacing
	120kHz

	Data allocation
	[8 RBs] as baseline, companies can report larger number of RBs
First 2 OFDM symbols for PDCCH, and following 12 OFDM symbols for data channel

	PDCCH decoding
	Ideal or Non-ideal (Companies explain how is oppler)

	Channel model
	FFS:
LOS channel: CDL-D extension, DS = 100ns
NLOS channel: CDL-A/B/C extension, DS = 100ns
Companies explains details of extension methodology considering spatial consistency

Other channel models are not precluded.

	BS antenna configurations
	· One panel: (M, N, P, Mg, Ng) = (4, 8, 2, 1, 1), (dV, dH) = (0.5, 0.5) λ as baseline
· Other assumptions are not precluded. 
 
Companies to explain TXRU weights mapping.
Companies to explain beam selection.
Companies to explain number of BS beams

	BS antenna element radiation pattern
	Same as SLS

	BS antenna height and antenna array downtile angle
	25m, 110°

	UE antenna configurations
	Panel structure: (M, N, P) = (1, 4, 2), 
· 2 panels (left, right) with (Mg, Ng) = (1, 2) as baseline
· 1 panel as optional
· Other assumptions are not precluded
 
Companies to explain TXRU weights mapping.
Companies to explain beam and panel selection.
Companies to explain number of UE beams

	UE antenna element radiation pattern
	Same as SLS

	UE moving speed
	Same as SLS

	Raw data collection format
	Depends on sub-use case and companies’ choice. 



Agreement
· For UE trajectory model, UE orientation can be independent from UE moving trajectory model. FFS on the details. 
· Other UE orientation model is not precluded.

Agreement
· Companies are encouraged to report the following aspects of AI/ML model in RAN 1 #110. FFS on whether some of aspects need be defined or reported.
Description of AI/ML model, e.g, NN architecture type
Model inputs/outputs (per sub-use case)
Training methodology, e.g.
· Loss function/optimization function
· Training/ validity /testing dataset:
· Dataset size, number of training/ validity /test samples
· Model validity area: e.g., whether model is trained for single sector or multiple sectors             
· Details on Model monitoring and model update, if applicable
· Others related aspects are not precluded


Agreement
· To evaluate the performance of AI/ML in beam management, further study the following KPI options:
· Beam prediction accuracy related KPIs, may include the following options:
· Average L1-RSRP difference of Top-1 predicted beam
· Beam prediction accuracy (%) for Top-1 and/or Top-K beams, FFS the definition:
· Option 1: The beam prediction accuracy (%) is the percentage of “the Top-1 predicted beam is one of the Top-K genie-aided beams”
· Option 2: The beam prediction accuracy (%) is the percentage of “the Top-1 genie-aided beam is one of the Top-K predicted beams”

· CDF of L1-RSRP difference for Top-1 predicted beam
· Beam prediction accuracy (%) with 1dB margin for Top-1 beam
· The beam prediction accuracy (%) with 1dB margin is the percentage of the Top-1 predicted beam “whose ideal L1-RSRP is within 1dB of the ideal L1-RSRP of the Top-1 genie-aided beam” 

· the definition of L1-RSRP difference of Top-1 predicted beam: 
· the difference between the ideal L1-RSRP of Top-1 predicted beam and the ideal L1-RSRP of the Top-1 genie-aided beam
· Other beam prediction accuracy related KPIs are not precluded and can be reported by companies. 
· System performance related KPIs, may include the following options:
· UE throughput: CDF of UE throughput, avg. and 5%ile UE throughput
· RS overhead reduction at least for spatial-domain beam prediction at least for top-1 beam:
· 1-N/M,
· where N is the number of beams (with reference signal (SSB and/or CSI-RS)) required for measurement
· where (FFS) M is the total number of beams
· Note: Non-AI/ML approach based on the measurement of these M beams may be used as a baseline
· FFS on whether to define a proper value for M for evaluation.
· Other System performance related KPIs are not precluded and can be reported by companies.
o   Other KPIs are not precluded and can be reported by companies, for example:
  Reporting overhead reduction: (FFS) The number of UCI report and UCI payload size, for temporal /spatial prediction
  Latency reduction:
  (FFS) (1 – [Total transmission time of N beams] / [Total transmission time of M beams])
       where N is the number of beams (with reference signal (SSB and/or CSI-RS)) in the input beam set required for measurement
       where M is the total number of beams
  Power consumption reduction: FFS on details

Agreement
 The Following updated based on the agreements in RAN 1 #109-e is adopted
	Parameters
	Values

	UE distribution

	· FFS 10 UEs per sector/cell for system performance related KPI (if supported) [e.g,, throughput] for full buffer traffic (if supported) evaluation (model inference). 
· X UEs per sector/cell for system performance related KPI for FTP traffic (if supported) evaluation (model inference). 
· 
· Other values are not precluded 
· Number of UEs per/sector per cell during data collection (training/testing) is reported by companies if relevant
· More UEs per sector/cell for data generation is not precluded. 


	UE Antenna Configuration
	· Antenna setup and port layouts at UE: [1,2,1,4,2,1,1], 2 panels (left, right)
· [Panel structure: (M,N,P) = (1,4,2)]
· panels (left, right) with (Mg, Ng) = (1, 2) as baseline
· Other assumptions are not precluded
 
Companies to explain TXRU weights mapping.
Companies to explain beam and panel selection.
Companies to explain number of UE beams





Agreement
The Following updated based on the agreements in RAN 1 #109-e is adopted
	Parameters
	Values

	UE Speed
	· For spatial domain beam prediction, 3km/h
· For time domain beam prediction: 3km/h(optional), 30km/h (baseline), 60km/h (optional), 90km/h (optional), 120km/h (optional)
· Other values are not precluded

	UE distribution
	· For spatial domain beam prediction: 
· Option 1: 80% indoor ,20% outdoor as in TR 38.901
· Option 2: 100% outdoor
· For time domain prediction: 100% outdoor


	

Agreement
· If UE orientation is modeled, it can be independently modeled from UE moving trajectory model. 
· This is not precluded that UE orientation coupled with UE moving trajectory model. 

Agreement
· Study the following options on the selection of Set B of beams (pairs) 
· Option 1: Set B is fixed across training and inference
· FFS on the beams of Set B
· Option 2: Set B is variable (e.g., different beams (pairs) patterns in each report/measurement during training and/or inference) 
· FFS on fixed or variable number of beams (pairs)
· FFS on the details 
· Other options are not precluded. 
· FFS on the number of beams (pairs) in Set B
· Note: This does not preclude the alternative that Set B is different from Set A.

Agreement
· To evaluate the performance of AI/ML in beam management at least for NW side beam prediction, UCI report overhead can be further studied as one of KPI options. 
· FFS: number of UCI reports and UCI payload size

Working Assumption
The following cases are considered for verifying the generalization performance of an AI/ML model over various scenarios/configurations as a starting point:
· Case 1: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model performs inference/test on a dataset from the same Scenario#A/Configuration#A
· Case 2: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model performs inference/test on a different dataset than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B
· Case 3: The AI/ML model is trained based on training dataset constructed by mixing datasets from multiple scenarios/configurations including Scenario#A/Configuration#A and a different dataset than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B, and then the AI/ML model performs inference/test on a dataset from a single Scenario/Configuration from the multiple scenarios/configurations, e.g.,  Scenario#A/Configuration#A, Scenario#B/Configuration#B, Scenario#A/Configuration#B.
· Note: Companies to report the ratio for dataset mixing
· Note: number of the multiple scenarios/configurations can be larger than two
· FFS the detailed set of scenarios/configurations
· FFS other cases for generalization verification, e.g.,
· Case 2A: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model is updated based on a fine-tuning dataset different than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B. After that, the AI/ML model is tested on a different dataset than Scenario#A/Configuration#A, e.g., subject to Scenario#B/Configuration#B, Scenario#A/Configuration#B.

Conclusion
· For system performance related KPI (if supported) evaluation (model inference), companies report either of the following traffic model:
· Option 1: Full buffer
· Option 2: FTP model with detail assumptions (e.g., FTP model 1, FTP model 3)

Agreement
· BS antenna configuration: 
· antenna setup and port layouts at gNB: (4, 8, 2, 1, 1, 1, 1), (dV, dH) = (0.5, 0.5) λ
· Other assumptions are not precluded
· BS Tx power for evaluation: 
· 40dBm (baseline)
· Other values (e.g. 34 dBm) are not precluded and can be reported by companies
· UE antenna configuration (Clarification of agreement in RAN 1 #110): 
· antenna setup and port layouts at UE: (1, 4, 2, 1, 2, 1, 1), 2 panels (left, right) 
· Other assumptions are not precluded

Agreement
· For the evaluation of both BM-Case1 and BM-Case2, 32 or 64 downlink Tx beams (maximum number of available beams) at NW side. 
· Other values, e.g., 256, etc, are not precluded and can be reported by companies.
· For the evaluation of both BM-Case1 and BM-Case2, 4 or 8 downlink Rx beams (maximum number of available beams) per UE panel at UE side. 
· Other values, e.g., 16, etc, are not precluded and can be reported by companies.

Agreement
· The options to evaluate beam prediction accuracy (%):
· Top-1 (%): the percentage of “the Top-1 genie-aided beam is Top-1 predicted beam”
· Top-K/1 (%): the percentage of “the Top-1 genie-aided beam is one of the Top-K predicted beams”
· Top-1/K (%) (Optional): the percentage of “the Top-1 predicted beam is one of the Top-K genie-aided beams”
· Where K >1 and values can be reported by companies.


Agreement 
· For DL Tx beam prediction, the definition of Top-1 genie-aided Tx beam considers the following options 
· Option A, the Top-1 genie-aided Tx beam is the Tx beam that results in the largest L1-RSRP over all Tx and Rx beams
· Option B, the Top-1 genie-aided Tx beam is the Tx beam that results in the largest L1-RSRP over all Tx beams with specific Rx beam(s)
· FFS on specific Rx beam(s)
· Note: specific Rx beams are subset of all Rx beams



Agreement 
· For DL Tx-Rx beam pair prediction, the definition of Top-1 genie-aided Tx-Rx beam pair considers the following options:
· Option A: The Tx-Rx beam pair that results in the largest L1-RSRP over all Tx and Rx beams
· Option B: The Tx-Rx beam pair that results in the largest L1-RSRP over all Tx over all Tx beams with specific Rx beam(s)
· FFS on specific Rx beam(s)
· Note: specific Rx beams are subset of all Rx beams
Agreement
· For BM Case-1 and BM Case 2, to verify the generalization performance of an AI/ML model over various scenarios/configurations, the set of scenarios/configurations are considered focusing on one or more of the following aspects as a starting point:
· Scenarios
· Various deployment scenarios 
· Various outdoor/indoor UE distributions 
· Various UE mobility 
· Configurations
· Various UE parameters 
· Various gNB settings 
· [Various Set B of beam(pairs)]
· Other aspects of scenarios/configurations are not precluded
· The selected scenarios/configurations for generalization verification may consider the AI model inference node (e.g., @UE or @gNB) and use case (e.g., BM-Case1, or BM-Case2)
· Companies to report the selected scenarios/configurations for generalization verification
· Note: other approaches for achieving good generalization performance for AI/ML-based schemes are not precluded.



Working Assumption
For both BM-Case1 and BM-Case 2, the following table is adopted as working assumption for reporting the evaluation results.

Table X. Evaluation results for [BM-Case1 or BM-Case2] without model generalization for [DL Tx beam prediction or Tx-Rx beam pair prediction or Rx beam prediction]
	
	Company A
	……

	Assumptions
	Number of [beams/beam pairs] in Set A
	
	

	
	Number of [beams/beam pairs] in Set B
	
	

	
	Baseline scheme
	
	

	AI/ML model
input/output
	Model input
	
	

	
	Model output
	
	

	Data Size
	Training
	
	

	
	Testing
	
	

	AI/ML model
	[Short model description]
	
	

	
	Model complexity
	
	

	
	Computational complexity
	
	

	Evaluation results
[With AI/ML / baseline]
	[Beam prediction accuracy (%)]
	[KPI A]
	
	

	
	
	[KPI B]
…
	
	

	
	[L1-RSRP Diff]
	[Average L1-RSRP diff]
…
	
	

	
	[System performance]
	[RS overhead Reduction (%)/
RS overhead]
	
	

	
	
	[UCI report]
	
	

	
	
	[UPT]
…
	
	



To report the following in table caption: 
· Which side the model is deployed
Further info for the columns:
· Assumptions
· Number of beams/beam pairs in Set A
· Number of beams/beam pairs in Set B
· Baseline scheme, e.g., Option 1 (exhaustive beam sweeping), Option 2(based on measurements of Set B), or baseline described by companies
· Other assumptions can be added later based on agreements
· Model input: input type(s)
· Model output: output type(s), e.g., the best DL Tx and/or Rx beam ID, and/or L1-RSRPs of N beams(pairs) 
· Dataset size, both the size of training/validation dataset and the size of test dataset
· Short model description: e.g., CNN, LSTM
· Model complexity, in terms of “number of model parameters” and/or size (e.g. Mbyte)”, and 
· Computational complexity in terms of FLOPs
· Evaluation results: agreed KPIs, with AI/ML / with baseline scheme (if applicable)
Note: To report other simulation assumptions, if any.

Agreement
· Study the following options on the selection of Set B of beams (pairs) 
· Option 1: Set B is fixed across training and inference
· Option 2: Set B is variable (e.g., different beams (pairs) patterns in each time instance/report/measurement during training and/or inference), FFS:
· Opt A: Set B is changed following a set of pre-configured patterns 
· Opt B: Set B is randomly changed among pre-configured patterns 
· Opt C: Set B is randomly changed among Set A beams (pairs) 
· The number of beams(pairs) in Set B can be fixed or variable
· Note: BM-Case1 and BM-Case2 may be considered for different option. 
· Other options are not precluded. 

Working assumption
· For the evaluation of the overhead for BM-Case1, further study the following two metrics for potential down selection:
· Option A: RS overhead reduction, FFS for potential down selection:
· Option 1: 
· where N is the number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement 
· where M is the total number of beams (pairs) to be predicted 
· Option 2: 
· where N is the total number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement for AI/ML
· Where M is the total number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement for baseline scheme 
· Companies report the assumption on beam sweeping
· Option 3: 
· where N is the number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement 
· where M is the total number of beams (pairs) to be predicted 
· FFS the following alternatives consider different targets (e.g., beam or beam pair) for prediction: 
· Alt1: P is the number of Top-K selected beams (pairs) for beam sweeping (if applicable)
· Alt2: P is the number of Top-K selected beams (pairs) not in Set B for beam sweeping (if applicable)
· Alt3: P is the number of beams used for beam sweeping to get the best Rx beam (if applicable)
· Companies report the assumption on beam sweeping
· Other options can be reported by companies 
· Option B: RS overhead, FFS for potential down selection:
· Option 1: RS OH = N, 
· where N is the number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement 
· Option 2: RS OH = N + P 
· where N is the number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement 
· FFS the following alternatives consider different targets (e.g., beam or beam pair) for prediction: 
· Alt1: P is the number of Top-K selected beams (pairs) for beam sweeping (if applicable)
· Alt2: P is the number of Top-K selected beams (pairs) not in Set B for beam sweeping (if applicable)
· Alt3: P is the number of beams used for beam sweeping to get the best Rx beam (if applicable)
· Companies report the assumption on beam sweeping
· Other options can be reported by companies

Agreement
· At least for BM-Case 2, consider the following assumptions for evaluation
· Periodicity of time instance for each measurement/report in T1:
· 20ms, 40ms, 80ms, [100ms], 160ms, [960ms]
· Other values can be reported by companies.
· Number of time instances for measurement/report in T1 can be reported by companies.
· Time instance(s) for prediction can be reported by companies.


Agreement

The following cases are considered for verifying the generalization performance of an AI/ML model over various scenarios/configurations as a starting point:
· Case 1: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model performs inference/test on a dataset from the same Scenario#A/Configuration#A
· Case 2: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model performs inference/test on a different dataset than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B
· Case 3: The AI/ML model is trained based on training dataset constructed by mixing datasets from multiple scenarios/configurations including Scenario#A/Configuration#A and a different dataset than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B, and then the AI/ML model performs inference/test on a dataset from a single Scenario/Configuration from the multiple scenarios/configurations, e.g.,  Scenario#A/Configuration#A, Scenario#B/Configuration#B, Scenario#A/Configuration#B.
· Note: Companies to report the ratio for dataset mixing
· Note: number of the multiple scenarios/configurations can be larger than two
· FFS the detailed set of scenarios/configurations
· The following case for generalization verification, can be optionally considered by companies:
· Case 2A: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model is updated based on a fine-tuning dataset different than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B. After that, the AI/ML model is tested on a different dataset than Scenario#A/Configuration#A, e.g., subject to Scenario#B/Configuration#B, Scenario#A/Configuration#B.
· Company to report the fine-tuning dataset setting (e.g., size of dataset) and the improvement of performance
· FFS: Investigate of the feasibility the fine-tuning on the UE/Network side
Agreement
· For the evaluation of the overhead for BM-Case1, adoption the following metrics:
· RS overhead reduction, 
· Option 1: 
· where N is the number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement for AI/ML
· where M is the total number of beams (pairs) to be predicted 
· Option 2: 
· where N is the total number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement for AI/ML, including the beams (pairs) required for additional measurements before/after the prediction if applicable
· Where M is the total number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement for baseline scheme, including the beams (pairs) required for additional measurements before/after the prediction if applicable
· Companies report the assumption on additional measurements


Agreement
· Companies report the pattern of Set B.
· Further study the performance with different patterns of set B(s) for fixed Set B (Option 1) and different pre-configured/pre-known patterns of Set B(s) (Option 2A and 2B). 

Agreement
For BM Case-1 and BM Case 2, to verify the generalization performance of an AI/ML model over various scenarios/configurations, additionally considering
· Various Set B of beam(pairs)

Agreement
At least for evaluation on the performance of DL Tx beam prediction, consider the following options for Rx beam for providing input for AI/ML model for training and/or inference if applicable
· Option 1: Measurements of the “best” Rx beam with exhaustive beam sweeping for each model input sample
· Option 2: Measurements of specific Rx beam(s)
· Option 2a: Measurements of specific Rx beam(s) per model input sample 
· Option 2b: Measurements of specific Rx beam(s) for all model input sample
· FFS how to select the specific Rx beam(s)
· Option 3: Measurements of random Rx beam(s) per model input sample
· Other options are not precluded and can be reported by companies.


Agreement
· For generalization performance verification, consider the following
· Scenarios
· Various deployment scenarios,
· e.g., UMa, UMi and others,
· e.g., 200m ISD or 500m ISD and others
· e.g., same deployment, different cells with different configuration/assumption
· e.g., gNB height and UE height
· FFS: e.g., Carrier frequencies
· Various outdoor/indoor UE distributions, e.g., 100%/0%, 20%/80%, and others
· Various UE mobility, 
· e.g., 3km/h, 30km/h, 60km/h and others
· Configurations (parameters and settings)
· Various UE parameters, e.g., number of UE Rx beams (including number of panels and UE antenna array dimensions)
· Various gNB settings, e.g., DL Tx beam codebook (including various Set A of beam(pairs) and gNB antenna array dimensions)
· Various Set B of beam (pairs)
· T1 for measurement /T2 for prediction for BM-Case2
· Other scenarios/configurations(parameters and settings) are not precluded and can be reported by companies.

Agreement
· For the evaluation of the overhead for BM-Case2, adoption the following metrics:
· RS overhead reduction, 
· Option 2: 
· where N is the total number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement for AI/ML, including the beams (pairs) required for additional measurements before/after the prediction if applicable
· Where M is the total number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement for baseline scheme
· Companies report the assumption on additional measurements
· FFS: Option 3:  
· where N is the number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement for AI/ML in each time instance
· where M is the total number of beams (pairs) to be predicted for each time instance
· where L is ratio of periodicity of time instance for measurements to periodicity of time instance for prediction
· Companies report the assumption on T1 and T2 patterns
· Other options are not precluded and can be reported by companies.

Agreement
· Further study the impact of quantization error of input L1-RSRP (for training and inference) for AI/ML model for beam management. 
· Existing quantization granularity of L1-RSRP (i.e., 1dB for the best beam, 2dB for the difference to the best beam) is the starting point for evaluation at least for network-sided model. 

Agreement
· Further study on whether/how to evaluate the performance impact with L1-RSRP measurement accuracy. 

Agreement
· For DL Tx beam prediction, the definition of Top-1 genie-aided Tx beam is defined as
· Option A (baseline): the Top-1 genie-aided Tx beam is the Tx beam that results in the largest L1-RSRP over all Tx and Rx beams
· Option B(optional), the Top-1 genie-aided Tx beam is the Tx beam that results in the largest L1-RSRP over all Tx beams with specific Rx beam(s)
· FFS on specific Rx beam(s)
· Note: specific Rx beams are subset of all Rx beams
· For DL Tx-Rx beam pair prediction, the definition of Top-1 genie-aided Tx-Rx beam pair is defined as
· Option A: The Tx-Rx beam pair that results in the largest L1-RSRP over all Tx and Rx beams
· Other options are not precluded and can be reported by companies. 
· Note: This is only for evaluation discussion 


Agreement
· For AI/ML models, which provide L1-RSRP as the model output, to evaluate the accuracy of predicted L1-RSRP, companies optionally report average (absolute value)/CDF of the predicted L1-RSRP difference, where the predicted L1-RSRP difference is defined as:
· The difference between the predicted L1-RSRP of Top-1[/K] predicted beam and the ideal L1-RSRP of the same beam.

Agreement
· For the evaluation of Option 2: Set B is variable (e.g., different beams (pairs) patterns in each time instance/report/measurement during training and/or inference), further study the following options as AI/ML model inputs 
· Alt 2: Implicit information of Tx beam ID and/or Rx beam ID
· E.g., measurements of Set B of beams together with default values (e.g. 0) for the beams not in Set B are used as AI inputs in a certain order/ matrix/ vector. 
· Detailed assumption can be reported by companies.
· Alt 3: Tx beam ID and/or Rx beam ID is used as inputs of AI/ML explicitly 
· Note: Specification impact can be discussed separately.  


Agreement
· Additionally study the following option on the selection of Set B of beams (pairs) (for Option 2: Set B is variable) 
· Opt D: Set B is a subset of measured beams (pairs) Set C (including Set B = Set C), e.g. Top-K beams(pairs) of Set C
· Companies report the number of pre-configured patterns used in the evaluation for Option 2: Set B is variable if applicable (e.g. Opt A and Opt B)

Agreement (RAN1#112bis-e)
· For the evaluation of the overhead for BM-Case2, adoption the following metrics:
· RS overhead reduction, 
·  
· where N is the total number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement for AI/ML, including the beams (pairs) required for additional measurements before/after the prediction if applicable
· where M is the total number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement for baseline scheme
· Companies report the assumption on additional measurements
· Companies report the assumption on baseline scheme
· Companies report the assumption on T1 and T2
· Other options are not precluded and can be reported by companies.
Agreement (RAN1#112bis-e)
· To evaluate the performance of AI/ML in beam management at least for NW side beam prediction, UCI report overhead (e.g., number of UCI reports and UCI payload size) and/or UCI overhead reduction for inference of AI/ML model can be reported by company. 
· UCI overhead reduction = 1- Total UCI payload size for AI/ML/Total UCI payload size of baseline.
· Companies to report detailed assumption of UCI for AI/ML and baseline, e.g., including quantization mechanism
Conclusion (RAN1#112bis-e)
· It is optional to evaluate and compare the performance for BM Case-1 with different UE distribution assumptions: 
· Option 1: 80% indoor, 20% outdoor as in TR 38.901
· Option 2: 100% outdoor

Agreement (RAN1#112bis-e)
At least for evaluation on the performance of DL Tx beam prediction, consider the following options for Rx beam for providing input for AI/ML model for training and/or inference if applicable
· Option 1: Measurements of the “best” Rx beam with exhaustive beam sweeping for each model input sample 
· Companies report how to select the “best” Rx beam(s) 
· Option 2: Measurements of specific Rx beam(s)
· Companies report how to select specific Rx beam(s) 
· Option 3: Measurements of random Rx beam(s) per model input sample
Other options are not precluded and can be reported by companies.

Observation (RAN1#112bis-e)
· At least for BM-Case1 for inference of DL Tx beam with L1-RSRPs of all beams in Set B, existing quantization granularity of L1-RSRP (i.e., 1dB for the best beam, 2dB for the difference to the best beam) causes [a minor loss x%~y%, if applicable] in beam prediction accuracy compared to unquantized L1-RSRPs of beams in Set B.

Agreement (RAN1#112bis-e)
· For AI/ML in beam management, further study performance with different types of label, considering the following:
· Option 1a: Top-1 beam(pair) in Set A
· Option 1b: Top-K beam (pair)s in Set A
· Option 2a: L1-RSRPs per beam of all the beams(pairs) in Set A 
· Option 2b: Top-K beam(pair)s in Set A and the corresponding L1-RSRPs 
· Option 2c: Top-1 beam(pair) in Set A and the corresponding L1-RSRP
· Other options are not precluded and can be reported by companies. 

Observation (RAN1#112bis-e) 
· For BM-Case1 DL Tx beam prediction, when Set B is a subset of Set A, AI/ML can provide good beam prediction performance with less measurement/RS overhead without considering generalization aspects with the measurements from the best Rx beam without UE rotation.
· (A)With measurements of fixed Set B of beams that of 1/4 of Set A of beams
· evaluation results [from 4 sources] indicate that, AI/ML can achieve [about 70%~80%] beam prediction accuracy of Top-1 DL Tx beam, evaluation results [from 6 sources] indicate that, AI/ML can achieve [about 80%~90%] beam prediction accuracy of Top-1 DL Tx beam, and evaluation results [from 4 sources] show [more than 90%] beam prediction accuracy of Top-1 DL Tx beam
· evaluation results [from 8 sources] indicate that, AI/ML can achieve [more than 90%] beam prediction accuracy for Top-1 DL Tx beam with 1dB margin
· evaluation results [from 8 sources] indicate that, AI/ML can achieve [more than 80%] beam prediction accuracy for Top-2 DL Tx beam. The beam prediction accuracy increases with K.  
· evaluation results [from 9 sources] indicate that, the average L1-RSRP difference of Top-1 predicted beam can be [below or about 1dB].
 
· (B) With measurements of fixed Set B of beams that of 1/8 of Set A of beams
· evaluation results [from 2 sources] indicate that, AI/ML can achieve [about 50%] beam prediction accuracy of Top-1 DL Tx beam, evaluation results [from 3 sources] show [about 60%~70%] beam prediction accuracy of Top-1 DL Tx beam, and evaluation results [from 2 sources] show [about 70%~80] beam prediction accuracy of Top-1 DL Tx beam.
· evaluation results [from 4 sources] indicate that, AI/ML can achieve [70%-90%] beam prediction accuracy for Top-1 DL Tx beam prediction with 1dB margin
· evaluation results [from 2 sources] indicate that, AI/ML can achieve [about 70%~ 80%] beam prediction accuracy for Top-2 DL Tx beam, and evaluation results [from 4 sources] indicate that, AI/ML can achieve [more than 80%] beam prediction accuracy for Top-2 DL Tx beam. The beam prediction accuracy increases with K.
· Note that ideal measurements are assumed
· Beams could be measured regardless of their SNR.
· No measurement error.
· Measured in a single-time instance (within a channel-coherence time interval).
· No quantization for the L1-RSRP measurements.
· No constraint on UCI payload overhead for full report of the L1-RSRP measurements of Set B for NW-side models are assumed. 
 

Agreement (RAN1#112bis-e) 
For performance evaluation of AI/ML based DL Tx beam prediction for BM-Case1 and BM-Case2, optionally study the performance with a quasi-optimal Rx beam (i.e., not all the measurements as inputs of AI/ML are from the “best” Rx beam) with less measurement/RS overhead compared to exhaustive Rx beam sweeping. 
· At least the following options can be considered:
· Opt A: Identify the quasi-optimal Rx beams to be utilized for measuring Set B/Set C based on the previous measurements.
· Companies can report the time information and beam type (e.g., whether the same Tx beam(s) in Set B) of the reference signal to use. 
· Companies report how to find the quasi-optimal Rx beam with “previous measurement”
· FFS: Opt B: The Rx beams for measuring Set B/Set C consist of the X% of “best” Rx beam exhaustive Rx beam sweeping and (1-X%) of random Rx beams [or the adjacent Rx beam to the “best” Rx beam].
· X%= 80% or 90%, or other values reported by companies. 
· Note: X% is the percentage of measurements with “best” Rx beams out of all measurements   
· Other options are not precluded.
· Companies report the measurement/RS overhead together with beam prediction accuracy. 


Conclusion(RAN1#112bis-e)
To evaluate the performance of BM-Case1 for both DL Tx beam and pair prediction, aiming to analysis the following aspects:
· Clarify the baseline performance in terms of beam prediction accuracy and/or average L1-RSRP difference. 
· Other metrics to be considered:
· Measurement/RS overhead reduction
· UCI overhead (reduction) potentially with different quantization 
· User throughput
· Model size /complexity
· Average predicted L1-RSRP difference, if applicable 
· Performance difference based on the reported results from each company
· Different Set B assumption
· Opt A/B, Opt C, Opt D
· [(optional) with UE rotation] 
· (optional) with different Rx assumption for DL Tx beam prediction/DL beam pair prediction and potentially with quasi-optimal Rx beam
· (optional) with quantization
· [(optional) with measurement error]
· [(optional) with different label, including data collection for NW side model if supported]
· [(optional) Impact of different beam pair pattern for beam pair prediction, e.g., 
· Tx down sampling only
· Tx and Rx down sampling]
· Other settings:
· Other percentage of Set B and Set A if reported by companies
· When Set B is different from Set A (e.g., Set B is composed of wide beams and Set A is composed of narrow beams).
· Other aspects are not precluded
· Observation/analysis may consider UE-side and NW-side model when applicable

 
Observation (RAN1#112bis-e) 
· For BM-Case1 DL Tx beam prediction, when Set B is a subset of Set A without considering other generalization aspects with the measurements from the best Rx beam without UE rotation.
· (Opt 2B) For the case that Set B of beams is changed among pre-configured patterns, evaluation results [from 4 sources] show that the beam prediction accuracy degrades [no more than 5%] in terms of Top-1 beam prediction accuracy than when Set B is fixed across training and inference, where the [one source] used [24] pre-configured patterns and the rest of sources use [4 or 5] patterns; evaluation results [from 1 source] show that the beam prediction accuracy degrades [about 10%] in terms of Top-1 beam prediction accuracy than when Set B is fixed across training and inference. 
· Note: the above performance can also be treated as training with mixed patterns of Set B of beam, and testing with mixed patterns Set B of beams. 
· Note: the measurements are obtained from the best Rx beam without UE rotation
· Note that ideal measurements are assumed
· Beams could be measured regardless of their SNR.
· No measurement error.
· Measured in a single-time instance (within a channel-coherence time interval).
· No quantization for the L1-RSRP measurements.
· No constraint on UCI payload overhead for full report of the L1-RSRP measurements of Set B for NW-side models are assumed. 
· This observation is based on Set B patterns that were chosen by each company.
 
 
Conclusion(RAN1#112bis-e)
Clarify the baseline performance in terms of beam predictio To evaluate the performance of BMCase-2 for both DL Tx beam and pair prediction, aiming to analysis the following aspects:
· n accuracy and/or average L1-RSRP.
· Observations based on the metrics to be considered:
· Top-1/K [=2] beam prediction accuracy, Top-1 beam prediction accuracy with 1dB, average L1-RSRP difference
· Measurement/RS overhead reduction
· UCI overhead (reduction) potentially with different quantization
· User throughput
· Model size and complexity
· Average predicted L1-RSRP difference, if applicable
· Scenarios/assumptions/Cases for basic observations
· Set A and Set B relationship
· Set A= Set B
· Set B /Set A =1/4, [1/6], 1/8, 1/16, [1/32]
· UE speed: 30km/h
· No UE rotation
· FFS the following cases for results reporting.
· Case 1:  based on T1 and T2, where T2 is the time duration for the best beam selection, and T1 is a time duration to obtain the measurements of all the RS resource from Set B of beams.
· T1 = 40ms, 80ms, 160ms, [320ms], [640ms]
· T2 = 40ms, 80ms, 160ms, 320ms, [960ms]
· M= [1, 2, 3, 4, 5, 8], where M is the number of time instance(s) for measurement/report in T1 as AI/ML inputs (per model)
· P= [1, 2, 4, 5, …], where P is the number of time instance(s) P for prediction as AI/ML model output(s)/label(s) (per model)
· Case 2: based on the number of prediction instance(s) Y for every number of measurement instance(s) X, at least consider the following values:
· Minimal periodicity for time instances for measurement(s) and prediction(s) = [40ms, 80ms, 160ms]
· X = [1, 2]
· Y = [1, 2, 4, 5, 10]
· P= [1, 2, 4, 5, …], where P is the number of time instance(s) P for prediction as AI/ML model output(s)/label(s) (per model)
· The number of measurement instance(s) as AI inputs are up to implementation.
· FFS whether separated observations are needed or not for the following:
· UE trajectories
· Performance difference based on the reported results from each company
· With UE rotation
· Different UE speed: e.g., 60km/h, 90km/h, 120km/h
· Different observation/prediction windows or periodicity for time instances.
· Different Set B assumption when Set A is a subset of Set B
· Opt A/B, Opt C, Opt D
· Other settings:
· Other percentage of Set B and Set A if reported by companies
· When Set B is different from Set A (e.g., Set B is composed of wide beams and Set A is composed of narrow beams).
· Other aspects are not precluded
· Observation/analysis may consider UE-side and NW-side model when applicable

Annex II (Assumptions for Data Generation & Simulations)
The methodology for dataset construction and performance evaluation is based on the statistical channel models from TR 38.901 and the system level simulation approach is adopted as a baseline as agreed in RAN1 #109-e meeting [1]. Based on what is agreed upon, we adopt the system level assumptions and the parameters for the Dense Urban scenario detailed in Table A.II-1. 
[bookmark: _Ref127465018]Table A.II-1: SLS assumptions for dataset generation & performance evaluation for AI/ML beam management.
	Parameters
	Values

	Frequency Range
	FR2 @ 30 GHz 

	Deployment
	200m ISD, BS Antenna height=25 m
2-tier model with wrap-around (7 sites, 3 sectors/cells per site)

	Channel mode
	UMa with distance-dependent LoS probability function defined in Table 7.4.2-1 in TR 38.901.

	System BW
	80MHz, SCS: 120 kHz

	UE Speed
	· For spatial domain beam prediction, 3km/h
· For time domain beam prediction: 30km/h 

	UE distribution
	10 UEs per sector/cell for data generation/evaluation, UE Antenna height=1.5 m
For spatial domain beam prediction: 100% outdoor
For time domain prediction: 100% outdoor

	BS Tx Power
	40 dBm

	BS Antenna Configuration
	One panel: (M, N, P, Mg, Ng) = (4, 8, 2, 1, 1), (dV, dH) = (0.5, 0.5) λ 
· TXRU weights mapping: one TXRU mapped to multiple antenna elements
· Beam selection: based on maximum L1-RSRP
· Number of BS beams: 64

	BS Antenna radiation pattern
	TR 38.802 Table A.2.1-6, Table A.2.1-7

	Maximum UE Tx Power
	23 dBm

	UE Antenna Configuration
	Panel structure: (M,N,P) = (1,4,2), 2 panels (left, right) with (Mg, Ng) = (1, 2) 
· TXRU weights mapping: one TXRU mapped to multiple antenna elements
· panel selection: ideal
· number of UE beams: 8
· beam selection: 
1. Fixed Rx beam direction to panel boresight 
2. Optimal Rx beam selection based on maximum L1-RSRP

	UE Antenna radiation pattern
	TR 38.802 Table A.2.1-8, Table A.2.1-10

	Link adaptation
	Based on CSI-RS

	Traffic Model
	· Full buffer as default option
· FTP traffic when specified

	Inter-panel calibration for UE
	Ideal

	Control and RS overhead
	common overhead is 30% based on TR 37.910 for DenseUrban-eMBB scenario [2]

	Control channel decoding
	Ideal

	UE receiver type
	MMSE-IRC

	BF scheme
	Analog Beamforming

	TRP selection
	Based on RSRP

	BS receiver Noise Figure
	7 dB

	UE receiver Noise Figure
	10 dB



image1.emf
GoB Azimuth Direction

G

o

B

 

E

l

e

v

a

t

i

o

n

 

D

i

r

e

c

t

i

o

n

 0 1 2 3 4 5 6 7 8 9101112131415

16171819202122232425262728293031

32333435363738394041424344454647

48495051525354555657585960616263


image2.png

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.png

image17.png

image18.png

image19.png

image20.png

image21.emf
t-M + 1t-M+2tt+PTimeCSI Measurement/Report Time InstantΔtModel inference time instant


t-M + 1
t-M+2
t
t+P
Time
CSI Measurement/Report Time Instant
Δt
Model inference time instant



image22.emf
t-M + 1t-M+2tt+P͛TimeCSI Measurement/Report Time InstantΔtModel inference time instant


t-M + 1
t-M+2
t
t+P’
Time
CSI Measurement/Report Time Instant
Δt
Model inference time instant



image23.png

image24.png

image25.emf
d1UE


