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Introduction
[bookmark: OLE_LINK13][bookmark: OLE_LINK14]In RAN1 #112bis-e, the discussion on performance evaluation for CSI compression and CSI prediction continued. Part of the conclusions, agreements, and observations in RAN1 #112bis-e are listed below:
	Agreement
For the rank >1 options under AI/ML-based CSI compression, for a given configured Max rank=K, the complexity of FLOPs is reported as the maximum FLOPs over all ranks each includes the summation of FLOPs for inference per layer if applicable, e.g.,
· Option 1-1 (rank specific): Max FLOPs over K rank specific models.
· Option 1-2 (rank common): FLOPs of the rank common model.
· Option 2-1 (layer specific and rank common): Sum of the FLOPs of K models (for the rank=K).
· Option 2-2 (layer specific and rank specific): Max of the FLOPs over K ranks, k=1,…K, each with a sum of k models.
· Option 3-1 (layer common and rank common): K * FLOPs of the common model.
· Option 3-2 (layer common and rank specific): Max of the FLOPs over K ranks, k=1,…K, each with k * FLOPs of the layer common model.
Agreement
For the rank >1 options under AI/ML-based CSI compression, the storage of memory storage/number of parameters is reported as the summation of memory storage/number of parameters over all models potentially used for any layer/rank, e.g.,
· Option 1-1 (rank specific)/Option 3-2 (layer common and rank specific): Sum of memory storage/number of parameters over all rank specific models.
· Option 1-2 (rank common): A single memory storage/number of parameters for the rank common model.
· Option 2-1 (layer specific and rank common): Sum of memory storage/number of parameters over all layer specific models.
· Option 2-2 (layer specific and rank specific): Sum of memory storage/number of parameters for the specific models over all ranks and all layers in per rank.
· Option 3-1 (layer common and rank common): A single memory storage/number of parameters for the common model.
Working assumption 
For the forms of the intermediate KPI results for the following templates:
	Table 2. Evaluation results for CSI compression with model generalization
Table 3. Evaluation results for CSI compression with model scalability, 
Table 4. Evaluation results for CSI compression of multi-vendor joint training without model generalization/scalability, 
Table 5. Evaluation results for CSI compression of separate training without model generalization/scalability, 
Table 7. Evaluation results for CSI prediction with model generalization


· The intermediate KPI results are in forms of absolute values and the gain over benchmark, e.g., in terms of “absolute value (gain over benchmark)”
· The intermediate KPI results are in forms of linear value for SGCS and dB value for NMSE

Working Assumption 
For the per layer CSI payload size X/Y/Z in the templates of CSI compression, as a clarification, the X/Y/Z ranges in the working assumption achieved in RAN1#112 meeting is applicable to Max rank = 1/2. For Max rank () = 3/4, the per layer basis X/Y/Z ranges are re-determined as:
· X is <=bits
· Y is bits-bits
· Z is >=bits

Working Assumption 
For the template of Table 1. Evaluation results for CSI compression of 1-on-1 joint training without model generalization/scalability, the CSI feedback reduction is provided for 3 CSI feedback overhead ranges, where for each CSI feedback overhead range of the benchmark, it is calculated as the gap between the CSI feedback overhead of benchmark and the CSI feedback overhead of AI/ML corresponding to the same mean UPT.
· Note: the CSI feedback overhead reduction and gain for mean/5%tile UPT are determined at the same payload size for benchmark scheme
	CSI feedback reduction (%)  (for a given CSI feedback overhead in the benchmark scheme)
	[X*Max rank value], RU<=39%

	
	[Y*Max rank value], RU<=39%

	
	[Z*Max rank value], RU<=39%

	
	[X*Max rank value], RU 40%-69%

	
	[Y*Max rank value], RU 40%-69%

	
	[Z*Max rank value], RU 40%-69%

	
	[X*Max rank value], RU >=70%

	
	[Y*Max rank value], RU >=70%

	
	[Z*Max rank value], RU >=70%




Note: for result collection for the generalization verification of AI/ML based CSI compression over various deployment scenarios, till the RAN1#112bis-e meeting,
· 15 sources show that compared to the case where the AI/ML model is trained with dataset subject to a certain deployment scenario#B and applied for inference with a same deployment scenario#B, it has degraded performance if the model is trained with deployment scenario#A and applied for inference with a different deployment scenario#B.
· E.g., deployment scenario#A is UMa, deployment scenario#B is UMi, deployment scenario#A is UMi, deployment scenario#B is UMa, or deployment scenario#A is InH, deployment scenario#B is UMa/UMi.
· 6 sources observe that if deployment scenario#A and deployment scenario#B are subject to some certain combinations, the degradation is minor.
· E.g., deployment scenario#A is UMa, deployment scenario#B is UMi, or deployment scenario#A is UMi, deployment scenario#B is UMa.
· 6 sources show that generalized performance of the AI/ML model can be achieved, if the training dataset is constructed with data samples subject to multiple deployment scenarios including deployment scenario#A and deployment scenario#B, and the trained AI/ML model applies inference on either deployment scenario#A or deployment scenario#B.
· E.g., deployment scenario#A is InH, deployment scenario#B is UMa and/or UMi.
· 3 sources show that, compared to the case where the AI/ML model is trained on scenario#A and applied for inference on deployment scenario#B, the generalization performance can be improved, if the AI/ML model, after trained on deployment scenario#A, is updated based on a fine-tuned dataset subject to deployment scenario#B, and performs inference on deployment scenario#B.
· E.g., deployment scenario#A is InH, deployment scenario#B is UMa or UMi.

Agreement
For the AI/ML based CSI prediction, add an entry for “Table 6. Evaluation results for CSI prediction without model generalization/scalability” to report the Codebook type for CSI report.
	Assumption
	UE speed

	
	CSI feedback periodicity

	
	Observation window (number/distance)

	
	Prediction window (number/distance [between prediction instances/distance from the last observation instance to the 1st prediction instance])

	
	Whether/how to adopt spatial consistency

	
	Codebook type for CSI report



Conclusion
For the evaluation of CSI enhancements, when reporting the computational complexity including the pre-processing and post-processing, the complexity metric of FLOPs may be reported separately for the AI/ML model and the pre/post processing.
· How to calculate the FLOPs for pre/post processing is up to companies.
· While reporting the FLOPs of pre-processing and post-processing the following boundaries are considered.
· Estimated raw channel matrix per each frequency unit as an input for pre-processing of the CSI generation part
· Precoding vectors per each frequency unit as an output of post-processing of the CSI reconstruction part

Agreement
For the evaluation of CSI compression, companies are allowed to report (by introducing an additional field in the template to describe) the specific CQI determination method(s) for AI/ML, e.g.,
· Option 2a: CQI is calculated based on CSI reconstruction output, if CSI reconstruction model is available at the UE and UE can perform reconstruction model inference with potential adjustment
· Option 2a-1: The CSI reconstruction part for CQI calculation at the UE same as the actual CSI reconstruction part at the NW
· Option 2a-2: The CSI reconstruction part for CQI calculation at the UE is a proxy model, which is different from the actual CSI reconstruction part at the NW
· Option 2b: CQI is calculated using two stage approach, UE derives CQI using precoded CSI-RS transmitted with a reconstructed precoder
· Option 1a: CQI is calculated based on the target CSI from the realistic channel estimation
· Option 1b: CQI is calculated based on the target CSI from the realistic channel estimation and potential adjustment
· Option 1c: CQI is calculated based on traditional codebook
· Other options if adopted, to be described by companies

Agreement
For the AI/ML based CSI prediction sub use case, if collaboration level x is reported as the benchmark, the EVM to distinguish level x and level y/z based AI/ML CSI prediction is considered from the generalization aspect.
           E.g., collaboration level y/z based CSI prediction is modeled as the fine-tuning case or generalization Case 1, while collaboration level x based CSI prediction is modeled as generalization Case 2 or Case 3.

Working Assumption
For the template of Table 1. Evaluation results for CSI compression of 1-on-1 joint training without model generalization/scalability, the CSI feedback overhead for the metric of eventual KPI (e.g., mean/5% UPT) is re-determined as:
· CSI feedback overhead A: <=β* 80 bits.
· CSI feedback overhead B: β* (100bits – 140 bits).
· CSI feedback overhead C: >=β* 230 bits.
· Note: β=1 for max rank = 1, andβ=1.5 for max rank = 2/3/4.
· FFS for rank 2/3/4, whether to add an additional CSI feedback overhead D: >=γ* 230 bits, γ= [1.9], and limit the range of CSI feedback overhead C as:β* 230 bits-γ* 230 bits.
· Note: companies additionally report the exact CSI feedback overhead they considered

Observation
For the scalability verification of AI/ML based CSI compression over various CSI payload sizes, till the RAN1#112bis-e meeting, compared to the generalization Case 1 where the AI/ML model is trained with dataset subject to a certain CSI payload size#B and applied for inference with a same CSI payload size#B, 
· Generalized performance of the AI/ML model can be achieved (0%~5.9% loss) under generalization Case 3 for the inference on either CSI payload size#A or CSI payload size#B, if the training dataset is constructed with data samples subject to multiple CSI payload sizes including CSI payload size#A and CSI payload size#B, and an appropriate scalability solution is performed to scale the dimension of the AI/ML model, shown by 7 sources (Note *) (6 sources (Note **) showing 0%~2.2% loss, 3 sources (Note ***) showing 2.35%~5.9% loss). The scalability solution is adopted as follows:
· Pre/post-processing of truncation/padding, adopted by 3 sources (Note ****), showing 0.2%~5.9% loss.
· Various quantization granularities, adopted by 1 source (Note *****), showing 1.8%~4.7% loss.
· Adaptation layer in the AL/ML model, adopted by 3 sources (Note ******), showing 0%~4.05% loss.
· Note: the above results are based on the following assumptions
· Precoding matrix is used as the model input.
· Training data samples are not quantized, i.e., Float32 is used/represented.
· 1-on-1 joint training is assumed.
· Input/output scalability dimension Case 3 is adopted: A pair of CSI generation part with scalable input/output dimensions and CSI reconstruction part with scalable output and/or input dimensions.
· The performance metric is SGCS in linear value for layer 1/2.
· Note *: Huawei, HiSilicon (R1-2302358), Ericsson (R1-2302918), OPPO (R1-2302540), Fujitsu (R1-2302904), CMCC (R1-2303224), MediaTek (R1-2303336), NTT DOCOMO (R1-2303705).
· Note **: Huawei, HiSilicon (R1-2302358), Ericsson (R1-2302918), Fujitsu (R1-2302904), CMCC (R1-2303224), MediaTek (R1-2303336), NTT DOCOMO (R1-2303705).
· Note ***: Ericsson (R1-2302918), OPPO (R1-2302540), MediaTek (R1-2303336).
· Note ****: OPPO (R1-2302540), Fujitsu (R1-2302904), CMCC (R1-2303224).
· Note *****: Ericsson (R1-2302918).
· Note ******: Huawei, HiSilicon (R1-2302358), MediaTek (R1-2303336), NTT DOCOMO (R1-2303705).

Observation 
For the AI/ML based CSI prediction, till the RAN1#112bis-e meeting, 
· 11 sources (Note *) show that the AI/ML-based CSI prediction outperforms the benchmark of the nearest historical CSI, wherein
· 5 sources (Note **) show the gain of 14% ~ 26.47% using raw channel matrix as input.
· 2 sources (Note ***) show the gain of 5.64% ~ 9.49% using precoding matrix as input, which is in general worse than using raw channel matrix as input
· Note 1: spatial consistency is adopted in 1 source (Note ****) and not adopted in 5 sources (Note *****).
· Note 2: the above results are based on the following assumptions
· The observation window considers to start as early as 15ms~50ms.
· A future 4ms or 5ms instance from the prediction output is considered for calculating the metric.
· UE speed is 30km/h.
· The performance metric is SGCS in linear value for layer 1.
· Note *: Huawei, HiSilicon (R1-2302358), ZTE (R1-2302437), Spreadtrum Communications, BUPT, (R1-2302593), Nokia, Nokia Shanghai Bell (R1-2302628), CATT (R1-2302695), Fujitsu (R1-2302904), Samsung (R1-2303120), ETRI (R1-2303194), CMCC (R1-2303224), NVIDIA (R1-2303435), Apple (R1-2303475).
· Note **: ZTE (R1-2302437), Nokia, Nokia Shanghai Bell (R1-2302628), Spreadtrum Communications, BUPT (R1-2302593), NVIDIA (R1-2303435), Apple (R1-2303475).
· Note ***: ZTE (R1-2302437), Fujitsu (R1-2302904).
· Note ****: Nokia, Nokia Shanghai Bell (R1-2302628).
· Note *****: Huawei, HiSilicon (R1-2302358), ZTE (R1-2302437), ETRI (R1-2303194), CMCC (R1-2303224), Apple (R1-2303475).

Agreement
For the AI/ML based CSI compression, for the submission of simulation results to the RAN1#113 meeting, for Table 1. Evaluation results for CSI compression of 1-on-1 joint training without model generalization/scalability, companies are encouraged to take the following assumptions as baseline for the calibration purpose:
· Benchmark: R16 eType II CB; 
· Others can be additionally submitted, e.g., Type I CB.
· Input/Output type: Eigenvectors of the current CSI
· Other can be additionally submitted, e.g., eigenvectors with additional past CSI, eType II-like input, raw channel matrix, etc.
· Ground-truth CSI quantization method: Float32, i.e., without quantization
· Other high resolution CSI quantization methods can be additionally submitted for comparison, e.g., R16 Type II-like method with new parameters, scalar quantization, etc.
· Rank/layer adaptation settings for rank>1: Option 3-1, i.e., layer common and rank common
· Other rank>1 options can be additionally submitted for comparison, e.g., Option 1-1/1-2/2-1/2-2/3-2.
· Quantization method: quantization-aware training (Case 2-1 or Case 2-2)
· Quantization non-aware training can be additionally submitted for comparison
· SQ and/or VQ is up to companies; companies are encouraged to provide results of various cases for comparison.
· Performance metric for intermediate KPI: SGCS
· NMSE can be additionally submitted.

Agreement
For the AI/ML based CSI prediction, for the submission of simulation results to the RAN1#113 meeting, 
· for Table 6. Evaluation results for CSI prediction without model generalization/scalability, companies are encouraged to take the following assumptions as baseline for the calibration purpose:
· UE speed: 10km/h, 30km/h, 60km/h;
· Others can be additionally submitted, e.g., 120km/h.
· Input/Output type: Raw channel matrix
· Other can be additionally submitted, e.g., eigenvectors.
· Observation window: 5/5ms, 10/5ms
· Other observation window configurations can be additionally submitted for comparison, e.g., 3/5ms, 4/5ms, 8/2.5ms, 10/4ms, etc.
· Prediction window: 1/5ms/5ms
· Other prediction window configurations can be additionally submitted for comparison, e.g., 3/5ms/5ms, 5/5ms/5ms, 4/2.5ms/2.5ms, 5/4ms/4ms, etc.
· Performance metric for intermediate KPI: SGCS
· NMSE can be additionally submitted.
· Spatial consistency configuration (optional): procedure A with 50m decorrelation distance and channel updating periodicity of 1 ms.
· for Table 7. Evaluation results for CSI prediction with model generalization, companies are encouraged to take the following assumption as baseline for the calibration purpose:
· Performance metric for intermediate KPI: SGCS
· NMSE can be additionally submitted.




CSI compression
In this section, we express our views on the per-area model evaluation and the generalization of CSI compression in input, output scalability and rank number respectively. On top of that, we discuss the performance of CSI compression with different training method and field data.
Evaluation on per-area model
Principle of per-area model
AI/ML is data driven, which makes it natural to use a per-area model for CSI compression: training models based on data collected from a specific area, and models will then be used within the corresponding area. By “specific area”, we refer to the case that data collection happens in a relatively smaller region, such as one cell, one sector, or one zone. One of the most promising advantages of per-area model compared with conventional general model is potentially higher performance gain, since the samples within one specific region are expected to be more correlated and more compressible. As presented in 2.1.2 and 2.1.3, our initial evaluation results offered by per-area models in the following subsections also support such observations. 
[bookmark: _Ref115456088]Based on initial field test results, per-cell (region) models can provide more than 20%~30% improvement on SCGS of AI models.
Per-area models could be naturally deployed within each cell, i.e., each cell trains its own model based on data collected within the cell. However, one problem is that as a UE moves from one cell to another, CSI generation part at UE side should also be updated to adapt to the new cell. For training collaboration type 1, such procedure could be done via transferring the updated model to the target UE. For training collaboration type 2, another over-the-air training procedure is needed to update the model. For training collaboration type 3, new model input/output data will be shared from network to UE or vice versa to finish the updating of models. If the model structure of CSI generation part is simple (e.g., simple MLP), overhead of the model updating procedure will be very small (probably less than 100kB).
[bookmark: _Ref115456152]Further study the model update for per-cell (region) models
Training per-area models requires to enhance the data collection mechanism by some assistance information. Cell ID/sector ID/Zone ID or some other information that could represent the collecting area should be assigned to the corresponding data during dataset delivery. However, there could be some concerns on user privacy, UE storage, power consumption or overhead. More studies on data collection for per-area models should be considered in the future meetings.
[bookmark: _Ref115456178]Further study the data collection for per-cell (region) models.

Initial results for spatial consistency data
Here we consider using data with spatial consistency to reflect the correlation between samples within certain cell. Each UE generates random variables with spatial consistency based on its own geographic location at the T=0, and both the cluster specific random variables and the correlation distance for spatial consistency procedure follow the configurations in 38.901. Other detailed parameters are provided as follows.
Parameters of spatial consistency data of CSI compression.
	Parameters
	Value

	Scenario
	InH

	Channel model
	Uma 38.901 with spatial consistency

	Carrier frequency
	4GHz

	Subcarrier spacing
	30KHz

	Frequency resources
	52 RBs, 13 subbands for 4RBs per subband

	Rank
	Max rank 1

	gNB antenna
	32 antenna ports
[Mg Ng P M N, Mp Np] = [1 1 2 8 8, 2 8]
= (0.8, 0.5) λ, +45°/-45° polarization

	UE antenna
	2 antenna ports
[Mg Ng P M N, Mp Np] = [1 1 2 1 1, 1 1]
= (0.8, 0.5) λ, 0°/+90° polarization

	BS receiver noise figure
	10

	UE receiver noise figure
	7

	UE distribution
	100% outdoor

	UE speed 
	30km/h

	Mechanic tilt
	180° in GCS (pointing to the ground)

	Beam set at TRxP
	Azimuth angle φi = [0], Zenith angle θj = [102].

	UE beam set
	Azimuth angle φi = [0], Zenith angle θj = [90]



Then we study the performance of cell specific model and generic models based on data collected from multiple cells. After training, cell specific model and generic model are tested on the same data from certain cell. We consider two model designs, i.e., simple MLP model, and complex transformer model in our results. In both cases, cell specific model outperforms generic model by around 2% SGCS in average. 
Performance comparison of cell-specific model and generic model with MLP structure
	Training data source
	Test SGCS on cell0 data
	Test SGCS on cell1 data

	Cell 0
	0.848
	/

	Cell 1
	/
	0.892

	Mixing cell0 and cell1
	0.843
	0.889

	Mixing cell 0 to cell9 (totally 10 cells)
	0.841
	0.887



Performance comparison of cell-specific model and generic model with Transformer structure
	Training data source
	Test SGCS on cell0 data
	Test SGCS on cell1 data

	Cell 0
	0.885
	/

	Cell 1
	/
	0.917

	Mixing cell0 and cell1
	0.877
	0.913

	Mixing cell 0 to cell9 (totally 10 cells)
	0.867
	0.905


According to our results, we have following observation:
The performance of cell-specific model trained on data with spatial consistency defined in 38.901 exceeds that of generic models trained on data with the same property, with a SGCS gain of around 2% in our results. 

Initial results for field test
We provide some initial results for field test of CSI compression. The data is collected from realistic 5G network and the collecting area is about 400m * 350m. About outdoor 50000~100000 samples per area or cell are collected. The detailed parameters are provided in below table.
Parameters of field test of CSI compression.
	Parameters
	Value

	Scenario
	Actual 5G network, about 400m * 350m collecting area.
About outdoor 50000~100000 samples per area or cell.

	Carrier frequency
	3.45GHz

	Subcarrier spacing
	30KHz

	Frequency resources
	52 RBs, 13 subbands for 4RBs per subband

	Rank
	Max rank 1

	gNB antenna
	8 antenna ports

	UE antenna
	4 antenna ports

	CSI payload
	167/58 bits payload



Field test result of different areas
There are 3 data collecting areas. Area B is the main road of the industrial park, with many tall trees and cars along the road. Area C is the road behind several buildings. Area D is the indoor scenario in a building. UE in the left part of the industrial park usually accesses to a different cell, compared with the right part of the industrial park. So, we focus on the right part of the industrial park and current areas are chosen.
[image: ]
The map of data collecting areas.
The SGCS results of eType II codebook and multiple AI/ML models are provide in the following. In Table 5 and 6, the AI/ML models are trained by the data in each area separately, and multiple AI/ML models are used. 167 bits overhead is used in Table 5 and 58 bits overhead is used in Table 6. In Table 7 and 8 only one hidden layer full-connected encoder is used and it is trained by the data of all 4 areas, with 167 bits overhead and 58 bits overhead separately.
It is seen that the performance gaps between different AI/ML models are small. Even one-layer MLP encoder can provide good performance, which is very simple and small. With much higher complexity, Transformer encoder has better performance than one-layer MLP encoder, but the performance gain is small Area B. Considering the performance and complexity, simple model structure, e.g., one hidden layer full-connected encoder, is good enough for typical per single cell or multiple cell operations.
 The SGCS results of multiple AI/ML models trained by the data in each area separately, with 167 bits overhead.
	167 bits overhead
	eTypeII
	AI with an area specific model (One layer MLP encoder) ~67kB
	AI with an area specific model (small CNN encoder) ~250kB
	AI with an area specific model (Transformer encoder) ~3.6MB

	Area B
	0.8429
	0.9217
	0.929
	0.9406

	Area C
	0.7871
	0.898
	0.9037
	0.9116

	Area D
	0.8489
	0.9315
	0.9323
	0.9423



The SGCS results of multiple AI/ML models trained by the data in each area separately, with 58 bits overhead.
	58 bits overhead
	eTypeII
	AI with an area specific model (One layer MLP encoder) ~30kB
	AI with an area specific model (small CNN encoder) ~213kB
	AI with an area specific model (Transformer encoder) ~3.3MB

	Area B
	0.7290
	0.8573
	0.8725
	0.8868

	Area C
	0.6438
	0.8015
	0.8162
	0.8389

	Area D
	0.6853
	0.8701
	0.8814
	0.8873



 The SGCS results of one hidden layer full-connected encoder trained by the data of all 4 areas, with 167 bits overhead.
	167 bits overhead
	Training SGCS on data from all areas
	Testing SGCS in area B
	Testing SGCS in area C
	Testing SGCS in area D

	One hidden layer full-connected encoder~67kB
	0.9055
	0.905
	0.8799
	0.8959



 The SGCS results of one hidden layer full-connected encoder trained by the data of all 4 areas, with 58 bits overhead.
	58 bits overhead
	Training SGCS on data from all areas
	Testing SGCS in area B
	Testing SGCS in area C
	Testing SGCS in area D

	One hidden layer full-connected encoder~30kB
	0.8184
	0.8201
	0.7592
	0.7958


[bookmark: _Hlk131499002]From initial results for field test, performance of simple model structure, e.g., one hidden layer full-connected encoder, is good enough for typical zone/site specific optimization.
Field test result of different physical cells
The performance of different physical cells is analyzed in the following. We have tested the coverage of different cells in the industrial park, according to the measured RSRP, RSRQ and SINR. The coverage areas of two typical cells in the industrial park are shown in the below figure.
[image: ]
 The map of data collecting cells.
For cell 1, data samples are collected by different days. The data collection routes in different days have some differences, which results in the different wireless channel features in different days.
The SGCS results of eType II codebook and multiple AI/ML models are provide in the following. In below tables, the AI/ML models are trained by the data in each cell separately, and multiple AI/ML models are used. For cell 1, A large combination of data collected on different days has been used. 167 bits overhead is used. One layer MLP encoder is used in Table 9, small CNN encoder is used in Table 10 and Transformer encoder is used Table 11.
It is seen that using the data collected on various days or routes, the generalization problem of different days or routes could be solved. For example, using Cell 1 data collected on 2.28 as the test data set, the AI model trained using Cell 1 data collected on various day except 2.28 and 2.16, has the nearly the same performance as the AI model trained using Cell 1 data collected on 2.28.
In addition, the AI model trained by Cell 1 data has poor performance on Cell 2 data, which is even worse than eType II.
The SGCS results of multiple AI/ML models trained by the data in each cell separately, with 167 bits overhead and one -layer MLP encoder.
	
	eType II
	AI model using Cell 1 data, collected on 2.3, 2.10, 2.14, 2.27, 3.2, 3.9
	AI model using Cell 1 data, collected on 2.28
	AI model using Cell 1 data, collected on 2.16
	AI model using Cell 2 data

	Cell 1 data, collected on 2.28
	0.8137
	0.8546
	0.8680
	\
	\

	Cell 1 data, collected on 2.16
	0.8425
	0.8746
	\
	0.8952
	\

	Cell 2 data
	0.8145
	0.7832
	\
	\
	0.8974



The SGCS results of multiple AI/ML models trained by the data in each cell separately, with 167 bits overhead and small CNN encoder.
	
	eType II
	AI model using Cell 1 data, collected on 2.3, 2.10, 2.14, 2.27, 3.2, 3.9
	AI model using Cell 1 data, collected on 2.28
	AI model using Cell 1 data, collected on 2.16
	AI model using Cell 2 data

	Cell 1 data, collected on 2.28
	0.8137
	0.870
	0.876
	\
	\

	Cell 1 data, collected on 2.16
	0.8425
	0.888
	\
	0.907
	\

	Cell 2 data
	0.8145
	0.8099
	\
	\
	0.9044



The SGCS results of multiple AI/ML models trained by the data in each cell separately, with 167 bits overhead and Transformer encoder.
	
	eType II
	AI model using Cell 1 data, collected on 2.3, 2.10, 2.14, 2.27, 3.2, 3.9
	AI model using Cell 1 data, collected on 2.28
	AI model using Cell 1 data, collected on 2.16
	AI model using Cell 2 data

	Cell 1 data, collected on 2.28
	0.8137
	0.8847
	0.8934
	\
	\

	Cell 1 data, collected on 2.16
	0.8425
	0.8998
	\
	0.9160
	\

	Cell 2 data
	0.8145
	0.8404
	\
	\
	0.9172



[bookmark: _Ref131792265]From initial results for field test, the model developed for Cell 1 shows robust performance for different moving routes.
[bookmark: _Ref131792267]Field test shows that model developed for Cell 1 does not perform well for Cell 2. 
[bookmark: _Ref131792270]Field test shows that simple and small models work well for all different cases, at least for typical cell coverage.
[bookmark: _Ref118742515][bookmark: _Ref115456650]Consider to capture observations from field data test into TR. 
[bookmark: _Ref118742519]Study the performance and overhead of per-cell (region) model transfer in CSI compression.

Generalization of input scalability
The input dimension of AI model is corresponding to the input precoder matrices, i.e., the subband number and port number for each single layer. Different frequency granularity or different ports number can cause different input dimension of AI model. The AI models for different input dimensions need to be trained independently, which may lead to difficulty in generalizing AI models.
In case that the training input dimension of AI model is larger than the inferring input dimension of AI model, the inferring input can expand to the same dimension with zero-padding. On the other side, when inferring input dimension is larger, it can be truncated to the training input dimension.
Also, the input dimension of AI model can be fixed to a given level with pre-processing like angle-delay compression in eType II codebook. With the fixed number of beam and path selected, the dimension of input is certain for different frequency granularity and different ports number. Also, the size of AI model can be reduced because the information to study is decreasing. For AI model, since the compression and quantification are managed together, the restriction of NZC is not needed. So, compared with the eType II codebook, the beta is 1 for AI model and the payload of UCI is influenced by the length of encoder output.
In the simulation, we evaluate the lower boundary with generalization case 2. The AI/ML model is trained based on training dataset from configuration A (13 subbands and 32 ports) only. Then the AI/ML model is tested on a dataset from configuration B with different subband number of port number as below.
Case 1: (baseline) a different drop with 13 subbands and 32 ports
Case 2: (smaller subbands number and the same ports number) a drop with 10 subbands and 32 ports
Case 3: (the same subbands number and smaller ports number) a drop with 13 subbands and 16 ports
Case 4: (smaller subbands number and smaller ports number) a drop with 10 subbands and 16 ports
For each case, we test the normal AI/ML model and the preprocessing AI/ML model. For the normal AI model, the input is 13 subbands and 32 ports and zero-padding is used for less input dimension. For the preprocessing AI/ML model, angle-delay compression is used for preprocessing and 4 top strong beams on each polarization and 4 top strong paths are selected, which means the input dimension is 8 * 4 complex coefficients.
The payload of the normal AI/ML model is fixed to 180 bits and the pre-processing AI/ML model is fixed to 154 bits. With the different payload to report the angle and delay information, the final payload for pre-processing AI/ML model of the four cases are different but all about 180 bits.
The SGCS of AI/ML model with different subband number and port number
	
	Normal AI/ML model
	Pre-processing AI/ML model

	Case 1 (13 subbands and 32 ports)
	0.879
	0.83

	Case 2 (10 subbands and 32 ports)
	0.839
	0.847

	Case 3 (13 subbands and 16 ports)
	0.727
	0.872

	Case 4 (10 subbands and 16 ports)
	0.707
	0.89



According to the evaluation results, for normal AI/ML models, the performance declines with the increasing difference between training data set and testing data set. For case 2 (the ports number is the same and the subbands number is different), the SGCS is still in a feasible level while for the case 3 and 4 (the ports number is different) the SGCS is severely influenced. It means that the zero-padding is kind of useful for subband number generalization but useless for port number generalization.
[bookmark: _Ref118741480]For case 2, zero-padding is feasible for subband number generalization while its performance degrades dramatically in port number generalization.
On contrast, the pre-processing AI/ML model performs even better when the inferring data sets are different. It is because that the dataset in case 2-4 is less complex than case 1. For the pre-processing AI/ML model, even the new data in case 2-4 is unaware, the coefficients projected on some angle-delay pairs are familiar and well trained. Therefore, from case 1 to case 4, the channel matrices are simpler and the subband number is less, which disadvantages in normal AI/ML model due to the unknown of the new data but advantages to pre-processing AI/ML model due to the simplification of channel environment.
[bookmark: _Ref118741579]For case 2, pre-processing performs well for both subband number generalization and port number generalization.
Also, we evaluate the SE of the four cases and the results are shown below. For the baseline case, there are 2.63% gain loss between pre-processing AI/ML model and normal AI/ML model, which is also seen in SGCS. It is because that some information is lost in the angle-delay compression. So, without zero-padding, the normal AI/ML model performs better when the training data and the inferring data have the same dimensions.
The gain of pre-processing AI/ML model compared with the normal AI/ML model (180bits)
	
	Payload
	SE gain (%)

	Case 1 (13 subbands and 32 ports)
	175
	-2.63%

	Case 2 (10 subbands and 32 ports)
	173
	~0%

	Case 3 (13 subbands and 16 ports)
	171
	21.46%

	Case 4 (10 subbands and 16 ports)
	169
	49.45%



When subband number is different between training and inferring, the SE gains of these two methods are almost the same. The loss from the zero-padding in subband is equal to the loss from angle-delay compression. However, when port number is different between training and inferring, the SE gains is obvious.
In the simulation above, the training data set and inferring data set are independent, which means no information about the inferring data set can be observed in the training stage. It may cause the pre-processing AI/ML model superior because the normal AI/ML model can improve the zero-padding performance with fine-tuning based on data set from case 2-4 or even training with mixed data set. However, for each subband number, or even for each combination of subband number and port number, the corresponding data set is needed in training stage. It is neither effective nor feasible. Instead, the pre-processing AI/ML has no such problem and the performance can be improved further with more angle-delay bases selected.
Besides, some other methods can also be considered like grouping. Zero-padding focuses on the cases where the dimension of training data is larger than the inferring data. In turn, grouping can be used to deal with the cases where the dimension of training data is smaller than the inferring data. For example, an AI/ML model is trained with the data set from 16 ports and in the case of 32 ports, the 32 ports are divided into 2 groups with 16 ports in each group. The data in each group can be compressed independently by a 16-port AI/ML model and report together. In such a case, the performance of the AI/ML model is guaranteed while the overhead may increase. The further study is necessary.
[bookmark: _Ref118742553]Study the following three methods for generalization of input dimension 
· Option 1: use large dimension AI/ML model in small dimension cases: zero-padding
· Option 2: use small dimension AI/ML model in large dimension cases: grouping
· Option 3: use pre-processing to fix the input dimension: angle-delay domain compression

Generalization of output scalability
	Agreement
For evaluating the generalization/scalability over various configurations for CSI compression, to achieve the scalability over different output dimensions of CSI generation part (e.g., different generated CSI feedback dimensions), the generalization cases of are elaborated as follows
· Case 1: The AI/ML model is trained based on training dataset from a fixed output dimension Y1 (e.g., a fixed CSI feedback dimension), and then the AI/ML model performs inference/test on a dataset from the same output dimension Y1.
· Case 2: The AI/ML model is trained based on training dataset from a single output dimension Y1, and then the AI/ML model performs inference/test on a dataset from a different output dimension Y2.
· Case 3: The AI/ML model is trained based on training dataset by mixing datasets subject to multiple dimensions of Y1, Y2,..., Yn, and then the AI/ML model performs inference/test on a single dataset of Y1, or Y2,…, or Yn.
· Note: For Case 1/2/3, companies to report whether the output of the CSI generation part is before quantization or after quantization.
· Note: For Case 2/3, the solutions to achieve the scalability between Yi and Yj, are reported by companies, including, e.g., truncation, additional adaptation layer in AI/ML model, etc.
· FFS the verification of fine-tuning
· FFS other additional cases




In previous meetings, it was agreed that the scalability over output dimensions should be studied according to the above guidelines. In this part, we present our evaluation results on output scalability via truncation. 
The idea of truncation is illustrated in Figure 3, where one shared encoder outputs a sequence with maximum length, and multiple decoders are trained to reconstruct the CSI based on a sub-sequence of the encoder output. For example, in Figure 3, the encoder outputs totally 223bits, while decoder1 uses the first 177bits as its input; decoder2 uses the first 199bits as its input; decoder3 uses all 233bits as input. Note that all involved encoder and decoders should be jointly trained to maximize the reconstruction accuracy of all decoder outputs. Otherwise the performance cannot be guaranteed, which will be demonstrated in our results. The truncation can be either done on encoder output before or after quantization. If it is done after quantization, it should guarantee the truncated sequence can still be mapped to a complete floating sequence. We study the performance of payload truncation under various configurations, and the results are presented in Table 14.
[image: ]
The schematic of payload truncation.

The SGCS of different payload truncation methods.
	
	223bits payload
	199 bits payload
	176 bits payload
	132 bits payload

	Dedicated model for each payload
	0.902
	0.893
	0.877
	0.853

	Model trained for 233 but test on 199, 176, 132
	/
	<0.1
	<0.1
	<0.1

	Shared encoder and two decoders for 223 and 176 respectively 
	0.894
	/
	0.878
	/

	Shared encoder and two decoders for 223, 199 and 176 respectively
	0.891
	0.885
	0.876
	/

	Shared encoder and two decoders for 223, 176 and 132 respectively
	0.872
	/
	0.862
	0.838



First of all, we can see from the results that the performance of Case2 is very poor, i.e., a model trained without considering supporting multiple output dimensions cannot be directly utilized for another payload. If jointly trained, the performance of shared encoder and two decoders for 223 and 176bits is slightly inferior to that of dedicated models (0.894 vs 0.902 and 0.876 vs 0.877). Meanwhile, if we extend to the case of one-to-three, the performance loss will enlarge. Furthermore, the truncation size will also affect the performance, as the performance of supporting 223, 199 and 176 is better than that of supporting 223, 176 and 132. To sum up, we find that schemes with good scalability on output dimensions will sacrifice some performance.
Truncation on output dimension provides scalability across different payload for the same encoder under generalization case3.
For truncation method, the closer the supported payload configurations are, the better performance model achieves (e.g., model supporting payload 223, 199, and 175 outperforms model supporting payload 223, 176, 132)
Methods with good scalability for several output configurations will sacrifice some performance compared with dedicated model

Generalization of rank
	Agreement
For the evaluation of the AI/ML based CSI compression sub use cases with rank >=1, companies to report the specific option adopted for AI/ML model settings to adapt to ranks/layers.
· Option 1-1 (rank specific): Separated AI/ML models are trained per rank value and applied for corresponding ranks to perform individual inference, any specific model operates on multi-layers jointly.
· FFS on the reported complexity and storage
· FFS: input/output type
· Option 1-2 (rank common): A unified AI/ML model is trained and applied for adaptive ranks to perform inference, the model operates on multi-layers jointly. 
· FFS: input/output type
· Option 2 (layer specific): Separated AI/ML models are trained per layer value and applied for corresponding layers to perform individual inference.
· FFS on the reported complexity and storage
· Note: input/output type is Precoding matrix
· Companies to report the setting is 
· Option 2-1: layer specific and rank common (different models applied for different layers; for a specific layer, the same model is applied for all rank values), or 
· Option 2-2: layer specific and rank specific (different models applied for different layers; for a specific layer, different models are applied for different rank values)
· Option 3 (layer common): A unified AI/ML model is trained and applied for each layer to perform individual inference.
· FFS on the reported complexity and storage
· Note: input/output type is Precoding matrix
· Companies to report whether the setting is 
· Option 3-1: layer common and rank common (A unified AI/ML model is applied for each layer under any rank value to perform individual inference), or 
· Option 3-2: layer common and rank specific (different models applied for different rank values; for a specific rank, the same model is applied for all layers)
Other options not precluded.



The input of AI model can be raw channel matrix or eigenvector and the output of AI model can be fixed to eigenvector. If the input is raw channel matrix and the output is eigenvector, the SVD procedure is also completed by AI model. In our opinion, this is much difficult for AI model training. So, we consider the input and the output of AI model are both eigenvectors.
In case that rank number is larger than 1, we evaluate the per-rank model and per-layer model. The per-rank model means, for each rank, an independent AI model is trained. UE can use the corresponding AI model to infer the precoder of a given rank number. The per-layer AI model means an independent AI model is trained for each layer, especially, the AI model for each layer is the same. For each rank, UE can infer each layer with the single AI model, i.e., the generalization of rank number.
[image: ]
Two scheme of high rank AI model, per-ranks and per-layer AI models.
In the simulation, we use the same per-layer model for each layer and train the model with the dataset including all layers and only rank 2 is evaluated. For the per-rank models, one model is trained with rank 1 dataset and the other model is trained with rank 2 dataset. The former is for rank 1 CSI compression and the latter is for rank 2 CSI compression. For the per-layer model, the single model is trained with dataset from all layers. This single model can be applied for different layers and ranks.
The model sizes of the single per-layer model and each of the per-rank models are almost the same, while two models are trained for per-rank models and only one model is trained for per-layer model with the same dataset. So, the per-rank models are double size of the per-layer model.
The SGCS of per-rank models and per-layer model for rank 2.
	
	Layer 0
	Layer 1
	Average number

	Per-rank model
	0.91
	0.874
	0.892

	Common model across different layers Per-layer model
	0.924
	0.863
	0.893



According to the evaluation result, per-rank model and per-layer model can achieve similar SGCS, while the total size of per-rank AI model is double as opposed to per-layer model. Also considering the flexibility of layer selection, the per-layer model is better.
[bookmark: _Ref115456412]Rank generalization with per-layer model can achieve similar SGCS with half model size compared with per-rank model.
To compare the performance between layer common and layer specific models, we use the same model structure for different datasets. We collect 300K samples for each layer and group them into three datasets.
Case 1: Train one common model based on total 600K samples with 300K samples from layer 0 and 300K samples from layer 1.
Case 2: Train one common model based on total 300K samples with 150K samples from layer 0 and 150K samples from layer 1.
Case 3: Train one specific model for layer 0 based on 300K samples from layer 0 and another specific model for layer 1 based on 300K samples from layer 1.
The SGCS of two layers for layer common and layer specific models
	
	Layer 0 
	Layer 1
	Average number

	Case 1 (common model with 600K samples)
	0.8698
	0.7834
	0.8266

	Case 2 (common model with 300K samples)
	0.8569
	0.764
	0.8105

	Case 3 (specific model with 300K * 2 samples)
	0.8532
	0.7534
	0.8033



Compared the evaluation results of case 2 and case 3, layer common model performs better than layer specific model with the same training data number for each layer. Compared the evaluation results of case 1 and case 3, the performance gain increases if all the training data for the two layers are used for layer common model training. It means, with the same dataset, layer common model can achieve better performance and the dataset for layer common model is easier to collect. Therefore, not considering other generalizations, layer common model is better than layer specific model from multi layers.
Layer common model can achieve better SGCS with the same dataset.
For rank > 1 cases, study 	Option 3-1: layer common and rank common (A unified AI/ML model is applied for each layer under any rank value to perform individual inference)
· FFS how to choose the layers for training data set
FFS how to deal with specific payload for each layerAs a consequence, the generalization can be summarized in the table as follows.
	Generalization Parameter
	Comments

	Frequency granularity and ports number
	Pre-processing with delay domain and spatial domain compression can solve different input dimensions caused by various frequency granularities and port numbers.

	Payload
	Payload truncation can be used to release payload generalization of AI models.

	Rank
	Rank generalization with per-layer model can achieve 12% SE gain compared with Rel-16 Type II codebook.
A unified AI/ML model is trained and applied for each layer to perform individual inference.



Generalization of other scenarios
[bookmark: _Ref111217176]Carrier frequency 
For the carrier frequency, we evaluate 2.2GHz, 3.5GHz, 5.5GHz for rank 1 with entire AI model. In the simulation, the antenna configuration is [8 8 2 1 1] and for each polarization, four adjacent vertical antennas are mapped into one TXRU with fixed 105 degrees DFT beam, i.e., a fixed analogy precoder is used. The total TXRU number is 32 and only rank 1 is considered. The total subband number is 13 with 4 PRB’s per subband. The evaluation results are shown below.

The SGCS for different frequency carrier.

The gain of average SE for different frequency.
According to the evaluation result, the SGCS and spectral efficiency among cases with different carrier frequency are similar to each other. Since the carrier frequency is all below 6GHz and the UE speeds are all 3Km/h, the influence of carrier frequency to channel state is tiny. The AI model perform well in carrier frequency generalization.
[bookmark: _Ref115456289]AI model performance does not degrade when a generic model (non-optimized for a specific area/cell) trained for a frequency is applied to another frequency.  
Scenarios
For generalization across different scenarios, we focus on UMi, UMa and InH. We train AI model with UMi samples and use it in UMi and UMa scenario, respectively. Also, the SGCS of eType2 is calculated for different scenarios. The evaluation results are shown below.
[bookmark: _Ref111215372]The SGCS in UMi and Uma scenario.
	
	AI model trained based on UMi data
	eType II codebook

	UMi
	0.91
	0.831

	UMa
	0.913
	0.839



According to the evaluation result in the table above, the model trained by the UMi-based data set offers a fairly high channel SGCS in both UMi and UMa scenarios. 
[bookmark: _Hlk102160675]For a generic model (non-optimized for a specific area/cell), AI model performance does not degrade when generalized from UMi to UMa.
Then, we construct a synthetic dataset with samples from UMi and InH with different ratio including entire UMi dataset and InH dataset. The total number of samples in each dataset is fixed to 300000. The SGCS of each dataset composition is shown in the table below.
[bookmark: _Ref111215383]The SGCS of AI model with different training dataset composition in InH and UMi.
	Training dataset composition
	[300000, 0]
	[225000, 75000]
	[150000, 150000]
	[75000, 225000]
	[50000, 250000]
	[25000, 275000]
	[10000, 29000]
	[0, 300000]

	InH
	0.94780
	0.94907
	0.94953
	0.94520
	0.94660
	0.93090
	0.87230
	0.68597

	UMi
	0.74548
	0.84435
	0.87930
	0.90281
	0.90528
	0.90778
	0.90879
	0.90933



According to the evaluation results, the model trained by UMi dataset independently behaves worse in InH scenario and vice versa. The models trained by dataset constructed with mixed InH-based and UMi-based data behave well for both scenarios, even not as good as with the dataset from one entire scenario. It is shown that, the increasing number of correct samples in a mixed dataset can improve the performance and the wrong samples do not influence the performance. So, the AI model can deal with different scenarios by mixing the sample from different scenarios into one dataset.
Also, In comparison between the dataset composition [225000 75000] and [50000 250000], the SGCS for InH is similar. However, the SGCS performed by the former is worse than that by the latter. It is because that the channel state of InH is simple and 50000 samples are enough. The extra InH samples cannot provide more gains. However, the channel state of UMi is much more complicated, reducing the number of UMi samples can lead to severe performance degradation.
[bookmark: _Ref111217181]For a generic model (non-optimized for a specific area/cell) AI model can generalize across different scenarios with a mixed dataset. A reasonable mixing ratio can provide better performance for each scenario.

Indoor/outdoor
For generalization between indoor users and outdoor users, we use data from different indoor/outdoor ratio to train two AI models. One is for 0.8 indoor and 0.2 outdoor and the other one is 0.2 indoor and 0.8 outdoor. Then we settle them in scenarios with different indoor/outdoor ratio, including 0.8/0.2, 0.5/0.5, and 0.2/0.8. The evaluation results are shown below. For each case, there are two ratios and the former is the indoor ratio of training data and the latter is the indoor ratio of deployment environment.

The SGCS of different indoor/outdoor scenarios
According to the evaluation results, no matter which training data set is used, the SGCS increases with the indoor ratio decreasing from 0.8 to 0.2. Since the floor of indoor user is random, it is more difficult to train the model for indoor user than that for outdoor user. So, the learning results of AI model descend when there are more indoor users. For the same deployment scenario, the AI model trained with 0.8 indoor ratio data performs better than the one trained with 0.2 indoor ratio data. It is because the AI model trained with more indoor users has learnt more complicated channel information, offering a better result. 
The gap between the two AI models in case of 0.2 indoor user ratio is about 0.02-0.03 and in case of 0.8 indoor user ratio is about 0.01-0.02. The gap decreases when the deployment scenario becomes more severe i.e., there are more indoor users. It can be seen that, the SGCS calculated in more complicated deployment scenario decreases if the AI model is trained with the data collected in a simpler scenario.
Then, we set the AI model in the SLS system and the evaluation results are shown below. The tendency of each SGCS curve is similar but the gaps among all the curves are different.

The SE gain of different indoor/outdoor scenarios
According to the evaluation results of SE, it can be seen that AI model trained in complicated channel environment (more indoor users) performs better in the simple channel environment (more outdoor users) and vice versa. Nevertheless, even in the simple channel environment, the performance is slightly worse than that of AI model trained in complicated environment.
[bookmark: _Ref115456304]For a generic model (non-optimized for a specific area/cell), AI model trained in complicated channel environment (more indoor users) has good generalization ability.
[bookmark: _Ref115456307]The performance of AI model depends on the deployment environment

Antenna spacing
Since different antenna configurations mean different channel state with different beam width, the training data with different antenna configurations can lead to various spatial characters. And, since the encoder and decoder focus on learning the channel state, different antenna configuration can lead to different inference results. We consider the antenna spacing first.
In the simulation above, we use the antenna spacing [0.8 0.5] at gNB side, which means the space between two antenna elements in vertical is 0.8 wave length and in horizontal is 0.5. To verify the generalization of antenna size, two cases are compared with different antenna spaces. We use the training dataset with channel fading matrices based on 0.8 wave length antenna as baseline and compare the training dataset with channel fading matrices based on 0.5 wave length. Both cases are simulated in the environment with [0.8 0.5] antenna spacing. The evaluation results of entire AI model are shown below.

The SGCS of entire AI models based on different training dataset.

The gain of average SE of entire AI models based on different training dataset.
From the evaluation results, we can find that, in case that antenna space is 0.8 wave length, there is almost 4% average SE loss if training dataset is constructed with channel fading matrices based on 0.5 wave length antenna. 
[bookmark: _Ref111217191][bookmark: _Ref115456313]For a generic model (non-optimized for a specific area/cell), there is obvious performance loss for antenna spacing mismatch of training data.
Also, we evaluate the influence of the antenna spacing to the AI models with pre-processing, i.e., the small AI models with spatial domain and frequency domain compression as discussed in 2.2.1 and the evaluation results are shown below.

The SGCS of small AI models based on different training dataset.

The gain of average SE of small AI models based on different training dataset.
According to the evaluation results, there are tiny performance loss between two cases. For the small AI model with pre-processing, since the beam and delay are restricted in pre-processing, the performance loss caused by mismatching dataset can be omitted. Therefore, the small AI may have a better generalization performance.
[bookmark: _Hlk102160699][bookmark: _Ref115456320]For a generic model (non-optimized for a specific area/cell), the influence of mismatch of training data may be reduced by pre-processing.

Antenna virtualization
Next, we consider the influence of antenna virtualization. In the simulation above, we use antenna configuration [8 8 2] with 4 successive vertical antenna elements mapping to one TXRU with a fixed 105 degrees DFT beam. We draw other two cases of antenna configuration [2 8 2] without antenna virtualization as contrast. 
Case 1: AI model is trained with dataset constructed by antenna configuration [8 8 2] and used in the case of antenna configuration [8 8 2].
Case 2: AI model is trained with dataset constructed by antenna configuration [8 8 2] and used in the case of antenna configuration [2 8 2]
Case 3: AI model is trained with dataset constructed by antenna configuration [2 8 2] and used in the case of antenna configuration [2 8 2]
The SGCS’s of the three cases and Rel-16 Type II codebook with antenna configuration [8 8 2] and [2 8 2] are shown below.

The SGCS of three cases and Rel-16 Type II codebook
According to the evaluation results, firstly, the SGCSs of the three AI cases are at least 0.07 higher than that of Rel-16 Type II codebook. From the comparison between the Rel-16 Type II codebook with these two antenna configurations, the channel state is easier to learn for antenna configuration [2 8 2], while more difficult to learn for antenna configuration [8 8 2].
The AI model trained with antenna configuration [8 8 2] has similar SGCS performance in both antenna configurations [8 8 2] and [2 8 2]. It seems that, when antenna configuration changes from [8 8 2] to [2 8 2], the original AI model trained with antenna configuration [8 8 2] can still work properly. However, considering the transmission ability, antenna configuration [8 8 2] can provide more spatial information than antenna configuration [2 8 2]. The SE may decrease if the same AI model is directed used in the case of antenna configuration [2 8 2].
The AI model trained with antenna configuration [2 8 2] performance better in antenna configurations [2 8 2]. So, in the case of antenna configuration [2 8 2], the AI model trained with antenna configuration [2 8 2] may achieve similar SE performance as the AI model trained with antenna configuration [8 8 2] in the case of antenna configuration [8 8 2].
[bookmark: _Ref115456327]For a generic model (non-optimized for a specific area/cell), SGCS performance of AI model may degrade slightly from 128 antennas with virtualization to 32 antennas without virtualization. While the SE performance may degrade heavily due to the less antennas.
[bookmark: _Ref115456332] For a generic model (non-optimized for a specific area/cell), in the case of 32 antennas, AI model trained with 32 antennas may have similar SE performance compared with AI model trained with 128 antennas and settled in the case of 128 antennas, which is needed to be further studied.

As a consequence, the generalization performance of various scenarios is shown below.
	Generalization Parameter
	Comments

	Carrier Frequency
	AI model performance does not degrade when a generic model (non-optimized for a specific area/cell) trained for a frequency applied to another frequency.  

	Channel Scenario
	For a generic model (non-optimized for a specific area/cell) AI model can generalize across different scenarios with a mixed dataset. A reasonable mixing ratio can provide better performance for each scenario.

	Indoor/outdoor
	For a generic model (non-optimized for a specific area/cell), AI model trained in complicated channel environment (more indoor users) has good generalization ability of simple channel environment (more outdoor users)

	Antenna Spacing
	For a generic model (non-optimized for a specific area/cell), there is obvious performance loss for antenna spacing mismatch of training data.

	Antenna virtualization
	For a generic model (non-optimized for a specific area/cell), SGCS performance may degrade slightly and SE performance may degrade heavily for large number antennas with virtualization applied to small number antennas with virtualization.



[bookmark: _Ref115456746]For a generic model (non-optimized for a specific area/cell), AI models perform well in generalization of carrier frequency, channel scenario, indoor/outdoor ratio.
[bookmark: _Ref115456750]For a generic model (non-optimized for a specific area/cell), AI models perform bad in antenna spacing and antenna virtualization, which can be further studied.

Evaluations on ground-truth quantization
	Agreement
For the evaluation of the high-resolution quantization of the ground-truth CSI in the CSI compression, Float32 is adopted as the baseline/upper-bound of performance comparison.

Agreement
For the evaluation of the high-resolution quantization of the ground-truth CSI in the CSI compression, if R16 Type II-like method is considered, companies to report the R16 Type II parameters with specified or new/larger values to achieve higher resolution of the ground-truth CSI labels, e.g., L,, , reference amplitude, differential amplitude, phase, etc.



Ground-truth CSI reporting is an essential procedure in data collection for CSI compression. In previous meetings, FL proposed to study high resolution scalar or codebook quantization methods for ground-truth CSI, and several schemes have been mentioned in the agreement. To this end, we consider CSI quantized via Float32 as our baseline scheme, and train different models based on Float16, high resolution R16 Type-II codebook, and regular resolution R16 Type-II codebook quantized CSI data. All models trained on quantized CSI are tested on Float32 format data to see the performance, and our results towards different methods in table below.
Results of different methods for ground-truth CSI quantization.
	
	Model trained on float32 format quantized data (baseline)
	Model trained on float16 format quantized data (baseline)
	Model trained on Legacy codebook quantized data (L=12,  , beta=1.0)
	Model trained on Legacy codebook quantized data (L=4, , beta=0.75)

	SGCS results tested on float32 format data
	0.8710
	0.8661
	0.8549
	0.8192


From the table, we could observe that there is only a slight performance loss between ground-truth quantized in float32 and float16, and high-resolution legacy codebook also provide a satisfying performance in quantizing ground-truth CSI. However, when the parameters reduce to a conventional setting (i.e., from L=12, =6, beta=1.0 to L=4, =4, beta=0.75), the performance loss is obvious. Considering that the overhead of quantizing ground-truth via high resolution codebook is much lower than that of quantization via float16 (hundreds of bits versus thousands of bits), we believe that high resolution codebook is a promising solution to ground-truth CSI quantization and reporting in CSI compression.
[bookmark: _Ref118741596]High resolution R16-eType II codebook with large L, , beta (for example, L=12, , beta = 1.0) performs well for ground-truth CSI quantization compared with scalar quantization such as Float16 or Float32.

Evaluation on CSI feedback quantization
	Agreement
For the evaluation of quantization aware/non-aware training, the following cases are considered and reported by companies:
· Case 1: Quantization non-aware training, where the float-format variables are directly passed from CSI generation part to CSI reconstruction part during the training
· Fixed/pre-configured quantization method/parameters is applied for the inference phase
· Companies to report the design of the fixed/pre-configured quantization method/parameters, e.g., quantization resolution, vector quantization codebook, etc.
· Case 2: Quantization aware training, where quantization/dequantization is involved in the training process
· Case 2-1: Fixed/pre-configured quantization method/parameters are applied during the training phase; the same quantization codebook is applied for the inference phase
· Companies to report the design of the fixed/pre-configured quantization method/parameters, e.g., quantization resolution, vector quantization codebook, etc.
· Case 2-2: The quantization method/parameters are updated in together with the AI/ML models during the training; when training is finished, the final quantization codebook is applied for the inference phase
· Companies to report how to update the quantization method/parameters during the training
· Note: the above cases apply for training Type 1/2/3
· Others are not precluded.




Quantization in CSI compression refers to the mapping from float-format CSI generation output to bit-format UCI payload, often placed on the tail of CSI generation part; Dequantization in CSI compression refers to the reverse procedure on the beginning of CSI reconstruction part, i.e., mapping from bit-format UCI payload to float-format decoder input.
There are usually two categories of quantization/dequantization methods, i.e., scalar quantization and vector quantization. In scalar quantization, each number in the float-format sequence will be mapped to several bits. In vector quantization, each sub-sequence of float-format sequence will be mapped to several bits. It could be seen that scalar quantization is a specific case of vector quantization. The averaged quantization bit can be used to describe the quantization effect of a specific quantization method, which is defined as the averaged bit to quantize a float number. For example, if 180bits are used to quantize a sequence of 80 float variables, the averaged quantization bit is 180bit/80float=2.25bits/float.
To define a specific scalar quantization rule, we can directly define the number of bits assigned to each float. For example, we can use a vector [2, 2, …, 2, 3, …, 3, …, 4] to express a scalar quantization method, which assigns 2 bits to the first several float number, 3 bits to the next several float number, and 4 bits to the last several float number. The most trivial scalar quantization method is to uniformly assign K bits for all float numbers in a sequence. The definition of a vector quantization method will be a little more complicated. The whole sequence to be quantized will usually be partitioned into several segments, as it is difficult to directly quantize the whole sequence. Otherwise, there will an extremely large quantization codebook of size. For example, 80 float variables can be partitioned into 16 sub-sequences, each of which is of size 5. Correspondingly, we can set 16 quantization codebooks, each of which will be used to quantize one segment. It is also quite common to assign a uniform codebook for all sub-sequences to save the storage space. Each column in the codebook, i.e., a codeword will be a quantization candidate for the input. The quantization procedure is to select one codeword in the codebook that most represents the input, and the most common criteria is to select the one with the least MSE distance to the input. 
For quantization non-aware training, quantization effect will not be considered during training stage, and the float-format variables will be directly passed from CSI generation part to CSI reconstruction part without any loss. After the model is trained, quantization module will be added to quantize and recover the intermediate result (CSI generation output). For quantization-aware training, CSI compression model will be trained under the awareness of the quantization loss for CSI generation output. In addition, the quantization codebook for scalar or vector quantization can be set fixed or optimized during training of CSI compression model. We will compare the performance of current quantization/dequantization methods as well as different training approaches in the following.


Inference performance of quantization non-aware training 
In figure above, inference performance of quantization non-aware training is presented, where the length of CSI generation output is set 80. After the model is firstly trained without considering quantization, various amounts of bits are considered to quantize the CSI generation output during inference stage. When the CSI generation output is quantized by 320 bits, the performance is quite close to ideal one, while when the quantization bits decrease to 240, the SGCS result reduces by 5% in absolute value. However, for the case of quantizing by 180bits and 80bits, the model is almost not workable due to the very low SGCS performance. 
[bookmark: _Ref118741907]Quantization non-aware training achieves good performance when the averaged quantization bit is large (e.g., >= 4bits/float). When the averaged quantization bit is small (e.g., <= 2bits/float), the performance loss is significant.
In addition, it is also possible to achieve the scalability in different payload through quantization non-aware training and different quantization methods. For example, as presented in Figure 14, we can theoretically realize the payload of 320 bits, 240 bits, 180bits, and 80 bits based on the same model with quantization non-aware training. However, if we compare the performance of quantization non-aware training and quantization aware training, we could find such payload scalability could be inefficient for some cases. For example, performance of quantization non-aware training for payload of 80bits and 180bits is not enough, while performance of quantization non-aware training for payload of 320 bits quite approaches the upper bound, which makes further increasing payload almost meaningless. Only in a proper range can quantization non-aware training achieve good scalability over different payloads, e.g., from 240bits to 320 bits. 
While quantization non-aware training could achieve scalability over different payload by using different quantization methods, there is a proper payload range to guarantee the efficient use of feedback bits, which needs further study.


Comparisons of different quantization methods (all models consider using 180bits to quantize 80 float-format variables).
In the figure above, we compare different quantization methods, where all models consider using 180bits to quantize 80 float-format variables. We can see that vector quantization with optimized codebook achieves the best SGCS performance among all candidates, while scalar quantization with fixed codebook ranks second with ~0.9% loss in SGCS. Interestingly, vector quantization with random initialized and fixed codebook is slightly inferior to scalar quantization. Last but not least, quantization non-aware training with the same setting demonstrates a much lower performance, which may suggest it is not a good choice.
[bookmark: _Ref118741909]Vector quantization with optimized codebook can achieve slightly better performance (e.g., by about 0.009 in SGCS in our considered configurations) than scalar quantization with fixed codebook.
[bookmark: _Ref118741911]Performance of vector quantization with randomly initialization and fixed codebook can be slightly inferior to that of scalar quantization with fixed codebook (e.g., by about 0.0065 in SGCS in our considered configurations).
[bookmark: _Ref118741912]Performance of quantization non-aware training could be significantly lower than that of quantization aware training (more than 0.1 in SGCS in our considered configurations).  
To our understanding, quantization method at UE side and dequantization method at NW side should be aligned anyhow for training collaboration type2 and 3. For training collaboration type2, if quantization/dequantization methods are not aligned at training stage, we find it difficult for the model to learn anything from the data, i.e., the performance stays in a randomly initialized level. Furthermore, if the length for the floating output is not aligned, the gradients cannot properly back propagate to the CSI generation part. For training collaboration type3, we also find that the model cannot even converge to a reasonable performance (loss in SGCS >= 0.1 compared with the case of aligned quantization/dequantization) if quantization/dequantization methods are not aligned. Therefore, we have the following proposal:
[bookmark: _Ref118741913]Quantization method at UE side and dequantization method at NW side should be aligned for type2 and type3 training to achieve a satisfying performance.

Evaluations on multiple-vendor joint training

	Agreement
For how to separate the templates for different training types/cases for AI/ML-based CSI compression without generalization/scalability verification, the following is considered:
· The determined template in the RAN1#111 working assumption is entitled with “1-on-1 joint training”
· A second separate template is introduced to capture the evaluation results for “multi-vendor joint training”
· Note: this table captures the results for the joint training cases of 1 NW part model to M>1 UE part models, N>1 NW part models to 1 UE part model, or N>1 NW part models to M>1 UE part models. An example is multi-vendor Type 2 training.
· A third separate template is introduced to capture the evaluation results for “separate training”
· FFS: additional KPIs for each template, e.g., overhead, latency, etc.




In this section, we will study the performance of multi-vendor joint training based on the agreement made in the previous meetings. According to the evaluation template, the study of multi-vendor joint training includes three case: 1) one-to-one joint training as baseline; 2) 1 NW part to M>1 UE parts; 3) N>1 NW parts to 1 UE part. In our simulation, 3 NWs (i.e., NW#1, NW#2, and NW#3) and 3 UEs (i.e., UE#1, UE#2, and UE#3) are involved. Each NW and each UE has its own model design when participating joint training, which is introduced below:
UE#1 uses Transformer with configuration#1 for its CSI generation part;
UE#2: uses Transformer with configuration#2 for its CSI generation part;
UE#3: uses CNN with configuration#1 for its CSI generation part;
NW#1 uses Transformer with configuration#3 for its CSI reconstruction part;
NW#2 uses Transformer with configuration#4 for its CSI reconstruction part;
NW#3 uses CNN with configuration#2 for its CSI reconstruction part.
For case 1, we jointly train CSI generation part at different UEs and CSI reconstruction part at different NWs. The total combination is 9 cases, i.e., NW#1-UE#1, NW#1-UE#2, …, NW#3-UE#3. The training dataset for all cases consists of 300,000 samples and the same hyperparameters are considered. Other detailed simulation settings can be referred to our columns in the excel templates. The overall results for 64-bit payload is provided below, and the results for 116-bit payload and 244-bit payload can be found in the excel. The result of case 1 will serve as performance bound for case 2 and case 3.
Performance for case 1 with 64-bit payload considered, i.e., one-to-one joint training for different model pairs
	SGCS for different model pairs
	NW#1
	NW#2
	NW#3

	UE#1
	0.750
	0.755
	0.746

	UE#2
	0.742
	0.737
	0.736

	UE#3
	0.726
	0.722
	0.724



For case 2, we consider the following training method:
[image: ]
Training method for case 2 in multi-vendor joint training
where separate input data streams flow over different CSI generation parts and the same CSI reconstruction part to get the output, whereby the loss can be computed and back-propagated through all trainable weights. Based on such framework, the pairing of NW#1 with UE#1, UE#2, UE#3, NW#2 with UE#1, UE#2, UE#3, and NW#3 with UE#1, UE#2, UE#3 is considered in our simulation. The amount of data for the input of each CSI generation part is 300,000, which is the same as that in case 1, and samples for each encoder are collected independently from the same distribution. After jointly training, each CSI generation model is tested with the corresponding CSI reconstruction model. The results are provided below:
Performance for case 2 with 64-bit payload considered, i.e., 1 NW part to M>1 UE parts in joint training.
	
	SGCS (and the gain over benchmark in absolute value) for different model pairs

	NW#1
	NW#1-UE#1 0.748 (-0.8%), NW#1-UE#2 0.744 (+0.2%), NW#1-UE#3 0.726 (+0.0%)

	NW#2
	NW#2-UE#1 0.744 (-1.1%), NW#2-UE#2 0.740 (+0.3%), NW#2-UE#3 0.723 (+0.1%)

	NW#3
	NW#3-UE#1 0.746 (-0.0%), NW#3-UE#2 0.740 (+0.3%), NW#3-UE#3 0.726 (+0.2%)


In the above table, we can find that the performance of joint training 1 NW part to multiple UE parts is fairly good, where little performance degradation is shown, and even some minor improvement can be observed in some cases. Such minor performance improvements may be attributed to the overfitting effects during training, which seems reasonable to us. 
It is feasible to jointly train 1 NW part corresponding to M>1 UE parts with negligible performance loss (e.g., -1.1%~0.3% SGCS gain when considering 1 NW part to 3 UE parts) compared with one-to-one joint training. 

For case 3, we consider the following training method:
[image: ]
Training method for case 3 in multi-vendor joint training
where the output of CSI generation part is broadcast to multiple CSI reconstruction parts to compute the loss function for back-propagation. Similar to case 2, we also simulate the pairing of UE#1 with NW#1, NW #2, NW #3, UE#2 with NW #1, NW #2, NW #3, and UE#3 with NW #1, NW #2, NW #3 in case 3. The amount of input is 300,000. After jointly training, each CSI reconstruction part is tested with the corresponding CSI generation part. Our results are demonstrated below:
Performance for case 3 with 64-bit payload considered, i.e., N>1 NW parts to 1 UE part in joint training.
	
	SGCS (and the gain over benchmark in absolute value) for different model pairs

	UE#1
	NW#1-UE#1 0.746 (-0.4%), NW#2-UE#1 0.749 (-0.6%), NW#3-UE#1 0.744 (-0.2%)

	UE#2
	NW#1-UE#2 0.744 (+0.2%), NW#2-UE#2 0.746 (+0.9%), NW#3-UE#2 0.740 (+0.4%)

	UE#3
	NW#1-UE#3 0.727 (+0.1%), NW#2-UE#3 0.730 (+0.8%), NW#3-UE#3 0.722 (-0.2%)


From the table, we can observe that it is also feasible to jointly train N>1 NW parts to 1 UE part with negligible performance loss compared with one-to-one joint training. Possibly due to overfitting effects, some cases in the table demonstrate a litter higher SGCS than the benchmark, but the gap is marginal. 
It is feasible to jointly train N>1 NW parts corresponding to 1 UE part with negligible performance loss (e.g., -0.6%~0.9% SGCS gain when considering 3 NW parts to 1 UE part) compared with one-to-one joint training. 

Evaluations on Type 3: Separate training
	Agreement
For the evaluation of an example of Type 3 (Separate training at NW side and UE side), the following cases are considered for evaluations:
· Case 1 (baseline): Aligned AI/ML model structure between NW side and UE side
· Case 2: Not aligned AI/ML model structures between NW side and UE side
· Companies to report the AI/ML structures for the UE part model and the NW part model, e.g., different backbone (e.g., CNN, Transformer, etc.), or same backbone but different structure (e.g., number of layers)
· FFS different sizes of datasets between NW side and UE side
· FFS aligned/different quantization/dequantization methods between NW side and UE side
· FFS: whether/how to evaluate the case where the input/output types and/or pre/post-processing are not aligned between NW part model and UE part model

Agreement
For the evaluation of an example of Type 3 (Separate training at NW side and UE side), the following evaluation cases for sequential training are considered for multi-vendors
· Case 1 (baseline): Type 3 training between one NW part model and one UE part model
· Note 1: Case 1 can be naturally applied to the NW-first training case where 1 NW part model to M>1 separate UE part models
· Companies to report the dataset used between the NW part model and the UE part model, e.g., whether dataset for training UE part model is the same or a subset of the dataset for training NW part model
· Note 2: Case 1 can be naturally applied to the UE-first training case where 1 UE part model to N>1 separate NW part models
· Companies to report the dataset used between the NW part model and the UE part model, e.g., whether dataset for training NW part model is the same or a subset of the dataset for training UE part model
· Companies to report the AI/ML structures for the combination(s) of UE part model and NW part model, which can be the same or different
· FFS: different quantization methods between NW side and UE side
· Case 2: For UE-first training, Type 3 training between one NW part model and M>1 separate UE part models
· Note: Case 2 can be also applied to the M>1 UE part models to N>1 NW part models
· Companies to report the AI/ML structures for the M>1 UE part models and the NW part model
· Companies to report the dataset used at UE part models, e.g., same or different dataset(s) among M UE part models
· Case 3: For NW-first training, Type 3 training between one UE part model and N>1 separate NW part models
· Note: Case 3 can be also applied to the N>1 NW part models to M>1 UE part models
· Companies to report the AI/ML structures for the UE part model and the N>1 NW part models
· Companies to report the dataset used at NW part models, e.g., same or different dataset(s) among N NW part models
· FFS: whether/how to report overhead of dataset

Agreement
For the evaluation of an example of Type 3 (Separate training at NW side and UE side) with sequential training, companies to report the set of information (e.g., dataset) shared in Step 2
· For NW-first training
· Dataset construction, e.g., the set of information includes the input and output of the Network side CSI generation part, or includes the output of the Network side CSI generation part only, or other information if applicable.
· Quantization behavior, e.g., whether the shared output of the Network side CSI generation part is before or after quantization.
· For UE-first training
· Dataset construction, e.g., the set of information includes the input and label of the UE side CSI reconstruction part, or includes the input of the UE side CSI reconstruction part only, or other information if applicable.
· Quantization behavior, e.g., whether the shared inputof the UE side CSI reconstruction part is before or after quantization.




In previous several meetings, the evaluation framework for type3 training has been made to facilitate simulations. Specifically, three cases are identified, which include the one-to-one baseline, one-NW-to-multi-UE configuration for UE first training, and one-UE-to-multi-NW configuration for NW first training. Therefore, we would like to update our results according to the agreed framework. During the evaluation, we consider the conventional separate training via exchanging datasets between NW and UE side, which is illustrated in Figure 18. As the separate training method has already been mentioned in agreements and working assumptions, we will not introduce them again in the following content. 
[image: ]
An illustration of separate training procedure.

General simulation configuration 
Firstly, we would like to introduce our simulation settings. We consider totally 3 gNBs (i.e., NW#1, NW#2, and NW#3) and 3 UEs (i.e., UE#1, UE#2, and UE#3) in our simulation, each of which has its own CSI generation/reconstruction part design. For simplicity, we also assume NW and UE that have the same index also share the same model design. Namely, the involved gNBs and UEs use the following model structure to train their local models and generate the dataset to be exchanged:
NW#1 and UE#1: use Transformer with configuration#1 for CSI generation part and Transformer with configuration#3 for CSI reconstruction part;
NW#2 and UE#2: use Transformer with configuration#2 for CSI generation part and Transformer with configuration#4 for CSI reconstruction part;
NW#3 and UE#3: use CNN with configuration#1 for CSI generation part and CNN with configuration#2 for CSI reconstruction part.
The local model is trained with 300K samples and tested with 15K samples. Quantization-aware training with trainable vector quantization codebook is considered. Other detailed simulation parameters can be found in the out columns in the excel template. The performance for local joint training benchmark is presented below.
Benchmark performance for separate training (64-bit payload).
	Model design
	SGCS for 64-bit payload

	Transformer with configuration#1 for CSI generation part and Transformer with configuration#3 for CSI reconstruction part
	0.750

	Transformer with configuration#2 for CSI generation part and Transformer with configuration#4 for CSI reconstruction part;
	0.737

	CNN with configuration#1 for CSI generation part and CNN with configuration#2 for CSI reconstruction part
	0.724



Evaluations for case 1
For case 1, we study the performance of ideal alignment between involved entities and the impact of model structure mismatch. As guided by the agreement, we study NW-first training and UE-first training separately. 
For UE-first training, we assume UE#1 firstly trains its local model using Transformer with configuration#1 for CSI generation part and Transformer with configuration#3 for CSI reconstruction part. Then, the paired input and output data for CSI reconstruction model with Transformer configuration#3 is generated and sent to multiple gNBs. Note that we consider the output data for CSI reconstruction part to be the target CSI instead of the output of CSI reconstruction model at UE side, since we find that using target CSI as the label helps to achieve better performance. After receiving dataset, each gNB uses its local model structure to learn the actual CSI reconstruction part, i.e., using Transformer with configuration#3 in NW#1, using Transformer with configuration#4 in NW#1, and using CNN with configuration#2 in NW#3. Finally, the paired CSI generation part at UE side and CSI reconstruction part at NW side are tested together. The computed intermediate KPI will be compared with joint training benchmark, i.e., SGCS for joint training Transformer with configuration#1 for CSI generation part and Transformer with configuration#3 for CSI reconstruction part.
Performance for one-to-one UE first separate training (64-bit payload).
	Test model pair in UE-first training
	SGCS for 64-bit payload (and the gain over benchmark in absolute value), 300,000 samples are exchanged
	SGCS for 64-bit payload (and the gain over benchmark in absolute value), 50,000 samples are exchanged

	NW#1-UE#1
	0.746 (-0.4%)
	0.730 (-2.0%)

	NW#2-UE#1
	0.748 (-0.2%)
	0.735 (-1.5%)

	NW#3-UE#1
	0.738 (-1.2%)
	0.719 (-3.1%)


According to the above table, if the actual model structure at NW strictly aligns with the assumed structure at UE, performance of UE-first separate training approaches that of joint training benchmark. If the model structure backbone aligns, the performance of UE-first separate training is still good. However, if NW uses a model with different backbone compared with the UE-side CSI reconstruction part, the performance degradation enlarges. In addition, the amount of exchanged data between NW and UE is also an important factor for separate training performance. If the amount of exchanged data is fewer than that of joint training, performance degradation could also be observed.
For UE-first type 3 training, if the size of dataset to be exchanged is comparable to that in joint training at UE side and the model structure (or at least model backbone) is aligned between NW and UE, the performance of separate training approaches that of joint training benchmark at UE side with minor loss (e.g., within -0.4% SGCS gain).
For UE-first type 3 training, if the size of datasets to be exchanged is comparable to that in joint training at UE side but the model structure (or at least model backbone) is not aligned between NW and UE, the performance gap between separate training and joint training benchmark at UE side increases (e.g., increasing from -0.4% SGCS gain to -1.2% SGCS gain).
For UE-first type 3 training, if the size of datasets to be exchanged is smaller than to that in joint training at UE side, the performance gap between separate training and joint training benchmark at UE side increases (e.g., increasing from -0.4% SGCS gain for 300,000 samples to -2.0% SGCS gain for 50,000 samples).

For NW-first training, we also we assume UE#1 firstly trains its local model using Transformer with configuration#1 for CSI generation part and Transformer with configuration#3 for CSI reconstruction part. After that, the paired input and output data for CSI generation model with Transformer configuration#1 is generated and sent to multiple UEs. Based on the received data, each UE uses its local model structure to learn the actual CSI generation model, i.e., using Transformer with configuration#1 in UE#1, using Transformer with configuration#2 in UE#2, and using CNN with configuration#1 in UE#3. Finally, the paired CSI generation part at UE side and CSI reconstruction part at NW side are tested together. The computed intermediate KPI will be compared with the same benchmark as what is done in UE-first training.
Performance for one-to-one NW first separate training (64-bit payload).
	Test model pair in NW-first training
	SGCS for 64-bit payload (and the gain over benchmark in absolute value), 300,000 samples are exchanged
	SGCS for 64-bit payload (and the gain over benchmark in absolute value), 50,000 samples are exchanged

	NW#1-UE#1
	0.744 (-0.6%)
	0.724 (-2.6%)

	NW#1-UE#2
	0.741 (-0.9%)
	0.724 (-2.6%)

	NW#1-UE#3
	0.698 (-5.2%)
	0.656 (-9.4%)


As presented in the table, we can find that the requirement of aligning model structure (at least model backbone) and exchanging sufficient amount of data still holds for NW-first training. Furthermore, compared with UE-first training, NW-first training seems to suffer more obvious performance degradation when considering various non-ideal factors. We believe the reason for such phenomenon is that the output label in NW-first training is the latent space, which heavily depends on the learned pattern in CSI generation model. Therefore, for UEs using different model structures, it will be more difficult to learn the relationship between input and output of another model.
For NW-first type 3 training, if the size of dataset to be exchanged is comparable to that in joint training at NW side and the model structure (or at least model backbone) is aligned between NW and UE, the performance of separate training approaches that of joint training benchmark at NW side with minor loss (e.g., within -0.9% SGCS gain).
For NW-first type 3 training, if the size of dataset to be exchanged is comparable to that in joint training at NW side but the model structure (or at least model backbone) is not aligned between NW and UE, the performance gap between separate training and joint training benchmark at NW side increases (e.g., increasing from -0.6% SGCS gain to -5.2% SGCS gain).
For NW-first type 3 training, if the size of datasets to be exchanged is smaller than that in joint training at NW side, the performance gap between separate training and joint training benchmark at NW side increases (e.g., increasing from -0.6% SGCS gain for 300,000 samples to -2.6% SGCS gain for 50,000 samples).

Evaluations for case 2
For case 2, we study the performance of training between one NW part model and M>1 separate UE part models in UE-first type3 training. Specifically, we assume one NW and three UEs are involved, where 1) UE#1 trains its local model using Transformer with configuration#1 for CSI generation part and Transformer with configuration#3 for CSI reconstruction part; 2) UE#2 trains its local model using Transformer with configuration#2 for CSI generation part and Transformer with configuration#4 for CSI reconstruction part; 3) UE#3 trains its local model using CNN with configuration#1 for CSI generation part and CNN with configuration#2 for CSI reconstruction part. After local training, UE#1 generates the dataset to be exchanged based on CSI reconstruction part with Transformer configuration#3, UE#2 generates the dataset to be exchanged based on CSI reconstruction part with Transformer configuration#4, and UE#3 generates the dataset to be exchanged based on CSI reconstruction part with CNN configuration#2. Each dataset consists of 100,000 samples, so NW#1 could totally receive 300,000 samples from all UEs. Note that different UE generates its dataset based on its local data, which results non-overlapping samples at NW side. Finally, NW#1 collects datasets from all three UEs and trains one model accordingly. The final CSI reconstruction model will be paired with CSI generation model at different UEs during the test phase.
Performance for case 2 separate training (64-bit payload).
	Test model pair in case 2 for type3 training 
	SGCS for 64-bit payload (and the gain over benchmark in absolute value), 300,000 samples are exchanged

	NW#1-UE#1
	0.735 (-1.5%)

	NW#1-UE#2
	0.730 (-0.7%)

	NW#1-UE#3
	0.710 (-1.4%)



From the table, it can be observed that training one NW part model that corresponds to multiple UE part models would incur some performance loss compared with the case of one NW part to one UE part. However, we find the performance loss is not significant, which means it is feasible to use such configuration for training.
For UE-first type 3 training, the performance loss of training 1 NW part model to M>1 UE part models with different model structures is observable/non-negligible compared with one-to-one joint training benchmark (e.g., within -1.5% SGCS gain for 1 NW part model to 3 UE part models).

Evaluations for case 3
For case 3, we study the training between one UE part model and N>1 separate NW part models in NW-first type 3 training. We consider UE#1 trains a unified CSI generation model corresponding to the CSI reconstruction model at NW#1, NW#2, and NW#3 simultaneously. For the local model at NW side, NW#1 trains its local model using Transformer with configuration#1 for CSI generation part and Transformer with configuration#3 for CSI reconstruction part, NW#2 trains its local model using Transformer with configuration#2 for CSI generation part and Transformer with configuration#4 for CSI reconstruction part, and NW#3 trains its local model using CNN with configuration#1 for CSI generation part and CNN with configuration#2 for CSI reconstruction part. Then the dataset from NW#1 is based on CSI generation model with Transformer configuration#1, dataset from NW#2 is based on CSI generation model with Transformer configuration#3, and dataset from NW#3 is based on CSI generation model with CNN configuration#1. Similar to case, each dataset from one NW consists of 100,000 samples, so UE#1 receives 300,000 samples in all. It is worth noting that the quantization methods for CSI generation output from different NWs are different, as we believe aligning quantization methods at multiple NWs in advance is difficult, especially when these NWs are from different vendors. After receiving data, UE#1 trains a unified CSI generation model using Transformer configuration#1, which will be tested with CSI reconstruction model at each NW. 
Performance for case 3 separate training (64-bit payload).
	Test model pair in case 3 for type3 training 
	SGCS for 64-bit payload (and the gain over benchmark in absolute value), all three NWs are involved
	SGCS for 64-bit payload (and the gain over benchmark in absolute value), only NW#1 and NW#2 are involved

	NW#1-UE#1
	0.204 (no longer workable) 
	0.304 (no longer workable)

	NW#2-UE#1
	<0.1 (no longer workable)
	<0.1 (no longer workable)

	NW#3-UE#1
	<0.1 (no longer workable)
	



From the results above, we find the performance of case 3 in our simulation setting is surprisingly low such that models are no longer workable, even for the pair with the best performance (corresponding to aligned model structure on CSI generation part between NW and UE). We also tried the case that only two NWs are involved, where the performance is slightly better than that in case where three NWs are involved. To our understanding, we attribute such failure to the difficulty in simultaneously learning the input-output relationship of multiple patterns. Note that we do not consider designing individual information flows for data from different NWs (e.g., using adaption layers near output for different NWs). Namely, our model directly generates the latent representation using all weights. We believe that designs such as adaption layer at CSI generation model could resolve the problem, as introducing adaption layers could be seen as making a trade-off between case 3 and case 1, and we have found that NW-first training is workable in case 1. Since we have also found in results from other companies that large performance degradation is also observed in case 3, we believe it is better to reflect such phenomenon in the observation for case3 in type3 training, e.g., good performance in case 3 relies on particular model design such as adaption layers. 
For NW-first type 3 training, training 1 UE part model to M>1 NW part models with different model structures may lead to serious performance degradation which makes the model non-workable (e.g., <0.2 SGCS for 1 UE part model to 3 NW part models).
If good performance in case 3 for type 3 training is reported by companies, it is better to clarify whether such (good) performance relies on special model structure, such as adaption layers.

Evaluation for Performance Monitoring methods
	Agreement
To evaluate the performance of the intermediate KPI based monitoring mechanism for CSI compression, the model monitoring methodology is considered as:
· Step1: Generate test dataset including K test samples
· FFS how to obtain the K test samples
· Step2: For each of K test samples, a bias factor of monitored intermediate KPI () is calculated as a function of , where  is the actual intermediate KPI, and  is the genie-aided intermediate KPI.
· Step3: Calculate the statistical result of the  over K test samples which represents the monitoring accuracy performance.
· Note:  is introduced for the evaluation and comparison purpose; it may not be available in the real network.
· Note: the complexity, overhead and latency of the monitoring scheme are reported by companies. FFS how to evaluate latency.

Agreement
To evaluate the performance of the intermediate KPI based monitoring mechanism for CSI compression, for Step2 of the model monitoring methodology, the per sample  is considered for
· Case 1: NW side monitoring of intermediate KPI, where the monitoring accuracy is evaluated for a given ground-truth CSI format (e.g., quantized ground-truth CSI with 8 bits scalar, R16 eType II-like method, etc.) or SRS measurements, where
·  is calculated with the output CSI at the NW side and the given ground-truth CSI format or SRS measurements.
·  is calculated with output CSI (as for ) and the ground-truth CSI of Float32.
· Note: if Float32 is used for , the monitoring accuracy is 100% if  and  are based on the same CSI sample. 
· Case 2: UE side monitoring of intermediate KPI with a proxy model, where the monitoring accuracy is evaluated for the output of the proxy model at UE:
· Case 2-1: the proxy model is a proxy CSI reconstruction part, and  is calculated based on the inference output of the proxy CSI reconstruction part at UE and the ground-truth CSI.
· Note: if the proxy CSI reconstruction model is the same as the actual CSI reconstruction model at the NW, the monitoring accuracy is 100%
· Case 2-2: the proxy model directly outputs intermediate KPI ()
·  is calculated with the output CSI at the NW side and the same ground-truth CSI.
· FFS how to train the proxy model and the resulting monitoring performance, to be reported by companies.
· FFS whether/how to evaluate the generalization performance of the proxy model.
· Case 3: others are not precluded

Agreement
To evaluate the performance of the intermediate KPI based monitoring mechanism for CSI compression,  is in forms of
· Option 1: Gap between  and , i.e. ; 
· Monitoring accuracy is the percentage of the samples for which , where  is a threshold of the intermediate KPI gap.
· Option 2: Binary state where  and  have different relationships to their threshold(s), i.e., , where  can be same or different from 
· Monitoring accuracy is the percentage of the samples for which .
· FFS other metrics: Misdetection, False alarm, etc.
· FFS the values of , , .
· FFS whether/how to evaluate the monitoring metrics for Rank>1



In RAN1 #112b-e, three agreements have been drawn towards the evaluation methodology for performance monitoring methods in CSI compression, whereby NW and UE side monitoring of intermediate KPIs can be evaluated and compared. In this section, we will present our initial results for UE side monitoring via proxy model according to such a framework.

Intermediate KPI Evaluation
We consider UE side monitoring of intermediate KPI with a proxy model in our results. The involved proxy model is a proxy CSI reconstruction part, and  is calculated based on the inference output of the proxy CSI reconstruction part at UE and the ground-truth CSI. To facilitate low latency monitoring at UE side, the proxy model is designed to have very simple structure and small-scale parameters, and the comparison between proxy model and NW-side model is presented in Table 28. The proxy CSI reconstruction part is trained by minimizing the variance of KPI gap between proxy model output and NW-side model output. As the training objective is to minimize the variance of KPI gap,  is computed by shifting the intermediate KPI between inference output of the proxy CSI reconstruction part at UE and the ground-truth CSI, where the shifting bias is obtained at training stage, which is illustrated in Figure 19.
Comparison of actual CSI reconstruction model at NW and proxy CSI reconstruction model at UE.
	
	Model structure
	Parameter scale
	FLOPs

	NW-side CSI reconstruction model
	Transformer
	8.4M
	102.9M

	Proxy CSI reconstruction model at UE
	MLP
	0.33M
	0.45M
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SGCS comparison (left) and SGCS gap distribution (right) 

The gap between  and , i.e. , and monitoring accuracy is the percentage of the samples for which , where  is a threshold of the intermediate KPI gap. Specifically, we evaluate our proxy model on three different datasets and several threshold values are considered, where dataset#1 and dataset#2 are collected under the same scenario as the training data (i.e., UMi LoS-dominant case). Detailed results can be referred to Table 29.
Performance gap between  and 
	
	# of samples in dataset
	Average   
	#  and percentage of samples for which 
	#  and percentage of samples for which 
	#  and percentage of samples for which 
	#  and percentage of samples for which 

	Dataset #1
	95873
	0.0151
	5380 (5.61%)
	764 (0.79%)
	205 (0.21%)
	78 (0.08%)

	Dataset #2
	570732
	0.0153
	27220 (4.76%)
	5691 (0.99%)
	1769 (0.30%)
	604 (0.10%)



From the table, it could be observed that a proxy model at UE side is able to achieve very small  in dataset#1 and dataset#2, possibly due to the very similar data distribution in dataset#1/dataset#2 and training data. In addition, we feel that some reference values are needed for the percentage of the samples for which . Otherwise it is challenging to see whether the evaluated monitoring method is good or not.
Observation: The accuracy of intermediate KPI based monitoring at UE side with proxy model (evaluated by the percentage of the samples for which ) is ~5% for , ~1% for , and ~0.1% for  if generalization case 1 is considered (i.e., training at scenario#A UMi and testing at scenario#A UMi). 
We also tried to compute the monitoring accuracy based on the binary state where  and  have different relationships to their threshold(s). However, we find it difficult to determine reasonable  and , since the intermediate KPI is always fluctuating on different samples. It is better for proponent to clarify how to determine  and  for option2 to facilitate the simulation.
For the case that binary state where  and  is considered to reflect the monitoring accuracy (i.e., computing ), clarify how to determine  and  for all K samples in the test datasets. 

CSI prediction
Basic assumptions for CSI prediction
In the AI-based CSI prediction design, the AI model is designed to derive the prediction of CSIs as the output of model when using the historical CSIs as the input. The block diagram of AI-based CSI prediction is illustrated in Figure 20.

[bookmark: _Ref111237779]The block diagram of AI-based CSI prediction.
For CSI prediction, the data for training is derived from the SLS platform.
Results for CSI prediction
In this subsection, the gain over non-AI scheme, the generalization aspects, the impact of observation window, and the monitoring results of AI-based CSI prediction are discussed.
The gain of AI-based CSI prediction
In this subsection, the eventual KPI and intermediate KPI of scheme with AI-based CSI prediction, nearest historical CSI without prediction (benchmark1) and AR-based non-AI CSI prediction (benchmark 2) are evaluated, which are provided in the following Table 30. Simulation parameters are given below:
Umi 38.901; 7 cells, 3 sectors for each cell, 10 user for each sector; carrier frequency 2GHz, subcarrier spacing 15KHz, 13 subbands (10MHz, 4RBs/subband), 32 gNB antenna ( [Mg Ng M N P; Mp Np] = [1 1 2 8 2; 2 8]), 2 UE antenna ([Mg Ng M N P; Mp Np] = [1 1 1 1 2; 1 1]), 100% outdoor UE, Channel type: Uma, NLOS, Period of CSI-RS: 5ms, UE speed: 60km/h; Input of AI model for CSI prediction: 10 raw historic channels in PRB, the spatial consistency procedure A with 50m decorrelation distance is used where the channel updating periodicity is assumed to be 1 ms. AI-based CSI compression models: Transformer model with 64 bits payload (CSI feedback payload Z).
It is shown that, for intermediate KPI:
· the AI-based CSI prediction achieves a SGCS gain of 13.8% and 6.2% over the benchmark 1 and benchmark2, respectively.
· the AI-based CSI prediction achieves a NMSE gain of 9.39dB and 4.18dB over the benchmark 1 and benchmark2, respectively.
It is shown that, for eventual KPI:
· with FTP traffic, AI-based CSI prediction achieves a mean UPT gain of 9.7%~17.2% over the benchmark 1, 3.4%~7.0% over the benchmark 2.
· with FTP traffic, AI-based CSI prediction achieves a 5% UPT gain of 6.9%~20% over the benchmark 1, 0.5%~16% over the benchmark 2.
· with full buffer traffic, AI-based CSI prediction achieves a mean UPT gain of 8.7% over the benchmark 1, 8.1% over the benchmark 2.
· With full buffer traffic, AI-based CSI prediction achieves a 5% UPT gain of 17.5% over the benchmark 1, 11% over the benchmark 2.
In conclusion, the AI-based CSI prediction can achieve higher prediction accuracy and UPT over both benchmark 1 and benchmark 2.
[bookmark: _Ref135065574]The gain of AI-based CSI prediction over benchmarks
	Benchmark 1
	nearest historical CSI w/o prediction 

	SGCS of benchmark 1 (1,…N, N is number of prediction instances)
	0.71
(rank=1)

	Gain% for SGCS over Benchmark 1 (1,…N, N is number of prediction instances)
	13.8%

	NMSE of Benchmark 1 (1,…N, N is number of prediction instances)
	2.704

	Gain(dB) for NMSE over Benchmark 1 (1,…N, N is number of prediction instances)
	9.39dB

	Gain for eventual KPI (Benchmark 1)-FTP
	Mean UPT 
[(CSI feedback payload X/Y/Z), RU<=39%]
	9.7% (64 bits)

	
	Mean UPT 
[(CSI feedback payload X/Y/Z), RU 40%-69%]
	15.1% (64 bits)

	
	Mean UPT 
[(CSI feedback payload X/Y/Z), RU >=70%]
	17.2% (64 bits)

	
	5% UPT 
[(CSI feedback payload X/Y/Z), RU<=39%]
	6.9% (64 bits)

	
	5% UPT 
[(CSI feedback payload X/Y/Z), RU 40%-69%]
	13.0% (64 bits)

	
	5% UPT 
[(CSI feedback payload X/Y/Z), RU >=70%]
	20.0% (64 bits)

	Gain for eventual KPI (Benchmark 1)-full buffer
	Mean UPT 
[(CSI feedback payload X/Y/Z), RU<=39%]
	8.7% (64 bits)

	
	5% UPT 
[(CSI feedback payload X/Y/Z), RU<=39%]
	17.5% (64 bits)

	Benchmark 2
	auto-regression 

	SGCS of Benchmark 2 (1,…N, N is number of prediction instances)
	0.78

	Gain% SGCS over Benchmark 2 (1,…N, N is number of prediction instances)
	6.2%
(rank=1)

	NMSE of Benchmark 2 (1,…N, N is number of prediction instances)
	0.655

	Gain(dB) NMSE over Benchmark 2 (1,…N, N is number of prediction instances)
	4.18dB

	Gain for eventual KPI (Benchmark 2)-FTP
	Mean UPT 
[(CSI feedback payload X/Y/Z), RU<=39%]
	3.4% (64 bits)

	
	Mean UPT 
[(CSI feedback payload X/Y/Z), RU 40%-69%]
	5.1% (64 bits)

	
	Mean UPT 
[(CSI feedback payload X/Y/Z), RU >=70%]
	7.0% (64 bits)

	
	5% UPT 
[(CSI feedback payload X/Y/Z), RU<=39%]
	0.5% (64 bits)

	
	5% UPT 
[(CSI feedback payload X/Y/Z), RU 40%-69%]
	3.1% (64 bits)

	
	5% UPT 
[(CSI feedback payload X/Y/Z), RU >=70%]
	16% (64 bits)

	Gain for eventual KPI (Benchmark 2)-full buffer
	Mean UPT 
[(CSI feedback payload X/Y/Z), RU<=39%]
	8.1% (64 bit)

	
	5% UPT 
[(CSI feedback payload X/Y/Z), RU<=39%]
	11% (64 bit)



The AI-based CSI prediction achieves higher prediction accuracy and UPT over both benchmark 1 and benchmark 2.

The generalization of AI-based CSI prediction
The generalization describes the adaptability of an AI model to fresh data, which is one of the key capabilities for evaluating the performance of an AI model. 
In this subsubsection, the generalization of AI-based CSI prediction over speeds, deployment scenarios (LOS/NLOS, Uma/Umi) and carrier frequencies are evaluated.
A. The generalization of AI-based prediction over speeds
In this subsubsection, the generalization of AI-based CSI prediction over different speeds is evaluated. The corresponding simulation parameters are given below:
Simulation parameters: Uma 38.901 ,carrier frequency 2GHz, subcarrier spacing 15KHz, 32 gNB antenna ( [Mg Ng M N P; Mp Np] = [1 1 2 8 2; 2 8]), 2 UE antenna ([Mg Ng M N P; Mp Np] = [1 1 1 1 2; 1 1]), 100% outdoor UE, Channel type: Uma, NLOS, Period of CSI-RS: 5ms; Input of AI model for CSI prediction: 10 raw historic channels in PRB, the spatial consistency procedure A with 50m decorrelation distance is used where the channel updating periodicity is assumed to be 1 ms.
The AI model is trained using the data with one specific UE speed (30, 60, or 120 km/h) or mixed speeds. Then, the trained model is tested on the data with the UE speed of 30 and 60 km/h and 120km/h, respectively, to evaluate the generalization performance. 
The generalization performance of AI-based CSI prediction over speeds
	Generalization Case 1
	Train (setting#B, size/k)
	30km/h,90
	60km/h,90
	120km/h,90

	
	Test (setting#B, size/k)
	30km/h,10
	60km/h,10
	120km/h,10

	
	SGCS 
	0.9896
	0.8102
	0.6156

	
	NMSE 
	-17.317dB
	-4.817dB
	-1.716dB

	Generalization Case 2-Absolute value/gain(SGCS in %; NMSE in dB) over Case 1
	Train (setting#A, size/k)
	60km/h,90
120km/h,90
	30km/h,90
120km/h,90
	30km/h,90
60km/h,90

	
	Test (setting#B, size/k)
	30km/h,10
	60km/h,10
	120km/h,10

	
	SGCS 
	0.9228/-6.75%
0.8834/-10.73%
	0.5605/-30.82%
0.7469/-7.81%
	0.5048/-17.99%
0.5691/-7.55%

	
	NMSE 
	-9.215 dB/8.102dB
-6.897dB /10.42dB
	6.85 dB/11.667 dB
-2.56 dB/2.257 dB
	8.828 dB (10.544 dB)
4.039 dB (5.755 dB)

	Generalization Case 3-Absolute value/gain(SGCS in %; NMSE in dB) over Case 1
	Train (setting#A+#B, size/k)
	30km/h+60km/h+120km/h,30+30+30
	30km/h+60km/h+120km/h,30+30+30
	30km/h+60km/h+120km/h,30+30+30

	
	Test (setting#B, size/k)
	30km/h,10
	60km/h,10
	120km/h,10

	
	SGCS 
	0.9493/-4.07%
	0.7797/-3.76%
	0.5882/-4.45%

	
	NMSE 
	-11.18dB /6.137dB
	-3.26 dB/1.577dB
	1.592 dB/3.308dB



It is shown that the model trained at each speed can only cope with its corresponding speed but performs poor at other speed. Especially when the testing speed is higher than the training speed, the degradation of prediction accuracy is more significant. For CSI prediction, as a consequence, with a level y/z collaboration, the speed-specific model can be switched according to the information associated with the UE speed so as to guarantee the prediction performance for different speed scenarios. Furthermore, the model trained from the mixed-speed data set can improve the generalization performance while there still exist performance gap with speed-specific model. Besides the model switching, finetuning is also a good approach to improve the generalization performance where the model trained by mixed dataset can be a good starting point for finetuning.
The generalization of AI-based CSI prediction over speed is not good if the training set contains only one speed. 
When the testing speed is higher than the training speed, the degradation of prediction accuracy is more significant than the other way around.
The generalization of AI-based CSI prediction over speed can be improved using training set with mixed speed, whose prediction accuracy is still worse than that of speed-specific models.
For AI-based CSI prediction, with a level y/z collaboration, the speed-specific model can be switched according to the information associated with the UE speed so as to guarantee the prediction performance for different speed. However, using a level x AI/ML model, it is hard to generalize well across different speeds.






Beside the model switching with a level y/z collaboration, we also notice that a preprocessing based model scaling can be utilized to handle the situation of speed changing. For the preprocessing based model scaling, we train a base model using the data with speed  where the CSI-RS periodicity in historical CSI is  and the predicted future CSI is at . Then, for the scenario with the speed of , we compute the corresponding CSI periodicity in historical CSI () and the predicted Future CSI () using the following rule:




For example, the base model is trained with the UE speed of 30km/h where CSI-RS periodicity in historical CSI is 4ms and the predicted Future CSI is at +4ms. If we want to inference at 15km/h, then the CSI-RS periodicity in historical CSI should turn to 8ms and the predicted future CSI should be at +8ms; If we want to inference at 60km/h, then the CSI-RS periodicity in historical CSI should turn to 2ms and the predicted Future CSI should be at +2ms (as illustrated in Figure 21 as follows). 
[image: ]
[bookmark: _Ref131696824]The illustration of preprocessing based model scaling for AI-based CSI prediction: from 30km/h to 60km/h

The key issue for preprocessing based model scaling is to derive the input CSI of model with the periodicity of . We consider two options: 

1) Reconfigure the CSI-RS periodicity to ; 




2) Construct the input CSIs with the periodicity of  from the CSIs with the periodicity of . If , we just need to extract corresponding CSIs; If , CSI interpolation is needed to derive denser CSIs.
The performance of preprocessing based model scaling is provided in the following Table 32. It can be seen that, the prediction accuracy at 60 km/h with 2 ms historical CSI spacing to predict +2 ms and +4 ms are almost the same as that at 30 km/h with 4 ms historical CSI spacing to predict +4 ms and +8 ms. This means that using the preprocessing, the model trained at one speed can scales to other speeds.
[bookmark: _Ref131696846]The performance of preprocessing based model scaling
	The NMSE (dB) at 30 km/h with 4ms historical CSI spacing
	Predict the CSI at +4ms
	Predict the CSI at +8ms

	
	-19.84
	-10.65

	The NMSE (dB) at 60 km/h with 2ms historical CSI spacing
	Predict the CSI at +2ms
	Predict the CSI at +4ms

	
	-19.51
	-10.67


Using the preprocessing-based model scaling mechanism, the model trained at one speed can scales to other speeds.
For AI-based CSI prediction, the generalization over speeds (e.g., 30km/h, 60km/h, and 120km/h), the model adjustment (e.g., model switching/selection, finetuning, deactivation, and fallback), and the preprocessing-based scaling mechanism (e.g., the stretching/shrinking of historical CSI and prediction CS) should be studied.

B. The generalization of AI-based prediction over deployment scenarios
The generalization over LOS and NLOS channel types:
The LOS and NLOS channel type will lead to different time varying regularity. To this end, we discuss the generalization performance of AI-based CSI prediction over LOS and NLOS channel types. In details, the models are trained by using data set from LOS, NLOS and mixed types respectively and then test these models in LOS and NLOS channel. In this simulation, the period of CSI is 5 ms, and the prediction is with 10 historical CSIs as the input and the future CSI at +5ms as output. The UE is travelling at the speed of 60km/h. The carrier frequency is 2GHz and the subcarrier spacing is 15kHz. The channel scenario is Uma. The spatial consistency procedure A with 50m decorrelation distance is used where the channel updating periodicity is assumed to be 1 ms. The corresponding performance is provided below. 
The generalization performance of AI-based CSI prediction over LOS and NLOS channel types
	Generalization Case 1
	Train (setting#B, size/k)
	LOS,90
	NLOS,90

	
	Test (setting#B, size/k)
	LOS,10
	NLOS,10

	
	SGCS 
	0.9972
	0.8102

	
	NMSE 
	-24.95dB
	-4.817dB

	Generalization Case 2-Absolute value/gain(SGCS in %; NMSE in dB) over Case 1
	Train (setting#A, size/k)
	NLOS,90
	LOS,90

	
	Test (setting#B, size/k)
	LOS,10
	NLOS,10

	
	SGCS 
	0.8507/-14.69%
	0.7436/-8.22%

	
	NMSE 
	-7.263dB/17.687dB
	-3.245dB/1.572dB

	Generalization Case 3-Absolute value/gain(SGCS in %; NMSE in dB) over Case 1
	Train (setting#A+#B, size/k)
	LOS+NLOS,45+45
	LOS+NLOS,45+45

	
	Test (setting#B, size/k)
	LOS,10
	NLOS,10

	
	SGCS 
	0.9122/-8.52%
	0.7745/-4.41%

	
	NMSE 
	-9.81dB/15.14dB
	-3.67dB/1.147dB



It is shown that the prediction accuracy decreases significantly when the model mismatch is happened. To overcome this problem, assistance information-based model switching/selection is a solution. Here, the assistance information is the estimation of LOS and NLOS type of current channel. Once the estimated assistance information changes, the procedure of model monitoring and model switching is triggered and the CSI prediction is switched to the corresponding model by using a level y/z collaboration. Furthermore, as seen from the evaluation result, using the mixed data set of LOS and NLOS can also improve the generalization performance, whose prediction accuracy is still worse than that of scenario-specific models. For the scheme using mixed training set, the data collection principle and procedure should be carefully designed to acquire a good training set.
The generalization over Uma and Umi scenarios:
Similarly, the scenarios of channel such as Uma and Umi also impact the time varying regularity of wireless channel. In details, the models are trained by using data set from Uma, Umi and mixed scenarios, respectively and then test these models in Uma and Umi channel accordingly. In this simulation, the period of CSI is 5 ms, and the prediction is with 10 historical CSIs as the input and the future CSI at +5ms as output. The UE is travelling at the speed of 60km/h. The carrier frequency is 2GHz and the subcarrier spacing is 15kHz. The channel type is NLOS. The spatial consistency procedure A with 50m decorrelation distance is used where the channel updating periodicity is assumed to be 1 ms. The corresponding performance is provided in the following Table 34.
[bookmark: _Ref131696868]The generalization performance of AI-based CSI prediction over Uma and Umi scenarios
	Generalization Case 1
	Train (setting#B, size/k)
	Uma,90
	Umi,90

	
	Test (setting#B, size/k)
	Uma,10
	Umi,10

	
	SGCS 
	0.8102
	0.9095

	
	NMSE 
	-4.817dB
	-7.55dB

	Generalization Case 2-Absolute value/gain(SGCS in %; NMSE in dB) over Case 1
	Train (setting#A, size/k)
	Umi,90
	Uma,90

	
	Test (setting#B, size/k)
	Uma,10
	Umi,10

	
	SGCS 
	0.7387/-8.82%
	0.8712/-4.11%

	
	NMSE 
	-2.418dB/2.399dB
	-6.02dB/1.53dB

	Generalization Case 3-Absolute value/gain(SGCS in %; NMSE in dB) over Case 1
	Train (setting#A+#B, size/k)
	Uma+Umi,45+45
	Uma+Umi,45+45

	
	Test (setting#B, size/k)
	Uma,10
	Umi,10

	
	SGCS 
	0.7614/-6.02%
	0.8821/-3.01%

	
	NMSE 
	-3.039dB/1.778dB
	-6.63dB/ 0.92dB



It can be seen that the prediction performance decreases significantly when the model trained by Uma is tested on the Umi data and the model trained by Umi is tested on the Uma data. This problem can also be solved by a level y/z collaboration based model switching. Furthermore, the model trained by the mixed scenarios can improve the generalization performance while its data collection is needed to be carefully designed. 
The generalization over the deployment scenarios, e.g., LOS/NLOS, Uma/Umi, is not good if the training set contains only one scenario.
The generalization over scenarios (e.g., LOS/NLOS, Uma/Umi) and the model adjustment (e.g., model switching/selection, finetuning, deactivation, and fallback) of AI-based CSI prediction should be studied.

C. The generalization of AI-based prediction over carrier frequencies
Carrier frequency will also impact the time varying regularity of wireless channel since at least the doppler shift is related to the carrier frequency. In this subsubsection, the generalization of AI-based CSI prediction over different carrier frequencies is evaluated. The corresponding simulation parameters are given below:
Simulation parameters: Uma 38.901, subcarrier spacing 15KHz, 32 gNB antenna ( [Mg Ng M N P; Mp Np] = [1 1 2 8 2; 2 8]), 2 UE antenna ([Mg Ng M N P; Mp Np] = [1 1 1 1 2; 1 1]), 100% outdoor UE, Channel type: Uma, NLOS, speed: 30km/h. Period of CSI-RS: 5ms; Input of AI model for CSI prediction: 10 raw historic channels in PRB, the spatial consistency procedure A with 50m decorrelation distance is used where the channel updating periodicity is assumed to be 1 ms.
The AI model is trained using the data with one specific carrier frequency (2GHz or 3GHz) or mixed carrier frequencies. Then, the trained model is tested on the data with the carrier frequency of 2GHz and 3GHz, respectively, to evaluate the generalization performance. 
The generalization performance of AI-based CSI prediction over carrier frequencies

	Generalization Case 1
	Train (setting#B, size/k)
	2GHz,90
	3GHz,90

	
	Test (setting#B, size/k)
	2GHz,10
	3GHz,10

	
	SGCS 
	0.9896
	0.9262

	
	NMSE 
	-17.317dB
	-9.09dB

	Generalization Case 2-Absolute value/gain(SGCS in %; NMSE in dB) over Case 1
	Train (setting#A, size/k)
	3GHz,10
	2GHz,10

	
	Test (setting#B, size/k)
	2GHz,10
	3GHz,10

	
	SGCS 
	0.9595/-3.3%
	0.7313/-21.04%

	
	NMSE 
	-13.11dB/4.207dB
	5.57dB/14.66dB

	Generalization Case 3-Absolute value/gain(SGCS in %; NMSE in dB) over Case 1
	Train (setting#A+#B, size/k)
	2GHz+3GHz,45+45
	2GHz+3GHz,45+45

	
	Test (setting#B, size/k)
	2GHz,10
	3GHz,10

	
	SGCS 
	0.9702/-1.96%
	0.8502/-8.21%

	
	NMSE 
	-15.26dB/2.057dB
	-5.02dB/4.07dB



It is shown that the prediction performance decreases significantly when the model trained by data with carrier frequency of 2GHz is tested on the data with carrier frequency of 3GHz. This problem can also be solved by a level y/z collaboration based model switching. Furthermore, the model trained by the mixed scenarios can improve the generalization performance while there still exist performance gap with generalization Case 1. 
When the testing carrier frequency is higher than the training carrier frequency, the degradation of prediction accuracy is more significant than the other way around.
The generalization over carrier frequencies of AI-based CSI prediction should be studied.

The impact of observation window on the AI-based CSI prediction
For the AI-based CSI prediction, time varying characteristic of the CSI required to be extracted from historical CSIs in observation window and utilized to make prediction. Therefore, the construction of the observation window impacts the performance. The observation window can be described by the number of historical CSIs and the spacing of the historical CSIs. The choice of observation window has significant influence on the performance of the CSI prediction. The larger the number and the smaller the spacing of historical CSIs, the better the prediction performance that can be achieved. However, this will in return increase the complexity and the storage (buffer) overhead of the model. Furthermore, for different scenario and different prediction target, the observation window should also be different.
The corresponding simulation parameters are given below and the NMSE of CSI prediction with respect to different observation window is shown in Figure 22.
Simulation parameters: Uma 38.901, carrier frequency 2GHz, subcarrier spacing 15KHz, 32 gNB antenna ( [Mg Ng M N P; Mp Np] = [1 1 2 8 2; 2 8]), 2 UE antenna ([Mg Ng M N P; Mp Np] = [1 1 1 1 2; 1 1]), 100% outdoor UE, Channel type: NLOS. The spatial consistency procedure A with 50m decorrelation distance is used where the channel updating periodicity is assumed to be 1 ms. The future time for prediction is +4ms.
  [image: ]
[bookmark: _Ref131696898]The NMSE of CSI prediction with respect to different observation windows
It is shown that, the prediction performance can be improved by increasing the number of historical CSIs. However, this improvement is marginal when the number of historical CSIs within the observation window is large enough, e.g., larger than 10 in this case. But the complexity and the storage (buffer) overhead will continuously increases. Therefore, the choice of the number of historical CSIs is important and its tradeoff should be studied. Furthermore, for different speed, the requirement for the spacing of historical CSIs is different. For example, 4ms CSI spacing is enough for 30km/h while 2ms CSI spacing seems to be more suitable for 60 km/h. Therefore, with the change of speed, the observation window should also be changed, perhaps impacting the model switching /selection for AI-based CSI prediction as well.
The observation window can be described by the number of historical CSIs and the spacing of the historical CSIs.
The larger the number and the smaller the spacing of historical CSIs within the observation window, the better the prediction performance that can be achieved. However, this will in return increase the complexity and the storage (buffer) overhead of the model.
For different speeds, the requirement for the observation window is different.
The performance impact of observation window on the AI-based CSI prediction should be studied.
The monitoring results
As shown in the previous subsubsections, the performance of CSI prediction will change with the change of speed, transmission scenario, channel type and also impacted by the observation window. Therefore, the monitoring is needed to be aware of the real time performance of AI-based CSI prediction.
The monitoring is a continuous evaluation of AI model. For the construction of dataset for monitoring, we randomly select N scenarios or configurations (each containing K samples) and concatenate samples of these N scenarios or configurations in the selected order to form a test set. Then, the prediction accuracy is continuously calculated based on this test set to observe the effectiveness of the one scheme in real time and then calculate the average prediction accuracy of one scheme from multiple randomly generated test sets.
Just for an example, we provide the monitoring results when considering multiple speeds including 30, 60, and 120 km/h. For comparison of schemes, we evaluated the scheme using one randomly chosen speed-specific model (i.e., the generalization Case 2) and the scheme with model selection. It should be noted that the delay of monitoring has not been considered in the scheme with model selection. As shown in the following Figure 23, during the monitoring process, the scheme with model selection achieves better prediction accuracy. Meanwhile, the fluctuation of the scheme with model selection is also smaller than the scheme using one randomly chosen speed-specific model (i.e., the generalization Case 2). Furthermore, in the following Table 36, the average prediction accuracy calculated from multiple randomly generated test sets for monitoring is provided. The average prediction accuracy of scheme with model selection is still higher than that without model selection.
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[bookmark: _Ref131696937]The monitoring results of AI-based CSI prediction
[bookmark: _Ref131696926]The average prediction accuracy calculated from multiple randomly generated test sets for monitoring
	scheme
	Average prediction accuracy described by NMSE (dB)

	with model selection
	-4.68

	using one randomly chosen speed-specific model
	2.74

	Using model trained with mixed {30, 60, 120 km/h} dataset
	-1.78


During the monitoring process, the scheme with model selection achieves better prediction accuracy than the scheme using one randomly chosen speed-specific model (i.e., the generalization Case 2). 
During the monitoring process, the fluctuation of the scheme with model selection is smaller than the scheme using one randomly chosen speed-specific model (i.e., the generalization Case 2).
The monitoring of the AI-based CSI prediction should be studied.
The monitoring dataset is formed by randomly selecting N scenarios or configurations (each containing K samples) and concatenating samples of these N scenarios or configurations in the selected order.

Conclusions
[bookmark: _GoBack]We have the following observations for this meeting:
1. Based on initial field test results, per-cell (region) models can provide more than 20%~30% improvement on SCGS of AI models.
Further study the model update for per-cell (region) models
Further study the data collection for per-cell (region) models.
The performance of cell-specific model trained on data with spatial consistency defined in 38.901 exceeds that of generic models trained on data with the same property, with a SGCS gain of around 2% in our results. 
From initial results for field test, performance of simple model structure, e.g., one hidden layer full-connected encoder, is good enough for typical zone/site specific optimization.
From initial results for field test, the model developed for Cell 1 shows robust performance for different moving routes.
Field test shows that model developed for Cell 1 does not perform well for Cell 2. 
Field test shows that simple and small models work well for all different cases, at least for typical cell coverage.
For case 2, zero-padding is feasible for subband number generalization while its performance degrades dramatically in port number generalization.
For case 2, pre-processing performs well for both subband number generalization and port number generalization.
Truncation on output dimension provides scalability across different payload for the same encoder under generalization case3.
For truncation method, the closer the supported payload configurations are, the better performance model achieves (e.g., model supporting payload 223, 199, and 175 outperforms model supporting payload 223, 176, 132)
Methods with good scalability for several output configurations will sacrifice some performance compared with dedicated model
Rank generalization with per-layer model can achieve similar SGCS with half model size compared with per-rank model.
Layer common model can achieve better SGCS with the same dataset.
AI model performance does not degrade when a generic model (non-optimized for a specific area/cell) trained for a frequency is applied to another frequency.  
For a generic model (non-optimized for a specific area/cell), AI model performance does not degrade when generalized from UMi to UMa.
For a generic model (non-optimized for a specific area/cell) AI model can generalize across different scenarios with a mixed dataset. A reasonable mixing ratio can provide better performance for each scenario.
For a generic model (non-optimized for a specific area/cell), AI model trained in complicated channel environment (more indoor users) has good generalization ability.
The performance of AI model depends on the deployment environment
For a generic model (non-optimized for a specific area/cell), there is obvious performance loss for antenna spacing mismatch of training data.
For a generic model (non-optimized for a specific area/cell), the influence of mismatch of training data may be reduced by pre-processing.
For a generic model (non-optimized for a specific area/cell), SGCS performance of AI model may degrade slightly from 128 antennas with virtualization to 32 antennas without virtualization. While the SE performance may degrade heavily due to the less antennas.
 For a generic model (non-optimized for a specific area/cell), in the case of 32 antennas, AI model trained with 32 antennas may have similar SE performance compared with AI model trained with 128 antennas and settled in the case of 128 antennas, which is needed to be further studied.
High resolution R16-eType II codebook with large L, , beta (for example, L=12, , beta = 1.0) performs well for ground-truth CSI quantization compared with scalar quantization such as Float16 or Float32.
Quantization non-aware training achieves good performance when the averaged quantization bit is large (e.g., >= 4bits/float). When the averaged quantization bit is small (e.g., <= 2bits/float), the performance loss is significant.
While quantization non-aware training could achieve scalability over different payload by using different quantization methods, there is a proper payload range to guarantee the efficient use of feedback bits, which needs further study.
Vector quantization with optimized codebook can achieve slightly better performance (e.g., by about 0.009 in SGCS in our considered configurations) than scalar quantization with fixed codebook.
Performance of vector quantization with randomly initialization and fixed codebook can be slightly inferior to that of scalar quantization with fixed codebook (e.g., by about 0.0065 in SGCS in our considered configurations).
Performance of quantization non-aware training could be significantly lower than that of quantization aware training (more than 0.1 in SGCS in our considered configurations).  
Quantization method at UE side and dequantization method at NW side should be aligned for type2 and type3 training to achieve a satisfying performance.
It is feasible to jointly train 1 NW part corresponding to M>1 UE parts with negligible performance loss (e.g., -1.1%~0.3% SGCS gain when considering 1 NW part to 3 UE parts) compared with one-to-one joint training. 
It is feasible to jointly train N>1 NW parts corresponding to 1 UE part with negligible performance loss (e.g., -0.6%~0.9% SGCS gain when considering 3 NW parts to 1 UE part) compared with one-to-one joint training. 
For UE-first type 3 training, if the size of dataset to be exchanged is comparable to that in joint training at UE side and the model structure (or at least model backbone) is aligned between NW and UE, the performance of separate training approaches that of joint training benchmark at UE side with minor loss (e.g., within -0.4% SGCS gain).
For UE-first type 3 training, if the size of datasets to be exchanged is comparable to that in joint training at UE side but the model structure (or at least model backbone) is not aligned between NW and UE, the performance gap between separate training and joint training benchmark at UE side increases (e.g., increasing from -0.4% SGCS gain to -1.2% SGCS gain).
For UE-first type 3 training, if the size of datasets to be exchanged is smaller than to that in joint training at UE side, the performance gap between separate training and joint training benchmark at UE side increases (e.g., increasing from -0.4% SGCS gain for 300,000 samples to -2.0% SGCS gain for 50,000 samples).
For NW-first type 3 training, if the size of dataset to be exchanged is comparable to that in joint training at NW side and the model structure (or at least model backbone) is aligned between NW and UE, the performance of separate training approaches that of joint training benchmark at NW side with minor loss (e.g., within -0.9% SGCS gain).
For NW-first type 3 training, if the size of dataset to be exchanged is comparable to that in joint training at NW side but the model structure (or at least model backbone) is not aligned between NW and UE, the performance gap between separate training and joint training benchmark at NW side increases (e.g., increasing from -0.6% SGCS gain to -5.2% SGCS gain).
For NW-first type 3 training, if the size of datasets to be exchanged is smaller than that in joint training at NW side, the performance gap between separate training and joint training benchmark at NW side increases (e.g., increasing from -0.6% SGCS gain for 300,000 samples to -2.6% SGCS gain for 50,000 samples).
For UE-first type 3 training, the performance loss of training 1 NW part model to M>1 UE part models with different model structures is observable/non-negligible compared with one-to-one joint training benchmark (e.g., within -1.5% SGCS gain for 1 NW part model to 3 UE part models).
For NW-first type 3 training, training 1 UE part model to M>1 NW part models with different model structures may lead to serious performance degradation which makes the model non-workable (e.g., <0.2 SGCS for 1 UE part model to 3 NW part models).
Observation: The accuracy of intermediate KPI based monitoring at UE side with proxy model (evaluated by the percentage of the samples for which ) is ~5% for , ~1% for , and ~0.1% for  if generalization case 1 is considered (i.e., training at scenario#A UMi and testing at scenario#A UMi). 
The AI-based CSI prediction achieves higher prediction accuracy and UPT over both benchmark 1 and benchmark 2.
The generalization of AI-based CSI prediction over speed is not good if the training set contains only one speed. 
When the testing speed is higher than the training speed, the degradation of prediction accuracy is more significant than the other way around.
The generalization of AI-based CSI prediction over speed can be improved using training set with mixed speed, whose prediction accuracy is still worse than that of speed-specific models.
For AI-based CSI prediction, with a level y/z collaboration, the speed-specific model can be switched according to the information associated with the UE speed so as to guarantee the prediction performance for different speed. However, using a level x AI/ML model, it is hard to generalize well across different speeds.
Using the preprocessing-based model scaling mechanism, the model trained at one speed can scales to other speeds.
The generalization over the deployment scenarios, e.g., LOS/NLOS, Uma/Umi, is not good if the training set contains only one scenario.
When the testing carrier frequency is higher than the training carrier frequency, the degradation of prediction accuracy is more significant than the other way around.
The observation window can be described by the number of historical CSIs and the spacing of the historical CSIs.
The larger the number and the smaller the spacing of historical CSIs within the observation window, the better the prediction performance that can be achieved. However, this will in return increase the complexity and the storage (buffer) overhead of the model.
For different speeds, the requirement for the observation window is different.
During the monitoring process, the scheme with model selection achieves better prediction accuracy than the scheme using one randomly chosen speed-specific model (i.e., the generalization Case 2). 
During the monitoring process, the fluctuation of the scheme with model selection is smaller than the scheme using one randomly chosen speed-specific model (i.e., the generalization Case 2).

And following proposals are made:
1. Consider to capture observations from field data test into TR. 
Study the performance and overhead of per-cell (region) model transfer in CSI compression.
Study the following three methods for generalization of input dimension 
· Option 1: use large dimension AI/ML model in small dimension cases: zero-padding
· Option 2: use small dimension AI/ML model in large dimension cases: grouping
· Option 3: use pre-processing to fix the input dimension: angle-delay domain compression
For rank > 1 cases, study 	Option 3-1: layer common and rank common (A unified AI/ML model is applied for each layer under any rank value to perform individual inference)
· FFS how to choose the layers for training data set
For a generic model (non-optimized for a specific area/cell), AI models perform well in generalization of carrier frequency, channel scenario, indoor/outdoor ratio.
For a generic model (non-optimized for a specific area/cell), AI models perform bad in antenna spacing and antenna virtualization, which can be further studied.
If good performance in case 3 for type 3 training is reported by companies, it is better to clarify whether such (good) performance relies on special model structure, such as adaption layers.
For the case that binary state where  and  is considered to reflect the monitoring accuracy (i.e., computing ), clarify how to determine  and  for all K samples in the test datasets. 
For AI-based CSI prediction, the generalization over speeds (e.g., 30km/h, 60km/h, and 120km/h), the model adjustment (e.g., model switching/selection, finetuning, deactivation, and fallback), and the preprocessing-based scaling mechanism (e.g., the stretching/shrinking of historical CSI and prediction CS) should be studied.
The generalization over scenarios (e.g., LOS/NLOS, Uma/Umi) and the model adjustment (e.g., model switching/selection, finetuning, deactivation, and fallback) of AI-based CSI prediction should be studied.
The generalization over carrier frequencies of AI-based CSI prediction should be studied.
The performance impact of observation window on the AI-based CSI prediction should be studied.
The monitoring of the AI-based CSI prediction should be studied.
The monitoring dataset is formed by randomly selecting N scenarios or configurations (each containing K samples) and concatenating samples of these N scenarios or configurations in the selected order.
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The gain of average  SE compared with 
85 bits baseline AI model 
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The gain of average  SE of small AI models compared with 
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