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[bookmark: _Ref129681832]In RAN1#112bis-e, companies have reached further agreements on the evaluation methodology, including the agreements and clarifications on some evaluation KPIs and potential options regarding Rx beam assumptions for AI/ML for the Beam Management use case [1] [2]. There are still some open issues left and, in this contribution, we share our views on some of the open issues as suggested by FL [2]. We also discuss our results for BM-Case1 on the following test cases which haven’t been shared before:
· DL Tx beam prediction
· Generalization between UMa and UMi scenarios
· Case 1: The AI/ML model is trained based on training dataset from UMa (or UMi) then the AI/ML model performs inference/test on dataset from the same UMa or UMi scenario.
· Case 2: The AI/ML model is trained based on training dataset from scenario A, e.g., UMa or UMi, then the AI/ML model performs inference/test on dataset from a different scenario, e.g., UMi or UMa.
· DL Tx-Rx beam prediction
· Option 2: Set B is variable
· Opt C: Set B is randomly changed among Set A beams (pairs) 

Configurations and assumptions of dataset generation
For dataset construction, we use the agreed-upon assumptions and simulation parameters from RAN1#109e and RAN1#110 (in updated Table 2.1-1 [3]). To evaluate AI/ML-based beam management model performance, we use the following scenario and configurations for both DL Tx beam prediction and DL Tx-Rx beam pair prediction:
· Dense Urban deployment scenario with UMa / UMi channel model
Some major parameters used in generating datasets are indicated in Table 2-1.
Table 2-1: Simulation parameters for dataset generation
	Parameter
	Value

	Scenario
	Dense Urban 38.901,7 sites, 3 cells per site

	Carrier frequency
	30 GHz

	Subcarrier spacing
	120 kHz

	System BW
	80 MHz

	ISD
	200 m

	Channel model
	UMa/UMi with distance-dependent LoS probability function defined in Table 7.4.2-1 in TR 38.901.

	Antenna configuration at BS
	[Mg Ng M N P] = [1 1 4 8 2], [dV, dH] = [0.5,0.5] λ

	Antenna configuration at UE
	[Mg Ng M N P] = [1 1 1 4 2], [dV, dH] = [0.5,0.5] λ

	BS TX beam pattern
	32 Tx beams
Horizontal angle = [-75 -54, -32, -11, 11, 32, 54, 75]
Vertical angle = [-45, -15, 15, 45]

	UE RX beam pattern
	8 Rx beams
Horizontal angle = [-65, -46, -28, -9, 9, 28, 46, 65]
Vertical angle = [0]

	Outdoor/indoor UE percentage
	80%/20%

	LOS/NLOS
	80%/20%

	Spatial consistency 
	False

	Rotation
	False



Evaluation for model generalization of spatial-domain Tx beam pair prediction
In this section, we discuss model generalization evaluation results for DL Tx beam prediction between dense urban UMa scenario and UMi scenario focusing on the spatial-domain sub use case of BM-Case1.
The simulation configurations/assumptions for dataset generation are based on those specified in Table 2-1. 
AI/ML model training/testing parameters
For AI/ML model architecture, we use a CNN-based neural network. The results were generated using the final NN weights that performed the best in validation samples. The details of the training parameters are described in Table 3.1-1.
Table 3.1-1: AI/ML model training parameters for DL Tx beam prediction
	AI/ML model training detail
	Value

	Type
	CNN-based NN

	Set A beam size
	32

	Set B beam size
	8

	Training dataset size
	450K

	Validation dataset size
	50K

	Testing dataset size
	500K

	Batch size
	512

	Epoch
	500

	FLOPs
	222,199,808 

	Number of AI/ML model parameters
	213,856



Evaluation results
In this section, we discuss our evaluation results for the following generalization cases:
· Model generalization
· Case 1: AI/ML model is trained using dataset generated from the source scenario first, then the trained model is used to perform inference on a dataset from the same scenario.
· In our study, we consider 2 source scenarios, one is UMa and the other one is UMi.
· Case 2: AI/ML model is trained using dataset generated from the source scenario and the trained AI/ML model performs inference/test on a dataset generated from the target scenario
· In our study, we consider the following 2 variations:
· Source scenario is UMa and the target scenario is UMi
· Source scenario is UMi and the target scenario is UMa
Note that for model generalization Case 1, in which the AI/ML model is trained using dataset generated directly from Scenario#A, and then the AI/ML model performs inference/test on a dataset from the same Scenario#A.
In this section, we summarize our study results at high level. The detailed results of our study on DL Tx Rx beam pair prediction are available under Tab “BM-case1” in the accompanied Excel file named BMCase1_Txbeam_Generalization.xls. Please refer to the Excel for the assumptions and other configuration details. 
For simplicity, we fixed the Set-B length to 8 for model generalization evaluation. 
Set B beam selection Option 1 (Fixed Set B)
Table 3.2-1 shows the spatial domain beam prediction performance using Option 1 for Set B selection for the Dense Urban UMi testing scenario:
· Generalization Case 1 (baseline): the AI/ML model is trained using dataset generated from UMi scenario first, then tested on dataset also from UMi scenario.
· Generalization Case 2 (naïve transfer): the AI/ML model is trained using dataset generated from UMa scenario first, then tested on dataset from UMi scenario.

Table 3.2-1: AI/ML model generation results for UMi test scenario/channel model using Option 1 for Set B selection
	Set B selection Option 1: Set-B length = 8, Set A length = 32 (450K Training Samples)

	Generalization case
	Training scenario 
	Testing scenario 
	Accuracy
	Avg. L1-RSRP difference of Top-K predicted beam [dB]

	
	
	
	Top-1
	Top-2/1
	Top-4/1
	Top-6/1
	Top-8/1
	Top-1
	Top-2/1
	Top-4/1
	Top-6/1
	Top-8/1

	Case 1
	UMi
	UMi
	0.6968
	0.9006
	0.9850
	0.9967
	0.9989
	1.20
	0.36
	0.05
	0.01
	0.003

	Case 2
	UMa
	UMi
	0.6962
	0.9005
	0.9849
	0.9967
	0.9989
	1.20
	0.36
	0.05
	0.01
	0.003



Based on Table 3.2-1, it can be noted that for generalization Case 1 in which AI/ML model is trained using dataset from UMi scenario, then the trained model performs inference on dataset also from UMi scenario, the AI/ML performance is decent with Average L1-RSRP difference of Top-1 predicted beam around 1.2 dB. Generalization Case 1 can be considered as the baseline for comparison purpose. For generalization Case 2 in which AI/ML model is trained using dataset from UMa scenario first then the trained model is directly used to perform inference on dataset from UMi scenario, we can observe that there is no noticeable performance difference compared to generalization Case 1. This means that the AI/ML model trained using dataset from UMa can generalize well to UMi scenario when using Set B selection Option 1 (fixed Set B).
Table 3.2-2 shows the spatial domain beam prediction performance also using Option 1 (fixed Set B pattern) for Set B selection for the dense urban UMa testing scenario:
· Generalization Case 1 (baseline): the AI/ML model is trained using dataset generated from UMa scenario first, then tested on dataset also from UMa scenario.
· Generalization Case 2 (naïve transfer): the AI/ML model is trained using dataset generated from UMi scenario first, then tested on dataset from UMa scenario.

Table 3.2-2: AI/ML model generation results for UMa test scenario using Option 1 for Set B selection
	Set B selection Option 1: Set-B length = 8, Set A length = 32 (450K Training Samples)

	Generalization case
	Training scenario
	Testing scenario 
	Accuracy
	Avg. L1-RSRP difference of Top-K predicted beam [dB]

	
	
	
	Top-1
	Top-2/1
	Top-4/1
	Top-6/1
	Top-8/1
	Top-1
	Top-2/1
	Top-4/1
	Top-6/1
	Top-8/1

	Case 1
	UMa
	UMa
	0.7063
	0.8953
	0.9783
	0.9933
	0.9974
	1.48
	0.45
	0.08
	0.02
	0.01

	Case 2
	UMi
	UMa
	0.6833
	0.8664
	0.9565
	0.9824
	0.9920
	1.77
	0.70
	0.21
	0.08
	0.03



When using Set B selection Option 1 (fixed Set B pattern in both training and inference), based on Table 3.2-2, it can be noted that for generalization Case 1 in which AI/ML model is trained using dataset from UMa scenario, then the trained model performs inference on the dataset also from UMa scenario the AI/ML performance is decent with Top-1 prediction accuracy ~0.71 and average L1-RSRP difference of Top-1 predicted beam around 1.48 dB. For generalization Case 2, in which the AI/ML model is trained using dataset from UMi scenario first then the trained model is directly used to perform inference on dataset from UMa scenario, we can observe that there is small performance degradation in Top-1 prediction accuracy which is ~0.023 lower than Case 1 and average L1-RSRP difference of Top-1 predicted beam which is ~ 0.29dB higher than Case 1. However, the performance is still decent. 

Observation 1: For BM-Case1 DL Tx beam prediction, in AI/ML model generalization across different scenarios, when using Option 1 in Set B selection (fixed Set B pattern in training and inference), our experiments show the following based on the datasets we used:
· Generalization Case 1: 
· When the AI/ML model is trained using dataset generated for UMa scenario then performs inference on unseen data samples from the same UMa scenario, the performance is decent (when evaluated using Top-1, Top-K/1 prediction accuracy and average L1-RSRP difference of the predicted Top-1 and Top-K/1 beam(s)).
· When the AI/ML model is trained using dataset generated for UMi scenario then performs inference on unseen data samples from the same UMi scenario, the performance is also decent.
· Generalization Case 2:
· When the AI/ML model is trained using dataset generated for UMa scenario then the trained model is used to perform inference directly on dataset generated from a different scenario, i.e., UMi, performance is comparable to generalization Case 1.
· When the AI/ML model is trained using dataset generated for UMi scenario then the trained model is used to perform inference directly on dataset generated from a different scenario, i.e., UMa, there is small degradation in Top-1 prediction accuracy (~3% degradation, relative) and L1-RSRP difference of the Top-1 predicted beam (~0.29dB degradation) compared to generalization Case 1.
Set B beam selection Option 2B (Set B is randomly changed among pre-configured patterns)
Table 3.2-3 shows the spatial domain beam prediction performance using Option 2B in Set B selection for the UMi testing scenario. For generalization cases, we adopt the same settings as Set B selection Option 1.
· Generalization Case 1 (baseline): the AI/ML model is trained using dataset generated from UMi scenario first, then tested on dataset also from UMi scenario.
· Generalization Case 2 (naïve transfer): the AI/ML model is trained using dataset generated from UMa scenario first, then tested on dataset from UMi scenario.

Table 3.2-3: AI/ML model generation results for UMi test scenario using Option 2B for Set B selection
	Set B selection Option 2B: Set-B length = 8, Set A length = 32 (450K Training Samples)

	Generalization case
	Training scenario
	Testing scenario
	Accuracy
	Avg. L1-RSRP difference of Top-K predicted beam [dB]

	
	
	
	Top-1
	Top-2/1
	Top-4/1
	Top-6/1
	Top-8/1
	Top-1
	Top-2/1
	Top-4/1
	Top-6/1
	Top-8/1

	Case 1
	UMi
	UMi
	0.6724
	0.8885
	0.9733
	0.9899
	0.9951
	1.36
	0.43
	0.09
	0.04
	0.02

	Case 2
	UMa
	UMi
	0.6724
	0.8885
	0.9730
	0.9898
	0.9949
	1.36
	0.43
	0.09
	0.04
	0.02



When using Set B selection Option 2B (Set B is randomly changed among pre-configured patterns in training and inference, number of pre-configured patterns = 5) for target scenario = UMi, based on Table 3.2-3, it can be noted that for generalization Case 1 in which AI/ML model is trained using dataset from UMi scenario, then the trained model performs inference on dataset also from UMi scenario, the AI/ML performance is decent with Top-1 prediction accuracy at 0.67 and average L1-RSRP difference of Top-1 predicted beam around 1.36 dB. Generalization Case 1 can be considered as the baseline for comparison purpose. For generalization Case 2 in which AI/ML model is trained using dataset from UMa scenario first, then the trained model is directly used to perform inference on dataset from UMi scenario, we can observe that there is no noticeable performance difference compared to generalization Case 1 when using Set B selection Option 2B. This means that the AI/ML model trained using dataset from UMa can generalize well to UMi scenario when using Set B selection Option 2B (Set B is randomly changed among a set of pre-configured patterns; 5 pre-configured patterns are used in our study).
Table 3.2-4 shows the spatial domain beam prediction performance using Option 2B in Set B selection for the UMa testing scenario. For generalization cases, we adopt the same settings as Set B selection Option 1 as well.
· Generalization Case 1 (baseline): the AI/ML model is trained using dataset generated from UMa scenario first, then tested on dataset also from UMa scenario.
· Generalization Case 2 (naïve transfer): the AI/ML model is trained using dataset generated from UMi scenario first, then tested on dataset from UMa scenario.

Table 3.2-4: AI/ML model generation results for UMa test scenario using Option 2B for Set B selection
	Set B selection Option 2B: Set-B length = 8, Set A length = 32 (450K Training Samples)

	Generalization case
	Training scenario
	Testing scenario
	Accuracy
	Avg. L1-RSRP difference of Top-K predicted beam [dB]

	
	
	
	Top-1
	Top-2/1
	Top-4/1
	Top-6/1
	Top-8/1
	Top-1
	Top-2/1
	Top-4/1
	Top-6/1
	Top-8/1

	Case 1
	UMa
	UMa
	0.6786
	0.8711
	0.9611
	0.9848
	0.9931
	1.70
	0.59
	0.15
	0.05
	0.02

	Case 2
	UMi
	UMa
	0.6616
	0.8506
	0.9313
	0.9544
	0.9684
	1.90
	0.80
	0.39
	0.26
	0.18



When using Set B selection Option 2B (Set B is randomly changed among pre-configured patterns in training and inference, number of pre-configured patterns = 5) for target scenario = UMa, based on Table 3.2-4, it can be noted that for generalization Case 1 in which AI/ML model is trained using dataset from UMa scenario then the trained model performs inference on dataset also from UMa scenario, the AI/ML performance is decent with Top-1 prediction accuracy at ~0.68% and average L1-RSRP difference of Top-1 predicted beam around 1.70 dB. For generalization Case 2 in which AI/ML model is trained using dataset from UMi scenario first, then the trained model is directly used to perform inference on dataset from UMa scenario, we can observe that there is small performance degradation compared to generalization Case 1 (with ~2.5% relative degradation in Top-1 prediction accuracy and ~0.2dB degradation in average L1-RSRP difference of Top-1 predicted beam) when using Set B selection Option 2B.
Observation 2: For BM-Case1 DL Tx beam prediction, in AI/ML model generalization across different scenarios, when using Option 2B in Set B selection (Set B is randomly changed among a set of pre-configure patterns), our experiments show the following based on the datasets we used:
· Generalization Case 1: 
· When the AI/ML model is trained using dataset generated for UMa scenario then performs inference on unseen data samples from the same UMa scenario, the performance is decent (when evaluated using Top-1, Top-K/1 prediction accuracy and average L1-RSRP difference of the predicted Top-1 and Top-K/1 beam(s)).
· When the AI/ML model is trained using dataset generated for UMi scenario then performs inference on unseen data samples from the same UMi scenario, the performance is also decent.
· Generalization Case 2:
· When the AI/ML model is trained using dataset generated for UMa scenario then the trained model is used to perform inference directly on dataset generated from a different scenario, i.e., UMi, performance is comparable to generalization Case 1.
· When the AI/ML model is trained using dataset generated for UMi scenario then the trained model is used to perform inference directly on dataset generated from a different scenario, i.e., UMa, there is small degradation in Top-1 prediction accuracy (~2.5% degradation, relative) and L1-RSRP difference of the Top-1 predicted beam (~0.2dB degradation) compared to generalization Case 1.
Note: Number of pre-configured Set B patterns is 5 in our study.
Observation 3: For BM-Case1 DL Tx beam prediction, in AI/ML model generalization across different scenarios, i.e., between UMa and UMi in our study, for BM-Case1, when comparing Set B selection Option 1 and Set B selection Option 2B based on Top-1 prediction accuracy, Set B selection Option 1 achieved slightly better performance than Option 2B when using the same training dataset size, ~3.7% (relative) average difference in Top-1 prediction accuracy for generalization Case 1 and ~2.9% (relative) average difference in Top-1 prediction accuracy for generalization Case 2.
Evaluation of spatial-domain Tx-Rx beam pair prediction
In RAN1#112bis-e, for DL Tx-Rx beam prediction in BM-Case1, we have shared our results when using Set B selection Option 1 (fixed Set B) and Option 2B (Set B is randomly changed among pre-configured 5 pattens) with Set B lengths = [4, 8, 12, 16, 20, 24, 28, 32] and Set A length = 256. For Set B length = 32, we increased dataset size to 500K (vs. 10K) and regenerated performance results. We also added results for Set B length = 64.  The updated/new results are reflected in the accompanying Excel file with red text, under “BMCase-1 (pair)” tab. 
In this section, we discuss our evaluation results for DL Tx-Rx beam pair prediction focusing on the spatial-domain sub use case of BM-Case1 when Set B selection is based Opt. C in Option 2:
· Option 2: Set B is variable
· Opt C: Set B is randomly changed among Set A beams (pairs) 
The simulation configurations/assumptions for dataset generation are based on those specified in Table 2-1. 
Before discussing the results for beam-pair prediction, we would like to clarify Rx beam assumption in our study as suggested by FL. In dataset generation for Tx-Rx beam pair prediction, we use 32 Tx beams and 8 Rx beams. There is no prior knowledge applied in either Rx beam selection or Tx beam selection, however, the following general scheme is adopted
· For Rx beams:
· We try to use all the Rx beams (total 8 Rx beams) at least once if possible.
· For experiment with Set B length < 8, we apply evenly spaced sampling approach for Rx beams, e.g., Rx beam 0, 2, 4, 7.
· For Tx beams: similar logic is applied for Tx beams as well; we try to use all the Tx beams (total 32 Tx beams) if possible, otherwise, evenly spaced sampling approach is used.
 
AI/ML model training/testing parameters
For DL Tx-Rx beam prediction, we adopt a Transformer-based neural network AI/ML model architecture. The results were generated using the final NN weights that performed the best in validation samples. The details of the training parameters are described in Table 4.1-1.
Table 4.1-1: AI/ML model training parameters for DL Tx-Rx beam prediction
	AI/ML model training detail
	Value

	Type
	CNN-based NN

	Set A beam size
	256

	Set B beam size
	32

	Training dataset size
	8100

	Validation dataset size
	900

	Testing dataset size
	1000

	Batch size
	512

	Epoch
	500

	FLOPs
	255,590,400

	Number of AI/ML model parameters
	2,491,968



Evaluation results
Table 4.2-1 shows the results of DL Tx-Rx beam pair prediction when using Opt. C in Option 2 for Set B selection.

Table 4.2-1: BM-Case1 DL Tx-Rx beam pair prediction using Set B selection Option 2C
	
	Option 2C (Set B is randomly changed among Set A) (Set A length = 256)

	Set B Length
	Accuracy (%)
	Avg. L1-RSRP difference of Top-K predicted beam

	
	baseline
	Top-1
	Top-2/1
	Top-4/1
	Top-6/1
	Top-8/1
	baseline
	Top-1
	Top-2/1
	Top-4/1
	Top-6/1
	Top-8/1

	4
	0.9
	5.6
	10.8
	19.2
	26.7
	33.6
	15.39
	14.08
	10.77
	8.18
	6.75
	5.84

	8
	3.0
	9.5
	17.8
	29.4
	40.1
	48.2
	11.91
	9.79
	7.63
	5.15
	3.92
	3.15

	12
	5.5
	13.3
	23.1
	37.1
	45.6
	53.8
	9.74
	8.39
	6.19
	4.06
	3.08
	2.46

	16
	6.3
	17.3
	28.1
	43.9
	54.0
	60.4
	8.60
	7.01
	5.09
	3.22
	2.27
	1.81

	20
	8.2
	19.4
	33.4
	48.2
	58.7
	65.3
	7.61
	6.27
	4.17
	2.63
	1.81
	1.41

	24
	10.1
	21.1
	34.8
	49.3
	60.2
	66.6
	6.77
	5.67
	3.72
	2.30
	1.51
	1.10

	28
	11.3
	22.4
	37.7
	54.8
	64.7
	71.2
	6.15
	5.19
	3.41
	1.95
	1.31
	0.93

	32
	11.4
	23.2
	39.7
	55.4
	65.6
	72.0
	5.64
	4.86
	3.06
	1.67
	1.12
	0.83

	Average L1-RSRP difference of predicted Top-1 beam gain over baseline
	-1.32dB (better)

	Average Top-1 prediction accuracy gain over baseline
	9.39% (absolute %)



From Table 4.2-1, it can be noted that the prediction performance is relatively not as good as when using Set B selection Option 2C compared to other Set B selection options, i.e., Option 1 (fixed Set B) and Option 2B (Set B is randomly changed among pre-configured patterns) that we discussed in our contribution for RAN1#112bis-e [4]. However, the performance is still better than the baseline, i.e., sparse beam sweeping of Set B beams. Note: the results of using Set B selection Option 1 and Option 2B for Set B length = 32 are also summarized in Table 4.2-2 and Table 4.2-3.
Table 4.2-2: BM-Case1 DL Tx-Rx beam pair prediction using Set B selection Option 1
	
	Option 1 (Set B is fixed) (Set A length = 256)

	Set B Length
	Accuracy (%)
	Avg. L1-RSRP difference of Top-K predicted beam

	
	Top-1
	Top-2/1
	Top-4/1
	Top-6/1
	Top-8/1
	Top-1
	Top-2/1
	Top-4/1
	Top-6/1
	Top-8/1

	32
	51.1
	69.1
	82.5
	88.3
	92.5
	1.71
	0.89
	0.37
	0.22
	0.14



Table 4.2-3: BM-Case1 DL Tx-Rx beam pair prediction using Set B selection Option 2B
	
	Option 2B (Set B is randomly changed among pre-configured patterns) (Set A length = 256)

	Set B Length
	Accuracy (%)
	Avg. L1-RSRP difference of Top-K predicted beam

	
	Top-1
	Top-2/1
	Top-4/1
	Top-6/1
	Top-8/1
	Top-1
	Top-2/1
	Top-4/1
	Top-6/1
	Top-8/1

	32
	40.9
	60.2
	75.0
	81.7
	85.6
	2.61
	1.50
	0.70
	0.46
	0.37



From the above results among Set B selection options, we observed:
· For DL Tx-Rx beam pair prediction in BM-Case1, Option C has degraded performance compared to both Option 1 and Option 2B
· When comparing to Option 1 with Set B length=8 and Set A length=32, performance degradation is ~29% (absolute) for Top-1 prediction accuracy and ~20% (absolute) in Top-8/1 prediction accuracy.
· When comparing to Option 2B with Set B length=8 and Set A length=32, performance degradation is ~ 19% (absolute) for Top-1 prediction accuracy and ~13% (absolute) in Top-8/1 prediction accuracy.
Given the much worse prediction performance when using Set B selection Option 2C and there is no real motivation in selecting Set B completely random, we believe it is reasonable to deprioritize Option 2C from Set B selection. 

Observation 4: For BM-Case1 DL Tx-Rx beam pair prediction, performance comparison among various Set B selection options shows that using Option 2C (Set B is randomly changed among Set A beams (pairs)) has significantly degraded performance compared to Option 1, i.e., ~20% (absolute) and Option 2B, i.e., ~13% absolute in Top-8/1 prediction accuracy.
Note: For BM-Case1 DL Tx-Rx beam pair prediction, our experiment assumes no prior knowledge is available in selecting beam pairs (for either Rx beams or Tx beams).
Proposal 1: For BM-Case1 DL Tx-Rx beam pair prediction, among various Set B selection options agreed in RAN1 #110bis-e and RAN1 #112, deprioritize Option 2C, when Set B is randomly changed among Set A beams (pairs).
Conclusions
In this contribution, we shared our results on model generalization Case 1 and Case 2 evaluation for spatial-domain DL Tx beam prediction. For DL Tx-Rx beam pair prediction, we discussed result for using Set B selection Opt. C in Option 2. Our proposals and observations are as follows.
Proposal 1: For BM-Case1 DL Tx-Rx beam pair prediction, among various Set B selection options agreed in RAN1 #110bis-e and RAN1 #112, deprioritize Option 2C, when Set B is randomly changed among Set A beams (pairs).
Observation 1: For BM-Case1 DL Tx beam prediction, in AI/ML model generalization across different scenarios, when using Option 1 in Set B selection (fixed Set B pattern in training and inference), our experiments show the following based on the datasets we used:
· Generalization Case 1: 
· When the AI/ML model is trained using dataset generated for UMa scenario then performs inference on unseen data samples from the same UMa scenario, the performance is decent (when evaluated using Top-1, Top-K/1 prediction accuracy and average L1-RSRP difference of the predicted Top-1 and Top-K/1 beam(s)).
· When the AI/ML model is trained using dataset generated for UMi scenario then performs inference on unseen data samples from the same UMi scenario, the performance is also decent.
· Generalization Case 2:
· When the AI/ML model is trained using dataset generated for UMa scenario then the trained model is used to perform inference directly on dataset generated from a different scenario, i.e., UMi, performance is comparable to generalization Case 1.
· When the AI/ML model is trained using dataset generated for UMi scenario then the trained model is used to perform inference directly on dataset generated from a different scenario, i.e., UMa, there is small degradation in Top-1 prediction accuracy (~3% degradation, relative) and L1-RSRP difference of the Top-1 predicted beam (~0.29dB degradation) compared to generalization Case 1.
[bookmark: _Ref124589665][bookmark: _Ref71620620][bookmark: _Ref124671424]Observation 2: For BM-Case1 DL Tx beam prediction, in AI/ML model generalization across different scenarios, when using Option 2B in Set B selection (Set B is randomly changed among a set of pre-configure patterns), our experiments show the following based on the datasets we used:
· Generalization Case 1: 
· When the AI/ML model is trained using dataset generated for UMa scenario then performs inference on unseen data samples from the same UMa scenario, the performance is decent (when evaluated using Top-1, Top-K/1 prediction accuracy and average L1-RSRP difference of the predicted Top-1 and Top-K/1 beam(s)).
· When the AI/ML model is trained using dataset generated for UMi scenario then performs inference on unseen data samples from the same UMi scenario, the performance is also decent.
· Generalization Case 2:
· When the AI/ML model is trained using dataset generated for UMa scenario then the trained model is used to perform inference directly on dataset generated from a different scenario, i.e., UMi, performance is comparable to generalization Case 1.
· When the AI/ML model is trained using dataset generated for UMi scenario then the trained model is used to perform inference directly on dataset generated from a different scenario, i.e., UMa, there is small degradation in Top-1 prediction accuracy (~2.5% degradation, relative) and L1-RSRP difference of the Top-1 predicted beam (~0.2dB degradation) compared to generalization Case 1.
Note: Number of pre-configured Set B patterns is 5 in our study.
Observation 3: For BM-Case1 DL Tx beam prediction, in AI/ML model generalization across different scenarios, i.e., between UMa and UMi in our study, for BM-Case1, when comparing Set B selection Option 1 and Set B selection Option 2B based on Top-1 prediction accuracy, Set B selection Option 1 achieved slightly better performance than Option 2B when using the same training dataset size, ~3.7% (relative) average difference in Top-1 prediction accuracy for generalization Case 1 and ~2.9% (relative) average difference in Top-1 prediction accuracy for generalization Case 2.
Observation 4: For BM-Case1 DL Tx-Rx beam pair prediction, performance comparison among various Set B selection options shows that using Option 2C (Set B is randomly changed among Set A beams (pairs)) has significantly degraded performance compared to Option 1, i.e., ~20% (absolute) and Option 2B, i.e., ~13% absolute in Top-8/1 prediction accuracy.
Note: For BM-Case1 DL Tx-Rx beam pair prediction, our experiment assumes no prior knowledge is available in selecting beam pairs (for either Rx beams or Tx beams).
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