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	Introduction

In RAN1#112, agreement was reached corresponding to one use case of AI/ML for spatial-frequency domain CSI compression. Concretely, the following was agreed in RAN1#112, [1] .
	Agreement
Confirm the following working assumption of RAN1#110bis-e:
	Working assumption 
In the evaluation of the AI/ML based CSI feedback enhancement, if SGCS is adopted as the intermediate KPI for the rank>1 situation, companies to ensure the correct calculation of SGCS and to avoid disorder issue of the output eigenvectors
· Note: Eventual KPI can still be used to compare the performance


Agreement
For the evaluation of CSI enhancements, companies can optionally provide the additional throughput baseline based on CSI without compression (e.g., eigenvector from measured channel), which is taken as an upper bound for performance comparison
Agreement
Confirm the following WA on the benchmark for CSI prediction achieved in RAN1#111:
	Working Assumption
For the AI/ML based CSI prediction sub use case, the nearest historical CSI w/o prediction as well as non-AI/ML/collaboration level x AI/ML based CSI prediction approach are both taken as baselines for the benchmark of performance comparison, and the specific non-AI/ML/collaboration level x AI/ML based CSI prediction is reported by companies.
· Note: the specific non-AI/ML based CSI prediction is compatible with R18 MIMO; collaboration level x AI/ML based CSI prediction could be implementation based AI/ML compatible with R18 MIMO as an example
· It does not imply any restriction on future specification for CSI prediction
· FFS how to model the simulation cases for collaboration level x CSI prediction and LCM for collaboration level y/z CSI prediction



Agreement
The CSI prediction-specific generalization scenario of various UE speeds (e.g., 10km/h, 30km/h, 60km/h, 120km/h, etc.) is added to the list of scenarios for performing the generalization verification.
· FFS various frequency PRBs (e.g., trained based on one set of PRBs, inference on the same/different set of PRBs)
Agreement
For how to separate the templates for different training types/cases for AI/ML-based CSI compression without generalization/scalability verification, the following is considered:
· The determined template in the RAN1#111 working assumption is entitled with “1-on-1 joint training”
· A second separate template is introduced to capture the evaluation results for “multi-vendor joint training”
· Note: this table captures the results for the joint training cases of 1 NW part model to M>1 UE part models, N>1 NW part models to 1 UE part model, or N>1 NW part models to M>1 UE part models. An example is multi-vendor Type 2 training.
· A third separate template is introduced to capture the evaluation results for “separate training”
· FFS: additional KPIs for each template, e.g., overhead, latency, ect.

Agreement
For the evaluation of training Type 3 under CSI compression, besides the 3 cases considered for multi-vendors, add one new Case (1-on-1 training with joint training) as benchmark/upper bound for performance comparison.
· FFS the relationship between the pair(s) of models for Type 3 and the pair(s) of models for new Case

Agreement
For the evaluation of the AI/ML based CSI compression sub use cases with rank >=1, companies to report the specific option adopted for AI/ML model settings to adapt to ranks/layers.
· Option 1-1 (rank specific): Separated AI/ML models are trained per rank value and applied for corresponding ranks to perform individual inference, any specific model operates on multi-layers jointly.
· FFS on the reported complexity and storage
· FFS: input/output type
· Option 1-2 (rank common): A unified AI/ML model is trained and applied for adaptive ranks to perform inference, the model operates on multi-layers jointly. 
· FFS: input/output type
· Option 2 (layer specific): Separated AI/ML models are trained per layer value and applied for corresponding layers to perform individual inference.
· FFS on the reported complexity and storage
· Note: input/output type is Precoding matrix
· Companies to report the setting is 
· Option 2-1: layer specific and rank common (different models applied for different layers; for a specific layer, the same model is applied for all rank values), or 
· Option 2-2: layer specific and rank specific (different models applied for different layers; for a specific layer, different models are applied for different rank values)
· Option 3 (layer common): A unified AI/ML model is trained and applied for each layer to perform individual inference.
· FFS on the reported complexity and storage
· Note: input/output type is Precoding matrix
· Companies to report whether the setting is 
· Option 3-1: layer common and rank common (A unified AI/ML model is applied for each layer under any rank value to perform individual inference), or 
· Option 3-2: layer common and rank specific (different models applied for different rank values; for a specific rank, the same model is applied for all layers)
· Other options not precluded.
Agreement 
The CSI feedback overhead is calculated as the weighted average of CSI payload per rank and the distribution of ranks reported by the UE. 
· For AI/ML based solutions: The above-mentioned “CSI feedback overhead” is calculated as max allowed bits at the given rank. 
· For legacy Type II CB: Option 2b is mandatorily reported by companies, while Option 2a can be optionally reported up to companies if partial NZC report is assumed for the legacy Type II CB
· Option 2a: The above-mentioned “CSI feedback overhead” is calculated as each CSI reported payload with a given rank
· Option 2b: The above-mentioned “CSI feedback overhead” is calculated as max allowed bits at the given rank

Working Assumption
For the initial template for AI/ML-based CSI compression without generalization/scalability verification achieved in the working assumption in the RAN1#111 meeting, X, Y and Z are determined as:
· X is <=80bits
· Y is 100bits-140bits
· Z is  >=230bits
Working Assumption
X, Y and Z are applicable for per layer
Working assumption 
The following initial template is considered to replace the template achieved in the working assumption in the RAN1#111 meeting, for companies to report the evaluation results of AI/ML-based CSI compression of 1-on-1 joint training without generalization/scalability verification
· To be collected before 112bis-e meeting
· FFS the description and results for generalization/scalability may need a separate table
· Note: the values of CSI feedback overhead for the mean UPT and 5% UPT may need to be revisited in the 112bis-e meeting
· FFS: training related overhead
· FFS: how to capture CSI overhead reduction to the template
· Note: It is to be captured to the template after a way is found on how to derive the CSI overhead reduction.
Working assumption
A separate table to capture the evaluation results of generalization/scalability verification for AI/ML-based CSI compression is given in the following initial template
· To be collected before 112bis-e meeting
· FFS whether the intermediate KPI results are gain over benchmark or absolute values
· FFS whether the intermediate KPI results are in forms of linear or dB

Working Assumption 
The following initial template is considered for companies to report the evaluation results of AI/ML-based CSI prediction with generalization verification
· To be collected before 112bis-e meeting
· FFS whether the intermediate KPI results are gain over benchmark or absolute values
· FFS whether the intermediate KPI results are in forms of linear or dB

Working Assumption 
The following initial template is considered for companies to report the evaluation results of AI/ML-based CSI compression for multi-vendor joint training and without generalization/scalability verification
· To be collected before 112bis-e meeting
· FFS whether the intermediate KPI results are gain over benchmark or absolute values
· FFS whether the intermediate KPI results are in forms of linear or dB
· FFS case of multiple layers
Working Assumption 
The following initial template is considered for companies to report the evaluation results of AI/ML-based CSI compression for sequentially separate training and without generalization/scalability verification
· To be collected before 112bis-e meeting
· FFS whether the intermediate KPI results are gain over benchmark or absolute values
· FFS whether the intermediate KPI results are in forms of linear or dB
· FFS case of multiple layers


[bookmark: _Ref30491904][bookmark: _Ref30492156][bookmark: _Ref30491838]In this contribution document, we further discuss our views on the evaluation methodology for CSI feedback.

Performance of Joint training of AI/ML-based CSI-Feedback 
In RAN#109-e [2], we have agreed on parameters of EVM (also specified in appendix 10.1) which are used for generation of simulated training data and evaluation of the model. In this section we present the results for application of the AI/ML based model and compare its performance with respect to Type-II code word.
Simulation assumption: 
· We simulate users using the proposed EVM, [2] (appendix 10.1) with 32 and 4 antennas at the eNB and the UE. 
· We have assumed that a single two-sided model ( for UE-side and  for NW-side) is jointly trained using the training dataset. The  and  parts are already deployed at the UE-side and NW-side respectively.
· We have simulated the model in 2400 drops and each drop we have simulated 300 UEs with bandwidth of 10MHz and 13 sub-bands. The data of the first 2300 drops are used as the training and validation dataset. 
· We have used the samples of the last 85 drops (Total of 25500 samples) exclusively for testing.

We have further assumed:
· Single layer transmission, Rank to be equal to 1.
· We have simulated a scenario with feedback rate of 272bits for both eTypeII and AI/ML based feedback.
· We have simulated for two cases when the samples are generated from UMA and another one from InH-Channel-B.

The results of the simulation along with more details about the model structure and data sizes has been added to the template excel-sheet. The following table shows the summary of the intermediate KPI.
Table 1. AI/ML Intermediate KPI Performance.
	Test Set
	Model
	# of feedback
	SGCS UMA
	SGCS InH

	AI/ML Model
	
	272 bits
	83.3
	96.2

	Type2. Rel16
	--
	272 bits
	81.4
	92.8


As can be seen in both cases AI/ML outperformed Type2 transmission.
Performance of UE-First Separate training of AI/ML-based CSI-Feedback 
In this section we aim to investigate if separate training of the UE-side and the NW-side may result in any performance loss or not.
We have considered the following settings:
1- Joint training of  where:
a. UE-side  structure with 5 Residual blocks 
b. NW-side  structure with 5 Residual blocks 
2- Joint training of  where:
a. UE-side  structure with 3 Transformer blocks 
b. NW-side  structure with 3 Transformer blocks 
3- Separate training of  where:
a. UE-side structure with 5 Residual blocks 
b. UE-side nominal decoder structure has 5 Residual blocks 
c. NW-side  structure with 15 Residual blocks 
4- Separate training of  where:
a. UE-side  structure with 3 Transformer blocks
b. UE-side nominal decoder structure has 3 Transformer blocks 
c. NW-side  structure with 15 Residual blocks 

Table 2. Effect of separate training
	Test Set
	Model
	Short Desc.
	SGCS UMA

	AI/ML Model
	Case-1
	Joint Training,
Enc: 5 Res. Block
Dec: 5 Res. Block
	84.7

	AI/ML Model
	Case-2
	Joint Training,
Enc: Transformer
Dec: Transformer
	85.1

	AI/ML Model
	Case-3
	Separate Training,
Enc: 5 Res. Block
Dec: 15 Res. Block
	84.4

	AI/ML Model
	Case-4
	Separate Training,
Enc: Transformer
Dec: 15 Res. Block
	82.1

	Type2. Rel16
	--
	---
	81.3



We can have several observations based on the above results:
1- Even in case of model-mismatch (between the NW-side actual decoder part and the structure of UE-side nominal decoder), the AI/ML method outperforms the conventional Type2. Rel16 results.
2- Mismatch between the structure of the “UE-side nominal decoder” and the “actual decoder” at the NW-side results in a degradation in performance.
3- If the structure of the “UE-side nominal decoder” and the “actual decoder” at the NW-side are very different it leads to higher degradations. For example, comparing Case-4 and Case-2 shows using Res.Net block instead of Transformer block leads to more significant degradation.
Gain of case-2: (85.1-81.3) =3.8   
Gain of case-4: (82.1-81.3) =0.8 
In this example, we have a loss (3.8-0.8)/3.8=78% of the gain compared to the matched structure. 

[bookmark: _Toc127544819]AI/ML-based CSI feedback models, trained using joint or separate training scheme, leads to better performance compared to the performance of eType II.  
The performance of the AI/ML-based CSI feedback models trained using separate training method degrades when there is mismatch between the structure of the “NW-side actual” and the “UE-side nominal” decoder model.
The degradation performance is more significant if there is more considerable difference between the structure of the “NW-side actual” and the “UE-side nominal” decoder model. In one simulation, the degradation could be up to 78% of the gain.
Proposal 1 [bookmark: _Toc131343194][bookmark: _Toc131367334][bookmark: _Toc131429724][bookmark: _Toc131429764][bookmark: _Toc131498215][bookmark: _Toc131523607][bookmark: _Toc131588361][bookmark: _Toc131588420][bookmark: _Toc131588473][bookmark: _Toc131753031][bookmark: _Toc131780590]Study mechanisms to reduce the degradation due to the difference between the structure of the “NW-side actual” and “the UE-side nominal” decoder model.
[bookmark: _Ref131364499]Performance of Multivendor Separate training of AI/ML-based CSI-Feedback with different datasets at the UE-side 
In this section we aim to investigate separate training when we have multiple vendors at the UE-side and a single vendor at the NW-side. 
To better simulate the case of multiple UE vendors, we can consider:
a- Differences between the structure of the encoder models of different UE vendors
b- Differences between the structure of the “UE-side nominal decoder” and the “actual decoder” at the NW-side
c- Differences between the training data available at different UE-vendors 

Proposal 2 [bookmark: _Toc131343195][bookmark: _Toc131367335][bookmark: _Toc131429725][bookmark: _Toc131429765][bookmark: _Toc131498216][bookmark: _Toc131523608][bookmark: _Toc131588362][bookmark: _Toc131588421][bookmark: _Toc131588474][bookmark: _Toc131753032][bookmark: _Toc131780591]To study the performance of Multivendor separate training, consider different model structures and also datasets with different statistics for different vendors.
In this study we simulate a scenario with two UE-vendors. To have datasets with different statistics, we have assumed that vendor-A uses the dataset collected from environment with mostly O2I UE, and for vendor-B the dataset is collected from an environment with UEs which are mostly LOS.
To have a more complete study we further consider two cases. 
· In the first case, we assume that the model structure of the Vendor A, Vendor B and the Decoder part are all based on Residual blocks but with different number of layers.
· In the second case, we wanted to have scenario with more variations among the assumptions that different vendors have on the model structure. Therefore, we have assumed that the UE-vendor A uses transformer block while UE-vendor B and the NW uses Residual blocks. 
The following is the summary of the two-cases:
1- Case-1:
a. UE-side Vendor A:  
i. Encoder structure with 5 Residual blocks 
ii. UE-side nominal Decoder structure has 5 Residual blocks 
iii. Dataset set of UEs with O2I link type
b. UE-side Vendor B:  
i. Encoder structure with 3 Residual blocks 
ii. UE-side nominal Decoder structure has 3 Residual blocks 
iii. Dataset set of UEs with LOS link type
c. NW-side:  
i. Decoder structure with 15 Residual blocks 
ii. Combination of data received from vendors A and B
2- Case-2: 
a. UE-side Vendor A:  
i. Encoder structure with 3 Transformer blocks 
ii. UE-side nominal Decoder structure has 3 Transformer blocks 
iii. Dataset set of UEs with O2I link type
b. UE-side Vendor B:  
i. Encoder structure with 3 Residual blocks 
ii. UE-side nominal Decoder structure has 3 Residual blocks 
iii. Dataset set of UEs with LOS link type
c. NW-side:  
i. Decoder structure with 15 Residual blocks 
ii. Combination of data received from vendors A and B
To show the possible degradation due to model mismatch, dataset mismatch and also sperate training , we have simulated both cases, we are evaluating the SGCS for Type2-Rel16, Joint- training and also sperate training cases. The results are presented in Table 3.
Table 3. Simulation results for Multi-vendor separate training
	
	
	SGCS
Type2. Rel16
	SGCS
joint training
	SGCS
Separate training

	Case 1
	UE-VenA
	81.3
	84.7
	84.4

	
	UE- VenB
	91.8
	94.2
	93.4

	Case 2
	UE- VenA
	81.3
	85.1
	81.5

	
	UE- Venb
	91.8
	94.2
	93.0



For Multi-vendor separate training, AI/ML-based CSI feedback models with separate training have better performance compared to the performance of Rel.16-eType II.
Multi-vendor separate training, experience performance loss compared to joint-training. The degradation is more significant when there is a mismatch between the model/data of different vendors. For example, the performance of Separate training for case-2 UE-vendorA is much less than the joint-training (it is almost as low as Rel.16-eType II.)
Proposal 3 [bookmark: _Toc131367336][bookmark: _Toc131429726][bookmark: _Toc131429766][bookmark: _Toc131498217][bookmark: _Toc131523609][bookmark: _Toc131588363][bookmark: _Toc131588422][bookmark: _Toc131588475][bookmark: _Toc131753033][bookmark: _Toc131780592]In multivendor separate training case, study mechanisms to reduce the degradation due to the difference between the model structures and the training datasets at different vendors.
Iterative separate training for recovering the model and dataset mismatch loss 
As we have seen in the previous sections, the mismatch between the datasets and the model structures between different vendors result in degradation of the performance of the separate training. 
One possible explanation is that the “encoder” at the UE-side is designed based on the “UE-side nominal decoder” at the UE-side but the actual decoding is happening using the “actual decoder” at the NW-side which might have different structure or have to match to another training dataset as well (coming from another vendor).
One idea to improve the performance of the separate training would be to try to change the “UE-side nominal decoder” to have a better match with the “actual decoder” at the NW-side.  
Of course, sharing the “actual decoder” with the UE-side would be the easiest way to remove this mismatch. This scheme, though, may not be desirable in case that the UE and NW-sides does not want to share their models.
As an alternative, after training of the “actual decoder” at the NW-side	, the NW-side can transmit a set of samples back to the UE-side. Each sample in this set shows “the input” and the “output” (not the expected output) of the “actual decoder” at the NW-side. The UE uses this dataset to retrain the “UE-side nominal decoder” such that it is a better match to the “actual decoder” at the NW-side. At the next step, the UE retrain the “encoder” using the retrained “UE-side nominal decoder”. This way, the UE generates samples which are a better match to the “actual decoder” at the NW-side. This process can be repeated again.
The summary of “iterative separate training” is as the following:
1- UE-side trains the two models, encoder and UE-side nominal decoder, jointly 
2- Each UE-side transmits samples representing the input and the expected output of the decoder to the NW-side.
3- The NW-side uses the samples received from all the UE-sides to train its decoder.
4- The NW-side sends samples to each UE-side representing the input and output of the decoder
5- Each UE-side retrains its respective “UE-side nominal decoder” using the received samples from the NW-side (or all samples received from all NW-sides in case there are multiple NW-sides)
6- Each UE-side retrains the “encoder” based on its updated “UE-side nominal decoder”.
7- The process can be stopped, or each UE-side can send another set of samples representing the input and expected output of the UE-side nominal decoder to the NW-side and repeat the process.
This process in one iteration can be viewed in the following high-level diagram for a simple example of one-UE side and one gNB-side in one iteration:
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In fact, using steps 4-5, the UE can adapt its nominal decoder model to be a better representative of the actual decoder model (without knowing its actual structure). This will help better training of the encoder and improved performance.
Note: We wanted to emphasize that “iterative separate training” is different from the cases of simultaneous (case-1) or sequential (case-2) joint-training that we have previously discussed (‘Proposal 3.2.1’ in FL’s summary, R1-2301940). In joint training, the NW-side and UE-sides are trained at the same time, and the exchanged data are gradients-based. In “iterative separate training”, however, the UE and the NW-sides are trained separately and the exchanged data are samples.
To see the performance of the “iterative separate training”, we have used this scheme on the above two cases. The results are reported in Table 4.
Table 4. Simulation results for Multi-vendor cases with iterative separate training
	
	
	SGCS
Type2. Rel16
	SSGC
joint training
	SGCS
Separate training
	SGCS
Iterative Separate training

	Case 1
	UE-1
	81.3
	84.7
	84.4
	85.4

	
	UE-2
	91.8
	94.2
	93.4
	94.1

	Case 2
	UE-1
	81.3
	85.1
	81.5
	84.3

	
	UE-2
	91.8
	94.2
	93.0
	93.9


Iterative separate training recovers the loss due to mismatch between different vendors. For example, the performance of UE-1 Case-2 is back to 84.3% (from 81.5%) after application of iterative separate training. 
 In some cases, the updated-decoder (using iterative separate training) surpass the performance of initial joint-training, e.g., UE-1 Case-1. It might be due to the availability of more data and the fact that the “actual decoder” at the NW-side is a more complex model that the “UE-side nominal decoder”. 
We note that, assuming the existence of a complex decoder and enough training samples we would expect the performance of the joint-training will be the upper-bound
Note that:
1- here we describe the method when we have multiple UE vendors and single NW-side-vendor and when we have used UE-first scheme.  Similar “iterative separate training” can be used also for the NW-first case, multiple UE-side and multiple NW-side as well.
2- The gain that we observe is not only due to having more training data, it is also because that the “UE-side nominal decoder” is a better representative of the “actual decoder”  at the NW-side and therefore the “encoder” can be better trained.
Proposal 4 [bookmark: _Toc131523610][bookmark: _Toc131588364][bookmark: _Toc131588423][bookmark: _Toc131588476][bookmark: _Toc131753034][bookmark: _Toc131780593][bookmark: _Toc131367337][bookmark: _Toc131429727][bookmark: _Toc131429767][bookmark: _Toc131498218]Study the performance gains and the extra training costs incurred by, “iterative separate training” as a potential method to improve the performance of cases with mismatch between different sides.
Evaluation methodology for comparing different monitoring schemes for AI/ML-based CSI-Feedback 
Different schemes have been proposed for monitoring the performance of AI/ML-based CSI-Feedback models. We should have a methodology to compare the performance of different monitoring schemes.
Note that when we evaluate the performance monitoring, 
· we are not evaluating the performance of the AI/ML model. 
· We evaluate how often we correctly detect that the model outputs deviate from the expected output. 
For example, consider a monitoring scheme A and a model M. If the model M outputs deviate from desirable performance “x” times out of “y” samples and then scheme A detects all “x” times the model output deviates, then it is an ideal scheme. If another monitoring scheme B detects only detect half of “x” samples then we can conclude that Scheme A is better than scheme B. Note that we do not care about the ratio of “x/y” as that ratio shows the performance of the model M not scheme A or scheme B.
Proposal 5 [bookmark: _Toc131367338][bookmark: _Toc131429728][bookmark: _Toc131429768][bookmark: _Toc131498219][bookmark: _Toc131523611][bookmark: _Toc131588365][bookmark: _Toc131588424][bookmark: _Toc131588477][bookmark: _Toc131753035][bookmark: _Toc131780594]To evaluate the performance of a “model”, we should evaluate how much the “output of the model” is inline with the “expected output”
[bookmark: _Toc131367339][bookmark: _Toc131429729][bookmark: _Toc131429769][bookmark: _Toc131498220][bookmark: _Toc131523612][bookmark: _Toc131588366][bookmark: _Toc131588425][bookmark: _Toc131588478][bookmark: _Toc131753036][bookmark: _Toc131780595]To evaluate the performance of a “model monitoring” scheme, we should evaluate the rate can correctly detect the outputs which are deviating from the “expected output”.
To evaluate the performance of a monitoring scheme we should have a test set for which we also have the “Actual label”, meaning that if the model output of the particular sample is inline with expected output or not. Then the undervaluation monitoring scheme is applied to determine the “estimated labels” for each sample. Comparing the “true labels” and the “estimated labels” give us the metric for evaluation of the monitoring scheme.
In the above example, we are setting the “Actual label=True” to the “x” samples which are deviating from desirable performance and for the remaining “y-x” samples, we set “Actual label=False”. Then, using scheme A, assign “estimated label” to all “y” samples and then compare the “actual label” and “Estimated label” to find the performance of the monitoring scheme.
Proposal 6 [bookmark: _Toc131367340][bookmark: _Toc131429730][bookmark: _Toc131429770][bookmark: _Toc131498221][bookmark: _Toc131523613][bookmark: _Toc131588367][bookmark: _Toc131588426][bookmark: _Toc131588479][bookmark: _Toc131753037][bookmark: _Toc131780596]For evaluation of the performance of a monitoring scheme:
· [bookmark: _Toc131367341][bookmark: _Toc131429731][bookmark: _Toc131429771][bookmark: _Toc131498222][bookmark: _Toc131523614][bookmark: _Toc131588368][bookmark: _Toc131588427][bookmark: _Toc131588480][bookmark: _Toc131753038][bookmark: _Toc131780597]Generate dataset of “K” test samples:
[bookmark: _Toc131367342][bookmark: _Toc131429732][bookmark: _Toc131429772][bookmark: _Toc131498223][bookmark: _Toc131523615][bookmark: _Toc131588369][bookmark: _Toc131588428][bookmark: _Toc131588481][bookmark: _Toc131753039][bookmark: _Toc131780598]The samples in this set are in the form of <input, expected output>. The samples should be drawn form:
· [bookmark: _Toc131367343][bookmark: _Toc131429733][bookmark: _Toc131429773][bookmark: _Toc131498224][bookmark: _Toc131523616][bookmark: _Toc131588370][bookmark: _Toc131588429][bookmark: _Toc131588482][bookmark: _Toc131753040][bookmark: _Toc131780599]The same scenario/configuration that the model is designed for
· [bookmark: _Toc131367344][bookmark: _Toc131429734][bookmark: _Toc131429774][bookmark: _Toc131498225][bookmark: _Toc131523617][bookmark: _Toc131588371][bookmark: _Toc131588430][bookmark: _Toc131588483][bookmark: _Toc131753041][bookmark: _Toc131780600]Also from other scenarios/configurations other than the ones used for training of the model: we need to have such samples to evaluate the performance of monitoring scheme in case the settings of the environment changes.
· [bookmark: _Toc131367345][bookmark: _Toc131429735][bookmark: _Toc131429775][bookmark: _Toc131498226][bookmark: _Toc131523618][bookmark: _Toc131588372][bookmark: _Toc131588431][bookmark: _Toc131588484][bookmark: _Toc131753042][bookmark: _Toc131780601]Determine an “Actual label” to each of the samples in the test set representing which of samples lead to a “not acceptable” model output. For example, samples for which the output of the model has low corelation with the expected output are labelled as “True” and the rest are “False”.
· [bookmark: _Toc131367346][bookmark: _Toc131429736][bookmark: _Toc131429776][bookmark: _Toc131498227][bookmark: _Toc131523619][bookmark: _Toc131588373][bookmark: _Toc131588432][bookmark: _Toc131588485][bookmark: _Toc131753043][bookmark: _Toc131780602]Use the proposed monitoring scheme to determine an “Estimated label” for each of the samples in the test-set based on the.
· [bookmark: _Toc131367347][bookmark: _Toc131429737][bookmark: _Toc131429777][bookmark: _Toc131498228][bookmark: _Toc131523620][bookmark: _Toc131588374][bookmark: _Toc131588433][bookmark: _Toc131588486][bookmark: _Toc131753044][bookmark: _Toc131780603]Compare the set of “Actual labels” and “Estimated labels” and report”: a) the “True positive rate” and “False positive rate” of the detection, b) The overhead and latency associated with the proposed scheme.
As one example, consider the model that we have trained for UE-vendor A of the multivendor case-2 of section 4. Assume that we use separate training for training of such model. 
For this example, we assume that the “actual label” are determined by comparing the output of the model at the NW-side and the “expected output”. More precisely, the model is failing for a sample, i.e., the label is “True”, if the SGCS between the “output” and the “expected output” is less than 0.9. Note that this value (i.e., 0.9 here)  can be set to any desirable value. Therefore, later in this section we will discuss application of ROC curves to cover all values.
Note: The way that we have defined the “actual label” in this example is just for illustration. The “actual label” can be defined based on other metrics as the “throughput” or “BER”.
We want to evaluate three monitoring schemes. The first scheme is a genie-aided scheme, but we include it for illustration.
· Scheme A: The UE sends the “expected output” along to the “feedback data” to the NW-side. The NW-side generates the “output” using the “feedback data”, computes SGCS between the “output” and the “expected output”. For samples with SGCS<0.9 use “estimated label=True”, Otherwise “False”
· Scheme B: In this case, the UE performs monitoring without the need for the NW-side. More accurately, the UE uses its encoder and “UE-side nominal decoder” to generate the estimation of the “output” of the NW-side. We use “estimated output”  to refer to this output. 
The UE further computes SGCS between the “estimated output” and the “expected output”. For samples with SGCS<0.9 uses “estimated label=True”, Otherwise “False”
· Scheme C: This scheme is similar to Scheme B with one variation is that the UE uses the “encoder” and the “updated UE-side nominal decoder” to generate the estimation of the “output” of the NW-side. The UE further computes SGCS between the “estimated output” and the “expected output”. For samples with SGCS<0.9 uses “estimated label=True”, Otherwise “False”
For this example we generate the test dataset having 3k samples generated from different UE link types of O2I, LOS and NLOS each 1K samples. Note that the model initially trained only using samples from UEs of O2I link-type.  The results are presented in the Table 5.
Table 5. Simulation results for different monitoring schemes
	
	
	True positive Rate
	False Positive Rate
	Overhead/latency

	Scheme A
	Send “expected output” to the NW-side
	100
	0
	3000 x Output size

	Scheme B
	Use of “UE-side nominal encoder”
	71.0
	0.5
	0

	Scheme C
	Use of “updated UE-side nominal encoder”
	89.6
	2.6
	0



Genie-aided model monitoring Scheme A has the perfect TP and FP rates since it assumes the availability of the “expected output” at the NW-side. If we want to have this data, the downside is the amount of overhead that is associated with transmission of the “expected output” to the NW-side
Model Monitoring Scheme B (based on “UE-side nominal encoder”) archives a good FP rate with much less overhead/latency compared to Scheme A. The TP rate, however, is a bit low in this scheme.
Model Monitoring Scheme C (based on “updated UE-side nominal decoder”) significantly improves the TP rate at the expense small degradation on False Positive Rate. This scheme does not have the overhead/latency of Scheme A as well.
Proposal 7 [bookmark: _Toc131429739][bookmark: _Toc131429779][bookmark: _Toc131498229][bookmark: _Toc131523621][bookmark: _Toc131588375][bookmark: _Toc131588434][bookmark: _Toc131588487][bookmark: _Toc131753045][bookmark: _Toc131780604] In evaluation of different model monitoring schemes, report the “True positive” and “False Positive” rates along with the overhead and latency associated with the proposed monitoring scheme.
Proposal 8 [bookmark: _Toc131429740][bookmark: _Toc131429780][bookmark: _Toc131498230][bookmark: _Toc131523622][bookmark: _Toc131588376][bookmark: _Toc131588435][bookmark: _Toc131588488][bookmark: _Toc131753046][bookmark: _Toc131780605] Study the performance of “UE-based” model monitoring with “UE-side nominal decoder” and with “updated UE-side nominal decoder”
To have a more complete view on the performance of a “model monitoring scheme”, we can test the scheme in different threshold values. Then instead of comparing the TP and FP for only one threshold we can use ROC curve to determine which scheme is better.
For example, we continue the above evaluation by computing the TP and FP for different threshold values, i.e., instead of threshold=0.9, we have changed threshold from 0.5 upto 0.99, and plotted the ROC curve.
The result is depicted in Figure 1.
[image: Chart
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[bookmark: _Ref131503271]Figure 1: ROC curves for different monitoring schemes
Model Monitoring Scheme C leads to a better performance compared to the monitoring scheme B. This again show the benefit of using “updated UE-side nominal decoder”. Note that Scheme C need extra data exchange during the training phase but no extra overhead during the monitoring phase.
Proposal 9 [bookmark: _Toc131429741][bookmark: _Toc131429781][bookmark: _Toc131498231][bookmark: _Toc131523623][bookmark: _Toc131588377][bookmark: _Toc131588436][bookmark: _Toc131588489][bookmark: _Toc131753047][bookmark: _Toc131780606] Use ROC curves to better compare the performance of different monitoring schemes over different threshold values. 

CQI reporting
[bookmark: _Toc127529459]For two-sided AI models under Type-3 training collaboration, separate training at network side and UE-side is assumed, where the UE-side CSI generation part and the network-side CSI reconstruction part are trained separately at the UE and network sides, respectively. One advantage of this collaboration type is that it ensures model privacy and does not require model parameter sharing across network and UE, it may cause mismatch between the target (nominal) precoding vector(s) assumed at the UE-side and the actual precoding vector(s) computed at the network side. To elaborate more, at the UE-side, the UE develops a nominal decoder D1 to compute the nominal precoding vector v1, and based on that the UE computes a nominal CQI, e.g., CQI 1, based on the actual channel H and the nominal precoding vector v1, where the CQI value is reported to the network side, as shown in Figure 2. 
[bookmark: _Toc127529460]
[bookmark: _Ref131503337]Figure 2: Computation of nominal precoding vector based on UE-side nominal decoder
[bookmark: _Toc127529461]On the other hand, at the network side, the network develops an actual decoder D2 to compute the actual precoding vector v2, as shown in Figure 3.
[bookmark: _Toc127529462]
[bookmark: _Ref131503413]Figure 3: Computation of actual precoding vector based on NW-side actual decoder
[bookmark: _Toc127529463][bookmark: _Hlk127456654]Since D1 and D2 are not necessarily identical, v1 ≠ v2 and hence the actual CQI, e.g., CQI 2, is not equal to the nominal CQI fed back by the UE. Given that, the nominal CQI may not meet the target BLER for DL transmission. This may lead to a mismatch between the nominal CQI value reported by the UE and the actual CQI value that meets the target BLER. Considering that, further enhancements are needed for two-sided AI-based CSI compression under training collaboration Type 3 to ensure precise CQI characterization.
Proposal 10 [bookmark: _Toc127529464][bookmark: _Toc131343196][bookmark: _Toc131367348][bookmark: _Toc131429742][bookmark: _Toc131429782][bookmark: _Toc131498232][bookmark: _Toc131523624][bookmark: _Toc131588378][bookmark: _Toc131588437][bookmark: _Toc131588490][bookmark: _Toc131753048][bookmark: _Toc131780607][bookmark: _Toc131523625]Assuming two-sided AI models for CSI compression under training collaboration Type 3, further enhancements are needed to ensure precise CQI characterization in the presence of mismatch between the nominal decoder (at UE-side) and the actual decoder (at network side)
[bookmark: _Toc131588379][bookmark: _Toc131588438]In RAN1#112, a few alternatives were provided for CQI calculation under agenda 9.2.2.2 for specification impact considerations for AI-based CSI enhancements, as follows:
· Option 1: CQI is NOT calculated based on the output of CSI reconstruction part from the realistic channel estimation, including
· Option 1a: CQI is calculated based on target CSI with realistic channel measurement  
· Option 1b: CQI is calculated based on target CSI with realistic channel measurement and potential adjustment 
· Option 1c: CQI is calculated based on legacy codebook
· Option 2: CQI is calculated based on the output of CSI reconstruction part from the realistic channel estimation, including
· Option 2a: CQI is calculated based on CSI reconstruction output, if CSI reconstruction model is available at the UE and UE can perform reconstruction model inference with potential adjustment
· Option 2b: CQI is calculated using two stage approach, UE derive CQI using precoded CSI-RS transmitted with a reconstructed precoder.   

[bookmark: _Toc131588380][bookmark: _Toc131588439][bookmark: _Toc131588381][bookmark: _Toc131588440][bookmark: _Toc131588491]In our understanding, Option 1a is not feasible for AI-based CSI reporting modes where the CSI reconstruction output and the target CSI are not the same, e.g., due to encoder/decoder mismatch. Option 1c is not reasonable since the CQI depends on the precoding scheme, and hence different legacy codebook types do not necessarily correspond to the same CQI value of the AI-based CSI reporting. Option 2a requires either additional signaling of the model output or some form of exchange of the model parameters at the reconstruction part to the UE to enable the UE-based CQI adjustment, which increases the signaling overhead.
[bookmark: _Toc131588382]Under Option 2b, the network precodes CSI-RSs with the reconstructed precoder, and hence the UE can calculate the CQI value based on the CSI-RS precoding. In detail, Option 2B involves five steps to obtain the CQI value at the network side, as follows:
[bookmark: _Toc131588383]Step1: The UE feeds back an indication of the CSI (whether implicit or explicit), without a CQI value calculated
[bookmark: _Toc131588384]Step2: The network computes a precoder based on the reconstructed CSI
[bookmark: _Toc131588385]Step3: The network transmits precoded CSI-RSs using the computed precoder
[bookmark: _Toc131588386]Step4: The UE determines the precoder associated with the precoded CSI-RSs, and measures the corresponding CQI
[bookmark: _Toc131588387]Step5: The UE reports the measured CQI value to the network in an additional CSI report
[bookmark: _Toc131588388]Clearly, Option 2b incurs a large delay to characterize the CQI, which would not be suitable for high-speed and/or low-latency applications. Moreover, Option 2b utilizes resources for the precoded CSI-RS, and moreover UCI resources for reporting the second CSI report comprising the CQI. Hence, our preference is not to consider Option 2b as a potential approach for CQI reporting
[bookmark: _Toc131588390]On the other hand, Option 1b helps quantify the encoder/decoder mismatch to characterize the actual CQI precisely. One way to achieve that is via appending a reference vector to the input of the encoder, e.g., a preconfigured vector d with the same dimensions as the channel eigenvector(s) to be compressed, where the reference vector d is known to both the UE and the gNB. After decoding, the network recovers a reconstructed vector , and hence the network can quantify the mismatch by identifying a function  where , corresponding to a distortion function due to the encoder/decoder mismatch, i.e., for a perfectly matched encoder/decoder,  . More generally, the UE transmits side information that is appended to the CSI feedback to quantify the encoder/decoder mismatch. Given, both , the gNB can compute the function  and use it to compute a delta CQI value, e.g.,  corresponding to the CQI loss corresponding to the mismatch . The CQI value, e.g., Q, reported by the UE corresponding to a target (nominal) vector v computed can then be adjusted to a value Q’, e.g., , and hence the encoder/decoder mismatch is taken into account in CQI determination.
Proposal 11 [bookmark: _Toc131588391][bookmark: _Toc131588442][bookmark: _Toc131588493][bookmark: _Toc131753049][bookmark: _Toc131780608]Consider Option 1b for CQI reporting, where the UE appends side information to the CQI calculated based on the CSI reconstruction output, where the side information helps quantify the encoder/decoder mismatch to better estimate the actual CQI value
Also considering option 2a for CQI reporting, and since in this case the UE may need to have understanding of the “CSI reconstruction part”, i.e., the “nominal decoder”, it might be helpful to study the gain that can be achieved by having a more aligned “nominal decoder” using approached similar to “iterative sperate training” that we described before.
Proposal 12 [bookmark: _Toc131588392][bookmark: _Toc131588443][bookmark: _Toc131588494][bookmark: _Toc131753050][bookmark: _Toc131780609]Considering Option 2a for CQI reporting, study the gain and the associated cost of using “updated nominal decoder” instead of the “nominal decoder”
Datasets used for Multivendor simulations
There are a few proposals, e.g., Type3 training, in which the aim is to study the design an AI/ML model that  can be trained for multiple vendors. For examples, there are a few evaluations on the argument that type-3 can be used to train a CSI-feedback model when we have multiple Encoder-parts (one for each vendors) and single decoder part.
For example,
1. First, Vendor-1  to Vendor-k train their respective Encoder-1 to Encoder-k using their own dataset  to .  
2. Then Vendor-1  to Vendor-k send the associated datasets to the a single node who want to train the decoder part. For example, lets define datasets   to  where  where  represents a sample that the  vendor have as the output of the encoder-part and   represents the expected output of the decoder-part
3. After receiving all datasets  to ,  this NW-side can train the decoder part.

Some evaluation results show the good/acceptable performance of the model trained above. However, in those simulation, it seems that datasets   to  are all sampled from the EVM setup that we have defined. 
We wanted to point out, sampling from the same EVM for dataset generation is not appropriate for generating dataset for simulating multi-vendor cases, as the generated dataset (from the same EVM) will have similar statistics and cannot be a correct representative of having multiple-vendors. As we expect, different vendors have some difference between the measurements that they have from the channel. 
Proposal 13 [bookmark: _Toc127529475][bookmark: _Toc131343207][bookmark: _Toc131367349][bookmark: _Toc131429743][bookmark: _Toc131429783][bookmark: _Toc131498233][bookmark: _Toc131523626][bookmark: _Toc131588393][bookmark: _Toc131588444][bookmark: _Toc131588495][bookmark: _Toc131753051][bookmark: _Toc131780610][bookmark: _Toc118499913][bookmark: _Toc115421238][bookmark: _Toc115421365][bookmark: _Toc118499922][bookmark: _Toc118499923]Study methods for generating representative datasets for evaluation of multi-vendor scenarios.

Conclusions
This contribution addressed AI/ML-based CSI feedback enhancements. We have the following observations and proposals:
1. AI/ML-based CSI feedback models, trained using joint or separate training scheme, leads to better performance compared to the performance of eType II.  
The performance of the AI/ML-based CSI feedback models trained using separate training method degrades when there is mismatch between the structure of the “NW-side actual” and the “UE-side nominal” decoder model.
The degradation performance is more significant if there is more considerable difference between the structure of the “NW-side actual” and the “UE-side nominal” decoder model. In one simulation, the degradation could be up to 78% of the gain.
Proposal 1	Study mechanisms to reduce the degradation due to the difference between the structure of the “NW-side actual” and “the UE-side nominal” decoder model.
Proposal 2	To study the performance of Multivendor separate training, consider different model structures and also datasets with different statistics for different vendors.
For Multi-vendor separate training, AI/ML-based CSI feedback models with separate training have better performance compared to the performance of Rel.16-eType II.
Multi-vendor separate training, experience performance loss compared to joint-training. The degradation is more significant when there is a mismatch between the model/data of different vendors. For example, the performance of Separate training for case-2 UE-vendorA is much less than the joint-training (it is almost as low as Rel.16-eType II.)
Proposal 3	In multivendor separate training case, study mechanisms to reduce the degradation due to the difference between the model structures and the training datasets at different vendors.
Iterative separate training recovers the loss due to mismatch between different vendors. For example, the performance of UE-1 Case-2 is back to 84.3% (from 81.5%) after application of iterative separate training. 
 In some cases, the updated-decoder (using iterative separate training) surpass the performance of initial joint-training, e.g., UE-1 Case-1. It might be due to the availability of more data and the fact that the “actual decoder” at the NW-side is a more complex model that the “UE-side nominal decoder”. 
We note that, assuming the existence of a complex decoder and enough training samples we would expect the performance of the joint-training will be the upper-bound
Proposal 4	Study the performance gains and the extra training costs incurred by, “iterative separate training” as a potential method to improve the performance of cases with mismatch between different sides.
Proposal 5	To evaluate the performance of a “model”, we should evaluate how much the “output of the model” is inline with the “expected output”
	To evaluate the performance of a “model monitoring” scheme, we should evaluate the rate can correctly detect the outputs which are deviating from the “expected output”.
Proposal 6	For evaluation of the performance of a monitoring scheme:
		Generate dataset of “K” test samples:
The samples in this set are in the form of <input, expected output>. The samples should be drawn form:
o	The same scenario/configuration that the model is designed for
o	Also from other scenarios/configurations other than the ones used for training of the model: we need to have such samples to evaluate the performance of monitoring scheme in case the settings of the environment changes.
		Determine an “Actual label” to each of the samples in the test set representing which of samples lead to a “not acceptable” model output. For example, samples for which the output of the model has low corelation with the expected output are labelled as “True” and the rest are “False”.
	Use the proposed monitoring scheme to determine an “Estimated label” for each of the samples in the test-set based on the.
· Compare the set of “Actual labels” and “Estimated labels” and report”: a) the “True positive rate” and “False positive rate” of the detection, b) The overhead and latency associated with the proposed scheme.
Genie-aided model monitoring Scheme A has the perfect TP and FP rates since it assumes the availability of the “expected output” at the NW-side. If we want to have this data, the downside is the amount of overhead that is associated with transmission of the “expected output” to the NW-side
Model Monitoring Scheme B (based on “UE-side nominal encoder”) archives a good FP rate with much less overhead/latency compared to Scheme A. The TP rate, however, is a bit low in this scheme.
Model Monitoring Scheme C (based on “updated UE-side nominal decoder”) significantly improves the TP rate at the expense small degradation on False Positive Rate. This scheme does not have the overhead/latency of Scheme A as well.
Proposal 7	In evaluation of different model monitoring schemes, report the “True positive” and “False Positive” rates along with the overhead and latency associated with the proposed monitoring scheme.
Proposal 8	Study the performance of “UE-based” model monitoring with “UE-side nominal decoder” and with “updated UE-side nominal decoder”
Model Monitoring Scheme C leads to a better performance compared to the monitoring scheme B. This again show the benefit of using “updated UE-side nominal decoder”. Note that Scheme C need extra data exchange during the training phase but no extra overhead during the monitoring phase.
Proposal 9	Use ROC curves to better compare the performance of different monitoring schemes over different threshold values.
Proposal 10	 Assuming two-sided AI models for CSI compression under training collaboration Type 3, further enhancements are needed to ensure precise CQI characterization in the presence of mismatch between the nominal decoder (at UE-side) and the actual decoder (at network side)
Proposal 11	 Consider Option 1b for CQI reporting, where the UE appends side information to the CQI calculated based on the CSI reconstruction output, where the side information helps quantify the encoder/decoder mismatch to better estimate the actual CQI value
Proposal 12	 Considering Option 2a for CQI reporting, study the gain and the associated cost of using “updated nominal decoder” instead of the “nominal decoder”
Proposal 13	 Study methods for generating representative datasets for evaluation of multi-vendor scenarios.
[bookmark: _Ref124671424][bookmark: _Ref71620620][bookmark: _Ref124589665]
Appendix 1

[bookmark: _Ref111220018]Simulation assumptions
	Parameter
	Value

	Duplex, Waveform
	FDD, OFDM

	Multiple access
	OFDMA

	Scenario
	Dense Urban (Macro only)

	Frequency Range
	FR1 2GHz 

	Inter-BS distance
	200m

	Channel model        
	According to TR 38.901

	Antenna setup and port layouts at gNB
	Companies need to report which option(s) are used between
-          32 ports: (8,8,2,1,1,2,8), (dH,dV) = (0.5, 0.8)λ


	Antenna setup and port layouts at UE
	4RX: (1,2,2,1,1,1,2), (dH,dV) = (0.5, 0.5)λ for (rank 1-4)


	BS Tx power
	41 dBm for 10MHz

	BS antenna height
	25m

	UE antenna height & gain
	Follow TR36.873

	UE receiver noise figure
	9dB

	Numerology
	Slot/non-slot
	14 OFDM symbol slot

	
	SCS
	15kHz for 2GHz, 30kHz for 4GHz

	Frame structure
	Slot Format 0 (all downlink) for all slots

	MIMO scheme
	FFS

	MIMO layers
	For all evaluation, companies to provide the assumption on the maximum MU layers (e.g. 8 or 12)

	Overhead
	Only CSI-feedback overhead

	Traffic model
	Full Buffer

	UE distribution
	- 80% indoor (3km/h), 20% outdoor (30km/h)
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