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Introduction
In RAN-94 e-meeting, the SI of Study on Artificial Intelligence (AI)/Machine Learning (ML) for NR Air Interface [1] was approved. The objective can be seen as below: 
Use cases to focus on: 
· Initial set of use cases includes: 
· CSI feedback enhancement, e.g., overhead reduction, improved accuracy, prediction [RAN1]
· Beam management, e.g., beam prediction in time, and/or spatial domain for overhead and latency reduction, beam selection accuracy improvement [RAN1]
· Positioning accuracy enhancements for different scenarios including, e.g., those with heavy NLOS conditions [RAN1] 
· Finalize representative sub use cases for each use case for characterization and baseline performance evaluations by RAN#98
· The AI/ML approaches for the selected sub use cases need to be diverse enough to support various requirements on the gNB-UE collaboration levels

Note: the selection of use cases for this study solely targets the formulation of a framework to apply AI/ML to the air-interface for these and other use cases. The selection itself does not intend to provide any indication of the prospects of any future normative project. 

AI/ML model, terminology and description to identify common and specific characteristics for framework investigations:
· Characterize the defining stages of AI/ML related algorithms and associated complexity:
· Model generation, e.g., model training (including input/output, pre-/post-process, online/offline as applicable), model validation, model testing, as applicable 
· Inference operation, e.g., input/output, pre-/post-process, as applicable
· Identify various levels of collaboration between UE and gNB pertinent to the selected use cases, e.g., 
· No collaboration: implementation-based only AI/ML algorithms without information exchange [for comparison purposes]
· Various levels of UE/gNB collaboration targeting at separate or joint ML operation. 
· Characterize lifecycle management of AI/ML model: e.g.,  model training, model deployment , model inference, model monitoring, model updating
· Dataset(s) for training, validation, testing, and inference 
· Identify common notation and terminology for AI/ML related functions, procedures and interfaces
· Note: Consider the work done for FS_NR_ENDC_data_collect when appropriate

For the use cases under consideration:

1) Evaluate performance benefits of AI/ML based algorithms for the agreed use cases in the final representative set:
· Methodology based on statistical models (from TR 38.901 and TR 38.857 [positioning]), for link and system level simulations. 
· Extensions of 3GPP evaluation methodology for better suitability to AI/ML based techniques should be considered as needed.
· Whether field data are optionally needed to further assess the performance and robustness in real-world environments should be discussed as part of the study. 
· Need for common assumptions in dataset construction for training, validation and test for the selected use cases. 
· Consider adequate model training strategy, collaboration levels and associated implications
· Consider agreed-upon base AI model(s) for calibration
· AI model description and training methodology used for evaluation should be reported for information and cross-checking purposes
· KPIs: Determine the common KPIs and corresponding requirements for the AI/ML operations. Determine the use-case specific KPIs and benchmarks of the selected use-cases.
· Performance, inference latency and computational complexity of AI/ML based algorithms should be compared to that of a state-of-the-art baseline
· Overhead, power consumption (including computational), memory storage, and hardware requirements (including for given processing delays) associated with enabling respective AI/ML scheme, as well as generalization capability should be considered.

2) Assess potential specification impact, specifically for the agreed use cases in the final representative set and for a common framework:
· PHY layer aspects, e.g., (RAN1)
· Consider aspects related to, e.g., the potential specification of the AI Model lifecycle management, and dataset construction for training, validation and test for the selected use cases
· Use case and collaboration level specific specification impact, such as new signalling, means for training and validation data assistance, assistance information, measurement, and feedback
· Protocol aspects, e.g., (RAN2) - RAN2 only starts the work after there is sufficient progress on the use case study in RAN1 
·  Consider aspects related to, e.g., capability indication, configuration and control procedures (training/inference),  and management of data and AI/ML model, per RAN1 input 
· Collaboration level specific specification impact per use case 
· Interoperability and testability aspects, e.g., (RAN4) - RAN4 only starts the work after there is sufficient progress on use case study in RAN1 and RAN2
· Requirements and testing frameworks to validate AI/ML based performance enhancements and ensuring that UE and gNB with AI/ML meet or exceed the existing minimum requirements if applicable
· Consider the need and implications for AI/ML processing capabilities definition

Note 1: specific AI/ML models are not expected to be specified and are left to implementation. User data privacy needs to be preserved.
Note 2: The study on AI/ML for air interface is based on the current RAN architecture and new interfaces shall not be introduced.
This contribution provides our evaluation assumptions and results of AI/ML for beam management.  
Motivation
According to 38.802 [2], the following DL L1/L2 beam management procedures are supported within one or multiple TRPs:
-	P-1: is used to enable UE measurement on different TRP Tx beams to support selection of TRP Tx beams/UE Rx beam(s)
-	For beamforming at TRP, it typically includes a intra/inter-TRP Tx beam sweep from a set of different beams. For beamforming at UE, it typically includes a UE Rx beam sweep from a set of different beams.
-	P-2: is used to enable UE measurement on different TRP Tx beams to possibly change inter/intra-TRP Tx beam(s)
-	From a possibly smaller set of beams for beam refinement than in P-1. Note that P-2 can be a special case of P-1.
-	P-3: is used to enable UE measurement on the same TRP Tx beam to change UE Rx beam in the case UE uses beamforming
During P-1, there will be a large number of TRP Tx beam sweeping and a large number of UE Rx beam sweeping. And the number of TxRx beam pair will be , where  is the number of TRP Tx beam and  is the number of UE Rx beam. It means UE need to measure  beam pairs at most to find the best TRP Tx beam and the best UE Rx beam. It will introduce high reference signaling overhead, high UE measurement complexity and long measurement latency. In order to solve this problem, a new SI on AI/ML for NR Air Interface was approved. And in this contribution, we will discuss the AI/ML for beam management.
Spatial domain beam prediction
Use case 
In the SID, the initial set of use cases for beam management includes beam prediction in time, and/or spatial domain for overhead and latency reduction, beam selection accuracy improvement.
For beam prediction in spatial domain, the principle can be seen in Figure 3-1, there are total  beam pairs. Based on an AI model, only the measured L1-RSRP of a few beam pairs will be input into the AI model, and the AI model will output the L1-RSRP of the total  beam pairs or output the best Tx beams and/or corresponding L1-RSRP only.
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Figure 3-1, Principle of AI based beam prediction in spatial domain
AI/ML model
As known that the purpose of beam measurement is to obtain the Tx beam ID and the L1-RSRP of the best N Tx beams. Thus the output of the AI model should include the Tx beam ID and the L1-RSRP of the best N Tx beams. In order to realize it, we use the AI model based on Fully Connected Neural Network with 5 layer in Figure 3-2 and the parameters can be seen in Table 3-1-a and Table 3-1-b. While for Table 3-1-a, the model was applied for beam pair prediction. The L1-RSRP or L1-RSRP+beam ID of set B will be as the input. And 256 is the number of total beam pairs with 32 TRP Tx beam and 8 UE Rx beam with 2 panels, which can be seen as Set A. The L1-RSRP of 256 beam pairs will be the output with the ascending order of beam ID.  While for Table 3-1-b, the model was applied for DL Tx beam prediction. The L1-RSRP or L1-RSRP+beam ID of set B will be considered as the input. And 32 is the number of total DL Tx beam, which can be seen as Set A. The L1-RSRP of 32 DL Tx beam with one Rx beam will be the output with the ascending order of beam ID.
As for the data set, we use about 50000 samples for model training (95%) and testing. And the data are obtained from system level simulation in urban macro. The number of input beam pairs’ RSRP is 64, the number of output beam pairs’ RSRP is 256. The model is trained based on the MSE as loss function.
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Figure 3-2, AI network
Table 3-1, Parameters of AI model
[bookmark: _Hlk123821630]Table 3-1-a, For beam pair prediction
	Layer
	Output shape
	Parameters

	Input layer
	(B, 64) / (B, 192)
	0

	Dense_1(hidden unit=512)
	(B, 512)
	33280 / 98816

	Activation(ReLU)
	(B, 512)
	

	Dense_2(hidden unit=512)
	(B, 512)
	262656

	Activation(ReLU)
	(B, 512)
	

	Dense_3(hidden unit=256)
	(B, 256)
	131328

	Activation(ReLU)
	(B, 256)
	

	Dense_4(hidden unit=256)
	(B, 256)
	65792

	Activation(ReLU)
	(B, 256)
	

	Dense_5(hidden unit=256)
	(B, 256)
	65792

	Model complexity

	Total parameters
	Model size
	FLOPs

	558848/624384
	6.44 MB /7.12MB
	1.116M/1.250M


Table 3-1-b, For DL Tx beam prediction
	Layer
	Output shape
	Parameters

	Input layer
	(B, 8)
	0

	Dense_1(hidden unit=64)
	(B, 64)
	576

	Activation(ReLU)
	(B, 64)
	

	Dense_2(hidden unit=64)
	(B, 64)
	4160

	Activation(ReLU)
	(B, 64)
	

	Dense_3(hidden unit=32)
	(B, 32)
	2080

	Activation(ReLU)
	(B, 32)
	

	Dense_4(hidden unit=32)
	(B, 32)
	1056

	Activation(ReLU)
	(B, 32)
	

	Dense_5(hidden unit=32)
	(B, 32)
	1056

	Model complexity

	Total parameters
	Model size
	FLOPs

	8928
	0.58 MB
	0.0176M



Evaluation assumption and parameters
According to the agreement archived in RAN1-109 e-meeting [3] and RAN1-110 meeting [4], the following options for baseline performance can be considered for spatial domain beam prediction accuracy.
Agreement
· For spatial-domain beam prediction, further study the following options as baseline performance
· Option 1: Select the best beam within Set A of beams based on the measurement of all RS resources or all possible beams of beam Set A (exhaustive beam sweeping)  
· FFS CSI-RS/SSB as the RS resources
· Option 2: Select the best beam within Set A of beams based on the measurement of RS resources from Set B of beams
· FFS: Set B is a subset of Set A and/or Set A consists of narrow beams and Set B consists of wide beams
· FFS: how conventional scheme to obtain performance KPIs
· FFS: how to determine the subset of RS resources is reported by companies
· Other options are not precluded.
Agreement
· Study the following options on the selection of Set B of beams (pairs) 
· Option 1: Set B is fixed across training and inference
· FFS on the beams of Set B
· Option 2: Set B is variable (e.g., different beams (pairs) patterns in each report/measurement during training and/or inference) 
· FFS on fixed or variable number of beams (pairs)
· FFS on the details 
· Other options are not precluded. 
· FFS on the number of beams (pairs) in Set B
· Note: This does not preclude the alternative that Set B is different from Set A.
Agreement 
For the sub use case BM-Case1, support the following alternatives for further study:
· Alt.1: Set A and Set B are different (Set B is NOT a subset of Set A)
· Alt.2: Set B is a subset of Set A
· Note1: Set A is for DL beam prediction and Set B is for DL beam measurement.
· Note2: The beam patterns of Set A and Set B can be clarified by the companies.

The following agreement were archived in RAN1-110b e-meeting [5]:
Agreement
· BS antenna configuration: 
· antenna setup and port layouts at gNB: (4, 8, 2, 1, 1, 1, 1), (dV, dH) = (0.5, 0.5) λ
· Other assumptions are not precluded
· BS Tx power for evaluation: 
· 40dBm (baseline)
· Other values (e.g. 34 dBm) are not precluded and can be reported by companies
· UE antenna configuration (Clarification of agreement in RAN 1 #110): 
· antenna setup and port layouts at UE: (1, 4, 2, 1, 2, 1, 1), 2 panels (left, right) 
· Other assumptions are not precluded
Agreement
· For the evaluation of both BM-Case1 and BM-Case2, 32 or 64 downlink Tx beams (maximum number of available beams) at NW side. 
· Other values, e.g., 256, etc, are not precluded and can be reported by companies.
· For the evaluation of both BM-Case1 and BM-Case2, 4 or 8 downlink Rx beams (maximum number of available beams) per UE panel at UE side. 
· Other values, e.g., 16, etc, are not precluded and can be reported by companies.
Agreement
· Study the following options on the selection of Set B of beams (pairs) 
· Option 1: Set B is fixed across training and inference
· Option 2: Set B is variable (e.g., different beams (pairs) patterns in each time instance/report/measurement during training and/or inference), FFS:
· Opt A: Set B is changed following a set of pre-configured patterns 
· Opt B: Set B is randomly changed among pre-configured patterns 
· Opt C: Set B is randomly changed among Set A beams (pairs) 
· The number of beams(pairs) in Set B can be fixed or variable
· Note: BM-Case1 and BM-Case2 may be considered for different option. 
· Other options are not precluded. 
Here we take Option 2 as the baseline and consider Alt.1 that set B is a subset of set A. And the evaluation assumptions and parameters were provided in Figure 3-3 and Table 3-2. As for the pattern of set B of beam pair prediction, we consider both variable set B and fixed set B based on the mapping rule between beam pair ID and Tx beam ID& Rx beam ID in Figure 3-4.
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[bookmark: _Ref95819318]Figure 3-3, Network deployment
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Figure 3-4, Mapping rule between beam pair ID and Tx beam ID& Rx beam ID

Table 3-2, Evaluation parameters for spatial domain beam prediction
	Parameters
	Value 

	Scenarios (carrier frequency) 
	Urban Macro, 30 GHz

	Number of cells
	7 cell with 3 sectors per cell

	UE number/ per sector
	40

	UE distribution
	Option 1: 80% indoor ,20% outdoor as in TR 38.901

	Bandwidth 
	80 MHz

	Mode 
	SU-MIMO

	BS antenna configurations
	 (M, N, P, Mg, Ng) = (4, 8, 2, 1, 1)

	BS Tx beam pattern
	




	BS Tx beam number
	32

	UE antenna configurations
	


	UE Rx beam pattern per panel
	




	UE Rx beam number
	8 with 4 per panel

	UE rotation speed 
	0

	Beam measurement quality 
	L1-RSRP

	baseline performance
	Option #2

	Set A and Set B
	For beam pair prediction
	Alt.1: Set B (64 beam pairs) is a subset of Set A (256 beam pairs)

	
	For DL Tx beam prediction
	Alt.1: Set B (8 DL Tx beam) is a subset of Set A (32 DL Tx beam)


KPI
The following agreements and working assumption on KPI were archived in RAN1-110b e-meeting.
Agreement
· The options to evaluate beam prediction accuracy (%):
· Top-1 (%): the percentage of “the Top-1 genie-aided beam is Top-1 predicted beam”
· Top-K/1 (%): the percentage of “the Top-1 genie-aided beam is one of the Top-K predicted beams”
· Top-1/K (%) (Optional): the percentage of “the Top-1 predicted beam is one of the Top-K genie-aided beams”
· Where K >1 and values can be reported by companies.
Working assumption
· For the evaluation of the overhead for BM-Case1, further study the following two metrics for potential down selection:
· Option A: RS overhead reduction, FFS for potential down selection:
· Option 1: 
· where N is the number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement 
· where M is the total number of beams (pairs) to be predicted 
· Option 2: 
· where N is the total number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement for AI/ML
· Where M is the total number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement for baseline scheme 
· Companies report the assumption on beam sweeping
· Option 3: 
· where N is the number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement 
· where M is the total number of beams (pairs) to be predicted 
· FFS the following alternatives consider different targets (e.g., beam or beam pair) for prediction: 
· Alt1: P is the number of Top-K selected beams (pairs) for beam sweeping (if applicable)
· Alt2: P is the number of Top-K selected beams (pairs) not in Set B for beam sweeping (if applicable)
· Alt3: P is the number of beams used for beam sweeping to get the best Rx beam (if applicable)
· Companies report the assumption on beam sweeping
· Other options can be reported by companies 
· Option B: RS overhead, FFS for potential down selection:
· Option 1: RS OH = N, 
· where N is the number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement 
· Option 2: RS OH = N + P 
· where N is the number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement 
· FFS the following alternatives consider different targets (e.g., beam or beam pair) for prediction: 
· Alt1: P is the number of Top-K selected beams (pairs) for beam sweeping (if applicable)
· Alt2: P is the number of Top-K selected beams (pairs) not in Set B for beam sweeping (if applicable)
· Alt3: P is the number of beams used for beam sweeping to get the best Rx beam (if applicable)
· Companies report the assumption on beam sweeping
· Other options can be reported by companies

The following agreements on KPI were archived for BM-Case 1 in RAN1-111[6] meeting.
Agreement
· For the evaluation of the overhead for BM-Case1, adoption the following metrics:
· RS overhead reduction, 
· Option 1: 
· where N is the number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement for AI/ML
· where M is the total number of beams (pairs) to be predicted 
· Option 2: 
· where N is the total number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement for AI/ML, including the beams (pairs) required for additional measurements before/after the prediction if applicable
· Where M is the total number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement for baseline scheme, including the beams (pairs) required for additional measurements before/after the prediction if applicable
· Companies report the assumption on additional measurements

The following agreements on KPI were archived in RAN1-112[7] meeting.
Agreement
· For AI/ML models, which provide L1-RSRP as the model output, to evaluate the accuracy of predicted L1-RSRP, companies optionally report average (absolute value)/CDF of the predicted L1-RSRP difference, where the predicted L1-RSRP difference is defined as:
a. The difference between the predicted L1-RSRP of Top-1[/K] predicted beam and the ideal L1-RSRP of the same beam.
Agreement
· For DL Tx beam prediction, the definition of Top-1 genie-aided Tx beam is defined as
· Option A (baseline): the Top-1 genie-aided Tx beam is the Tx beam that results in the largest L1-RSRP over all Tx and Rx beams
· Option B(optional), the Top-1 genie-aided Tx beam is the Tx beam that results in the largest L1-RSRP over all Tx beams with specific Rx beam(s)
· FFS on specific Rx beam(s)
· Note: specific Rx beams are subset of all Rx beams
· For DL Tx-Rx beam pair prediction, the definition of Top-1 genie-aided Tx-Rx beam pair is defined as
· Option A: The Tx-Rx beam pair that results in the largest L1-RSRP over all Tx and Rx beams
· Other options are not precluded and can be reported by companies. 
· Note: This is only for evaluation discussion 
As for RS overhead reduction and RS overhead, we prefer RS overhead reduction. And for the three options in Option A, it is simple to use Option 1. With Option 2, two step beam sweeping was assumed. The first step is for Tx beam sweeping and UE can measure all Tx beams with one specific Rx beam. After Tx beam sweeping, Rx beam sweeping can be performed based on the best Tx beams reported from the UE. In this case, the number of RS will be lower than all TxRx beam pairs. But the calculation on RS overhead reduction will be complexity. And it depends on whether there is one AI/ML mode with Tx beam prediction or two AI/ML modes, with one for Tx beam prediction and the other one for Rx beam prediction. With Option 3, it is also complexity. It is possible that P is not needed in some cases. So we support either Option 1 or option 2 for BM Case 1. And in the evaluation results, we don’t consider the additional beam sweeping. That means Option 1 is used.
While for predicated L1-RSRP difference, we provide the average value and CDF of this metric in the evaluation results.
Evaluation results
Beam pair prediction
Random set B vs. fixed set B	
In order to align with the beam measurement report, we consider three K values for predicted Top-K beams with K=1, 2 or 4.
Based on Figure 3-4, we evaluate 4 schemes listed below:
· Scheme 0: Option 2 as baseline 
· Select 64 beam pairs randomly and choose the Tx beam with the highest L1-RSRP as the best Tx beam.
· Scheme 1: Variable set B with L1-RSRP as input;
· Select 64 beam pairs randomly and input their L1-RSRP to AI model for beam prediction. 
· Scheme 2: Variable set B with L1-RSRP and beam ID as input;
· Select 64 beam pairs randomly and input their L1-RSRP and beam ID to AI model for beam prediction. 	
· Scheme 3: Fixed set B with L1-RSRP as input;
· Select 64 beam pairs with same beam pair IDs and input their L1-RSRP to AI model for beam prediction. And the beam pair IDs are beam pair ID#0, 4, 8, 12, 16……, 252. 	
The evaluation results can be seen in Table 3-3, 3-4, 3-5 and Figure 3-5. Table 3-3 provides the average L1-RSRP difference of Top-1 predicted beam of 4 schemes. Table 3-4 provides Beam prediction accuracy (%) for Top-1 and/or Top-K beams (K=2, 4) of 4 schemes.  Table 3-5 provides beam prediction accuracy (%) with 1dB margin for Top-1 beam of 4 schemes.  Figure 3-5 provides the CDF of L1-RSRP difference for Top-1 predicted beam of 4 schemes. From the evaluation results, we can see that AI based beam prediction scheme 1-3 provide large performance gain compared to non-AI based beam management scheme 0. In addition, we can also find that scheme 2 and scheme 3 can further improve the performance by input beam ID or by input L1-RSRP of same beam pairs. Thus we propose an observation and proposal as below. 
Table 3-3, Average ideal L1-RSRP difference between Top-1 predicted beam and Top-1 genie-aided beam
	Scheme 
	Average L1-RSRP difference (dB)

	Scheme 0
	3.7

	Scheme 1
	2.5

	Scheme 2
	1.3

	Scheme 3
	0.2


Table 3-4, Beam prediction accuracy (%) for Top-1 and/or Top-K beams (K=2, 4)
	Scheme 
	Beam prediction accuracy (%)

	
	K=1
	K=2
	K=4

	Scheme 0
	20.3

	Scheme 1
	44.6
	61.2
	79.5

	Scheme 2
	54.7
	71.6
	86.8

	Scheme 3
	74.3
	90.5
	97.9
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Figure 3-5, CDF of L1-RSRP difference for Top-1 predicted beam
Table 3-5, Beam prediction accuracy (%) with 1dB margin for Top-1 beam
	Scheme 
	Beam prediction accuracy (%)

	Scheme 0
	24.9

	Scheme 1
	57.6

	Scheme 2
	69.1

	Scheme 3
	91.4


Observation 1: AI based beam prediction in spatial domain can provide good performance. And the performance can be further improved by random set B with corresponding beam pair ID as input or by fixed set B. 
We also evaluate the L1-RSRP difference between the ideal L1-RSRP of Top-1 predicted beam and the predicted L1-RSRP of the Top 1 predicted beam and the evaluation result can be seen in Table 3-6. We can see that the average L1-RSRP difference is less than 0.5dB with scheme 3.
Table 3-6, Average predicted L1-RSRP difference of Top 1 predicted beam 
	Scheme 
	Average predicted L1-RSRP difference (dB)

	Scheme 1
	0.76

	Scheme 2
	0.63

	Scheme 3
	0.14


Observation 2: the average L1-RSRP difference between the ideal L1-RSRP of Top-1 predicted beam and the predicted L1-RSRP of the Top 1 predicted beam of AI based beam prediction in spatial domain with fixed set B is less than 0.5 dB. 
Different fixed set B and different set B in pre-configured set 
The following agreements on set B were archived in RAN1-111 meeting [6]
Agreement
· Companies report the pattern of Set B.
· Further study the performance with different patterns of set B(s) for fixed Set B (Option 1) and different pre-configured/pre-known patterns of Set B(s) (Option 2A and 2B). 
Set B with continuous beam pair ID 
Based on Figure 3-4, we consider following 4 different fixed set B with 64 beam pairs with continuous beam pair IDs. In addition, Mixed set B with different set B in pre-configured set of set B are evaluated as pattern 5 and the pre-configured set of set B consists of the following 4 different fixed set B.
1 Pattern 1 of fixed Set B with continuous beam pair ID: beam pair ID #0~63.
2 Pattern 2 of fixed Set B with continuous beam pair ID: beam pair ID #64~127.
3 Pattern 3 of fixed Set B with continuous beam pair ID: beam pair ID #128~191.
4 Pattern 4 of fixed Set B with continuous beam pair ID: beam pair ID #192~255.
5 Pattern 5: different Set B in pre-configured set of Set B with continuous beam pair ID.
a) mixed data samples of above Pattern#1, #2, #3 and #4 with 25% of each for training and inference。
6 Pattern 6: training by dataset of Pattern 1 and inference by dataset of Pattern 2.
7 Pattern 7: enhanced Pattern 5 with beam pair ID as input
The evaluation results can be seen in Table 3-7, 3-8 3-9and 3-10. From the evaluation results, we can see that the performance for pattern 1~4 are almost same as each other with different fixed set B with continuous beam pair ID. But pattern 5 with mixed fixed set B has some performance loss because the generalization capability among different fixed set B is not good enough. And pattern 7 with enhancement of pattern 5 by adding beam pair ID as input can improve the prediction accuracy.  Pattern 6 with training by dataset of pattern 1 and inference by dataset of pattern 2 provides the worst prediction accuracy.
Table 3-7, Average ideal L1-RSRP difference between Top-1 predicted beam and Top-1 genie-aided beam
	Pattern of set B
	Average L1-RSRP difference (dB)

	Pattern 1
	0.86

	Pattern 2
	0.87

	Pattern 3
	0.79

	Pattern 4
	0.79

	Pattern 5
	2.20

	Pattern 6
	3.11

	Pattern 7
	1.82


Table 3-8, Average predicted L1-RSRP difference of Top 1 predicted beam 
	Pattern of set B
	Average predicted L1-RSRP difference (dB)

	Pattern 1
	0.30

	Pattern 2
	0.30

	Pattern 3
	0.29

	Pattern 4
	0.29

	Pattern 5
	1.68

	Pattern 6
	2.12

	Pattern 7
	0.63


Table 3-9, Beam prediction accuracy (%) for Top-1 and/or Top-K beams (K=2, 4)
	Pattern of set B
	Beam prediction accuracy (%)

	
	K=1
	K=2
	K=4

	Pattern 1
	59
	77
	91

	Pattern 2
	61
	79
	91

	Pattern 3
	64
	80
	92

	Pattern 4
	63
	80
	91

	Pattern 5
	46
	63
	79

	Pattern 6
	40
	54
	68

	Pattern 7
	52
	70
	84



Table 3-10, Beam prediction accuracy (%) with 1dB margin for Top-1 beam
	Pattern of set B
	Beam prediction accuracy (%)

	Pattern 1
	77

	Pattern 2
	77

	Pattern 3
	80

	Pattern 4
	81

	Pattern 5
	61

	Pattern 6
	51

	Pattern 7
	68


Observation 3: different fixed set B with continuous beam pair ID can provide almost same performance, but different set B in pre-configured set even with beam pair ID as input results in some performance loss because of low generalization capability among different fixed set B. 
Set B with non-continuous beam pair ID 
Based on Figure 3-4, we consider following 4 different fixed set B with 64 beam pairs with non-continuous beam pair IDs. In addition, Mixed set B with different set B in pre-configured set of set B are evaluated as pattern 10 and 11, and the pre-configured set of set B consists of the following 4 or 3 different fixed set B.
1 Pattern 1 of fixed Set B with non-continuous beam pair ID: beam pair ID #0, 4, 8, 12, 16…, 252.
2 Pattern 2 of fixed Set B with non-continuous beam pair ID: beam pair ID #1, 5, 9, 13, 17…, 253.
3 Pattern 3 of fixed Set B with non-continuous beam pair ID: beam pair ID #2, 6, 10, 14, 18…, 254.
4 Pattern 4 of fixed Set B with non-continuous beam pair ID: beam pair ID #3, 7, 11, 15, 19…, 255.
5 Pattern 5: different Set B in pre-configured set of Set B with non-continuous beam pair ID. 
a) mixed data samples of above Pattern#6, #7, #8 and #9 with 25% of each for training and inference.
6 Pattern 6: different Set B in pre-configured set of Set B with non-continuous beam pair ID. 
a) mixed data samples of above Pattern#6, #7 and #8 with 33% of each for training and inference.
7 Pattern 7：training by dataset of Pattern 1 and inference by dataset of Pattern 2.
8 Pattern 8-1: enhanced Pattern 5 with beam pair ID as input
9 Pattern 8-2: enhanced Pattern 5 with pattern ID as input
10 Pattern 9-1: enhanced Pattern 6 with beam pair ID as input
11 Pattern 9-1: enhanced Pattern 6 with pattern ID as input
The evaluation results can be seen in Table 3-11, 3-12, 3-13 and 3-14. From the evaluation results, we can see that the performance for pattern 6~8 are almost same as each other with different fixed set B with non-continuous beam pair ID. While pattern 9 is a little worse. Thus pattern 11 with mixture of pattern 6~9 is a little better than pattern 10 with mixture of pattern 6~10. And the generalization capability among different fixed set B is very good.
Table 3-11, Average ideal L1-RSRP difference between Top-1 predicted beam and Top-1 genie-aided beam
	Pattern of set B
	Average L1-RSRP difference (dB)

	Pattern 1
	0.23

	Pattern 2
	0.24

	Pattern 3
	0.24

	Pattern 4
	0.52

	Pattern 5
	0.64

	Pattern 6
	0.36

	Pattern 7
	0.58

	Pattern 8-1
	0.32

	Pattern 8-2
	0.40

	Pattern 9-1
	0.19

	Pattern 9-2
	0.24



Table 3-12, Average predicted L1-RSRP difference of Top 1 predicted beam
	Pattern of set B
	Average predicted L1-RSRP difference (dB)

	Pattern 1
	0.17

	Pattern 2
	0.18

	Pattern 3
	0.17

	Pattern 4
	0.35

	Pattern 5
	0.58

	Pattern 6
	0.29

	Pattern 7
	0.51

	Pattern 8-1
	0.23

	Pattern 8-2
	0.26

	Pattern 9-1
	0.22

	Pattern 9-2
	0.20


Table 3-13, Beam prediction accuracy (%) for Top-1 and/or Top-K beams (K=2, 4)
	Pattern of set B
	Beam prediction accuracy (%)

	
	K=1
	K=2
	K=4

	Pattern 1
	74
	91
	98

	Pattern 2
	71
	90
	98

	Pattern 3
	72
	89
	97

	Pattern 4
	66
	82
	93

	Pattern 5
	65
	83
	93

	Pattern 6
	67
	85
	96

	Pattern 7
	58
	79
	90

	Pattern 8-1
	72
	89
	96

	Pattern 8-2
	66
	85
	96

	Pattern 9-1
	76
	90
	98

	Pattern 9-2
	72
	89
	97



Table 3-14, Beam prediction accuracy (%) with 1dB margin for Top-1 beam
	Pattern of set B
	Beam prediction accuracy (%)

	Pattern 1
	91

	Pattern 2
	91

	Pattern 3
	91

	Pattern 4
	84

	Pattern 5
	83

	Pattern 6
	87

	Pattern 7
	79

	Pattern 8-1
	90

	Pattern 8-2
	87

	Pattern 9-1
	93

	Pattern 9-2
	91



Observation 4: different fixed set B with non-continuous beam pair ID can provide almost same performance, and different set B in pre-configured set of set B with beam pair ID or pattern ID as input can archive almost same performance as same fixed set B. 
Observation 5: Fixed set B with non-continuous bam pair ID can provide better performance than that of fixed set B with continuous beam pair ID since non-continuous beam pair ID covers more Rx beams.
Proposal 1: Different fixed set B consists of L1-RSRP with more Rx beams should be considered with high priority. 
Generalization 
Generalization on different scenario- Uma and Umi 
In order to evaluate the performance of generalization on different scenario, we consider scheme 3 for each generalization case.
· Scheme 3: Fixed set B with L1-RSRP as input;
· Select 64 beam pairs with same beam pair IDs and input their L1-RSRP to AI model for beam prediction. And the beam pair IDs are beam pair ID#0, 4, 8, 12, 16……, 252. 	
And the performance of following 6 cases are evaluated. While Case 5 and Case 6 is evaluated for comparison. As for case 2 and case 3, the training data contains 50% of Uma and 50% of Umi. 
· Case 1: training by data of Uma, inference by data of Umi.
· Case 2: training by data of Uma and Umi, inference by data of Umi.
· Case 3: training by data of Uma and Umi, inference by data of Uma.
· Case 4: training by data of Umi, inference by data of Uma.
· Case 5: training by data of Uma, inference by data of Uma.
· Case 6: training by data of Umi, inference by data of Umi.
The evaluation results can be seen in Table 3-13, Table 3-14, Table 3-15 and Figure 3-6. Based on the evaluation results, we can see that AI model of case 2 and case 3 provide good generalization capability among different scenario. While AI model of case 1 and case 4 provide a little worse generalization capability than that of case 2 and case 3.
Table 3-15, Average L1-RSRP difference of Top-1 predicted beam for generalization
	Generalization case
	Average L1-RSRP difference (dB)

	Case1
	1.3

	Case2
	0.2

	Case3
	0.4

	Case4
	0.8

	Case5
	0.2

	Case6
	0.2


Table 3-16, Beam prediction accuracy (%) for Top-1 and/or Top-K beams（K=1,2,4）for generalization
	Generalization case
	Beam prediction accuracy (%)

	
	K=1
	K=2
	K=4

	Case1
	62.7
	82.7
	92.5

	Case2
	78.1
	95.7
	99.6

	Case3
	65.8
	85.7
	96.0

	Case4
	56.8
	76.7
	89.5

	Case5
	74.3
	91.5
	98.3

	Case6
	78.5
	95.2
	99.7


[image: ]
Figure 3-6, CDF of L1-RSRP difference for Top-1 predicted beam for generalization
Table 3-17, Beam prediction accuracy (%) with 1dB margin for Top-1 beam for generalization
	Generalization case
	Beam prediction accuracy (%)

	Case1
	75.2

	Case2
	92.2

	Case3
	85.2

	Case4
	75.0

	Case5
	93.5

	Case6
	92.0


Table 3-18, Average predicted L1-RSRP difference of Top-1 predicted beam 
	[bookmark: _Hlk130067085]Scheme 
	Average predicted L1-RSRP difference (dB)

	Case1
	0.60

	Case2
	0.21

	Case3
	0.23

	Case4
	0.43

	Case5
	0.17

	Case6
	0.19


Observation 6: AI model trained by hybrid data of Uma and Umi for beam prediction in spatial domain can provide good generalization capability for Uma or Umi. While AI model trained by data of only Uma or only Umi provide a little worse generalization capability for different scenario, i.e., Uma model for Umi inference, or Umi model for Uma inference.
Generalization on different UE distribution- 100% outdoor and 20% outdoor 
According to the agreement archived in RAN1-110 meeting [3], the following options on UE distribution can be considered for spatial domain beam prediction.
	Parameters
	Values

	UE distribution
	· For spatial domain beam prediction: 
· Option 1: 80% indoor ,20% outdoor as in TR 38.901
· Option 2: 100% outdoor
· For time domain prediction: 100% outdoor


In order to evaluate the performance of generalization on different UE distribution, we consider Option 1 with 80% indoor and 20% outdoor, and Option 2 with 100% outdoor. As for the input of AI model, we consider scheme 3 for each generalization case with Uma.
· Scheme 3: Fixed set B with L1-RSRP as input;
· Select 64 beam pairs with same beam pair IDs and input their L1-RSRP to AI model for beam prediction. And the beam pair IDs are beam pair ID#0, 4, 8, 12, 16……, 252. 	
And the performance of following 6 cases are evaluated. While case 5 and case 6 are evaluated for comparison. As for case 2 and case 3, the training data contains 50% of Option 1 and 50% of Option 2. 
· Case 1: training by data of Option 1, inference by data of Option 2.
· Case 2: training by data of Option 1 and Option 2, inference by data of Option 2.
· Case 3: training by data of Option 1 and Option 2, inference by data of Option 1.
· Case 4: training by data of Option 2, inference by data of Option 1.
· Case 5: training by data of Option 1, inference by data of Option 1.
· Case 6: training by data of Option 2, inference by data of Option 2.
The evaluation results can be seen in Table 3-16, Table 3-17, Table 3-18 and Figure 3-7. Based on the evaluation results, we can see that AI model of case 2 and case 3 provide good generalization capability among different UE distribution. While AI model of case 1 and case 4 provide a little worse generalization capability than that of case 2 and case 3.
Table 3-19 Average L1-RSRP difference of Top-1 predicted beam for generalization
	Generalization case
	Average L1-RSRP difference (dB)

	Case1
	1.3

	Case2
	0.3

	Case3
	0.3

	Case4
	0.8

	Case5
	0.2

	Case6
	0.3



Table 3-20 Beam prediction accuracy (%) for Top-1 and/or Top-K beams（K=1,2,4）for generalization
	Generalization case
	Beam prediction accuracy (%)

	
	K=1
	K=2
	K=4

	Case1
	47.9
	67.3
	82.3

	Case2
	66.8
	83.9
	94.9

	Case3
	70.8
	86.9
	96.8

	Case4
	55.7
	77.9
	91.0

	Case5
	74.3
	91.5
	98.3

	Case6
	68.1
	84.6
	95.4



[image: ]
Figure 3-7, CDF of L1-RSRP difference for Top-1 predicted beam for generalization
Table 3-21 Beam prediction accuracy (%) with 1dB margin for Top-1 beam for generalization
	Generalization case
	Beam prediction accuracy (%)

	Case1
	66.1

	Case2
	86.7

	Case3
	88.9

	Case4
	73.1

	Case5
	93.5

	Case6
	88.1


Table 3-22 Average predicted L1-RSRP difference of Top-1 predicted beam 
	Scheme 
	Average predicted L1-RSRP difference (dB)

	Case1
	0.64

	Case2
	0.20

	Case3
	0.18

	Case4
	0.35

	Case5
	0.17

	Case6
	0.17



Observation 7: AI model trained by hybrid data of different UE distribution for beam prediction in spatial domain can provide good generalization capability. While AI model trained by data of only UE distribution Option A provides a little worse generalization capability for UE distribution Option B.
Generalization on different number of UE Rx beam 
In order to evaluate the performance of generalization on different number of UE Rx beam, we consider scheme 3 for each generalization case with Uma.
· Scheme 3: Fixed set B with L1-RSRP as input;
· Select 64 beam pairs with same beam pair IDs and input their L1-RSRP to AI model for beam prediction.  	
As for the number of UE Rx beam, we evaluate Option 1 and Option 2. While Option 1 means the number of Rx beam is 8, and Option 2 means the number of Rx beam is 4 with Rx beam ID#0&2 in the first and the second panel in Figure 3-4. For inference of Option 2, the best beam pair will be selected from beam pair IDs among pattern #1. While for inference of Option 1, the best beam pair will be selected from all beam pair IDs.  
· Case 1: training by data of Option 1, inference by data of Option 2 
· Input for training: mixed data of pattern#1 and pattern#2 with 50% of each pattern
· Pattern #1: L1-RSRP of fixed 64 beam pair IDs from 0~31,64~95,128~159,192~223.
· Pattern #2: L1-RSRP of fixed 64 beam pair IDs from 32~63,96~127,160~191,224~255.
· Input for inference
· Pattern #1.
· Case 2: training by data of Option 1, inference by data of Option 1 
· Case 2-1
· Input for training: 
· Pattern #3: L1-RSRP of fixed 64 beam pair IDs #0, 4, 8, 12, 16……, 252.
· Input for inference:
· Pattern #3: L1-RSRP of fixed 64 beam pair IDs #0, 4, 8, 12, 16……, 252.
· Case 2-2
· Input for training: mixed data of pattern#1 and pattern#2 with 50% of each pattern
· Pattern #1: L1-RSRP of fixed 64 beam pair IDs from 0~31,64~95,128~159,192~223.
· Pattern #2: L1-RSRP of fixed 64 beam pair IDs from 32~63,96~127,160~191,224~255.
· Input for inference
· Pattern #1
· Case 3: training by data of Option 2, inference by data of Option 2
· Input for training: 
· Pattern #1.
· Input for inference:
· Pattern #1.
The evaluation results can be seen in Table 3-19, Table 3-20, Table 3-21 and Figure 3-8. Based on the evaluation results, we can see that AI model of case 1 provides good generalization capability among different number UE Rx beam.
Table 3-23 Average L1-RSRP difference of Top-1 predicted beam for generalization
	Generalization case
	Average L1-RSRP difference (dB)

	Case1
	0.2

	Case2-1
	0.2

	Case2-2
	0.3

	Case3
	0.2



Table 3-24 Beam prediction accuracy (%) for Top-1 and/or Top-K beams（K=1,2,4）for generalization
	Generalization case
	Beam prediction accuracy (%)

	
	K=1
	K=2
	K=4

	Case1
	73.1
	89.4
	97.1

	Case2-1
	74.3
	91.5
	98.3

	Case2-2
	73.1
	89.1
	96.9

	Case3
	75.2
	91.7
	98.3


Table 3-25 Beam prediction accuracy (%) with 1dB margin for Top-1 beam for generalization
	Generalization case
	Beam prediction accuracy (%)

	Case1
	92.4

	Case2-1
	93.5

	Case2-2
	91.0

	Case3
	94.1


Table 3-26 Average predicted L1-RSRP difference of Top-1 predicted beam 
	Scheme 
	Average predicted L1-RSRP difference (dB)

	Case1
	0.17

	Case2-1
	0.17

	Case2-2
	0.18

	Case3
	0.18



Observation 8: AI model for beam prediction in spatial domain can provide good generalization capability among different number of UE Rx beam, e.g., AI model with more Rx beam number can be applied for beam prediction of less Rx beam number. 
DL Tx beam prediction
The following agreements on Rx beam for DL Tx beam prediction were archived in RAN1-111 meeting [6]
Agreement
At least for evaluation on the performance of DL Tx beam prediction, consider the following options for Rx beam for providing input for AI/ML model for training and/or inference if applicable
· Option 1: Measurements of the “best” Rx beam with exhaustive beam sweeping for each model input sample
· Option 2: Measurements of specific Rx beam(s)
· Option 2a: Measurements of specific Rx beam(s) per model input sample 
· Option 2b: Measurements of specific Rx beam(s) for all model input sample
· FFS how to select the specific Rx beam(s)
· Option 3: Measurements of random Rx beam(s) per model input sample
· Other options are not precluded and can be reported by companies.
DL Tx beam prediction with specific Rx beam for model input 
For DL Tx beam prediction, as for the L1-RSRP for input and/ or output, Option 2 means consider only one specific Rx beam. Thus the L1-RSRP of 8 DL Tx beam with one specific Rx beam are considered as the model input and the best Rx beam for each DL Tx beam is considered for the model label and output.
Since there are at most 8 Rx beams, we consider each Rx beam as the specific Rx beam for all model input sample, i.e., Option 2b. The Rx beam ID can be seen in Figure 3-4. Compared to the exhaustive beam sweeping scheme, the evaluation results can be seen in Table 3-2-1, 3-2-2, 3-2-3 and 3-2-4. The performance of DL Tx beam prediction with specific Rx beam is worse than the beam pair prediction.
· Pattern 1：Rx beam ID#0 of the first panel.
· Pattern 2：Rx beam ID#1 of the first panel.
· Pattern 3：Rx beam ID#2 of the first panel.
· Pattern 4：Rx beam ID#3 of the first panel.
· Pattern 5：Rx beam ID#0 of the second panel.
· Pattern 6：Rx beam ID#1 of the second panel.
· Pattern 7：Rx beam ID#2 of the second panel.
· Pattern 8：Rx beam ID#3 of the second panel.
Table 3-2-1, Average ideal L1-RSRP difference between Top-1 predicted beam and Top-1 genie-aided beam
	Pattern
	Average L1-RSRP difference (dB)

	Pattern 1
	1.5

	Pattern 2
	1.6

	Pattern 3
	1.6

	Pattern 4
	1.5

	Pattern 5
	1.8

	Pattern 6
	1.6

	Pattern 7
	1.7

	Pattern 8
	1.6


Table 3-2-2, Average predicted L1-RSRP difference of Top-1 predicted beam 
	Pattern
	Average predicted L1-RSRP difference (dB)

	Pattern 1
	3.90

	Pattern 2
	3.62

	Pattern 3
	4.21

	Pattern 4
	3.42

	Pattern 5
	3.67

	Pattern 6
	4.13

	Pattern 7
	3.68

	Pattern 8
	3.22


Table 3-2-3, Beam prediction accuracy (%) for Top-1 and/or Top-K beams (K=2, 4)
	Pattern
	Beam prediction accuracy (%)

	
	K=1
	K=2
	K=4

	Pattern 1
	50.9
	68.3
	83.9

	Pattern 2
	50.0
	70.2
	84.2

	Pattern 3
	52.5
	68.6
	82.6

	Pattern 4
	50.8
	67.5
	84.3

	Pattern 5
	50.8
	69.1
	82.7

	Pattern 6
	53.1
	71.5
	84.2

	Pattern 7
	53.8
	70.8
	84.1

	Pattern 8
	52.9
	69.1
	83.8


Table 3-2-4, Beam prediction accuracy (%) with 1dB margin for Top-1 beam
	Pattern 
	Beam prediction accuracy (%)

	Pattern 1
	67.4

	Pattern 2
	66.9

	Pattern 3
	66.1

	Pattern 4
	66.8

	Pattern 5
	66.6

	Pattern 6
	68.6

	Pattern 7
	68.7

	Pattern 8
	68.0


Observation 9: AI model for DL Tx beam prediction in spatial domain with one specific Rx beam for model input results in some performance loss compared to exhaustive beam pair sweeping. 
Proposal 2: DL Tx beam prediction with specific Rx beam for model input can be supported considering the low RS overhead for model input.
DL Tx beam prediction with best Rx beam for model input
DL Tx beam prediction with one best Rx beam for DL Tx beams in set B
For DL Tx beam prediction, as for the L1-RSRP for input and/ or output, Option 1 means consider best Rx beam. But for how to obtain the Rx beam, there are two alternatives. Alt 1 is to obtain the best Rx beam for the best Tx beam. And that best Rx beam will be used for all Tx beam for model input. Alt 2 is to obtain the best Rx beam for each DL Tx beam.
In this section, Alt 1 with the best Rx beam for all DL Tx beam will be evaluated. Thus the L1-RSRP of 8 DL Tx beam with the same best Rx beam are considered as the model input and the L1-RSRP of 32 DL Tx beam with each best Rx beam are considered as the model label and model output.
Compared to the exhaustive beam sweeping scheme, the evaluation results can be seen in Table 3-2-5, 3-2-6,3-2-7 and 3-2-8. The performance of DL Tx beam prediction with the best Rx beam is a little better than the beam pair prediction.
Table 3-2-5, Average ideal L1-RSRP difference between Top-1 predicted beam and Top-1 genie-aided beam
	Scheme 
	Average L1-RSRP difference (dB)

	DL Tx beam prediction with the best Rx beam
	0.12


Table 3-2-6, Average predicted L1-RSRP difference of Top-1 predicted beam
	Scheme 
	Average predicted L1-RSRP difference (dB)

	DL Tx beam prediction with the best Rx beam
	0.27


Table 3-2-7, Beam prediction accuracy (%) for Top-1 and/or Top-K beams (K=2, 4)
	Scheme 
	Beam prediction accuracy (%)

	
	K=1
	K=2
	K=4

	DL Tx beam prediction with the best Rx beam
	84.0
	96.5
	99.4


Table 3-2-8, Beam prediction accuracy (%) with 1dB margin for Top-1 beam
	Scheme 
	Beam prediction accuracy (%)

	DL Tx beam prediction with the best Rx beam
	95.8


DL Tx beam prediction with best Rx beam for each DL Tx beam
The difference between this section and 3.5.2.3 is the best Rx beam. in this section, Alt 2 with the best Rx beam for each DL Tx beam is considered. Thus the L1-RSRP of 8 DL Tx beam with each best Rx beam are considered as the model input and the L1-RSRP of 32 DL Tx beam with each best Rx beam are considered as the model label and model output.
Compared to the exhaustive beam sweeping scheme, the evaluation results can be seen in Table 3-2-9, 3-2-10, 3-2-11 and 3-2-12. The performance of DL Tx beam prediction with the best Rx beam is a little better than the beam pair prediction.
Table 3-2-9, Average ideal L1-RSRP difference between Top-1 predicted beam and Top-1 genie-aided beam
	Scheme 
	Average L1-RSRP difference (dB)

	DL Tx beam prediction with the best Rx beam
	0.11


Table 3-2-10, Average predicted L1-RSRP difference of Top-1 predicted beam 
	Scheme 
	Average predicted L1-RSRP difference (dB)

	DL Tx beam prediction with the best Rx beam
	0.46


Table 3-2-11, Beam prediction accuracy (%) for Top-1 and/or Top-K beams (K=2, 4)
	Scheme 
	Beam prediction accuracy (%)

	
	K=1
	K=2
	K=4

	DL Tx beam prediction with the best Rx beam
	82.8
	96.6
	99.4


Table 3-2-12, Beam prediction accuracy (%) with 1dB margin for Top-1 beam
	Scheme 
	Beam prediction accuracy (%)

	DL Tx beam prediction with the best Rx beam
	96.7


Observation 10: AI model for DL Tx beam prediction in spatial domain with one or more best Rx beam for DL Tx beam in set B provide almost same better performance compared to exhaustive beam pair sweeping because of the low model complexity.
Proposal 3: Support DL Tx beam prediction with the best Rx beam considering the high beam prediction accuracy.
Temporal beam prediction
Use case 
While in time domain, the principle of beam prediction can be seen in Figure 4-1. It means that the best beam at time T+m can be predicted by AI model based on the history information. And the history information may include the beam information in last N periods. Temporal beam prediction can include two schemes. The scheme 1 (Figure 4-2) is that the periodicity for history measurement instance is same as that of future time instance. For example, there are N + M short periods in a large period, and in each large period, UE perform beam measurement and report in the first N short periods and predict best beams in other M periods. The reference signal overhead and UE side measurement complexity can be reduced in the other M periods. The scheme 2 (Figure 4-3) is that the periodicity for history measurement instance is larger than that of future time instance. For example, UE only perform beam measurement and report with a long period, and based on the beam information of N long history periods, the best M beams can be predicted for the (N +1)th long period, and the  (N +1)th long period can be divided into M+1 short periods. The beam selection accuracy can be improved in the (N +1)th long period. Based on the analysis above, both scheme 1 and scheme 2 should be considered. 
[image: ]
Figure 4-1, Principle of AI based beam prediction in time domain
[image: ]
Figure 4-2, Scheme 1 of AI based beam prediction in time domain
[image: ]
Figure 4-3, Scheme 2 of AI based beam prediction in time domain
AI/ML model
For time domain beam prediction, we check the performance of LSTM (Long-Short Term Memory), and the corresponding parameters can be seen in Table 4-1. 
As for the data set, we use about 100000 samples for model training (95%) and testing. And the data are obtained from system level simulation in urban macro. The periodicity of data collection is 100ms. For scheme 1 in Figure 4-2, it means the periodicity of future time instance and the periodicity of history measurement instance are same, i.e., 100ms. While for scheme 2, the periodicity of future time instance is 100ms, and the periodicity of history measurement instance is (M+1)*100ms according to Figure 4-3. The number of beam pairs in set B is 64/256 and the number of beam pairs in Set A is 256. The model is trained based on the categorical_crossentropy as loss function.
Table 4-1, Parameters of AI model with LSTM
	Layer
	Output shape
	Parameters

	Input layer
	(B, N, 256) / (B, N, 64)
	0

	LSTM_1(128)
	(B, N, 128)
	197120 / 98816

	Activation(ReLU)
	(B, N, 128)
	

	LSTM_2(64)
	(B, 64)
	49408

	Activation(ReLU)
	(B, 64)
	

	Dense(hidden unit=32M)
	(B, 32M)
	(64+1)*32M

	Output layer (Reshape)
	(B, M, 32)
	0

	Model complexity

	Total parameters
	Model size
	FLOPs

	248608/150304
	2.88 MB/1.24MB
	0.332M/0.135M



Evaluation assumption and parameters
According to the agreement archived in RAN1-109 e-meeting, the following options can be considered for temporal beam prediction accuracy.
Agreement
· At least for temporal beam prediction, companies report the one of spatial consistency procedures: 
· Procedure A in TR38.901
· Procedure B in TR38.901
Agreement
· For temporal beam prediction, the following options can be considered as a starting point for UE trajectory model for further study. Companies report further changes or modifications based on the following options for UE trajectory model. Other options are not precluded. 
· Option #2: Linear trajectory model with random direction change.
· UE moving trajectory: UE will move straightly along the selected direction to the end of a time interval, where the length of the time interval is provided by using an exponential distribution with average interval length, e.g., 5s, with granularity of 100 ms. 
· UE moving direction change: At the end of the time interval, UE will change the moving direction with the angle difference A_diff from the beginning of the time interval, provided by using a uniform distribution within [-45°, 45°].
· UE move straightly within the time interval with the fixed speed.
· FFS on UE orientation
· Option #3: Linear trajectory model with random and smooth direction change.
· UE moving trajectory: UE will change the moving direction by multiple steps within an time internal, where the length of the time interval is provided by using an exponential distribution with average interval length, e.g., 5s, with granularity of 100 ms.
· UE moving direction change: At the end of the time interval, UE will change the moving direction with the angle difference A_diff from the beginning of the time interval, provided by using a uniform distribution within [-45°, 45°].
· The time interval is further broken into N sub-intervals, e.g. 100ms per sub-interval, and at the end of each sub-interval, UE change the direction by the angle of A_diff/N.  
· UE move straightly within the time sub-interval with the fixed speed.
· FFS on UE orientation

· Option #4: Random direction straight-line trajectories. 
· Initial UE location, moving direction and speed: UE is randomly dropped in a cell, and an initial moving direction is randomly selected, with a fixed speed.
· The initial UE location should be randomly drop within the following blue area


where d1 is the minimum distance that UE should be away from the BS. 
· Each sector is a cell and that the cell association is geometry based.
· During the simulation, inter-cell handover or switching should be disabled.
For training data generation
· For each UE moving trajectory: the total length of the UE trajectory can be set as T second if it is in time, of set as D meter if it is in distance.
· The value of T (or D) can be further discussed
· The trajectory sampling interval granularity depends on UE speed and it can be further discussed. 
· UE can move straightly along the entire trajectory, or
· UE can move straightly during the time interval, where the time interval is provided by using an exponential distribution with average interval length 
· UE may change the moving direction at the end of the time interval. UE will change the moving direction with the angle difference A_diff from the beginning of the time interval, provided by using a uniform distribution within [-45°, 45°]
· If the UE trajectory hit the cell boundary (the red line), the trajectory should be terminated. 
· If the trajectory length (in time) is less than the length of observation window + prediction window, the trajectory should be discarded. 
· At the current stage, the length of observation window + prediction window is not fixed and the companies can report their values.
· FFS on UE orientation
· Generalization issue is FFS 

Agreement
· For temporal beam prediction, further study the following options as baseline performance
· Option 1a: Select the best beam for T2 within Set A of beams based on the measurements of all the RS resources or all possible beams from Set A of beams at the time instants within T2 
· Option 2: Select the best beam for T2 within Set A of beams based on the measurements of all the RS resources from Set B of beams at the time instants within T1 
· Companies explain the detail on how to select the best beam for T2 from Set A based on the measurements in T1
· Where T2 is the time duration for the best beam selection, and T1 is a time duration to obtain the measurements of all the RS resource from Set B of beams.
· T1 and T2 are aligned with those for AI/ML based methods
· Whether Set A and Set B are the same or different depend on the sub-use case
· Other options are not precluded.  
Agreement
Regarding the sub use case BM-Case2, the measurement results of K (K>=1) latest measurement instances are used for AI/ML model input:
· The value of K is up to companies
Agreement 
Regarding the sub use case BM-Case2, AI/ML model output should be F predictions for F future time instances, where each prediction is for each time instance. 
· At least F = 1
· The other value(s) of F is up to companies
Agreement
For the sub use case BM-Case2, further study the following alternatives:
· Alt.1: Set A and Set B are different (Set B is NOT a subset of Set A)
· Alt.2: Set B is a subset of Set A (Set A and Set B are not the same)
· Alt.3: Set A and Set B are the same
· Note1: The beam pattern of Set A and Set B can be clarified by the companies.

The following agreements were archived in RAN1-110b e-meeting [5].
Agreement
· At least for BM-Case 2, consider the following assumptions for evaluation
· Periodicity of time instance for each measurement/report in T1:
· 20ms, 40ms, 80ms, [100ms], 160ms, [960ms]
· Other values can be reported by companies.
· Number of time instances for measurement/report in T1 can be reported by companies.
· Time instance(s) for prediction can be reported by companies.

As for the periodicity of future time instance, we prefer to provide some values for evaluations as well as the number of time instance.
Proposal 4: At least for BM-Case 2, consider the following assumptions for evaluation
· Periodicity of time instance(s) for prediction:
· 20ms, 40ms, 80ms, 160ms, 
· Note: the periodicity of time instances for prediction can be same as that for measurement/report, or the periodicity of time instance for each measurement/report can be multiple times of that for prediction.
· Other values can be reported by companies.
· Number of time instances for prediction: 
· 1, 2, 4
· Other values can be reported by companies.

Here we take Option 1a as the baseline and consider Alt.3 that set A and set B are the same. In addition to Table 3-2, the additional simulation assumptions and parameters for temporal beam prediction were provided in Table 4-2. Based on these assumptions and parameters, we evaluate 2 schemes listed below:
· Scheme 0: Option 1a as baseline 
· Scheme 1 in Figure 4-2: Input L1-RSRP of beam pairs in set B of N latest measurement instances to predict Top-K beam for M future time instances, and the periodicity of latest measurement instances is same as that of future time instances. 
· Scheme 2 in Figure 4-3: Input L1-RSRP of beam pairs in set B of N latest measurement instances to predict Top-K beam for M future time instances, and the periodicity of latest measurement instances is larger than that of future time instances. 
Table 4-2, Simulation parameters for temporal beam prediction
	Parameters
	Value 

	UE number/ per sector
	5

	Spatial consistency procedures
	Procedure A

	UE distribution
	For time domain prediction: 100% outdoor

	UE trajectory model
	Option #2

	Baseline performance
	Option#1a

	N (N >=1) latest measurement instances
	4/10

	M future time instances
	Scheme 1
	1/2/4

	
	Scheme 2
	1/2/4

	UE speed
	30km/h

	Periodicity of M time instance
	80ms/160ms

	Periodicity of N latest measurement instances 
	Scheme 1
	80ms/160ms

	
	Scheme 2
	(M+1)*80ms
(M+1)*160ms



KPI
The following agreements on KPI were archived for BM-case 2 in RAN1-111 meeting.
Agreement
· For the evaluation of the overhead for BM-Case2, adoption the following metrics:
· RS overhead reduction, 
· Option 2: 
· where N is the total number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement for AI/ML, including the beams (pairs) required for additional measurements before/after the prediction if applicable
· Where M is the total number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement for baseline scheme
· Companies report the assumption on additional measurements
· FFS: Option 3:  
· where N is the number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement for AI/ML in each time instance
· where M is the total number of beams (pairs) to be predicted for each time instance
· where L is ratio of periodicity of time instance for measurements to periodicity of time instance for prediction
· Companies report the assumption on T1 and T2 patterns
· Other options are not precluded and can be reported by companies.
Option 3 is used for the case that beam of future time instance with short periodicity will be predicted based on history measurement instance with long periodicity. For example, we consider 3 history measurement instances as input, 1 future time instance as output and long periodicity is 2 times of short periodicities. Thus, the measurement results of the 1st, 2nd and 3rd long measurement period will be used as input to predict the beam of the short period in the 4th long period. And the measurement results of the 2nd, 3rd and 4th long measurement period will be used as input to predict the beam of the short period in the 5th long measurement period. It means that for each inference, only measurement results of one long measurement period is additional needed. Thus N is the number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement for AI/ML in each time instance. And L is the ratio of periodicity of time instance for measurements to periodicity of time instance for prediction. While the number of future time instance is L. We can also explain it from another aspect that take a long time inference for an example, e.g., 10000 long periods with model inference. So the RS overhead for AI model is (3+10000)*N (N is the number of RS in set B), but the RS overhead for non-AI model is 3N+10000*L*M (M is the number of RS in set A). So the RS overhead ratio is .
If the beams (pairs) required for additional measurements before/after the prediction need to be considered, we can change the description of N to “is the number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement for AI/ML in each history time instance, and the beams (pairs) required for additional measurements after the prediction if applicable”. 
[image: ] Alternatively, the number of beam(pairs) required for additional measurements after the prediction can also be listed here separately from the number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement for AI/ML in each history time instance. For each future time instance, the number of beam(pairs) required for additional measurements after the prediction is . And the number of future time instance is L. So the total number of beam(pairs) required for additional measurements after the prediction is .
Proposal 5: Study the following options on RS overhead reduction for temporal beam prediction:
· Option 3-1:  
· where N is the number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement for AI/ML in each history time instance, and the beams (pairs) required for additional measurements after the prediction if applicable
· where M is the total number of beams (pairs) to be predicted for each time instance
· where L is ratio of periodicity of time instance for measurements to periodicity of time instance for prediction
· Option 3-2:  
· where N is the number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement for AI/ML in each history time instance
· where  the beams (pairs) required for additional measurements after the prediction for each future time instance if applicable.
· where M is the total number of beams (pairs) to be predicted for each time instance
· where L is ratio of periodicity of time instance for measurements to periodicity of time instance for prediction
Evaluation results
In order to align with the beam measurement report, we also consider three K values for predicted Top-K beams with K=1, 2 or 4.
Scheme 1 and scheme 2 with set B= set A 
For the case of N (N >=1) latest measurement instances equals to 4, M future time instances equals to 1/2/4, and consider L1-RSRP of all beam pairs as input, the evaluation results can be seen in Table 4-3, 4-4 and 4-5. Table 4-3 provides the average L1-RSRP difference of Top-1 predicted beam of 2 schemes. Table 4-4 provides Beam prediction accuracy (%) for Top-1 and/or Top- K beams (K=2, 4) of 2 schemes.  Table 4-5 provides beam prediction accuracy (%) with 1dB margin for Top-1 beam of 2 schemes. From the evaluation results, both schemes provide good performance. And for the case of M=1, scheme 2 provides same performance as scheme 1 with more RS overhead reduction. While for M =4, the performance of scheme 2 is worse than that of scheme 2. It is because history information of a longer time may cause negative impact to the prediction performance.    
Table 4-3, Average L1-RSRP difference of Top-1 predicted beam
	Scheme 
	Average L1-RSRP difference (dB)

	
	M=1
	M=2
	M=4

	Scheme 0
	0

	Scheme 1 (80ms)
	0.06
	0.06
	0.08

	
	
	
	0.11

	
	
	0.08
	0.14

	
	
	
	0.16

	Scheme 1 (160ms)
	0.10
	0.09
	0.05

	
	
	
	0.11

	
	
	0.12
	0.18

	
	
	
	0.25

	Scheme 2 (80ms)
	0.10
	0.11
	0.20

	
	
	
	0.24

	
	
	0.15
	0.27

	
	
	
	0.32

	Scheme 2 (160ms)
	0.20
	0.28
	0.55

	
	
	
	0.59

	
	
	0.36
	0.61

	
	
	
	0.69



Table 4-4, Beam prediction accuracy (%) for Top-1 and/or Top-K beams (K=2, 4)
4-4a) M=1
	Scheme 
	Beam prediction accuracy (%)

	
	K =1
	K =2
	K =4

	Scheme 0
	100

	Scheme 1 (80ms)
	93.4
	95.7
	97.7

	Scheme 1 (160ms)
	91.1
	93.5
	95.7

	Scheme 2 (80ms)
	89.9
	91.6
	93.9

	Scheme 2 (160ms)
	83.3
	88.8
	92.3


4-4b) M=2
	Scheme 
	Beam prediction accuracy (%)

	
	K =1
	K =2
	K =4

	Scheme 0
	100

	Scheme 1 (80ms)
	95.0
	96.6
	98.2

	
	93.4
	95.8
	97.8

	Scheme 1 (160ms)
	92.1
	94.2
	96.3

	
	88.3
	92.7
	95.1

	Scheme 2 (80ms)
	88.2
	94.9
	96.5

	
	85.9
	93.9
	95.9

	Scheme 2 (160ms)
	82.4
	88.1
	91.9

	
	79.5
	87.3
	91.3


4-4c) M=4
	Scheme 
	Beam prediction accuracy (%)

	
	K =1
	K =2
	K =4

	Scheme 0
	100%

	Scheme 1 (80ms)
	94.1
	95.9
	96.4

	
	91.7
	94.9
	96.0

	
	89.8
	93.7
	94.6

	
	88.6
	93.1
	93.7

	Scheme 1 (160ms)
	92.8
	94.7
	96.9

	
	88.7
	92.9
	95.3

	
	85.4
	91.0
	93.8

	
	81.9
	87.7
	91.6

	Scheme 2 (80ms)
	83.5
	92.2
	94.3

	
	82.2
	91.5
	93.4

	
	80.2
	91.1
	92.6

	
	78.1
	90.6
	91.8

	Scheme 2 (160ms)
	73.1
	80.8
	86.1

	
	70.9
	79.2
	85.7

	
	69.0
	78.6
	85.0

	
	67.6
	77.9
	84.6


Table 4-5, Beam prediction accuracy (%) with 1dB margin for Top-1 beam
	
	M=1
	M=2
	M=4

	Scheme 0
	100.0
	100.0
	100.0

	Scheme 1 (80ms)
	98.5
	98.8
	98.4

	
	
	
	97.8

	
	
	98.4
	97.3

	
	
	
	96.7

	Scheme 1 (160ms)
	97.5
	98.0
	98.4

	
	
	
	97.2

	
	
	97.1
	94.9

	
	
	
	93.0

	Scheme 2 (80ms)
	97.6
	96.8
	94.8

	
	
	
	94.1

	
	
	95.5
	93.0

	
	
	
	91.9

	Scheme 2 (160ms)
	93.7
	92.9
	84.6

	
	
	
	82.7

	
	
	91.1
	82.0

	
	
	
	80.3



Observation 11: both AI based beam prediction scheme 1 and scheme 2 in time domain can provide good performance.
· Scheme 1 assumes same periodicity for history measurement instance and future time instance.
· Scheme 2 assumes that periodicity for history measurement instance is N times of future time instance and the predicted future time instance can be covered by one future measurement instance. It can reduce more RS overhead than scheme 1.
Set B < set A vs. Set B= set A
For set A and set B, we compare the performance of Alt 2 and Alt 3. Alt 3 means consider all L1-RSRP of all beam pairs as model input, i.e., set B = set A. While Alt 2 means consider only L1-RSRP of a subset of beam pairs as model input, i.e., set B < set A. The evaluation results for N=4&M=1 can be seen in Table 4-6 and Table 4-7. While Table 4-6 provides the average L1-RSRP difference of Top-1 predicted beam of 2 schemes with set B= set A and set B < set A. Table 4-7 provides Beam prediction accuracy (%) for Top-1 and/or Top- K beams (K=2, 4) of 2 schemes with set B= set A and set B < set A. 
· Alt.2: Set B is a subset of Set A 
· Set B consists of 64 beam pairs, set A consists of 256 beam pairs.
· Alt.3: Set A and Set B are the same
Table 4-6, Average L1-RSRP difference of Top-1 predicted beam (N=4&M=1)
	Scheme 
	Average L1-RSRP difference (dB)

	
	Set B = Set A 
	Set B < Set A

	Scheme 0
	0

	Scheme 1 (80ms)
	0.06
	1.55

	Scheme 1 (160ms)
	0.11
	1.52

	Scheme 2 (80ms)
	0.10
	1.56

	Scheme 2 (160ms)
	0.20
	1.74



Table 4-7, Beam prediction accuracy (%) for Top-1 and/or Top-K beams (K=2, 4) (N=4&M=1)
	Scheme 
	Beam prediction accuracy (%)

	
	K =1
	K =2
	K =4

	Scheme 0
	100

	Scheme 1 (set B= set A) (80ms)
	93.4
	95.7
	97.7

	Scheme 1 (set B= set A) (160ms)
	91.1
	93.5
	95.7

	Scheme 1 (set B< set A) (80ms)
	50.5
	71.7
	86.6

	Scheme 1 (set B< set A) (160ms)
	49.9
	70.3
	86.5

	Scheme 2(set B= set A) (80ms)
	89.9
	91.6
	93.9

	Scheme 2(set B= set A) (160ms)
	83.3
	88.8
	92.3

	Scheme 2 (set B< set A) (80ms)
	50.2
	71.3
	86.0

	Scheme 2 (set B< set A) (160ms)
	47.0
	69.2
	84.3



Based on the evaluation results, we can see that compared to set B= set A, the performance of set B < set A degrades largely in L1-RSRP difference and beam prediction accuracy.
Observation 12: Set B < set A causes much more performance degradation compared to set B=set A for temporal beam prediction.
N (history measurement instances) = 4 vs. N = 10 
For the number of N (history measurement instances), we evaluate the performance of scheme 1 (same periodicity 80ms for history measurement instance and future time instance) with different value, i.e., N = 4 or 10 when M=1 with set B= set A. the evaluation results can be seen in Table 4-8 and Table 4-9. While Table 4-8 provides the average L1-RSRP difference of Top-1 predicted beam for N =4 or 10. Table 4-9 provides Beam prediction accuracy (%) for Top-1 and/or Top- K beams (K=2, 4) for N =4 or 10. 
Table 4-8, Average L1-RSRP difference of Top-1 predicted beam (M=1 with set B=set A)
	Scheme 
	Average L1-RSRP difference (dB)

	
	N = 4
	N = 10

	Scheme 0
	0

	Scheme 1
	0.16
	0.16



Table 4-9, Beam prediction accuracy (%) for Top-1 and/or Top-K beams (K=2, 4) (M=1 with set B=set A)
	Scheme 
	Beam prediction accuracy (%)

	
	K =1
	K =2
	K =4

	Scheme 0
	100

	Scheme 1 (N=4)
	91.7
	94.0
	96.7

	Scheme 1 (N=10)
	91.4
	93.9
	96.6



Observation 13: The performance may degrade when larger N (history measurement instances) is assumed.
According to the evaluation results and above analysis, we provide the following proposal.
Proposal 6: Adopt the evaluation methodologies listed below for temporal beam prediction:
· Set A and set B are the same set.
· The periodicity of future time instance can be 80ms/160ms
· The periodicity of future time instance can be same or 1/N of history measurement instance
· AI model: 
· Input: 
· L1-RSRP of set B in 4 history measurement instances
· Output
· Top K beams of set A in 1/2/4 future instances
· 	KPI: 
· Consider Beam prediction accuracy and RS overhead reduction related KPIs with high priority.
Generalization on different UE speed 
In order to evaluate the performance of generalization on different UE speed, we consider Option 1 with 30km/h and Option 2 with 60km/h. As for the set A and set B, we consider set A is same as set B. And the scenario is Uma, the periodicity of future time instance and history measurement instance is 80ms. The number of latest measurement instances is 4 and the number of future time instance is 1.
And the performance of following 6 cases are evaluated. While case 5 and case 6 are evaluated for comparison. As for case 2 and case 3, the training data contains 50% of Option 1 and 50% of Option 2. 
· Case 1: training by data of Option 1, inference by data of Option 2.
· Case 2: training by data of Option 1 and Option 2, inference by data of Option 2.
· Case 3: training by data of Option 1 and Option 2, inference by data of Option 1.
· Case 4: training by data of Option 2, inference by data of Option 2.
· Case 5: training by data of Option 1, inference by data of Option 1.
· Case 6: training by data of Option 2, inference by data of Option 1.
The evaluation results can be seen in Table 4-10, Table 4-11, Table 4-12 and Figure 4-4. Based on the evaluation results, we can find that AI model trained by data of only 30km/h or only 60 km/h or hybrid can provide good generalization capability to UE speed with both 60km/h and 30km/h.
Table 4-10 Average L1-RSRP difference of Top-1 predicted beam for generalization
	Generalization case
	Average L1-RSRP difference (dB)

	Case1
	0.09

	Case2
	0.09

	Case3
	0.05

	Case4
	0.05

	Case5
	0.06

	Case6
	0.08



Table 4-11 Beam prediction accuracy (%) for Top-1 and/or Top-K beams（K=1,2,4）for generalization
	Generalization case
	Beam prediction accuracy (%)

	
	K=1
	K=2
	K=4

	Case1
	91.6
	94.2
	96.5

	Case2
	92.8
	94.7
	96.7

	Case3
	96.7
	97.7
	98.2

	Case4
	96.6
	97.7
	98.1

	Case5
	93.4
	95.7
	97.7

	Case6
	93.5
	95.2
	97.2


[image: ]
Figure 4-4, CDF of L1-RSRP difference for Top-1 predicted beam for generalization
Table 4-12 Beam prediction accuracy (%) with 1dB margin for Top-1 beam for generalization
	Generalization case
	Beam prediction accuracy (%)

	Case1
	98.0

	Case2
	98.3

	Case3
	99.2

	Case4
	99.2

	Case5
	98.5

	Case6
	98.5



Observation 14: AI model for beam prediction in time domain trained by data of 30km/h or only 60 km/h or hybrid can provide good generalization capability to UE speed with both 60km/h and 30km/h.
Proposal 7: General model can be supported for AI/ML in beam management for each of the following aspects:
· Different UE speed
· Different number of Rx beam 
· Different Scenarios: UMa, Umi
· Different UE distribution

Conclusion
In this contribution, we provide our evaluation assumptions and results of AI/ML for beam management. Based on above analysis, we provide the following evaluation results, observations and proposals.
Table 5-1. Evaluation results for BM-Case1 without model generalization for Tx-Rx beam pair prediction
	
	Company: Xiaomi

	Assumptions
	Number of beam pairs in Set A
	256

	
	Number of beam pairs in Set B
	64

	
	Baseline scheme
	Option 1

	AI/ML model
input/output
	Model input
	Fixed set B: L1-RSRP; 

	
	
	Variable set B: L1-RSRP, or L1-RSRP and beam pair ID.

	
	Model output
	L1-RSRP of all beam pairs

	Data Size
	Training
	47500

	
	Testing
	2500

	AI/ML model
	Short model description
	Fully Connected Neural Network

	
	Model complexity
	number of model parameters:  558848

	
	
	size (e.g. Mbyte): 6.44

	
	Computational complexity
	FLOPs: 1.116 M

	
	Scheme 1
	Scheme 2
	Scheme 3

	Evaluation results
[With AI/ML / baseline]
	[Beam prediction accuracy (%)]
	Top 1 (%)
	44.6
	61.2
	79.5

	
	
	Top-2/1 (%)
	54.7
	71.6
	86.8

	
	
	Top-4/1 (%)
	74.3
	90.5
	97.9

	
	
	Top 1 (%) with 1 dB margin
	57.6
	69.1
	91.4

	
	[L1-RSRP Diff]
	Average ideal L1-RSRP diff
	2.5
	1.3
	0.2

	
	
	Average diff between ideal L1-RSRP and predicted L1-RSRP when Top 1 predicted beam is same as Top 1 genie-aided beam
	2.7
	2.3
	0.43

	
	
	
	
	
	

	
	[System performance]
	RS overhead Reduction (%): Option 1
	75%

	
	
	[UCI report]
	/

	
	
	[UPT]
	/

	Note: 
· UE side model is assumed 
· AI scheme 
· Scheme 1: Variable set B with 64 beam pairs, with L1-RSRP as input
· Scheme 2: Variable set B with 64 beam pairs, with L1-RSRP and beam pair ID as input
· Scheme 3: Fixed set B with 64 beam pairs, with L1-RSRP as input



Table 5-2. Evaluation results for BM-Case1 without model generalization for DL Tx beam prediction
	
	Company: Xiaomi

	Assumptions
	Number of DL Tx beams in Set A
	32

	
	Number of DL Tx beams in Set B
	8

	
	Baseline scheme
	Option 1

	AI/ML model
input/output
	Model input
	L1-RSRP

	
	Model output
	L1-RSRP of all DL Tx beam 

	Data Size
	Training
	47500

	
	Testing
	2500

	AI/ML model
	Short model description
	Fully Connected Neural Network

	
	Model complexity
	number of model parameters:  8928

	
	
	size (e.g. Mbyte): 0.58

	
	Computational complexity
	FLOPs:  0.0176M

	
	Scheme 1
	Scheme 2

	Evaluation results
[With AI/ML / baseline]
	[Beam prediction accuracy (%)]
	Top 1 (%)
	43.3
	82.8

	
	
	Top-2/1 (%)
	54.7
	96.6

	
	
	Top-4/1 (%)
	63.2
	99.4

	
	
	Top 1 (%) with 1 dB margin
	54.8
	96.7

	
	[L1-RSRP Diff]
	Average ideal L1-RSRP diff
	3.7
	0.11

	
	[System performance]
	RS overhead Reduction (%): Option 1
	75%

	
	
	[UCI report]
	/

	
	
	[UPT]
	/

	Note: 
· UE/gNB side model is assumed 
· AI scheme 
· Scheme 1: with a specific Rx beam
· Scheme 2: with the best Rx beam



Table 5-3. Evaluation results for BM-Case2 without model generalization for Tx-Rx beam pair prediction
	
	Company: Xiaomi

	Assumptions
	Number of beam pairs in Set A
	256

	
	Number of beam pairs in Set B
	256

	
	Number of measurement instance
	4

	
	Number of future time instance
	1/2/4

	
	Periodicity of future instance
	80ms

	
	Periodicity of measurement instance
	Scheme 1: 80ms

	
	
	Scheme 2: 80ms*(number of future instance+1)

	
	Baseline scheme
	Option 1a

	AI/ML model
input/output
	Model input
	L1-RSRP

	
	Model output
	Top-K beam/beam pair ID

	Data Size
	Training
	95000

	
	Testing
	5000

	AI/ML model
	[Short model description]
	Long-Short Term Memory

	
	Model complexity
	number of model parameters:  248608

	
	
	size (e.g. Mbyte): 2.88 

	
	Computational complexity
	FLOPs: 0.332 M

	
	Scheme 1
	Scheme 2

	Evaluation results
[With AI/ML / baseline]
	[Beam prediction accuracy (%)]
	Top 1 (%)  with M=1
	93.4
	89.9

	
	
	Top-2/1 (%) with M=1
	95.7
	91.6

	
	
	Top-4/1 (%) with M=1
	97.7
	93.9

	
	
	Top 1 (%) with 1 dB margin with M=1
	98.5
	97.6

	
	
	Top 1 (%)  with M=2
	94.2
	87.5

	
	
	Top-2/1 (%) with M=2
	96.2
	94.4

	
	
	Top-4/1 (%) with M=2
	98
	96.2

	
	
	Top 1 (%) with 1 dB margin with M=2
	98.6
	96.2

	
	[L1-RSRP Diff]
	Average ideal L1-RSRP diff with M=1
	0.06
	0.10

	
	
	Average ideal L1-RSRP diff with M=2
	0.07
	0.13

	
	[System performance]
	RS overhead Reduction (%) with M=1
	20%
	50%

	
	
	RS overhead Reduction (%) with M=2
	33%
	67%

	
	
	[UCI report]
	/

	
	
	[UPT]
	/

	Note: 
· UE side model is assumed 
· M is the number of future time instance
· AI scheme 
· Scheme 1: the periodicity of latest measurement instances is same as that of future time instances 
· Scheme 2: the periodicity of latest measurement instances = (the number of future time instance+1) * the periodicity of future time instances



Observation 1: AI based beam prediction in spatial domain can provide good performance. And the performance can be further improved by random set B with corresponding beam pair ID as input or by fixed set B. 
Observation 2: the average L1-RSRP difference between the ideal L1-RSRP of Top-1 predicted beam and the predicted L1-RSRP of the Top 1 predicted beam of AI based beam prediction in spatial domain with fixed set B is less than 0.5 dB. 
Observation 3: different fixed set B with continuous beam pair ID can provide almost same performance, but different set B in pre-configured set of set B results in some performance loss because of low generalization capability among different fixed set B. 
Observation 4: different fixed set B with non-continuous beam pair ID can provide almost same performance, and different set B in pre-configured set of set B with beam pair ID or pattern ID as input can archive almost same performance as same fixed set B. 
Observation 5: Fixed set B with non-continuous bam pair ID can provide better performance than that of fixed set B with continuous beam pair ID since non-continuous beam pair ID covers more Rx beams.
Observation 6: AI model trained by hybrid data of Uma and Umi for beam prediction in spatial domain can provide good generalization capability for Uma or Umi. While AI model trained by data of only Uma or only Umi provide a little worse generalization capability for different scenario, i.e., Uma model for Umi inference, or Umi model for Uma inference.
Observation 7: AI model trained by hybrid data of different UE distribution for beam prediction in spatial domain can provide good generalization capability. While AI model trained by data of only UE distribution Option A provides a little worse generalization capability for UE distribution Option B.
Observation 8: AI model for beam prediction in spatial domain can provide good generalization capability among different number of UE Rx beam, e.g., AI model with more Rx beam number can be applied for beam prediction of less Rx beam number. 
Observation 9: AI model for DL Tx beam prediction in spatial domain with one specific Rx beam for model input results in some performance loss compared to exhaustive beam pair sweeping. 
Observation 10: AI model for DL Tx beam prediction in spatial domain with one or more best Rx beam for DL Tx beams in set B provide almost same better performance compared to exhaustive beam pair sweeping because of the low model complexity.
Observation 11: both AI based beam prediction scheme 1 and scheme 2 in time domain can provide good performance.
· Scheme 1 assumes same periodicity for history measurement instance and future time instance.
· Scheme 2 assumes that periodicity for history measurement instance is N times of future time instance and the predicted future time instance can be covered by one future measurement instance. It can reduce more RS overhead than scheme 1.
Observation 12: Set B < set A causes much more performance degradation compared to set B=set A for temporal beam prediction.
Observation 13: The performance may degrade when larger N (history measurement instances) is assumed.
Observation 14: AI model for beam prediction in time domain trained by data of 30km/h or only 60 km/h or hybrid can provide good generalization capability to UE speed with both 60km/h and 30km/h.

Proposal 1: Different fixed set B consists of L1-RSRP with more Rx beams should be considered with high priority. 
Proposal 2: DL Tx beam prediction with specific Rx beam for model input can be supported considering the low RS overhead for model input.
Proposal 3: Support DL Tx beam prediction with the best Rx beam considering the high beam prediction accuracy.
Proposal 4: At least for BM-Case 2, consider the following assumptions for evaluation
· Periodicity of time instance(s) for prediction:
· 20ms, 40ms, 80ms, 160ms, 
· Note: the periodicity of time instances for prediction can be same as that for measurement/report, or the periodicity of time instance for each measurement/report can be multiple times of that for prediction.
· Other values can be reported by companies.
· Number of time instances for prediction: 
· 1, 2, 4
· Other values can be reported by companies.
Proposal 5: Study the following options on RS overhead reduction for temporal beam prediction:
· Option 3-1:  
· where N is the number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement for AI/ML in each history time instance, and the beams (pairs) required for additional measurements after the prediction if applicable
· where M is the total number of beams (pairs) to be predicted for each time instance
· where L is ratio of periodicity of time instance for measurements to periodicity of time instance for prediction
· Option 3-2:  
· where N is the number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement for AI/ML in each history time instance
· where  the beams (pairs) required for additional measurements after the prediction for each future time instance if applicable.
· where M is the total number of beams (pairs) to be predicted for each time instance
· where L is ratio of periodicity of time instance for measurements to periodicity of time instance for prediction
Proposal 6: Adopt the evaluation methodologies listed below for temporal beam prediction:
· Set A and set B are the same set.
· The periodicity of future time instance can be 80ms/160ms
· The periodicity of future time instance can be same or 1/N of history measurement instance
· AI model: 
· Input: 
· L1-RSRP of set B in 4 history measurement instances
· Output
· Top K beams of set A in 1/2/4 future instances
· 	KPI: 
· Consider Beam prediction accuracy and RS overhead reduction related KPIs with high priority.

Proposal 7: General model can be supported for AI/ML in beam management for each of the following aspects:
· Different UE speed
· Different number of Rx beam 
· Different Scenarios: UMa, Umi
· Different UE distribution
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