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1	Introduction and our key proposals 
To have confidence in a data driven CSI reporting mechanism requires model monitoring in live networks. For the CSI compression use case, such monitoring implies a comparison between the input and the output of the autoencoder based neural network (that is from the encoder input to the decoder output). Different from the single side AI/ML use cases, the input and output reside on different sides of the Uu interface and are in the typical case owned by different vendors. In such situations involving multiple vendors, 3GPP standardization is the resolution. Note that encoder side only monitoring is meaningless in this two-sided case since the end-to-end loss performance of the full autoencoder is unknown at the UE side. 
Therefore, the data labels, i.e. the target CSI needs to be conveyed from the UE to the gNB in live networks using a standardized format and associated procedures. This together with the “normal” AI/ML based compressed CSI report is necessary for the network to be able to perform monitoring of the encoder-decoder model performance. Such target CSI has higher resolution and thus UCI payload than a “normal” compressed CSI report, but on the other hand the latency requirements are significantly relaxed in comparison. Possibly can RRC be used for such reporting as there seem to be no need for UCI based reporting.  
The target CSI reported from UE to the gNB in live networks together with the “normal” AI/ML based CSI report from the UE can also be used for decoder fine tuning, i.e., using offline training of an improved decoder model without the need to update already deployed encoder models in the networks. As discussed in this contribution, such fine tuning which is based on real data collected in the field using real deployed UEs and gNBs, may be able to compensate from losses due to any idealities not captured in the dataset used in the initial training before the deployment. 
Based on this motivation (and further elaboration in this contribution), a first key proposal for RAN1#112 is:
[bookmark: _Ref126159778][bookmark: _Toc131752938]For CSI compression use case, it is required that standardized procedures and associated data format for UE to gNB data collection of a high-resolution CSI (target CSI) is supported to enable model monitoring and to provide data for enabling decoder fine tuning. 
Secondly, RAN1 has discussed several training types, initially under the assumption that the same vendor trains both encoder and decoder (as in Type 1) and recently there has been some development in the evaluation agenda to assess the performance for the more realistic case of multiple gNB and UE chipset vendors. The cellular network is inherently “one to many” in its characteristics, where one gNB serves multiple UEs simultaneously. For the CSI reporting use case, the gNB thus need to process multiple CSI reports in parallel and to keep implementation efficiency, cost, and complexity feasible, it is paramount that one and the same decoder can be used for all UEs that is served by the gNB. Having a single encoder in the UE is less important since such switching of encoders happens very rarely, only in roaming situations. 
Hence, the guiding principle is that the training methodology must ensure that the same decoder can be used irrespectively of the brand or model in the UE. 
Our second key proposal is thus:
[bookmark: _Toc131752939]For CSI compression use case, it is a requirement that only training types and methods that enables a single decoder to be implemented in the network side is to be considered, irrespectively of the vendor origins of the connected UE devices and/or UE chipsets.
This requirement reduces the set of feasible training methods to the following three:
· (Type 1 NW first) NW trains encoder and decoder and delivers the encoder to the UE 
· (Type 3 NW first) NW trains first, latent space dataset and training dataset passing to the UE 
· NW train first, freezes the decoder and UE side can perform training of encoder using API to the NW side decoder (Here labelled as sequential Type 2 NW first with frozen decoder and gradient passing to UE [8]) 

Hence, either NW trains a decoder-encoder first, transfer the latent space or gradient to the UE side and discards its nominal encoder or alternatively, delivers the trained encoder to the UE side. The model delivery as in Type 1 seems not feasible from UE chipset implementation complexity, resulting UE power consumption etc and due to the large effort in developing and agreeing on a model format for such delivery. 
Our third key proposal is thus
[bookmark: _Toc131752940]For CSI use case in this SI, down-prioritize any studies on model transfer unless it is the only solution that provides performance benefits over legacy CSI reporting
Hence, the model transfer approach should be seen as the last resort and only be given time in this SI if other methods (e.g. Type 2 or 3 based collaboration) cannot demonstrate a performance benefit with the agreed KPIs. 
2 Training for two-sided models 
NW-UE collaboration training types for two sided models has so far been agreed into three different types. In the previous meeting we made a conclusion to study different listed aspects of these collaboration types. There is a training method with a frozen decoder and using an API that has been proposed and which not yet fit into any of the existing types. In this section we denote this as type 4 to not get into the discussion on where to place this additional training method. Whether to include it under type 2 or 3 is a separate and less important discussion. 
Furthermore, when analyzing the list of aspects, we have decided to further sub-categorize them as follows, to structure the discussion: 
1. Type 1: Joint (offline) model training followed by model transfer/delivery
a. Joint training at gNB vendor with encoder delivery from the gNB to the UE
b. Joint training at UE vendor with decoder delivery from the UE to the gNB
2. Type 2: Joint (offline) model training via API in a single loop
a. Joint training with one decoder and multiple encoders.
b. Joint training with multiple decoders and multiple encoders
3. Type 3: Separate (offline) model training and latent space delivery
a. Sequential training with decoder first training followed by encoder training 
b. Sequential training with encoder first training followed by decoder training 
4. “Type 4”: Sequential training (offline) using API with decoder first in training followed by encoder training with frozen decoder and gradient delivery 

In the following sections we provide further categorization of the different types. We show that to give detailed answers to the open questions, detailed assumptions need to be added to the agreed training types. In fact, many companies are adding these assumptions to the discussion, but implicitly based on their understanding of the training types. 
Moreover, as we previously discussed, see, e.g., [3], the gNB must be able to run a single decoder, irrespectively of the originating vendor of the connected UE devices and/or UE chipsets. This because the gNB need to process CSI reports from many different UEs in parallel. It is an implementation nightmare to handle multiple decoder models in parallel. We will use this requirement as a guiding principle in whether we believe the training method is feasible to build, and to down prioritize further discussion of any method that does not comply with this fundamental requirement.
2.1 Type 1: Joint model training followed by model delivery
Within this training type we find the following categorization into further subtypes under Type 1:
a. Joint offline training with encoder delivery from the gNB to the UE of a model developed by gNB vendor
I. Transfer of NW proprietary model, developed by NW-side and pre-compiled by NW-side
II. Transfer of NW proprietary model, developed by NW-side and pre-compiled by UE-side
III. Transfer of open format model, consisting of AI/ML parameters developed by NW-side to a known UE encoder structure, to be compiled on the UE
IV. Transfer of a NW model described in a high-level open-format
b. Joint offline training with decoder delivery from the UE to the gNB of a model developed by UE vendor
I. Transfer of UE proprietary model, developed by UE-side and pre-compiled by UE-side 
II. Transfer of UE proprietary model, developed by UE-side and pre-compiled by NW-side 
III. Transfer of AI/ML parameters developed by the UE-side to a known decoder structure in the gNB
IV. Transfer of a model developed by the UE-side described in a high-level open-format for the gNB to compile

Note that for Sub-type a, the UE side needs to provide information about UE implementation to the NW side. Among these methods we will focus on the sub-types under sub-Type a, as those are the only ones that allow for a single unified decoder at the gNB. 
A key-difference between Type 1a-ii and Type 1a-iv is the timing and storage requirements. For Type 1a-ii the compilation is done offline, during development, thus giving the UE side more freedom to adapt the Encoder to the UE hardware. However, it means that the storage requirements on the gNB increases a lot and the speed at which models can be updated is decreased. On the contrary, for Type 1a-iv the compilation is done in the device in the field, leaving the UE (or a proprietary server, with ultra-low latency requirements) no time to adapt the model to the UE hardware. However, the storage requirements on the gNB are smaller and the frequency at which models can be updated (if needed) is increased.
Furthermore, the difference between Type 1a-iii and Type 1a-iv is the flexibility in the encoder design. Type 1a-iv is more flexible but also more challenging for the UE. 
Allows single unified model on gNB side
Yes, if NW side performs the training. This is a NW vendor requirement and assumption in most of the following discussion. The gNB can run a single unified model since it delivers a compatible encoder to the UE. The UE will not be able to run a single unified model in all roaming networks I the world, as one model per NW vendor is needed (unless these can be unified by engineering). However, switching of encoder models is a slow process as typically the UE stays within one operator which use the same NW vendor for a large geographical area or country. 
Proprietary models
In Type 1 training where NW performs the training, the decoder is kept proprietary, while the encoder is not proprietary. None of the options results in proprietary encoder models, as both sides are involved in handling either the encoder or the decoder. Type 1a-i could be perhaps perceived as proprietary, but the encoder model is susceptible to reverse engineering.
Requirements on privacy-sensitive dataset sharing 
Since the models are trained on the NW side and transferred none of the categories requires dataset sharing during training. However, the dataset may be collected by the UE side in advance and need to be shared offline or via 3GPP specified data collection to the NW side for the NW side to be able to train the encoder-decoder pair. Hence, datasets collected by the UE cannot be maintain private if NW performs the training. 
Flexibility to support site specific models
Yes. Since the models are trained on the NW side and transferred the NW is free to train and support different models per cell/site/scenario. This however requires the UE to have access to site specific datasets. 
gNB specific hardware optimization – i.e., whether hardware-specific optimization of the model is possible, e.g. compilation for the specific hardware
If the models are trained on the NW side, the decoder can be optimized for the gNB hardware. For UE side hardware optimizations, the answer depends on the category.
· Type 1a-i: No, the NW side that trains the models and perform the compilation does not have the detailed hardware information to take that into account.
· Type 1a-ii: Yes. The UE side receives the model in advance and can compile a binary format adapted to each UE it puts on the market. But the UE-Chipsets will have to be identifiable by the NW.
· Type 1a-iii: To a certain degree. Since the UE vendor is aware of the model structure beforehand, they may be able adapt the hardware accordingly.
· Type 1a-iv: No. The UE can attempt to adapt the model to its hardware in the compilation process, but there are no guarantees that it is possible.

Model update flexibility after deployment
Level of flexibility to update the encoder in the UE after the UE have been deployed in the field depends on the category.
· Type 1a-i: Flexible since the NW side can develop new models and run on the UE since NW knows UE implementation.
· Type 1a-ii: The support is only partial and always induces a delay in the deployment of a new encoder model. The gNB will switch to a new model, which means that for the gNB to run a single unified decoder model for any UE, all UE/Chipset vendors need to re-compile the new encoder for all UEs in the field, if those UEs are not to practically lose support for AI/ML CSI compression. 
· Type 1a-iii: The support is partial since the fixed Encoder architecture is restricting the freedom in designing. Updates can be done, but there may be a limit on how good the performance can be without breaking backward compatibility or requiring the gNB to run multiple decoders.
· Type 1a-iv: Flexible since the NW side can develop new models and run on the UE.

Extendability (separate UE/gNB side model development)
Some degree of extendability (i.e. model fine tuning after deployment) in the case where the network side can fine tune and extend the decoder as it also knows the encoder and thus have insight into the change in performance via the loss function. 
Supports UE-proprietary input
No. If the NW side trains the model, then the input needs to be specified.
Supports NW-proprietary input
Yes. Since the NW side trains the model, it may add additional input to the decoder, e.g., train the decoder to input multiple CSI Reports and calculate MU-MIMO precoders directly.
Supports NW-proprietary output
Yes. Since the NW side trains the model, the decoder may have multiple outputs, of which one is compared to Target CSI in the training phase.
Performance
An upper bound on performance since one vendor control the complete model training. However, aspects related to encoder development and deployment in a different vendor’s hardware has not been considered here. 

Overall feasibility
Last, we list our beliefs around if the Training collaboration type is feasible in practice.
· Type 1a-i: Not feasible. The NW side does not in general have the information to appropriately compile the model to run on UE hardware with the UE software stack. Performance in terms of power consumption and latency at the UE may be inacceptable. Offers little vendor differentiation on UE side.
· Type 1a-ii: Not feasible. The gNB does not have the capacity to manage and store the number of models required to support all variants of UEs.
· Type 1a-iii: Feasibility is unclear. Parameters are delivered to UE side. The method has the risk of leaving little room for UE-vendor differentiation, although the step to compile the agreed architecture (with flexible parameters) to hardware is still proprietary. Specification of the model input is needed for this case to work. Moreover, it is unclear how complex the agreed AI/ML model needs to be to give the wanted flexibility; the need to constantly change the agreed architecture would mean this method is not feasible, but an overly complex model will cause an unnecessary burden on the UE and increase, e.g., latency and power consumption.
· Type 1a-iv: Not feasible in the near-term, maybe feasible in the long term. Today UEs are unable to compile models. If 6G is “AI-native”, then compilation of models on UEs may be considered. However, 3GPP would additionally need to agree on a specification to describe the AI/ML models.
· Type 1b: Not feasible. None of the methods allows a single unified model to be deployed at the gNB. Offers little vendor differentiation on NW side.

[bookmark: _Toc131752950]Type 1 training collaboration seem not feasible in near term

Summary
To summarize the discussion around Type 1 training, we provide the following table.
	Aspect
	Type 1a-i
	Type 1a-ii
	Type 1a-iii
	Type 1a-iv
	Type 1b-i
	Type 1b-ii
	Type 1b-iii
	Type 1b-iv

	Proprietary models
	No
	No
	No
	No
	No
	No
	No
	No

	Requires dataset sharing
	Yes
	Yes
	Yes
	Yes
	No
	No
	No
	No

	Support site specific models
	Yes
	Yes
	Yes
	Yes
	No
	No
	No
	No

	gNB specific hardware optimization
	Yes
	Yes
	Yes
	Yes
	No
	Yes
	Low
	No

	UE specific hardware optimization
	No
	Yes
	Low
	No
	Yes
	Yes
	Yes
	Yes

	Allows single unified model on gNB side
	Yes
	Yes
	Yes
	Yes
	No
	No
	No
	No

	Allows single unified model on UE side
	No
	No
	No
	No
	Yes
	Yes
	Yes
	Yes

	Model update flexibility after deployment
	Yes
	Delayed and Partial
	Partial
	Yes
	Yes
	Delayed and Partial
	Partial
	Yes

	Engineering isolation
	Low
	Low
	Low
	Low
	Low
	Low
	Low
	Low

	Supports UE-proprietary input
	No
	No
	No
	No
	Yes
	Yes
	Yes
	Yes

	Supports NW-proprietary input
	Yes
	Yes
	Yes
	Yes
	No
	No
	No
	No

	Supports NW-proprietary output
	Yes
	Yes
	Yes
	Yes
	No
	No
	No
	No

	Matching data distribution
	No
	No
	No
	No
	Yes
	Yes
	Yes
	Yes

	Capability consideration
	Maybe
	Maybe
	Maybe
	Maybe
	Yes
	Yes
	Yes
	Yes

	Overall feasibility
	No
	No
	Unclear
	Maybe long-term
	No
	No
	No
	No



2.2 Type 2: Joint model training 
Within this training type we find the following subtypes under type 2: 
a. Joint training with one decoder and multiple encoders (from all UE vendors).
i. Common training with shared dataset. Common in the sense that the gradients from a batch start from a joint loss that is a weighted sum of individual encoder-decoder losses for that batch.
ii. Training with UE/Chipset vendor individual datasets. Training can be done either in a round-Robin way or in a common way. The round-Robin would be that only one encoder is trained per batch where the batch is data from a single UE/Chipset-vendor. The training per batch would still be single-encoder-single-decoder, but the encoder trained each batch is changed in a round-Robin way. In the common way a single batch should contain examples from each UE/Chipset vendor. The batch size for encoders and the decoder are different since the encoders can only train using data from its own dataset, but the decoder see data from all encoders simultaneously. The gradients would start from a joint loss that is a weighted sum of individual encoder-decoder losses. Each batch is multiple-encoders-single-decoder training.
b. Joint training with multiple decoders and multiple encoders (from all UE vendors).
i. Common training with shared dataset. Common in the sense that the gradients from a batch start from a joint loss that is a weighted sum of individual encoder-decoder losses for that batch.
ii. Training with UE/Chipset vendor individual datasets. Training can be done either in a round-Robin way or in a common way. The round-Robin would be that only one encoder is trained per batch where the batch is data from a single UE/Chipset-vendor. The training per batch would still be single-encoder-multiple-decoders, but the encoder trained each batch is changed in a round-Robin way. In the common way a single batch should contain examples from each UE/Chipset vendor. The batch size for encoders and decoders are different since the encoders can only train using data from its own dataset, but the decoders see data from all encoders simultaneously. The gradients would start from a joint loss that is a weighted sum of individual encoder-decoder losses. Each batch is multiple-encoders-multiple-decoders training.

Allows single unified model on UE/gNB side
Yes, both 2a and 2b allows for a single model at gNB side since training is performed with all UE vendors simultaneously. In addition, 2b also allows a single model at the UE side if all NW vendors participate in the joint training. 
Proprietary models
Yes. Training can be configured in such a way that the models are kept proprietary, e.g., by hosting training on a secure and trusted server. Techniques such as secure enclaves can be used.
Requirements on privacy-sensitive dataset sharing 
All versions require partial data sharing across different vendors.
· Type 2a-i and Type 2b-i: If all encoders are to be trained on the same dataset, then all encoders need access to the data, meaning dataset sharing across different vendors.
· Type 2a-ii, and Type 2b-ii: Requires partial sharing of dataset. At least the Target CSI needs to be shared in order for the loss function calculation.

Flexibility to support site specific models
No, this will not be possible. Given that multiple vendors are involved in the training, and that the encoder and decoder is training jointly in a single session, it seems unlikely that site-specific models can be supported. The load for the UE to carry all the models can be too high, and the complexity of coordinating such training, with the need for dataset sharing may be prohibitive.
gNB/UE specific hardware optimization
Large possibilities, as both the NW side and the UE side are to some degree free to tune their AI/ML architecture designs, and are responsible for the lowering and compilation to hardware. 
Model update flexibility after deployment
Small. Type 2a and Type 2b involves multiple parties, and thus a high level of coordination is needed. To ensure backward compatibility, and assuming a single unified decoder can be run on the gNB, no model may be updated before all models have been updated which is a large coordination task.
Extendability (separate UE/gNB side model development)
Since the models are trained jointly there is small possibilities for fine tuning. Moreover, under the assumption that the models are proprietary, it might even be difficult for one vendor to tune hyperparameters, as it requires tight synchronization with other vendors to start training. Moreover, without insight in how other vendors are tuning their models the result of a hyperparameter change will be very difficult to evaluate. In our companion paper [10], where we present one case where introducing a smaller and worse performing model to the training-mix actually improves performance of the other models. Our hypothesis is that the smaller model acts as a regularizer.  In addition, convergence problems may be difficult to sort out as keeping the model proprietary will mean revealing little information about the training. The more vendors involved, the larger the problem.
Supports UE-proprietary input
For training Type 2, the possibility for the UE to use proprietary input is tied to if the datasets sharing.
· Type 2a-i and Type 2b-i: Not possible since all encoders are trained on the same dataset, and the data may originate from multiple sources.
· Type 2a-ii and Type 2b-ii: Since only partial sharing of dataset is required, the UE may have proprietary information associated with each Target CSI and may thus use that proprietary information in the input.

Supports NW-proprietary input
· Type 2a-i: May be supported, depending on where the data comes from. If the data comes from the UE/Chipset vendor, then it is not possible. However, if the data comes from the NW side, then it is possible. The situation is likely directly opposite to the possibility for proprietary input on the UE side for training Type 2a.
· Type 2a-ii, Type 2b-i and Type 2b-ii: The involvement of multiple datasets from multiple UE/Chipset vendors, and possibly also multiple NW vendors, will make it practically impossible.

Supports NW-proprietary output
· Type 2a-i and Type 2a-ii: The NW side will have full control of the loss function and may thus include, and even train for, different proprietary outputs.
· Type 2b-i and Type 2b-ii: Training with multiple NW vendors will limit the possibility to have proprietary outputs, as it seems likely that the loss functions for each encoder-decoder pair needs to be aligned to quite a high degree.

Performance
Some performance loss due to the multi vendor joint training compared to one on one training is expected. 
Overall feasibility
Last, we list our beliefs around if the solution is feasible to build..
· Type 2a-and Type 2b: Not feasible. The synchronization of the training events will be prohibitive, including the low flexibility for model updates (assuming a single gNB decoder). The engineering is non-isolated to a degree that it may be difficult to understand how the models are performing and where the bottleneck is.

[bookmark: _Toc131752951]Type 2 training collaboration seem not feasible in practice

Summary
To summarize the discussion around Type 2 training, we provide the following table.
	Aspect
	Type 2a-i
	Type 2a-ii
	Type 2b-i
	Type 2b-ii

	Proprietary models
	Yes
	Yes
	Yes
	Yes

	Requires dataset sharing
	Yes
	Partially
	Yes
	Partially

	Support site specific models
	No
	No
	No
	No

	gNB specific hardware optimization
	Yes
	Yes
	Yes
	Yes

	UE specific hardware optimization
	Yes
	Yes
	Yes
	Yes

	Allows single unified model on gNB side
	Yes
	Yes
	Yes
	Yes

	Allows single unified model on UE side
	No
	No
	Yes
	Yes

	Model update flexibility after deployment
	No
	No
	No
	No

	Engineering isolation
	No
	No
	No
	No

	Supports UE-proprietary input
	No
	Yes
	No
	Yes

	Supports NW-proprietary input
	Maybe
	No
	No
	No

	Supports NW-proprietary output
	Yes
	Yes
	No
	No

	Extendibility
	No
	No
	No
	No

	Matching data distribution
	No
	Yes
	No
	Yes

	Overall feasibility
	No
	No
	No
	No




2.3 Type 3: Separate model training
Within this training type we find the following subtypes for Type 3:
a. Sequential training with NW decoder first in training.
i. The NW-side share a dataset consisting of (Latent Space Variables, “CSI”) for the UE-side to train an Encoder on.
1. “CSI” in the dataset is Target CSI
2. “CSI” in the dataset is the output of the high-level representation of the Decoder
3. “CSI” in the dataset is the output of the to-HW-compiled Decoder
ii. An API where the UE-side can input Target CSI and NW-side feedback corresponding latent space target as constructed by the nominal AE encoder.
b. Sequential training with UE encoder first in training.
i. The UE-side share a dataset consisting of (Latent Space Variables, “CSI”) for the NW-side to train a Decoder on.
1. “CSI” in the dataset is Target CSI
2. “CSI” in the dataset is the output of the UE-side nominal Decoder
ii. An API where the NW-side can input Target CSI and UE-side feedback corresponding latent space target as constructed by:
1.  the high-level representation Encoder.
2. the to-HW-compiled and on-chip-run Encoder

Allows single unified model on UE/gNB side
The situation for the UE and gNB is symmetric with respect to who trains first.
· gNB: Decoder first training naturally allows for a single unified model at the gNB. However, with encoder first training, the NW cannot count on having a single unified model since different UEs may map the same bit-string in the CSI report to different Target CSI. The gNB would need side-information about what chipset and model has generated the CSI report to be able to attempt training a single unified model. Nevertheless, it is unclear what the size of such model would be in relation to a decoder-model handling a single encoder-model.
· UE: Encoder first training naturally allows for a single unified model at the UE. However, with decoder first training, the UE cannot count on having a single unified model since different NW vendors may map the same bit-string in the CSI report to different Target CSI. The UE would need side-information about what gNB and model is receiving the CSI report to be able to attempt training a single unified model. Nevertheless, it is unclear what the size of such model would be in relation to an encoder-model handling a single decoder-model.
Because it is unclear if, how, and at what cost in model complexity, the gNB (UE) would maintain a single unified model in the case of encoder (decoder) first training, we define those answers as no.
Proprietary models
Type 3a training is to quite a large degree designed to allow the UE side to achieve a successful model extraction attack (reverse engineering/functional approximation) of the NW side nominal encoder. Type 3a-i-2 and Type 3a-i-3 exposes the decoder to the same type of approach and can therefore not be considered to preserve a proprietary model.
Analogously, Type 3b training is to quite a large degree designed to allow the NW side to achieve a successful model extraction attack (reverse engineering/functional approximation) of the UE side nominal decoder. Type 3b-i-1, Type 3b-ii-1, and Type 3b-ii-2 exposes the encoder to the same type of approach and can therefore not be considered to preserve a proprietary model. However, since Type 3b-i-1 allows the UE to have proprietary input (see below) and that is not exchanged in the training, the model can be considered to have partial protection.
Requirements on privacy-sensitive dataset sharing 
All Type 3 training requires partial dataset sharing. Some form of “CSI”, be it Target CSI or the output of a decoder, needs to be associated to a latent space and shared.
Flexibility to support site specific models
· Type 3a-i: Yes. The NW side may train multiple models and deliver the dataset to the UE side to train.
· Type 3a-ii: No. The NW side can try to train for it. However, the UE side comes with its own Target CSI to feed to API and that data is likely not matching what the NW trained for since the UE does not naturally have the correct labels.
· Type 3b-i: No. The UE does not naturally have the correct labels, and the training dataset is delivered to the NW side from the UE side. Hence, no side can train site specific.
· Type 3b-ii: Partially. The UE does not naturally have the correct labels and cannot train the encoder for site specific operation. However, since the NW side provides its own data to the API it can train and/or finetune decoders with site specific data.

gNB/UE specific hardware optimization
The NW side is responsible for training the decoder and the UE side is responsible for training the encoder. Both sides can make choices to fit their own hardware, at least to certain degree; some of the issues raised under “Engineering isolation” below may affect the conclusions here as well. Compilation to hardware is done by respectively side.
Model update flexibility after deployment
There is partial flexibility in that the second side to train could in principle retrain a model while remaining compliant to the shared dataset or API. With the API solutions (Type 3a-ii and Type 3b-ii) the second side could even incorporate new and unseen data for which the API would associate a latent space representation to.
Extendability (separate UE/gNB side model development)
The extendability is considered moderate for all Type 3 training types. We acknowledge that the side training first is likely defining the complexity-and-gain trade-off. Moreover, there is a certain synchronization issue in that the part training second needs to wait for the first part to finish training, before training can begin. Nevertheless, while training, both sides are free to experiment with architectures and hyperparameters without the need to synchronize. There may be issues in how AI/ML backbones can be paired and what sizes of models can be paired, but we believe there are no decisive observations on the matter.
Supports UE-proprietary input
· Type 3a-i-1, Type 3a-i-2, and Type 3a-i-3: No. Since the UE side gets the latent space variables and a “CSI” to use as target, the UE side does not control its training dataset and can thus have no proprietary input.
· Type 3a-ii: The API allows the UE side to control its training dataset, and hence it may have proprietary input associated with each Target CSI.
· Type 3b-i-1, and Type 3b-i-2: Yes. Since the UE side trains first and only provide a dataset with Latent Space Variables and corresponding “CSI”, the input to the UE encoder is transparent to the NW side.
· Type 3b-ii-1 and Type 3b-ii-2: No. The API forces the UE to be able to produce a latent space from only Target CSI, hence it cannot use proprietary input.

Supports NW-proprietary input
· Type 3a-i-1, Type 3a-i-2, and Type 3a-i-3: Yes. Since the NW trains first and only provide a dataset with Latent Space Variables and corresponding “CSI”, the input to the NW decoder is transparent to the UE side.
· Type 3a-ii: Yes. Since the latent space returned by the API is produced by the NW nominal encoder, the input to the decoder can still have proprietary input.
· Type 3b-i-1 and Type 3b-i-2: No. Since the NW gets the latent space variables and a “CSI” to use as target, the NW side does not control its training dataset and can thus have no proprietary input.
· Type 3b-ii-1 and Type 3b-ii-2: Yes. The API allows the NW side to control its training dataset, and hence it may have proprietary input associated with each Target CSI.

Supports NW-proprietary output
· Type 3a-i-1 and Type 3a-ii: Yes. Since the training does not involve the output of the decoder.
· Type 3a-i-2 and Type 3a-i-3: Yes. Since the training does not mandate that all the output of the decoder is shared the output of the decoder can be filtered before the dataset is sent to the UE side.
· Type 3b: Yes. The NW side is free to implement the decoder and its training in any way it deems fit.

Performance
· Type 3a is likely going to produce results that are worse compared to Type 4 training, since in this training method the UE is left with a regression-problem, i.e., trying to mimic the behaviour of the NW side nominal encoder while in Type 4, the encoder training can improve above the nominal encoder performance. 

Matching data distribution
· Type 3a-i: Not possible since the NW side defines the training dataset for the UE side.
· Type 3a-ii: Possible since the UE side comes with its own data to the API, and can thus match the data to the intended device.
· Type 3b: Yes/No, depending on if such a dataset/API should be created for each device with its own model. Having unique datasets/APIs for each device would allow matching data distributions, but would lead to an explosion in the number of datasets/APIs.

Capability consideration
The UE side can design its AI/ML model according to the capability of the device it is intended for.
Overall feasibility
· Type 3a-i-1 and Type 3a-ii: Feasible. According to the discussion above, we have not identified anything that cannot be accepted, i.e., these methods fulfil the minimum requirements for being feasible to use. 
· Type 3a-i-2 and Type 3a-i-3: Not feasible. They expose the NW side decoder for reverse engineering.
· Type 3b: Not feasible. The method does not allow a single unified model to be deployed at the gNB, in fact if such dataset/APIs are created for all models for all UEs/Chipsets, there will be an explosion in models for the NW side to train and in book-keeping to match all different UEs/Chipsets, even from the same vendor. Some of the methods also expose the UE side encoder for reverse engineering.

[bookmark: _Toc131752952]Type 3 training collaboration where NW trains first may be a feasible approach to training

Summary
To summarize the discussion around Type 3 training, we provide the following table.
	Aspect
	Type 3a-i-1
	Type 3a-i-2
	Type 3a-i-3
	Type 3a-ii
	Type 3b-i-1
	Type 3b-i-2
	Type 3b-ii-1
	Type 3b-ii-2

	Proprietary models
	Yes
	No
	No
	Yes
	Partially
	Yes
	No
	No

	Requires dataset sharing
	Partially
	Partially
	Partially
	Partially
	Partially
	Partially
	Partially
	Partially

	Support site specific models
	Yes
	Yes
	Yes
	No
	No
	No
	Partially
	Partially

	gNB specific hardware optimization
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

	UE specific hardware optimization
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

	Allows single unified model on gNB side
	Yes
	Yes
	Yes
	Yes
	No
	No
	No
	No

	Allows single unified model on UE side
	No
	No
	No
	No
	Yes
	Yes
	Yes
	Yes

	Model update flexibility after deployment
	Partial
	Partial
	Partial
	Partial
	Partial
	Partial
	Partial
	Partial

	Engineering isolation
	Moderate
	Moderate
	Moderate
	Moderate
	Moderate
	Moderate
	Moderate
	Moderate

	Supports UE-proprietary input
	No
	No
	No
	Yes
	Yes
	Yes
	No
	No

	Supports NW-proprietary input
	Yes
	Yes
	Yes
	Yes
	No
	No
	Yes
	Yes

	Supports NW-proprietary output
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

	Matching data distribution
	No
	No
	No
	Yes
	Yes/No
	Yes/No
	Yes/No
	Yes/No

	Capability consideration
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

	Overall feasibility
	Yes
	No
	No
	Yes
	No
	No
	No
	No



2.4 “Type 4”: NW first, frozen decoder and gradient transfer using API 
We found that some companies were unsure about the meaning of the new collaboration type which we here denote “Type 4”. Note that whether to introduce Type 4 or to classify this under Type 2 and 3 is a separate discussion. Hence, to clarify this collaboration type we present a flow-chart, analogous to the ones found in the conclusions from RAN1#110-bis-e for Type 2 and Type 3.
[bookmark: _Toc131752941]Define a training collaboration [Type 4], using a frozen decoder and gradient transfer using API, as a training method, according to the following description.
	For the evaluation of an example of [Type 4] sequential training NW first (frozen decoder and gradient transfer using API), the following procedure is considered:
· Step1: NW side trains the NW side (nominal) CSI generation part and the NW side CSI reconstruction part jointly
· Step2: After NW side training is finished, the NW side opens an API, accepting input consisting of, e.g., a pair (Target CSI, CSI Configuration, CSI Report), and returns, e.g., an indication of training convergence and gradients of the CSI reconstruction part and a loss function value indicating the discrepancy of the Decoder output and Target CSI with respect to the latent space variables (the Encoder Output part of the CSI report). The API is used by the UE side to be able to train the UE side CSI generation part
· Step3: UE side trains the UE side CSI generation part based on using the API. For each FP/BP loop the UE-side training entity:
· Acquires data with corresponding side-information, e.g., configuration, from which is derives a tuple consisting of, e.g., (Target CSI, CSI Configuration, pre-processing information, Encoder Input)
· Passes the Encoder Input to the Encoder, and generates the Encoder Output
· Uses the Encoder Output, pre-processing information, and CSI Configuration to generate a CSI report according to the standard, e.g., segmentation of information into Part 1 and Part 2.
· The UE sided passes the tuple (Target CSI, CSI Configuration, CSI Report) to the API and uses the returned gradients and convergence indication to update its CSI generation part.
· Note: Target CSI needs to be standardized. Details are FFS, discussions are ongoing.
· Note: The CSI Configuration is needed in the API to allow the NW side entity behind the API to understand the segmentation of the CSI Report. This should be according to the standard. Details are FFS.
· Note: The training should cover relevant configurations and scenarios for which the UE should function.
· Note: If the UE trains a single (unified) AI/ML model or multiple AI/ML models with switching depending on, e.g., configuration, is transparent to the NW. The UE trains an encoder logical model.
· Note: The API will be for a high-level representation of the NW side CSI reconstruction, specifically it is not compiled for, and thus not run on, gNB hardware.



Allows single unified model on UE/gNB side
· gNB side: Since the NW side trains first the method naturally allows for a single unified model at the gNB. 
· UE side: The UE cannot count on having a single unified model since different NW vendors may map the same bit-string in the CSI report to different Target CSI. The UE would need side-information about what gNB and model is receiving the CSI report to be able to attempt training a single unified model. Nevertheless, it is unclear what the size of such model would be in relation to an encoder-model handling a single decoder-model. Because it is unclear if, how, and at what cost in model complexity, the UE would maintain a single unified model, we define those answers as no.

Proprietary models
The models are developed by respective side, and since no side have access to the input-output relation we believe the models are kept proprietary.
Requires dataset sharing
There is partial dataset sharing since the UE side will have to provide the API with a Target CSI associated with a CSI Report.
Support site specific models
Only by using decoder fine tuning, hence site specificity is limited. 
gNB/UE specific hardware optimization
The NW side is responsible for training the decoder and the UE side is responsible for training the encoder. Both sides can make choices to fit their own hardware, at least to certain degree. Compilation to hardware is done by respectively side.

Model update flexibility after deployment
UE side can update its model but it requires a new training session with the NW side API. 
Extendability (separate UE/gNB side model development)
We acknowledge that the NW side is likely defining the complexity-and-gain trade-off, at least partially, since it is the side to train first. Moreover, there is a certain synchronization issue in that the UE side needs to wait for the NW side finish training, before training can begin. Nevertheless, while training, both sides are free to experiment with architectures and hyperparameters without the need to synchronize, and the results are interpretable by each part. There may be issues in how AI/ML backbones can be paired and what sizes of models can be paired, but we believe there are no decisive observations on the matter.
Supports UE-proprietary input
It is possible since the UE side provide its own dataset and are thus able to associate proprietary data to the Target CSI.
Supports NW-proprietary input
Not possible. When the UE side invoke the API with its data, the API needs to be able to execute the decoder.
Supports NW-proprietary output
Yes, since the NW side has full control of the output and loss function, it may include, and even train for, different proprietary outputs.
Performance
Results are likely going to be better than Type 3a, since in this training method the UE can train it’s encoder against the actual reconstruction and loss.
Matching data distribution
Since the UE side brings its own data to the API it is possible to make the training data match the data distribution of the device the model is intended for.
Capability consideration
The UE side can design its AI/ML model according to the capability of the device it is intended for.
Overall feasibility
We deem that this method is feasible. According to the discussion above, we have not identified anything that cannot be accepted, i.e., the method fulfils the minimum requirements for being feasible to use.
[bookmark: _Toc131752953][Type 4] training collaboration where NW trains first, freeze the decoder and provide gradient transfer to UE side using API (for UE side training) may be a feasible approach to training

Summary
To summarize the discussion around Type 4 training, we provide the following table.
	Aspect
	[Type 4]

	Proprietary models
	Yes

	Requires dataset sharing
	Partially

	Support site specific models
	Yes

	gNB specific hardware optimization
	Yes

	UE specific hardware optimization
	Yes

	Allows single unified model on gNB side
	Yes

	Allows single unified model on UE side
	No

	Model update flexibility after deployment
	

	Engineering isolation
	Moderate

	Supports UE-proprietary input
	Yes

	Supports NW-proprietary input
	No

	Supports NW-proprietary output
	Yes

	Matching data distribution
	Yes

	Capability consideration
	Yes

	Overall feasibility
	Yes



2.5 Summary and conclusion of the training types
Given the discussion and the tables in the section above we conclude that there are only a two training collaboration methods that are feasible. Those are:
· Type 3 training, NW trains first, possibly using an API
· [Type 4] training, NW trains first and freeze the decoder

We note that Type 3 training has inferior performance to [Type 4] due to that the encoder trained by the UE side can not surpass the performance of the nominal encoder (as obtained by the NW side), since encoder training is just a regression problem. Hence, we suggest to priority [Type 4] over Type 3. 
Comparing the different aspects of the feasible training methods we propose that the remaining studies in this SI assumes the following training method for the multi-vendor case (still Type 1 training with one-to-one setup is useful as the upper bound).
[bookmark: _Toc131752942]In the remaining work in this SI, for training collaborations that include the multi-vendor situation, assume [Type 4], NW first, frozen decoder and gradient transfer using API.
2.6 Specification impact of training for two-sided models
It is assumed that training between UE chipset and NW vendors is carried out offline, i.e., outside 3GPP. This will produce an encoder and decoder for deployment in products. However, it is likely that the UE chipset will be implemented in multiple different UE vendor’s products, with different RF and antenna characteristics. Hence, the offline trained encoder and decoder may not perform as well in reality as in the training phase. 
In addition, the training data used for this offline training needs to come from a variety of deployment scenarios and UE/chipset vendors to ensure good generalization performance. It is uncertain if such data is possible to gather for the pre-development and offline training and there should be a mechanism to support improvements of the AI-CSI to make it possible to enable AI-CSI for new scenarios (e.g. tunnels, railways, stadiums). 
Therefore, it is important to have the possibility to fine tune the model based on actual data measured in the field, using measurements by deployed UEs. The fine tuning is carried out by the decoder only, since changing the encoder behaviour in the field leads to a bifurcation in the number of model variants in the field which leads to a significant complexity increase in the network, for the monitoring of UE side models. 
In addition, the single gNB decoder development should ideally be exposed to a training data set from all kinds of deployment scenarios, UE chipsets from multiple chipset vendors, UE RF implementations and UE antennas from multiple UE vendors, but also a large variety of gNB antennas and RF, baseband implementations (i.e. across NW product portfolio) from different sites of multiple networks in the world etc. 
Therefore, data to train the decoder for the two-sided case must be collected “in the field” and from many participating UE side vendors and implementations. As we see, the only feasible approach to such wide range of training data is that 3GPP specify data collection for CSI compression use case. 

In addition, if UE side of the model would change by fine tuning during its lifetime in the field, it would make the pre-deployment RAN4 testing invalid, it is not clear how to verify that the fine-tuned UE is passing the RAN4 requirement. Hence, we conclude that such fine tuning to adapt to reality needs to be performed by the decoder in the network. 
[bookmark: _Toc126058674][bookmark: _Toc126323384][bookmark: _Toc126745664][bookmark: _Toc127343028][bookmark: _Toc127343518][bookmark: _Toc127343647][bookmark: _Toc127343723][bookmark: _Toc127344464][bookmark: _Toc127520276][bookmark: _Toc130212267][bookmark: _Toc130213778][bookmark: _Toc131531793][bookmark: _Toc131534142][bookmark: _Toc131580301][bookmark: _Toc131589781][bookmark: _Toc131752954] 3GPP specifications needs to support a mechanism to update/fine tune the decoder to consider implementation reality (e.g., UE and gNB RF and antennas at UE and gNB) and to ensure good generalization performance in scenarios not part of the pre-deployment training dataset
A standardized data collection supports such decoder fine tuning operations and retraining on the network side. This also allows to take full advantage of AI/ML potential, a trained decoder in the gNB could be further adapted to the local deployment (local radio propagation characteristics or local antenna configuration) to enhance the performance or to reduce the CSI payload. 
For example, in a FWA deployment or in a deployment with primarily LOS channel, the channel characteristics is very different compared to a dense urban with high rise buildings. Using local adaptation of the decoder for these scenarios may be beneficial. Hence, allowing for some degree of site or area optimization (local adaptation) could provide the opportunity to use smaller AI/ML models and better performance since the need for the model to be able generalize to all scenarios is less. 
The specifications could also support a model update in the deployed UE, where a new model is delivered to the UE using e.g., firmware update over the air (FOTA). Alternatively, a model switch to a new model is needed when the UE is roaming and a different network vendor is used in the new serving network, and hence a different decoder. The UE may thus need to store (at least) one encoder for each network vendor decoder, but the switching between encoder models happens very rarely in the UE. The Model ID and/or UE capability may be a method to align the encoder-decoder model pair in the network. 
The newly enabled encoder model would likely have to be tested in advance with respect to RAN4 requirements, together with the network vendor decoder. Hence, such model switching allows for a larger update as it involves a new encoder, compared to the decoder fine tuning discussed earlier. 
So to summarize, we have the following steps related to training and model fine tuning/updates and specification impact:
1. Activation signalling of initially (offline) trained and RAN4 tested encoder and decoder for AI-CSI compression in some cells in the network where the AI-CSI is beneficial. For this step, a feature-based UE capability reporting may be needed. 
2. Performance monitoring procedures of deployed models to ensure there is a benefit compared to legacy CSI in a given cell in the network (e.g., whether the used training dataset is representative for the cell to give a performance benefit of AI-CSI)
3. Data collection (Target CSI) from UE to network that enables 
a. proprietary fine tuning of decoder for improved performance and adaptation to “reality” such as RF and antenna, network configuration aspects
b. gathering of data for new future scenarios where the currently used training data set was not representative (e.g. subway tunnels, stadiums etc) and to be used for development of evolved encoder-decoder in a future update
4. Model selection for the UE for roaming support and for enabling evolved AI-CSI models in already deployed UEs. This step may require the use of Model ID based framework in addition to the UE capability to distinguish different decoders/network vendors. 

2.7 Regarding model transfer
As discussed above in the Type 1 collaboration sections, there are several issues with model transfer between gNB and UE (and vice versa) such as vendor incompatibility, lack of optimization for the model at the receiving node, need for on device compilation, inefficient model leading to high energy consumption and the need to standardize or agree on a format to be used for such model transfer etc.  
The other alternatives with NW first training and passing of gradient or latent space to the UE in offline training seems more attractive as they allow the UE side to develop their own algorithm and use optimized hardware. Hence, model transfer should be the last resort. 
[bookmark: _Toc131752943]For CSI use case in this SI, down-prioritize studies on model transfer 
3 Target CSI definition
Specification of a target CSI is needed for several procedures in the specifications. During inference, the gNB needs to be able to interpret the decoder output (which is closely tied to the target CSI via the training procedure) so it can further use it for MIMO precoding algorithms. Hence it needs to be agreed by 3GPP. In data collection, the target CSI defines the metric that the UE needs to measure and report to the network. There may also be a need to use target CSI for model monitoring purpose as the NW can compare reported “real” CSI with the target CSI. 
Last meeting, these options were agreed to be studied with respect to output-CSI-UE/input-CSI-NW definitions, which resembles the target CSI and can thus be the basis for studying target CSI definition:
· Option 1a: Precoding matrix in spatial-frequency domain
· Option 1b: Precoding matrix represented using angular-delay domain projection
· Option 2a: Explicit (raw) channel matrix raw in spatial-frequency domain
· Option 2b: Explicit (raw) channel matrix raw in angular-delay domain

These can be further interpreted as in Table 1. 
Table 1. Four directions on how to standardize a CSI target.
	[bookmark: _Hlk126262750]Implicit CSI feedback (precoder hypothesis)
	Explicit (raw) CSI feedback

	Option 1a
	Option 1b
	Option 2a
	Option 2b

	Tx-side eigenvectors of a channel, per subband.
Non-structured target, arbitrary eigenvectors can be represented by amplitude and phase per vector element.

Rank can be reported separately.
	Approach based on eType-II framework.
Structured, model-based target, where L and M determines the model.
FFS if UE decides L and M (part of CSI report) or if configured by gNB.
Rank can be reported separately.
	Channel tensor (#Tx, #Rx, #subband).
Non-structured target, arbitrary channel tensors can be represented by amplitude and phase per tensor element.
	Approach based on eType-II framework.
Structured, model-based target, where L and M determines the model.
Compressed channel tensor format using a projection (per Rx) to eType-II based SD and FD basis vectors.



Evaluations are needed to answer the questions:
· Is there a MU-MIMO performance and UCI overhead difference between non model and model-based CSI target? i.e. between 1 and 2 and between 3 and 4?
· Is there a MU-MIMO performance and UCI overhead difference between implicit and explicit CSI feedback approaches, i.e., between 1 and 3 and between 2 and 4?

A standardized solution for beam-delay processing of precoding vector feedback has many advantages. For example, the model-based approach has a lower overhead than the corresponding “raw” feedback, and the standardization effort is smaller given that it would reuse (parts of) the eType-II framework. It needs also to be discussed how to define an eigenvector of a given matrix in the 3GPP specifications, the matrix needs to be defined as well.   
Moreover, we note that the AI/ML models presented in our companion paper [7] are trained on data in this type of format. In that paper [7] we also evaluate the quality of precoders in a variety of these formats, and we find that by increasing the number of selected beams and taps it is possible to capture the true Tx-eigenvector with good accuracy, as can also be seen in Figure 1.

[image: ]
Figure 1: Squared Generalized Cosine Similarity (SGCS) between genie Tx-eigenvector and Case-2 approximations, for different values of L, M, and subband sizes.
This figure shows that Increasing L and M improves the SGCS and it is possible to get very close to the genie. There is also an effect of the subband size. We can thus observe the following.
[bookmark: _Toc127343029][bookmark: _Toc127343519][bookmark: _Toc127343648][bookmark: _Toc127343724][bookmark: _Toc127344465][bookmark: _Toc127520277][bookmark: _Toc130212268][bookmark: _Toc130213779][bookmark: _Toc131531794][bookmark: _Toc131534143][bookmark: _Toc131580302][bookmark: _Toc131589782][bookmark: _Toc131752955]A Target CSI definition approach based on the eType-II framework, with more selected beams, taps, and coefficients compared to existing eType-II, and with finer resolution in the quantization of the coefficients has the potential to accurately describe the true Tx-eigenvector.
Therefore, we propose that:
[bookmark: _Toc131752944]	Target CSI is standardized by use of the implicit CSI reporting principle (precoding vector) and is based on the eType-II framework. Study further the parameter values, e.g., of L, p_v, β,..
[bookmark: _Toc127343012][bookmark: _Ref118474591][bookmark: _Ref122507357]4 Data collection of target CSI from UE measurements
In Section 1, we discuss model training and the use of NW data collection of UE measurements. In RAN2, there has been at least the following endorsed proposals related to data collection
· P4	Wait for RAN1 requirements before discussing specific data collection solutions for use cases and for the related (LCM) procedures. In the meantime, RAN2 can summarize the implementation of existing frameworks while focusing on different performance metrics.
· P5	When summarizing the different data collection frameworks, RAN2 can start by considering the following metrics: a) the content of the data, b) the data size, c) latency and periodicity, d) signalling, entities involved, and configuration aspects. FFS on how to handle security/privacy.
Hence, RAN1 needs to give guidance on at least the content, data size, latency and periodicity. Here we begin by motivating why data needs to be collected by the network:
4.1 Motivation for data collection
The network vendor has the responsibility of the performance of the network and hence the performance monitoring of the two sided CSI compression use case must reside at the network side which requires collection of target CSI from the UE. 
· NW side defines the loss function and is thus the side that can compare target CSI with the compressed CSI. This requires that the target CSI is reported to the network in live networks 
· The loss function is NW side proprietary and takes into account interactions with other algorithms in the NW side such as the MU-MIMO precoding algorithm. Hence, loss function cannot be specified or transferred to the UE side for monitoring purpose as it would require to use a “plain vanilla” loss function which has suboptimal network performance
· Since there are multiple UE side vendors, this reporting of target CSI must be performed using 3GPP signaling to avoid the complexity of handling multiple formats of such target CSI reporting for monitoring
Moreover, the re-training and model switching in the UE of the two-sided CSI compression use case must be controlled by the network side. A sudden change of the UE side encoder model may cause an unexpected performance drop and the operator needs to be aware of the cause of the performance change. Hence, as argued in previous sections, a decoder fine tuning is possible as the loss function can be assessed by the network side, while transparent updates of encoder side is risky and may violate the stated RAN4 requirements of testing as RAN4 re-testing in the field is unlikely. Hence, the decoder side updates also require collection of target CSI from the UE
[bookmark: _Toc126745665][bookmark: _Toc127343030][bookmark: _Toc127343520][bookmark: _Toc127343649][bookmark: _Toc127343725][bookmark: _Toc127344466][bookmark: _Toc127520278][bookmark: _Toc130212269][bookmark: _Toc130213780][bookmark: _Toc131531795][bookmark: _Toc131534144][bookmark: _Toc131580303][bookmark: _Toc131589783][bookmark: _Toc131752956][bookmark: _Toc131580304]Specification of UE to network data collection of UE measurements of target CSI is motivated by both monitoring and decoder adaptation purposes

4.2 Characteristics of data collection 
We note that the latency requirement for the NW to obtain training data is not the same as for AI/ML model inference. Data collected for AI/ML training will not be used for live scheduling and MIMO precoding decisions; therefore, the latency requirements for collecting training data can be significantly larger than those for AI/ML model inference. 
As the time of measurements and the time of reporting the collected measurements back to the NW are decoupled (these can be two different events separated by e.g. hours), a UE can log/store its radio/non-radio measurements together with the meta information (e.g., time stamps, cell ID, and/or UE location) for multiple measurement occasions. The meta information can be seen as “tagging” the measurements with information on where/when the data was collected. After performing the radio measurements and logging the data, the UE can be triggered to report the accumulated data to the NW over the 3GPP air-interface for subsequent off-line proprietary AI/ML model training at the NW side. 
[bookmark: _Toc126745668][bookmark: _Toc126745669]It is important that a UE can log/store its radio measurements together with the assistance information (e.g., time stamps, cell ID, and/or UE location) for multiple measurement occasions, and then report these accumulated data to the NW. It is also important to include the encoder output (i.e. the UCI payload) in the same container as the collected target CSI. 
In the following, we discuss these aspects for the CSI compression use case and identify the potential standard impacts. 
· Definition of Data types
The data types to be measurement and logged by the UE can be divided into two types: radio measurement data and non-radio-measurement data. For example, Radio measurement data can consist of UE CSI-RS measurements to be used as target CSI (see Section 3). 
Non-radio-measurement data can include cell-IDs, area IDs, UE antenna configurations, time stamps, UE locations, and possibly also measurement accuracy and/or UE location to enable training of site/area specific models.
If the UE that performs the data collection has a model for CSI compression deployed already, then the latent space information (encoder output) as would have been sent in the UCI needs also to be collected together with the target CSI, so the data collection report contains all the information needed for decoder fine tuning and/or model monitoring. This ensures that the target CSI and latent space encoder output is collected by one and the same CSI-RS measurement. 
· Data sizes
The collection of training data is expected to be distributed over many UEs from one or multiple cells. Hence, data collection may be localized to a specific area (or time span) or more general, non-localized spread across cells in the entire network. 
A UE can log/store its radio measurements performed on these multiple time instances together with other types of data (e.g., meta data or assistance information). The UE is configured or triggered to report accumulated data to the NW-side at a suitable point in time, e.g. when network load is low. Hence, the overhead of training data collection might not impose significant UL overhead. The number of bits needed for reporting a single CSI-RS measurement depends on how the target CSI is represented (the data format and pre-processing/quantization method). For example, if raw channel measurements are reported, then, a UE may need to feedback multiple complex values in the order of (number of Rx virtual antenna ports * number of CSI-RS ports* number of subcarriers, e.g., 4*32*52) for one channel measurement per time instance. This is still to be discussed (see Section 3)- 
Depending on the required quantization bits used to quantize each complex value (phase and amplitude), the data size per UE report can be very large for this CSI use case. Non-radio-measurement data may or may not need to be reported, depending on the type of information and whether UE mobility is supported in combination with data collection or not.
To give a ballpark figure on the data size, in our evaluation we have evaluated the performance for both unquantized (FLOAT32) based target CSI and the 7 bit eType-II quantization. See the Figure below. It can be seen that a Target CSI payload will likely be in the range of 3000-10000 bits per layer, hence between 10k and 40k bits for a single report. Here a “sweet spot” of 10k bits have been assumed for the unquantized case. 
[bookmark: _Toc131752957]An initial estimate of the data size for collection in the CSI compression use case is in the range of 10k-40kbit. Further detailed studies are needed.   
For a study on the high resolution format and expected payloads, see our evaluation paper [10]. 
[image: ]
Figure 2: Fraction of mean-user throughput compared to genie when using different format of target CSI as PMI-like feedback schemes. The left figure shows unquantized coefficients and the right figure shows with 7-bit standard-compliant quantization.

· Latency and periodicity
The period of performing AI model training/retraining can be relatively long (e.g., months) and the data collection for model training is not required to be performed very frequently. Therefore, the latency requirement for collecting training data is much relaxed as compared to that for model inference.
The data collection framework should support a UE to collect data from multiple measurement occasions so that the UE can report the accumulated data to the NW. For the CSI compression use case, a measurement occasion can consist of a single RS resource (e.g. as in Rel.16 CSI reporting). 
[bookmark: _Toc118709439][bookmark: _Toc118716856][bookmark: _Toc118716905][bookmark: _Toc118721335][bookmark: _Toc118721565][bookmark: _Toc118709441][bookmark: _Toc118716858][bookmark: _Toc118716907][bookmark: _Toc118721337][bookmark: _Toc118721567][bookmark: _Toc118709442][bookmark: _Toc118716859][bookmark: _Toc118716908][bookmark: _Toc118721338][bookmark: _Toc118721568][bookmark: _Toc118461943][bookmark: _Toc118461944]5 Inference and in field operation
5.1 Quantization
In two-sided CSI compression, the encoder in the UE side will transmit the encoder output to the decoder on the NW side. Specifically, the decoder side will receive S=KQ bits of information from the UE, where K is the output size (i.e. the number of nodes in the output layer) of the encoder and Q is the number of quantization bits (if scalar quantization is used) per node. During the inference, this quantization is important to minimize the number of bits used in the CSI report (and thus, save the UL resources). 
In two-sided CSI compression, the encoder part and decoder part may have different architectures, particularly if Type2 or Type 3 training is used since these originate from different vendors. Therefore, knowing only the total number of exchanged bits S over the air interface may not be sufficient to derive the number of encoder output K and the number of quantization bits Q. 
Although the total number of bits S exchanged between the encoder and the decode is known, the total number of bits may come from different combination of the number of encoder outputs and the number of quantization bits (i.e., as different vendor may have their own preferences). For example, it is possible that the encoder has K1 encoder outputs with Q1 quantization bits while the decoder assumes K2 encoder outputs with Q2 quantization bits and S=K1Q1 = K2Q2.
If K and Q are not standardized for training Type 2 and 3 (quantization bits and encoder output size) it will lead to different interpretation, e.g., in the size of the encoder/decoder architecture in one side that suitable to handle the encoder/decoder architecture in another side. If the encoder and decoder side use different sizes on the encoder and the decoder architectures it may lead to some performance degradation, in particular, when the differences are large.
Without specification of K and Q, a vendor has to resort to train considering the input/output as a string of non-structured bits. While this in theory could yield encoders and decoders of decent performance, it may be a difficult training task since it effectively imposes a -sized classification problem in the middle of the AE. In some sense this classification problem reflects the complexity of the task but may not be a fruitful formulation for training. In particular, the gradients may not behave nicely, and it may effectively make it impossible to use some of the common techniques for quantization aware training. Therefore, we believe that the encoder-side and the decoder-side need to align on how the quantization bits are used (either or both during training and inference). 
[bookmark: _Toc127343033][bookmark: _Toc127343523][bookmark: _Toc127343652][bookmark: _Toc127343728][bookmark: _Toc127344469][bookmark: _Toc127520281][bookmark: _Toc130212271][bookmark: _Toc130213782][bookmark: _Toc131531797][bookmark: _Toc131534146][bookmark: _Toc131580305][bookmark: _Toc131589784][bookmark: _Toc131752958][bookmark: _Toc127343034]Given the potential complexity arising from unmatched quantization, proponents of non-standardized quantization need to motivate the benefits to why the quantization should not be standardized.
Since the MIMO channel and domain-specific feature extraction methods (e.g., DFT-based transmission) are complex-valued, the latent variable of the implemented NNs may for some vendors also be in a form of complex value. Considering this, the quantization methods should also be capable to work for complex-value number.
Regarding the number of quantization bits, a simple solution is to standardize the number of quantization bits Q for the encoder outputs. If, however, this solution is found to be too restrictive, then we may allow a different number of quantization bits per encoder output. Allowing for a variable number of quantization bits may give better flexibility in setting up the trade-off between the auto-encoder model size, possible UCI payload, number of information exchanges during the training, and the expected performance. 
In this approach, quantization information needs to be shared between the encoder and the decoder to make sure that the encoder and the decoder are aligned. For example, an additional bitfield (contains of a few bits of quantization-bit information) may be exchanged between the UE and the NW. This is also important to let the NW understand how the bits received in the UCI are segmented. Note that the size of this additional information will be non-substantial compared to the size of information exchanges required for datasets and target CSI delivery during training or the size of CSI payload during inference.
[bookmark: _Toc131752945]RAN1 to study whether the number of quantization levels per encoder output should be fixed or configurable by the network in CSI report configuration.
One straightforward approach to enable a flexible CSI payload size via flexible quantization-bits is by having different models trained specifically for the respected quantization bit (quantization-specific training). This approach, however, may result in the UE and the NW needs to store multiple models to handle different quantization size during the inference. 
In another approach, the model may be trained to handle multiple quantization sizes (quantization-common training). In the below table, simulation results are given for the case of quantization-specific training and quantization-common training. For the quantization-specific training, the quantization bit used in the inference is the same as the quantization bit during the training. Meanwhile, for quantization-common training, the model is trained using all 4, 6, and 8 quantization bits.
Table 6. Mean SGCS of different training approaches to handle quantization sizes.
	Training approach
	Quantization size Q during inference

	
	4 bits
	6 bits
	8 bits

	Quantization specific
	0.7528
	0.7768
	0.7902

	Quantization common
	0.7530
	0.7758
	0.7809



From the above table, we can observe that it is feasible to have AI/ML model that could handle multiple quantization sizes. I.e., the performance degradation of the quantization-common model compared to the quantization specific model is very minor. Given the additional complexity arises in using quantization-specific model (e.g., a larger model storage needed), having quantization-common model may be beneficial. On the other words, having a common model that can handle different quantization bits may serve as one approach to enable a flexible payload size for CSI report.
[bookmark: _Toc127343035][bookmark: _Toc127343524][bookmark: _Toc127343653][bookmark: _Toc127343729][bookmark: _Toc127344470][bookmark: _Toc127520282][bookmark: _Toc130212272][bookmark: _Toc130213783][bookmark: _Toc131531798][bookmark: _Toc131534147][bookmark: _Toc131580306][bookmark: _Toc131589785][bookmark: _Toc131752959][bookmark: _Toc127343037]It is feasible to have a quantization-common model, the performance difference to a quantization-specific model is non-substantial.
As mentioned above, there will be S=KQ quantized encoder output that will be transmitted to the decoder side as UCI. Therefore, another possibility in obtaining flexible UCI payload size may come from a flexible number of encoder output size, K. Similar to the quantization-common above, if a flexible number of encoder output size is to be supported, it will be preferable to have a model that could handle different numbers of encoder output size, i.e., to minimize the model storage and avoid unnecessary latency in switching between two models that specifically trained for a certain encoder output size. It may be a further study on whether to support flexible UCI bits via flexible quantization bit, flexible encoder output size, or both.
5.2 UCI payload
As discussed in Section 3, if the target CSI approach of eType-II based is used, then there may be need for the UE to report details of the pre-processing to the gNB to enable that the gNB can fully interpret the decoder output. 
For example, assuming Type-II based CSI target definition and if L=10 SD basis are configured, the channel may be LOS and the UE can decide not to use all 10 SD basis vectors in the CSI report. In this case, the UE need to convey information to the gNB about discarded SD basis vectors.
[bookmark: _Toc118726095][bookmark: _Toc118726302][bookmark: _Toc126052294][bookmark: _Toc126058676][bookmark: _Toc126323385][bookmark: _Toc126745670][bookmark: _Toc127343032][bookmark: _Toc127343522][bookmark: _Toc127343651][bookmark: _Toc127343727][bookmark: _Toc127344468][bookmark: _Toc127520280][bookmark: _Toc130212273][bookmark: _Toc130213784][bookmark: _Toc131531799][bookmark: _Toc131534148][bookmark: _Toc131580307][bookmark: _Toc131589786][bookmark: _Toc131752960]If the pre-processing contains removal of raw channel subspace (by the UE), then information about the remaining subspace (e.g., the SD and FD basis vectors) needs to be reported to the network side along with the encoder output bits.
For legacy CSI reporting the CSI report is segmented into separately encoded and received Part 1 CSI and Part 2 CSI. The size of Part 2 is dynamic and is controlled by Part 1 which has a fixed size known to UE and gNB. 
We propose to maintain and follow this legacy principle for AI-CSI, i.e. the CSI-RS resource indicator (CRI) (if applicable), rank indicator (RI) and channel quality indicator (CQI) are reported in Part 1 CSI. Plus, the necessary information to determine the size of Part 2 as will be discussed in the following. 
[bookmark: _Ref131149452][bookmark: _Toc131752946]Re-use the legacy CSI reporting principle with CSI Part 1 and Part 2 where Part 1 has a network configured fixed size and Part 2 size is dynamic, determined by information in Part 1. 
For AI-CSI, pre-processing can be carried out to extract the features of vectors (e.g. eigenvectors) per transmission layer in the beam-delay domain with  SD basis and  FD basis. Such pre-processing impacts the definition of the target CSI (i.e. the gNB interpretation of the CSI output from the decoder), hence details of the pre-processing needs to be aligned between the transmitter and receiver. We denote such “side” information that defines the output CSI interpretation to be carried using  bits and the actual output of the encoder as  bits. In addition, there are bits in the UCI related to the auxiliary information common across all the transmission layers, such as CQI, RI and the number of selected SD and FD basis in case these numbers are up to the UE to determine, denoted by . These are carried by CSI Part 1. 
If an eType-II based Target CSI definition is used, then bits that indicate the selected SD and FD basis belong to the  bits and is carried on Part 2 CSI report of the UCI. These are necessary for the gNB to interpret the output CSI of the decoder. 
[bookmark: _Toc131752947]The UCI for an AI-CSI report consists of  bits carried in CSI part 1 for the auxiliary information common across all the transmission layers,  bits carried in CSI part 2 used to complete the interpretation of the output CSI, and   bits carried in CSI part 2, representing the quantized latent space output of the encoder. 
Furthermore, since the bit sequence  can have large payload, the bit sequence  can be divided into multiple segments. It allows dropping of some part(s) of  when the allocated UCI resource, e.g., PUSCH allocation, for carrying such CSI report is not sufficient, as in the legacy CSI reporting framework, where the Part 2 CSI can be divided into multiple groups, each with a pre-defined priority level. For example,  can be segmented into multiple non-overlapping parts, where each segment corresponds to a transmission layer. If these basic principles as proposed are agreed, we can further discuss such details. 


5.2 Rank and CQI reporting
In two-sided CSI compression use case, two main options have been proposed in the previous meeting for CQI calculation:
Option 1: CQI is NOT calculated based on the output of CSI reconstruction part from the realistic channel estimation, including​
· Option 1a: CQI is calculated based on target CSI with realistic channel measurement  ​
· Option 1b: CQI is calculated based on target CSI with realistic channel measurement and potential adjustment ​
· Option 1c: CQI is calculated based on legacy codebook​

Option 2: CQI is calculated based on the output of CSI reconstruction part from the realistic channel estimation, including​
· Option 2a: CQI is calculated based on CSI reconstruction output, if CSI reconstruction model is available at the UE and UE can perform reconstruction model inference with potential adjustment​
· Option 2b: CQI is calculated using two stage approach, UE derive CQI using precoded CSI-RS transmitted with a reconstructed precoder.​

We have concerns with Option 2, where the CQI is calculated based on “the output of CSI reconstruction part from the realistic channel estimation”, which is essentially the decoder output, while the decoder can either be the nominal decoder at the UE (Option 2a), or the actual decoder at the gNB (Option 2b). 
One problem with Option 2a is that the nominal decoder at the UE is different from the actual decoder that the gNB uses for decoding, this will always introduce an unnecessary mismatch the between the true CQI and the reported CQI. Also, the CQI obtained with Option 2a highly depends on the quality of the nominal decoder at the UE, and it’s hard for the gNB to get a meaningful interpretation of such CQI. For example, assuming two UE experiencing more or less the same channel and interference (e.g., they are closely located), then the ground truth CQI should also be more or less the same if similar receive filters are used. However, the reported CQIs for the two UE could still be very different if the qualities of the nominal decoders are different. In general, we believe that for CQI to be meaningful for the gNB, the conditions under which CQI is computed needs to be specified and predictable, neither of which a proprietary UE nominal decoder provides.
For Option 2b, a two-stage approach is required. In the first stage, the UE transmits a CSI report without CQI. The gNB receives the CSI report and produces a decoder output, based on which CSI-RS is precoded. In the second stage, the UE measures the precoded CSI-RS and calculate CQI based on that. This is already possible with legacy CSI framework. Due to the two-stage nature of this option, a large delay can be expected before the gNB can obtain the CQI and this scheme is thus subject to channel ageing. In addition, there is additional CSI-RS overhead and PDCCH triggering overhead for obtaining the second stage, also gNB complexity increases as UE specific CSI-RS precoding is needed. 
In general, target CSI is a more reliable and thus a preferred reference for calculating CQI (Option 1a and 1b), as it is the quantity that the UE knows perfectly and that the gNB strives to decode and reconstruct. Assuming the gNB can obtain a decent decoded target CSI, then the mismatch between the reported CQI and the actual CQI is minimized. The potential mismatch in CQI (Option 1b) can be adjusted based on UE reporting or gNB configuration. Mechanisms for adjusting CQI can be further studied. However, through training and monitoring the gNB may already have obtained an accurate estimate or model of the mismatch.
A hypothetical precoder (e.g., CSI assuming PMI+RI) can be used for calculating CQI as is done in legacy, where the hypothetical precoder can be calculated based on the target CSI. Depending on the content of the target CSI, the hypothetical precoder can take different forms, which can be further studied, for example:
· If the target CSI is an explicit channel tensor, the hypothetical precoder can utilize both RI and PMI, where the RI is the maximum rank of the target CSI, while the PMI is calculated as the RI strongest Tx eigenvectors of the target CSI. .
· Alternatively, the target CSI can be calculated based on legacy codebook (Option 1c)
· If the target CSI is implicit channel information, such as Tx eigenvectors or PMI for a number of layers, the target CSI can be directly used as hypothetical RI and PMI (potentially with domain transformation).
· Alternatively, a hypothetical CSI can be calculated based on a codebook approximation of the target CSI. This can lower the computational complexity for the UE while at the same time be consistent and predictable from the perspective of the gNB.

Note that the basic principle that the RI/CQI calculation should be up to UE implementation is not violated, our proposal here is to have a common transmission hypothesis as done in legacy CQI calculation, where the transmission hypothesis can be as consistent and predictable as possible. The UE can still calculate the targe CSI based on its own implementation. 
[bookmark: _Toc131752948]Support Option 1 with CQI being calculated based on a hypothetical CSI which is derived from target CSI. Further study the details of mechanisms for CQI adjustments.   

If target CSI is an explicit channel tensor (i.e. full Tx * Rx MIMO channel), then the CSI report is similar to the CSI acquired by SRS measurements in TDD. For this case, instead of UE determining rank and CQI based on a hypothetical precoder, an alternative way is to enable UE reporting the interference and noise (IpN) that the UE experiences. Hence an interference plus noise (IpN) report is a feasible and useful metric to report to the gNB in association to explicit channel based reporting. 
[bookmark: _Toc131589777][bookmark: _Toc131665983][bookmark: _Toc131752949]If target CSI being an explicit channel tensor is supported (i.e. full Tx * Rx MIMO channel), an alternative solution is that the CSI report doesn’t contain CQI and RI, but contains an interference plus noise (IpN) report. 

5.3 On support for legacy functionality
5.3.1 Codebook subset restriction
The purpose of codebook subset restriction (CBSR) in LTE and NR is to avoid that UE reports CSI for a spatial direction where the base station anyway cannot perform transmission due to creating interference towards users in neighbour cells (or even interference towards neighbour base stations in case of TDD an non-aligned TDD patterns). In the upper FR2 bands and in the likely new 7-15 GHz in the future, there are a regulations and difficult problems with co-existence to military equipment, aircraft systems and satellite systems. Hence, the importance of CBSR will increase in the coming years. 
[bookmark: _Toc131531800][bookmark: _Toc131534149][bookmark: _Toc131580308][bookmark: _Toc131589787][bookmark: _Toc131752961]The importance of CBSR will increase due to more complicated interference situations in coming deployments and bands
Note that the base station can always decide not to transmit in those unwanted directions, but the CBSR is used to ensure that the CSI report is useful as without it there is no guarantee that the base station can use a CSI report in such deployments with spatial restrictions.
If the target CSI definition (to be discussed) is based on an eType-II structure (possible with larger number of SD and FD basis compared to legacy CSI reporting), then CBSR for AI based CSI enhancement can be based on this target CSI.
Hence, the gNB configures the UE with a desired target CSI (e.g. L, M and CBSR) that the UE shall use for its CSI report. How these impacts on the UCI payload needs further discussion, as well as whether such configuration would benefit from being dynamic or semi-static (i.e. DCI, MAC or RRC based).
[bookmark: _Toc131531801][bookmark: _Toc131534150][bookmark: _Toc131580309][bookmark: _Toc131589788][bookmark: _Toc131752962]A benefit of a Target CSI definition based on eType-II is that CBSR can straightforwardly be applied by gNB to UE configuration of the target
If the target CSI definition is instead based on explicit channel such as eigenvectors, in principle, the base station can remove unwanted directions with proprietary implementation methods. For example, when the base station calculates a precoder based on the reconstructed channel, the base station can take unwanted directions as additional constraint. However, in this case, the UE will report unwanted part of the channel information which creates unnecessary overhead. In addition, if CQI is to be reported with explicit channel and is calculated based on the reported explicit channel, the CQI may have a mismatch since the base station will not use the full channel for DL transmission. 
In this case, the CBSR concept needs to be completely redesigned compared to legacy CBSR, introducing some signalling that is restricting certain directions in the channel. Whether this is feasible needs more studies. 
5.3.2 CSI omission
With AI-CSI, even though the CSI payload can be significantly reduced compared to legacy Type II CSI, it is still possible that the allocated UL resource for carrying the CSI report is not sufficient for transmitting the CSI report at its entirety. In light of this, the legacy CSI omission mechanisms with multi-segment CSI report structure can be reused for AI-CSI, as proposed in Proposal 9.
Depending on the definition of target CSI, i.e., whether eType/PMI II-like or explicit channel tensor, the segmentation can be done differently. Details on how to segment the CSI report can be studied when the definition of target CSI has been agreed. 

5.3.3 UE Processing and CPU
There is a need to start discussing the CPU for AI based CSI reporting and UE processing in general. 
We observe that since the time for resource measurement becomes a dominating factor in the CPU calculation, there are benefits to decouple the measurement time from the total CPU occupancy period. This is an attractive solution when different computation resources are used for channel measurement/estimation and computing a CSI (e.g., PMI, RI, CQI, etc.). For example, the UE may indicate to the network using UE capability signaling that it can decouple the measurement time for prediction in this case, likely because it has dedicated hardware and software to run the AI/ML based CSI prediction (neural network engine), and it can start prediction already after two first measurements and refine it as more measurements are added. 
Another practical benefit of this, which also is an improvement for legacy reporting, is to enable sharing of channel measurement across different CSI reports without occupying the CPU pool multiple times for measuring the same thing (from specification point of view). For example, if two CSI reports are configured to the UE (possible with different ReportQuantity configured in the CSI-ReportConfig), where the same CSI-RS resource is configured for channel measurement, then the UE only needs to measure/estimate the channel once. In the legacy CPU definition, however, the above will occupy the CPU resource twice, even if in practice the UE may only need to calculate it once. Configuring multiple reports that are linked with the same CSI-RS resource could be used in many scenarios. For example, for monitoring purpose (and data collection), the NW can configure both an AI/ML-based CSI report and a legacy Type II CSI report, so that the Type II CSI report can be used as a benchmark for training and/or for monitoring the performance of the AI model. 
Hence, when CSI prediction is configured by the NW to the UE, the time period over which the channel/interference measurement/estimation is performed is decoupled from the total CPU occupancy time. In this case, a separate processing unit may be defined that is dedicated for measurement (e.g., CSI-RS/CSI-IM/SSB measurement), which will be referred as measurement processing unit (MPU) in the sequel. 
[bookmark: _Toc131531802][bookmark: _Toc131534151][bookmark: _Toc131580310][bookmark: _Toc131589789][bookmark: _Toc131752963]Since a CSI-RS measurement may be used for multiple purposes (monitoring, inference, data collection), and processed by different hardware in the UE, RAN1 can consider discussing CPU and measurement processing units (MPU) as two decoupled entities used to define the UE processing load
The UE may indicate to the NW the maximum number of simultaneous channel/interference measurements/estimation (e.g., denoted as ) it can perform within a period of time (e.g., denoted as ). The maximum number of measurements  may depend on the number of CSI-RS and/or CSI-IM and/or SSB resources. The time interval  may be a function of symbol, slot, CSI-RS/CSI-IM/SSB periodicity and offset, and the number of reference signal (RS) resources. 
An example is given in Figure 3 for CSI prediction (although it can also be used for CSI compression case), where the MPU occupancy for periodic and semi-persistent CSI report is defined based on the first CSI-RS resource and the last CSI-RS resource configured for a predicted CSI report, while the MPU occupancy for aperiodic CSI report is defined based on the PDCCH triggering of CSI report and the last CSI-RS resource configured for a predicted CSI report. Note also that , i.e., the time period over which the maximum number of simultaneous channel/interference measurements/estimation (i.e., ) is defined, could be smaller than the MPU occupancy time. Finally, the CPU occupancy in this example only accounts for calculating and encoding the CSI report. 
[image: ]
[bookmark: _Ref115183575]Figure 3 An example of the proposed MPU and CPU occupancy for CSI prediction.

6	Performance monitoring (LCM)
In the previous meeting, three methods for intermediate KPI based monitoring were agreed to be studied:
· Case 1: NW-side monitoring based on the target CSI with realistic channel estimation associated to the CSI report, reported by the UE or obtained from the UE-side.
· Case 2: UE-side monitoring based on the output of the CSI reconstruction model, subject to the aligned format, associated to the CSI report, indicated by the NW or obtained from the network side.
· Network may configure a threshold criterion to facilitate UE to perform model monitoring.
· Case 3: UE-side monitoring based on the output of the CSI reconstruction model at the UE-side
· Note: CSI reconstruction model at the UE-side can be the same or different comparing to the actual CSI reconstruction model used at the NW-side. 
· Network may configure a threshold criterion to facilitate UE to perform model monitoring.

Case 1 requires transfer of target CSI which is a standardization component that is also identified to be needed for additional purposes, see Section 3 and 4.1.  this allows the updating of the decoder to be transparent to the encoder side and by then avoid inter-vendor coordination for re-training. Secondly, with CSI target and encoder output (i.e., decoder input) being occasionally reported jointly, the NW can autonomously monitor its decoder reconstruction error via an intermediate KPI defined by a loss function. A detected drift of the intermediate KPI may initiate a re-training of the decoder, and if that cannot resolve the performance issue then one should consider also updating the encoder, i.e., a model switch (or model update) using FOTA and associated activation from NW side.  Hence, such procedure for decoder model updating basically follows the steps of initial training with NW model first in sequential training, with the difference that the second step of training the encoder is not needed. 

Case 2  requires signaling of the NW decoder output to the UE for determining an intermediate KPI that could be compared towards a configured threshold value. Hence, a UE configured to receive decoder outputs periodically may then requests a grant for indicating KPI status when the threshold condition for reporting is fulfilled. The signaling of decoder outputs is anticipated to be significantly more infrequent than the CSI reporting, so the overhead/power savings by using a threshold-based reporting over e.g., a procedure where the UE feedback the corresponding intermediate KPI to a received decoder output, may not be significant. The benefit of Case 2 over Case 1 may refer to power limitations at the UE to transmit target CSI, but since target CSI reporting will not be time critical it can be distributed over multiple transmissions or be delayed until transmission conditions are in favor. A problem with this approach is that the NW and UE will use different loss functions to assess the performance. Hence, whether there is a problem or not will not be aligned between NW and UE vendor. 

A major concern with Case 2 is that the input and output relation of the decoder will be exposed which then opens for disclosing proprietary aspects of the decoder.

Case 3 is most relevant to consider when the UE-side has its nominal decoder implemented in a UE (Type 1 training collaboration when UE trains first) such that it can determine a tentative intermediate KPI without sending latent space and corresponding target CSI over-the-top to a UE-side model monitoring entity. The advantages with respect to Case 2 with threshold-based reporting would be the downlink overhead reduction from not signaling the decoder output to the UE and that proprietary aspects of the deployed NW decoder can be preserved.

A major concern with Case 3 is that it reports a tentative intermediate KPI and not the actual intermediate KPI from the deployed NW decoder. Note that we here preclude decoder delivery to the NW-side as a request of fulfilling the single decoder operation requirement.



[bookmark: _Toc126745650][bookmark: _Toc126745651][bookmark: _Toc126745652][bookmark: _Toc126745653][bookmark: _Toc126745654][bookmark: _Toc126745655][bookmark: _Toc126745656][bookmark: _Toc126745657][bookmark: _Toc126745658][bookmark: _Toc126745659][bookmark: _Toc126745660][bookmark: _Toc126745661][bookmark: _Toc126745662]7 Conclusion
In the previous sections we made the following proposals 
Proposal 1	For CSI compression use case, it is required that standardized procedures and associated data format for UE to gNB data collection of a high-resolution CSI (target CSI) is supported to enable model monitoring and to provide data for enabling decoder fine tuning.
Proposal 2	For CSI compression use case, it is a requirement that only training types and methods that enables a single decoder to be implemented in the network side is to be considered, irrespectively of the vendor origins of the connected UE devices and/or UE chipsets.
Proposal 3	For CSI use case in this SI, down-prioritize any studies on model transfer unless it is the only solution that provides performance benefits over legacy CSI reporting
Proposal 4	Define a training collaboration [Type 4], using a frozen decoder and gradient transfer using API, as a training method, according to the following description.
Proposal 5	In the remaining work in this SI, for training collaborations that include the multi-vendor situation, assume [Type 4], NW first, frozen decoder and gradient transfer using API.
Proposal 6	For CSI use case in this SI, down-prioritize studies on model transfer
Proposal 7	Target CSI is standardized by use of the implicit CSI reporting principle (precoding vector) and is based on the eType-II framework. Study further the parameter values, e.g., of L, p_v, β,..
Proposal 8	RAN1 to study whether the number of quantization levels per encoder output should be fixed or configurable by the network in CSI report configuration.
Proposal 9	Re-use the legacy CSI reporting principle with CSI Part 1 and Part 2 where Part 1 has a network configured fixed size and Part 2 size is dynamic, determined by information in Part 1.
Proposal 10	The UCI for an AI-CSI report consists of  bits carried in CSI part 1 for the auxiliary information common across all the transmission layers,  bits carried in CSI part 2 used to complete the interpretation of the output CSI, and   bits carried in CSI part 2, representing the quantized latent space output of the encoder.
Proposal 11	Support Option 1 with CQI being calculated based on a hypothetical CSI which is derived from target CSI. Further study the details of mechanisms for CQI adjustments.
Proposal 12	If target CSI being an explicit channel tensor is supported (i.e. full Tx * Rx MIMO channel), an alternative solution is that the CSI report doesn’t contain CQI and RI, but contains an interference plus noise (IpN) report.

In addition, we have the following observations:
Observation 1	Type 1 training collaboration seem not feasible in near term
Observation 2	Type 2 training collaboration seem not feasible in practice
Observation 3	Type 3 training collaboration where NW trains first may be a feasible approach to training
Observation 4	[Type 4] training collaboration where NW trains first, freeze the decoder and provide gradient transfer to UE side using API (for UE side training) may be a feasible approach to training
Observation 5	3GPP specifications needs to support a mechanism to update/fine tune the decoder to consider implementation reality (e.g., UE and gNB RF and antennas at UE and gNB) and to ensure good generalization performance in scenarios not part of the pre-deployment training dataset
Observation 6	A Target CSI definition approach based on the eType-II framework, with more selected beams, taps, and coefficients compared to existing eType-II, and with finer resolution in the quantization of the coefficients has the potential to accurately describe the true Tx-eigenvector.
Observation 7	Specification of UE to network data collection of UE measurements of target CSI is motivated by both monitoring and decoder adaptation purposes
Observation 8	An initial estimate of the data size for collection in the CSI compression use case is in the range of 10k-40kbit. Further detailed studies are needed.
Observation 9	Given the potential complexity arising from unmatched quantization, proponents of non-standardized quantization need to motivate the benefits to why the quantization should not be standardized.
Observation 10	It is feasible to have a quantization-common model, the performance difference to a quantization-specific model is non-substantial.
Observation 11	If the pre-processing contains removal of raw channel subspace (by the UE), then information about the remaining subspace (e.g., the SD and FD basis vectors) needs to be reported to the network side along with the encoder output bits.
Observation 12	The importance of CBSR will increase due to more complicated interference situations in coming deployments and bands
Observation 13	A benefit of a Target CSI definition based on eType-II is that CBSR can straightforwardly be applied by gNB to UE configuration of the target
Observation 14	Since a CSI-RS measurement may be used for multiple purposes (monitoring, inference, data collection), and processed by different hardware in the UE, RAN1 can consider discussing CPU and measurement processing units (MPU) as two decoupled entities used to define the UE processing load

[bookmark: _In-sequence_SDU_delivery]8 References
RP-213599, Study on Artificial Intelligence (AI) / Machine Learning (ML) for NR Air Interface, 3GPP TSG RAN, Meeting #94e, December 6-11, 2021.
[bookmark: _Ref101874799]R1-2203280, General aspects of AI PHY framework, Ericsson, 3GPP TSG-RAN WG1 Meeting 109-e, May 16-27, 2022. 
[bookmark: _Ref101876342]R1-2203281, Evaluation of AI-CSI, Ericsson, 3GPP TSG-RAN WG1 Meeting 109-e, May 16-27, 2022. 
[bookmark: _Ref111191375]R1-2206883, Evaluation of AI-CSI, Ericsson, 3GPP TSG-RAN WG1 Meeting 110, August 22-26, 2022.
[bookmark: _Ref118712709]R1-2210954, Evaluations of AI-CSI, Ericsson, 3GPP TSG-RAN WG1 Meeting 111, November 14-18, 2022.
[bookmark: _Ref118715336]R1-211287, Discussions on general aspects of AI/ML framework, Ericsson, 3GPP TSGRAN WG1 Meeting 111, November 14-18, 2022. 
R1-2300154, Evaluations of AI-CSI, Ericsson, 3GPP TSG-RAN WG1 Meeting 112, February 27th – March 3rd, 2023
R1-2212109, “Other aspects on AI/ML for CSI feedback enhancement”, Qualcomm, 3GPP TSG-RAN WG1 Meeting 111, November 14-18, 2022.
R1-2300153, Discussions of AI-CSI, Ericsson, 3GPP TSG-RAN WG1 Meeting 112, February 27th – March 3rd, 2023
R1-2302918, Evaluations of AI-CSI, Ericsson, 3GPP TSG-RAN WG1 Meeting 112bis-e, April, 2023






	4/4	
image3.png
CSI-RS/IM/SSB resource for
channel/interference measurement

PDCCH

trigger time (slot)
DLslot n”= ULslotn’
Csl reference
resource

MPU occupancy for periodic/semi persistent CSI report

CPU occupancy for calculating the CSl report

CPU occupancy for calculating the CSl report

MPU/CPU occupancy
MPU occupancy for aperiodic Sl report





image1.png
SGCS

For layer 1

0.96
L=6,M=10
0.94 1
L=8,M=5
0.92 +
L=6, M=10

L=8,M=10 @
@ L=8, M=15

L=6, M=15

0.90 4 4 0 L=4, M=15

0.88

L=4,M=10
0.86 1
L=4, M=5

2000 4000 6000 8000 10000 12000 14000 16000

UL ov!

erhead

N
pueqqns Jad sgy Jo JaquinN




image2.png
0.875

Unquantized

0.850 -

o
®
N
a

Fraction of geneie mean utp
) o ° o
3 3 3 @
N e 3 S
] 3 & )

0.700 +

LBMH@ L12M13
L=8,M=10
L=12,M=10
L=8 M=7

L=12,M=7
®

® ©L=4, M=13
@ L=4,M=10

L=4,M=7

7500 10000 12500 15000 17500 20000
UL overhead

5000

pueqqns sad sgy Jo JaquinN

Fraction of geneie mean utp

0.875

7-bit eType-Il quantization

0.850 -

o
@
I
o

o
@
=3
S

o o o
< S <
N a N}
a o a

0.700 1

L=12,M=13
L=8,M=13
L=8, M 10
L=8, M= 7
L 12,M=7 L=12,M=10
{L=4, M= 18 L=4,M=13
eTy| ParComb 6
560 10‘00 15‘()0 ZObO 25‘00 30‘00
UL overhead

pueqqns sad sgy Jo JaquinN




