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Introduction
In RAN#112 meeting, the agreement [1][2] have been achieved for the evaluation on AI/ML for beam management.
	Agreement
· Further study the impact of quantization error of inputed L1-RSRP (for training and inference) for AI/ML model for beam management. 
· Existing quantization granularity of L1-RSRP (i.e., 1dB for the best beam, 2dB for the difference to the best beam) is the starting point for evaluation at least for network-sided model.
Agreement
· Further study on whether/how to evaluate the performance impact with L1-RSRP measurement accuracy. 
Agreement
· For DL Tx beam prediction, the definition of Top-1 genie-aided Tx beam is defined as
· Option A (baseline): the Top-1 genie-aided Tx beam is the Tx beam that results in the largest L1-RSRP over all Tx and Rx beams
· Option B(optional), the Top-1 genie-aided Tx beam is the Tx beam that results in the largest L1-RSRP over all Tx beams with specific Rx beam(s)
· FFS on specific Rx beam(s)
· Note: specific Rx beams are subset of all Rx beams
· For DL Tx-Rx beam pair prediction, the definition of Top-1 genie-aided Tx-Rx beam pair is defined as
· Option A: The Tx-Rx beam pair that results in the largest L1-RSRP over all Tx and Rx beams
· Other options are not precluded and can be reported by companies. 
· Note: This is only for evaluation discussion 
Agreement
· For AI/ML models, which provide L1-RSRP as the model output, to evaluate the accuracy of predicted L1-RSRP, companies optionally report average (absolute value)/CDF of the predicted L1-RSRP difference, where the predicted L1-RSRP difference is defined as:
· The difference between the predicted L1-RSRP of Top-1[/K] predicted beam and the ideal L1-RSRP of the same beam.
Agreement
· For the evaluation of Option 2: Set B is variable (e.g., different beams (pairs) patterns in each time instance/report/measurement during training and/or inference), further study the following options as AI/ML model inputs 
· Alt 2: Implicit information of Tx beam ID and/or Rx beam ID
· E.g., measurements of Set B of beams together with default values (e.g. 0) for the beams not in Set B are used as AI inputs in a certain order/ matrix/ vector. 
· Detailed assumption can be reported by companies.
· Alt 3: Tx beam ID and/or Rx beam ID is used as inputs of AI/ML explicitly 
· Note: Specification impact can be discussed separately.  
Agreement
· Additionally study the following option on the selection of Set B of beams (pairs) (for Option 2: Set B is variable) 
· Opt D: Set B is a subset of measured beams (pairs) Set C (including Set B = Set C), e.g. Top-K beams(pairs) of Set C
· Companies report the number of pre-configured patterns used in the evaluation for Option 2: Set B is variable if applicable (e.g. Opt A and Opt B)



This contribution presents our views on EVM and the evaluation results of spatial-domain DL beam prediction.
EVM on the DL beam prediction
For spatial-domain DL beam pair predication, NW configures subset of RSs for beam measurement. And UE measures L1-RSRPs (Set B) of subset of beam pairs and input them to the AI/ML model. The AI/ML model will predict the L1-RSRPs (Set A) of all beam pairs. Then, the potential one or several best beam pairs will be selected among the predicted L1-RSRPs of all beam pairs. The function of AI/ML model is shown as Figure 1.
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		Figure 1: the function of AI/ML model for spatial-domain beam pairs prediction
 In RAN1#112 meeting, the pattern design of Set B has been discussed as follows.
	Proposal 3.1-4b
· For DL Tx beam prediction, when Set B is a subset of Set A, study the following pattern design of Set B of beams when Set B is fixed, at least consider the following options:
· Alt1: Uniformed distributed in Set A
· Alt2: Based on statistic information from the collected dataset, FFS on feasibility and details
· Other alternatives are not precluded. 
Proposal 3.1-5a
· For Tx-Rx beam pair prediction, study the following pattern design of Set B of beam pairs, at least consider the following options:
· Alt1: Sparely uniformed distributed among both Tx beams and Rx beams 
· Alt2: Uniformed distributed among Tx beams for all Rx beams
· Alt3: Based on statistic information, FFS on feasibility and details
· Other alternatives are not precluded.


Regarding the pattern design of Set B, from our understanding, the pattern design of measured beams to predict the beams of Set A needs to consider the channel characteristic in spatial domain. From this point, the pattern design of RS (e.g., DMRS, CSI-RS) in NR can be used as a reference. Generally, the uniform distributed pattern of RS is designed in NR system. In this case, the pattern design of Set B with uniformed distribution can be as a starting point for evaluation. On the other hand, according to the evaluation results, it’s observed that the pattern of Set B with uniformed distribution has achieved the expected gains.
Proposal 1: For DL Tx beam prediction, when Set B is a subset of Set A, it’s suggested that pattern of Set B of beams is designed with uniformed distribution in Set A as starting point for evaluation.
Proposal 2: For DL Tx-Rx beam pair prediction, it’s suggested that pattern of Set B is designed with unformed distribution among both Tx beams and Rx beams as starting point for evaluation.
In RAN1#112 meeting, the EVM on comparison of DL Tx beam prediction and DL Tx-Rx beam pair prediction is discussed as follows.
	Proposal 3.3-1a
· For performance comparison between DL Tx beam prediction and Tx-Rx beam pair prediction, take the following options as a starting point:
· Option 1: Tx-Rx beam pair prediction accuracy with the same RS resources
· For the case using AI/ML to predict DL Tx beam, P1 or P3 may be needed to obtain the best Rx beam of the predicted Tx beam
· FFS on other details
· Option 2: DL Tx beam prediction accuracy with the same RS resources
· For the case using AI/ML to predict Tx-Rx beam pair, DL Tx beam prediction accuracy only counting the percentage of the predicted Tx beam(s) is correct or not regardless Rx beam
· FFS on other details
· Other options are not precluded



In RAN1-112 meeting, the EVM on comparison between DL Tx beam prediction and Tx-Rx beam pair prediction is discussed. From our understanding, the targets of DL Tx beam prediction and Tx-Rx beam pair prediction are different. For the Tx beam prediction, AI/ML model predicts the optimal Tx beam but not Rx beam. For Tx-Rx beam prediction, the optimal Tx-Rx beam pair is predicted with AI/ML model which includes both Tx and Rx beams. On the other hand, the DL Tx beam prediction and Tx-Rx beam pair prediction are used for different scenario. The Tx-Rx beam pair prediction is used to predict an optimal Tx-Rx beam pair out of all available Tx-Rx beam pairs which corresponds to the P2+P3 beam selection procedure. For Tx beam prediction, the DL Tx beam prediction is used to predict an optimal Tx beam with the assumption of specific Rx beam which can well match the P2 beam refinement procedure in the current specification. In this case, it is difficult to compare the performance of DL Tx beam prediction and Tx-Rx beam pair prediction with fair conditions.
Proposal 3: Regarding DL Tx beam prediction and DL Tx-Rx beam pair prediction, considering the different target and application scenario, it’s not suggested to compare the evaluation results between DL Tx beam prediction and DL Tx-Rx beam pair prediction.
In RAN1-112 meeting, the Rx beam assumption for DL Tx beam prediction is discussed as follows.
	Proposal 3.2-1e=>3.2-1f
· At least for evaluation on the performance of DL Tx beam prediction, consider the following options for Rx beam for providing input for AI/ML model for training and/or inference if applicable
· Case 0: the best Rx beam for the best Tx beam within Set B 
· Case 1: the best Rx beam searched for one Tx beam within Set B 
· Case 2: the best Rx beam for each Tx beam within Set B
· Case 3: the best Rx beam among specific Rx beams for each Tx beam within Set B
· Case 4: the best Rx beam among specific Rx beams for the best Tx beam within Set B
· Case 5: the best Rx beam for the best Tx beam with in Set A
· Note: The best Rx beam may be based on measurements of always-on SSB, or CSI-RS for Set B



In RAN1-112 meeting, the significant effort is spent on Rx beam assumption for DL Tx beam prediction and many candidates of Rx beam assumption are discussed as above proposal. From our understanding, the target of DL Tx beam prediction with AI/ML model is to obtain the optimal Tx beam among a set of Tx beams. In this case, it’s suggested to focus more efforts on the EVM for Tx beam prediction with simple Rx beam assumption in P2 stage such as omni-Rx beam for each panel instead of complex Rx beam assumption. The optimal Rx beam can also be obtained by P3 stage in beam sweeping procedure.
Proposal 4: Regarding the Rx beam assumption for DL Tx beam prediction, it’s suggested a simple Rx beam assumption such as omni-Rx beam for each antenna panel for evaluation.
Evaluation results for spatial-domain beam pairs prediction
In this section, the AI/ML model performance is evaluated for DL spatial-domain beam pairs prediction. In our simulation, gNBs are assumed to be configured with 64 antenna elements which supports 32 transmitting beams (4 beams in vertical and 8 beams in horizonal). UEs are configured with 2 panels and total 16 antenna elements which supports 8 receiving beams (1 beam in vertical and 4 beams in horizonal for each panel). The details about the simulation parameters are shown in Table 9.
The samples of dataset generated by SLS are about 60k sets of L1-RSRPs and each set includes the L1-RSRPs for total 256 beam pairs. 80% samples are used for model training and 20% samples are used for model testing. The AI/ML model is shown in figure 2.
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            Figure 2 the architecture of AI/ML model for DL spatial-domain beam pairs prediction
In the figure above, the pre-processing is used to adapt to variable Set B. The function of pre-processing can be implemented with non-AI/ML method (e.g., typical interpolation) which extends the variable size of Set B to the same size of Set A. 
The neural network includes four fully connected layers. Two hidden layers have 384 and 512 nodes, respectively. The number of nodes for output and input layers depends on the size of Set A. The loss function of the network is MAE which gauges the differences between the predicted L1-RSRPs and the ground truth. The parameters for AI/ML training are shown in Table 10.
To evaluate the performance of AI/ML model for spatial-domain DL beam pairs prediction, the following KPIs are used. 
· Average L1-RSRP difference of Top-1 predicted beam
· Beam prediction accuracy (%) for Top-1 and/or Top-K/1 beams

Generalization evaluation for the different configurations 
In this section, the generalization performance of AI/ML model for different configurations on Set B or Set A is evaluated as follows.
Variable Set B of beam pairs
To evaluate the performance of AI/ML model with variable Set B of beam pairs, we consider two kinds of variable Set B. One is the set B with variable size, the number of beams for input of AI/ML model is variable. The other one is that the size of set B is the same but the pattern of beams in Set B is variable.
In the simulation, the following configurations for Set B are assumed in the evaluation as follows.
Configuration A-1: 
16 Tx beams and 4 Rx beams (total 64 beam pairs) are used to predict the L1-RSRPs of all the 256 DL beam pairs.
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Figure 3: beam pattern for DL spatial-domain pairs prediction (configuration A-1)
Configuration A-2: 
16 Tx beams and 4 Rx beams (total 64 beam pairs) with different pattern from configuration A-1 are used to predict the L1-RSRPs of all the 256 DL beam pairs.
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Figure 4: beam pattern for DL spatial-domain pairs prediction (configuration A-2)
Configuration B: 
8 Tx beams and 4 Rx beams (total 32 beam pairs) are used to predict the L1-RSRPs of all the 256 DL beam pairs.
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Figure 5: beam pattern for DL spatial-domain pairs prediction (configuration B)
· Variable sizes of Set B
For variable size of Set B, the following cases are evaluated.
Case 1: the model is trained with 100% samples from dataset of configuration B and tested with 100% samples from dataset of configuration B.
Case 2: the model is trained with 100% samples from dataset of configuration A-1 and tested with 100% samples from dataset of configuration B.
Case 3: the model is trained with 50% samples from dataset of configuration A-1 and B respectively and tested with 100% samples from dataset of configuration B.
The simulation results are shown as following table:
        Table 1: simulation results for beam pair prediction for variable size of Set B
	 Cases #
	Beam prediction accuracy (%)
	Average L1-RSRP diff. (dB)

	
	TOP1 
	TOP2 
	TOP4 
	TOP8 
	

	1
	62.3
	80.7
	90.7
	95.1
	3.11

	2
	1.4
	2.5
	6.5
	18.1
	9.87

	3
	61.9
	80.5
	90.6
	95
	3.16


Compared the results with case 1 and 2, for the variable size of Set B, it is observed that the performance has significant degradation with the mismatch on the size of Set B between the training and interference. The performance of AI/ML model is sensitive to the size of Set B.
To improve the performance of AI/ML model with variable size of Set B, the model is re-trained with hybrid dataset as case 3. The simulation results show that the performance is improved a lot compared with case 2 and 3.
Observation 1: For BM-case 1, the performance of AI/ML model is sensitive to the size of Set B. 
· The mismatch on the size of Set B between training and inference will cause significant performance degradation. 
Observation 2: For BM-case 1, the training dataset constructed by a set of pre-configured sizes of Set B will improve the generalization performance of AI/ML model.
· The same size but variable patterns of Set B
For the same size but variable pattern of Set B, the following cases are evaluated.
Case 4: the model is trained with 100% samples from dataset of configuration A-1 and tested with 100% samples from dataset of configuration A-1.
Case 5: the model is trained with 100% samples from dataset of configuration A-2 and tested with 100% samples from dataset of configuration A-1.
Case 6: the model is trained with 50% samples from dataset of configuration A-1 and A-2 respectively and tested with 100% samples from dataset of configuration A-1.
The simulation results are shown as the following table:
Table 2: simulation results for beam pair prediction for the same size but variable patterns of Set B
	Cases #
	Beam prediction accuracy (%)
	Average L1-RSRP diff. (dB)

	
	TOP1 
	TOP2 
	TOP4 
	TOP8 
	

	4
	68.4
	88
	95.9
	98.4
	1.61

	5
	28
	42.6
	59.2
	75.1
	5.25

	6
	65.1
	87.3
	96.8
	99
	1.72


Compared the results with case 4 and 5, for the same size but variable patterns of Set B, it is observed that the performance has significant degradation with the mismatch on the pattern of Set B between the training and interference. The performance of AI/ML model is also sensitive to the pattern of Set B even though the size of Set B is the same.
To improve the performance of AI/ML model with variable pattern of Set B, the model is re-trained with hybrid dataset as case 6. The simulation results show that the performance is improved a lot compared with case 5 and 6.
Observation 3: For BM-case 1, the performance of AI/ML model is sensitive to the pattern of Set B even though the size of Set B is the same. 
· The mismatch on the pattern of Set B between training and inference will cause significant performance degradation. 
Observation 4: For BM-case 1, the training dataset constructed by a set of pre-configured patterns of Set B will improve the generalization performance of AI/ML model.
Various configurations of Tx antennas on gNB
To evaluate the performance of AI/ML model with various configurations of Tx antennas on gNB, compared with the basic configuration on Tx antennas (64 antenna elements), additional configuration is assumed that only half of Tx antenna elements (32 antenna elements) is activated on the gNB which supports total 16 Tx beams (4 beams in vertical and 4 beams in horizonal). The generalization performance of AI/ML model is evaluated in this sub-section.
To evaluate the generalization performance of AI/ML model various configuration of Tx antennas on gNB, the following cases are evaluated.
Case 7: the model is trained with 100% samples from dataset of 64 Tx antenna elements and tested with 100% samples from dataset of 64 Tx antenna elements.
Case 8: the model is trained with 100% samples from dataset of 32 Tx antenna elements and tested with 100% samples from dataset of 64 Tx antenna elements.
Case 9: the model is trained with 50% samples from dataset of 64 and 32 Tx antenna elements respectively and tested with 100% samples from dataset of 64 Tx antenna elements.
Table 3: simulation results for beam pair prediction for the various configurations of Tx antennas 
	Cases #
	Beam prediction accuracy (%)
	Average L1-RSRP diff. (dB)

	
	TOP1 
	TOP2 
	TOP4 
	TOP8 
	

	7
	68.4
	88
	95.9
	98.4
	1.61

	8
	10.7
	18.6
	26.9
	35.5
	4.61

	9
	64.1
	86.4
	96.4
	98.9
	1.76


From the result of case 8, if the model is trained with dataset of 32 Tx antenna elements and tested with dataset of 64 Tx antenna elements, the mismatch on the various number of Tx antenna elements between the training and interference will cause the significant performance degradation. The performance of AI/ML model is sensitive to the number of Tx antenna elements.
However, when the model is re-trained with hybrid dataset constructed by various configuration of Tx antenna as case 9, The performance is improved a lot compared with case 8 and 9.
Observation 5: For BM-case 1, the performance of AI/ML model is sensitive to the configuration of Tx antennas (the number of Tx antenna elements). 
· The mismatch on the configuration of Tx antennas between training and inference will cause significant performance degradation.
Observation 6: For BM-case 1, the training dataset constructed by a set of pre-configured configurations of Tx antennas on gNB will improve the generalization performance of AI/ML model.
Various configurations of Rx antennas on UE
To evaluate the performance of AI/ML model with various configurations of Rx antenna on UE, compared with the basic configuration on Rx antennas (16 antenna elements), additional configuration is assumed that only half of Rx antenna elements (8 antenna elements) is activated on the UE which supports total 4 Rx beams (2 beams for each panel). The generalization performance of AI/ML model is evaluated in this sub-section.
To evaluate the generalization performance of AI/ML model various configurations of Rx antennas on UE, the following cases are evaluated.
Case 10: the model is trained with 100% samples from dataset of 16 Rx antenna elements and tested with 100% samples from dataset of 16 Rx antenna elements.
Case 11: the model is trained with 100% samples from dataset of 8 Rx antenna elements and tested with 100% samples from dataset of 16 Rx antenna elements.
Case 12: the model is trained with 50% samples from dataset of 16 and 8 Rx antenna elements respectively and tested with 100% samples from dataset of 16 Rx antenna elements.
Table 4: simulation results for beam pair prediction for the various configurations of Rx antennas 
	Cases #
	Beam prediction accuracy (%)
	Average L1-RSRP diff. (dB)

	
	TOP1 
	TOP2 
	TOP4 
	TOP8 
	

	10
	68.4
	88
	95.9
	98.4
	1.61

	11
	17.2
	26
	36.4
	50
	21.84

	12
	63.1
	86.3
	96.4
	98.8
	1.74


From the result of case 11, if the model is trained with dataset of 8 Rx antenna elements and tested with dataset of 16 Rx antenna elements, the mismatch on the various number of Rx antenna elements between the training and interference will cause the significant performance degradation. The performance of AI/ML model is sensitive to the number of Rx antenna elements.
However, when the model is re-trained with hybrid dataset constructed by various configurations of Rx antennas as case 12, The performance is improved a lot compared with case 11 and 12.
Observation 7: For BM-case 1, the performance of AI/ML model is sensitive to the configuration of Rx antennas (the number of Rx antenna elements). 
· The mismatch on the configuration of Rx antennas between training and inference will cause significant performance degradation.
Observation 8: For BM-case 1, the training dataset constructed by a set of pre-configured configurations of Rx antennas on UE will improve the generalization performance of AI/ML model.
Generalization evaluation for the different scenarios
In this section, the generalization performance of AI/ML model with different parameters about the scenario is evaluated. And in our simulation, the configuration A-1 in figure 3 is used for the following evaluations.
Deployment scenarios about Uma/Umi
In this sub-section, the generalization performance of AI/ML model is evaluated with scenario Uma and Umi as following cases.
Case 13: the model is trained with 100% samples from dataset of UMi and tested with 100% samples from dataset of Umi.
Case 14: the model is trained with 100% samples from dataset of UMa and tested with 100% samples from dataset of Umi.
Case 15: the model is trained with 50% samples from dataset of Uma and UMi respectively and tested with 100% samples from dataset of Umi.
The simulation results are shown as the following table:
Table 5: simulation results for beam pair prediction for scenarios Uma and Umi
	 Cases #
	Beam prediction accuracy (%)
	Average L1-RSRP diff. (dB)

	
	TOP1 
	TOP2 
	TOP4 
	TOP8 
	

	13
	67.8
	87.6
	96
	98.4
	1.33

	14
	53.6
	77.7
	91.1
	97
	2.31

	15
	65.5
	87
	96.1
	98.6
	1.39


Compared the results with case 13 and 14, when the model is tested with the dataset of Umi scenario, the performance has slight degradation if the model is trained with the dataset of Uma. The performance of AI/ML model is not sensitive to the deployment scenarios about Uma/Umi.
The hybrid training dataset constructed by the scenario Uma and Umi will slightly improve the performance for the AI/ML model generalization as case 15.
Observation 9: For BM-case 1, the performance of AI/ML model is not sensitive to the scenario of Uma/Umi.
· The mismatch on the scenarios of Uma and Umi between training and inference will cause slight performance degradation.
Deployment scenarios about parameter of ISD
In this sub-section, the generalization performance of AI/ML model with different parameters of ISD in Uma is evaluated as following cases. 
Case 16: the model is trained with 100% samples from dataset of 500m ISD and tested with 100% samples from dataset of 500m ISD.
Case 17: the model is trained with 100% samples from dataset of 200m ISD and tested with 100% samples from dataset of 500m ISD.
Case 18: the model is trained with 50% samples from dataset of 200m and 500m ISD respectively and tested with 100% samples from dataset of 500m ISD.
The simulation results are shown as the following table:
Table 6: simulation results for beam pair prediction for different ISDs in Uma
	 Cases #
	Beam prediction accuracy (%)
	Average L1-RSRP diff. (dB)

	
	TOP1 
	TOP2 
	TOP4 
	TOP8 
	

	16
	65.2
	87
	96.1
	98.4
	1.53

	17
	65.9
	85.7
	94.8
	97.8
	1.61

	18
	65.7
	86.8
	95.9
	98.3
	1.54


Compared the results with case 16 and 17, the performance of AI/ML model is the same even though the model is trained with the dataset of 200m ISD and tested with the dataset of 500m ISD. The performance of AI/ML model is not sensitive to the parameter of ISD.
The hybrid training dataset constructed by the different parameters of ISD has almost no improvement on generalization performance of the AI/ML model as case 18.
Observation 10: For BM-case 1, the performance of AI/ML model is not sensitive to the parameters of ISD.
· The mismatch on the parameter of ISD between training and inference will cause almost no performance degradation.
Various outdoor/indoor UE distributions
In this sub-section, the generalization performance of AI/ML model with various outdoor/indoor UE distributions (100% outdoor UE and 80% indoor UE) in Uma is evaluated as following cases. 
Case 19: the model is trained with 100% samples from dataset of 100% outdoor UE distribution and tested with 100% samples from dataset of 100% outdoor UE distribution.
Case 20: the model is trained with 100% samples from dataset of 80% indoor UE distribution and tested with 100% samples from dataset of 100% outdoor UE distribution.
Case 21: the model is trained with 50% samples from dataset of 100% outdoor and 80% indoor UE distribution respectively and tested with 100% samples from dataset of 100% outdoor UE distribution.
The simulation results are shown as the following table:
Table 7: simulation results for beam pair prediction for different outdoor/indoor UE distributions
	 Cases #
	Beam prediction accuracy (%)
	Average L1-RSRP diff. (dB)

	
	TOP1 
	TOP2 
	TOP4 
	TOP8 
	

	19
	80.3
	94.5
	98.5
	99.4
	1.28

	20
	74.8
	92.5
	97.8
	99.3
	1.75

	21
	78.4
	93.7
	98.4
	99.5
	1.42


Compared the results with case 19 and 20, when the model is tested with the dataset of 100% outdoor UE distribution, the performance has slight degradation if the model is trained with the dataset of 80% indoor UE distribution. The performance of AI/ML model is not sensitive to the various outdoor/indoor UE distributions.
The hybrid training dataset constructed by various outdoor/indoor UE distributions will slightly improve generalization performance of the AI/ML model as case 21.
Observation 11: For BM-case 1, the performance of AI/ML model is not sensitive to the various outdoor/indoor UE distributions.
· The mismatch on the various outdoor/indoor UE distributions between training and inference will cause slight performance degradation.
Summary on generalization evaluation
According to the simulation results of generalization performance of AI/ML model with different parameters on scenarios and configurations, it is observed that the performance of AI/ML model is sensitive to the configuration. The variable of Set B or Set A will cause the significant performance degradation if the mismatch happens between training and inference of AI/ML model. However, for the different parameters of scenarios such as ISD, Uma/Umi, outdoor/indoor UE distribution, the performance of AI/ML model has slight or almost no degradation even though the mismatch happens on the parameters of scenarios between training and inference of AI/ML model.
Observation 12: For BM-case 1, the performance of AI/ML model is more sensitive to the different parameters of configuration than that of scenarios.
Evaluation with quantization error on measurement results
In RAN1-112 meeting, the impacts of quantization error on L1-RSRPs for the training and inference are agreed to be studied. In this sub-section, the impacts of quantization error on L1-RSRPs are evaluated with the legacy method.
In the simulation, the measured L1-RSRPs are quantized with 7 bits with dynamic range [-140dBm, -44dBm] and 1dB step as legacy method. 
The following cases are evaluated in this sub-section.
Case 22: the data samples for both training and test are float-point.
Case 23: the data samples for training are float-point, while for test, the data samples are fixed-point.
Case 24: the data samples for both training and test are fixed-point.
The evaluation results are shown as following table.
Table 8: simulation results for beam pair prediction for quantization error on L1-RSRPs
	 Cases #
	Beam prediction accuracy (%)
	Average L1-RSRP diff. (dB)

	
	TOP1 
	TOP2 
	TOP4 
	TOP8 
	

	22
	68.4
	88
	95.9
	98.4
	1.61

	23
	60.3
	79.9
	88.9
	91.7
	2.31

	24
	62.4
	84.1
	94
	97.2
	2.44


From the evaluation results, if the test data samples are quantized while the model is trained with float-point as case 23, the performance of AI/ML model has slight degradation compared with performance of the model trained and tested with float-point data samples. Compared with case 22 and 24, the quantization with the legacy method for both training and inference will also cause slight performance degradation of AI/ML model. 
For our understanding, the measured L1-RSRPs for training and inference of AI/ML model have larger dynamic range compared with legacy method. In legacy method only several largest measured L1-RSRPs need to be reported. However, both strong and weak beams need to be measured and reported from UE for training and inference of NW-side model.
Observation 13: For BM-case 1, the quantization with legacy method will cause slight performance degradation since the dynamic range is not enough to quantize the L1-RSRPs for the training and inference of NW-side model.

Conclusion
In this contribution, we present our views and the evaluation results of DL beam prediction on AL/ML. For the discussion, we have the following proposals and observations.
Proposal 1: For DL Tx beam prediction, when Set B is a subset of Set A, it’s suggested that pattern of Set B of beams is designed with uniformed distribution in Set A as starting point for evaluation.
Proposal 2: For DL Tx-Rx beam pair prediction, it’s suggested that pattern of Set B is designed with unformed distribution among both Tx beams and Rx beams as starting point for evaluation.
Proposal 3: Regarding DL Tx beam prediction and DL Tx-Rx beam pair prediction, considering the different target and application scenario, it’s not suggested to compare the evaluation results between DL Tx beam prediction and DL Tx-Rx beam pair prediction.
Proposal 4: Regarding the Rx beam assumption for DL Tx beam prediction, it’s suggested a simple Rx beam assumption such as omni-Rx beam for each antenna panel for evaluation.
Observation 1: For BM-case 1, the performance of AI/ML model is sensitive to the size of Set B. 
· The mismatch on the size of Set B between training and inference will cause significant performance degradation. 
Observation 2: For BM-case 1, the training dataset constructed by a set of pre-configured sizes of Set B will improve the generalization performance of AI/ML model.
Observation 3: For BM-case 1, the performance of AI/ML model is sensitive to the pattern of Set B even though the size of Set B is the same. 
· The mismatch on the pattern of Set B between training and inference will cause significant performance degradation. 
Observation 4: For BM-case 1, the training dataset constructed by a set of pre-configured patterns of Set B will improve the generalization performance of AI/ML model.
Observation 5: For BM-case 1, the performance of AI/ML model is sensitive to the configuration of Tx antennas (the number of Tx antenna elements). 
· The mismatch on the configuration of Tx antennas between training and inference will cause significant performance degradation.
Observation 6: For BM-case 1, the training dataset constructed by a set of pre-configured configurations of Tx antennas on gNB will improve the generalization performance of AI/ML model.
Observation 7: For BM-case 1, the performance of AI/ML model is sensitive to the configuration of Rx antennas (the number of Rx antenna elements). 
· The mismatch on the configuration of Rx antennas between training and inference will cause significant performance degradation.
Observation 8: For BM-case 1, the training dataset constructed by a set of pre-configured configurations of Rx antennas on UE will improve the generalization performance of AI/ML model.
Observation 9: For BM-case 1, the performance of AI/ML model is not sensitive to the scenario of Uma/Umi.
· The mismatch on the scenarios of Uma and Umi between training and inference will cause slight performance degradation.
Observation 10: For BM-case 1, the performance of AI/ML model is not sensitive to the parameters of ISD.
· The mismatch on the parameter of ISD between training and inference will cause almost no performance degradation.
Observation 11: For BM-case 1, the performance of AI/ML model is not sensitive to the various outdoor/indoor UE distributions.
· The mismatch on the various outdoor/indoor UE distributions between training and inference will cause slight performance degradation.
Observation 12: For BM-case 1, the performance of AI/ML model is more sensitive to the different parameters of configuration than that of scenarios.
Observation 13: For BM-case 1, the quantization with legacy method will cause slight performance degradation since the dynamic range is not enough to quantize the L1-RSRPs for the training and inference of NW-side model.

Appendix
Table 9:  parameters of SLS for spatial-domain DL beam pair prediction
	Parameters
	Values

	Frequency Range
	FR2 @ 30 GHz
· SCS: 120 kHz

	Deployment
	200m ISD,
· 2-tier model with wrap-around (7 sites, 3 sectors/cells per site)

	Channel mode
	UMa with distance-dependent LoS probability function defined in Table 7.4.2-1 in TR 38.901.

	System BW
	80MHz

	UE Speed
	· For spatial-domain beam prediction, 3km/h

	UE distribution
	· 10 UEs per sector/cell for evaluation. 
· 80% indoor ,20% outdoor as in TR 38.901

	Transmission Power
	Maximum Power and Maximum EIRP for base station and UE as given by corresponding scenario in 38.802 (Table A.2.1-1 and Table A.2.1-2)

	BS Antenna Configuration
	    One panel: (M, N, P, Mg, Ng) = (4, 8, 2, 1, 1), (dV, dH) = (0.5, 0.5) λ 
Azimuth angle (degree) = [-78.75, -56.25, -33.75, -11.25, 11.25, 33.75, 56.25,78.75]
Zenith angle (degree) = [22.5, 67.5,112.5, 157.5]
Total 32 beams = 8(H)*4(V), DFT beams

	BS Antenna radiation pattern
	TR 38.802 Table A.2.1-6, Table A.2.1-7

	UE Antenna Configuration
	Panel structure: (M, N, P) = (1,4,2)
   2 panels (left, right) with (Mg, Ng) = (1, 2) 
Azimuth angle (degree) = [22.5, 67.5, -67.5, -22.5]
Total 8 beams = 4(H)*1(V)*2(panels), DFT beams

	UE Antenna radiation pattern
	TR 38.802 Table A.2.1-8, Table A.2.1-10

	BS Tx Power
	40 dBm

	Maximum UE Tx Power
	23 dBm

	BS receiver Noise Figure
	7 dB

	UE receiver Noise Figure
	10 dB

	Inter site distance
	200m

	BS Antenna height
	25m

	UE Antenna height
	1.5 m

	Car penetration Loss
	38.901, sec 7.4.3.2: μ = 9 dB, σp = 5 dB



Table 10:  parameters of AI/ML model training
	Parameter
	Value

	Test samples
	12600

	Training samples
	50400

	Batch-size
	32

	Initial learning rate
	1.00E-03

	Epoch
	100

	Optimizer
	Adam

	Lr adjust schedule
	Warm up + cosine annealing

	Loss function
	MAE
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