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[bookmark: _Ref111120162]Introduction
In this contribution, we continue the discussion of the evaluation of machine learning for CSI feedback from RAN1#112 [1] and address open issues. We discuss both CSI feedback compression with autoencoders and CSI prediction.
[bookmark: _Hlk510705081]Discussion
CSI compression
Model Performance
[bookmark: _Hlk131491503]In this section, we discuss the performance of AI/ML models for compression of the eigenvectors of the transmit covariance matrix. In past contributions (e.g., [2]), we have reported on a convolutional neural network (CNN) based model architecture. In this contribution, we report on the transformer-based model architecture shown in Figure 1 and extend the previously reported SGCS results [3] to system level throughput results.  Both the encoder and decoder contain three multi-head self-attention blocks.  For the results reported here, the model is trained using Type I joint training with embedded fixed scalar quantization (i.e., the training is quantization-aware using Case 2-1).  The training dataset contains 630K samples of which 126K samples are used for testing and the remaining samples are used for training.  The dataset is drawn from a dense urban scenario (Urban macro models) using the parameters shown in Table 1.  In addition, the hyperparameters are shown in Table 2.
[image: ]
[bookmark: _Ref127450353]Figure 1: Architecture of the transformer model for eigenvector compression.
[bookmark: _Ref127310935]

[bookmark: _Ref127496300][bookmark: _Ref127366054]Table 1:  SLS Parameters for Transformer Model Training Data
	Parameter
	Value

	Simulation scenario
	UMa

	Carrier frequency
	4 GHz

	Bandwidth
	20 MHz

	Num. cell sites
	7

	BS antenna height
	25m

	Distribution of UEs (indoor %, outdoor %)
	80, 20

	UE speed (Indoor/Outdoor)
	3 km/h / 30 km/h

	Macrocell inter-site distance
	200m



[bookmark: _Ref127365775]Table 2: Hyperparameters for the Transformer Model
	Parameter
	Value

	Number of training/testing samples
	504K/126K

	Learning Rate
	

	Epochs
	500

	Batch size
	200

	Quantization
	Scalar (Uniform)

	Objective function
	GCS

	Total Trainable Parameters
	About 1.5 M



We report system level simulation results for models trained with the above architecture and compare the results to the baseline.  The simulations are performed using the agreed evaluation methodology with the system level assumptions given in Table 13 in the Appendix.  The baseline performance uses the Rel-16 eTypeII codebook with parameter combinations 1-8, in that order, as defined in TS 38.214.  Note that the feedback overhead for parameter combination 7 is somewhat lower than the overhead for parameter combination 6.  The transformer model is trained for the feedback overhead values shown in Table 3.  Five of the trained ML models (i.e., with overhead bits of 52, 104, 128, 208, and 312 for rank 1 eigenvectors) are used for system-level simulations, and the results are compared to the baseline Rel-16 eTypeII codebook results for maximum ranks of 1 and 2.  Figure 2 through Figure 5 contain the SGCS, mean user throughput, and cell-edge user throughput for MU-MIMO for both full buffer and bursty traffic at a target of 80% resource usage (FTP80) with ideal CSI-RS.  Note that the ML models used in the system level simulations were trained on the first rank eigenvectors of the transmit covariance matrix, and for rank > 1 inference the ML model takes the eigenvectors of each layer separately as the input (Option 3-1 of the RAN1#112 agreement on adapting to ranks greater than 1). For the Rel-16 eTypeII baseline results, the overhead is reported using the 95th percentile overhead for each parameter combination.  We see that the transformer model outperforms the baseline codebook across the range of feedback overhead, either yielding the same SGCS performance with reduced overhead or yielding better SGCS performance at constant overhead.  The gains seen in the SGCS performance translate into gains in the throughput performance as well.  The gains in mean user throughput are generally larger at higher maximum rank with gains as much as 13%.  The system-level simulation results in the required format can be found in Table 15 and Table 16 in the Appendix.
[bookmark: _Ref127471157]Table 3: Feedback Overhead Dimensions for Transformer-based Compression Model
	Compression Ratio
	Latent Variable Dimension
	Quantization (bits/latent variable)
	Feedback Overhead (bits)

	32
	26
	2
	52

	32
	26
	3
	78

	16
	52
	2
	104

	13
	64
	2
	128

	16
	52
	3
	156

	13
	64
	3
	192

	8
	104
	2
	208

	8
	104
	3
	312




[bookmark: _Ref127450512]
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[bookmark: _Ref131506217]Figure 2: Transformer model system-level performance compared to the Rel-16 Type II baseline, (a) SGCS; (b) mean user throughput gain; (c) cell-edge user throughput gain – MU-MIMO Rank 1 Full Buffer.
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(a)            			          (b)         		                 (c)
Figure 3.  Transformer model performance compared to the Rel-16 Type II baseline, (a) SGCS; (b) mean user throughput gain; (c) cell-edge user throughput gain – MU-MIMO Rank 2 Full Buffer.
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(a)            			          (b)         		                 (c)
Figure 4.  Transformer model performance compared to the Rel-16 Type II baseline, (a) SGCS; (b) mean user throughput gain; (c) cell-edge user throughput gain – MU-MIMO Rank 1 Bursty traffic with ~80% RU.
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[bookmark: _Ref131768324]Figure 5:  Transformer model performance compared to the Rel-16 Type II baseline, (a) SGCS; (b) mean user throughput gain; (c) cell-edge user throughput gain – MU-MIMO Rank 2 Bursty traffic with ~80% RU.

Observation 1:  The transformer-based CSI compression model outperforms baseline Rel-16 eTypeII codebook performance based on both the SGCS metric and MU-MIMO throughput performance.  Gains up to the following are seen:
· 6.5%/2.5% in mean/cell edge user throughput in full buffer traffic with maximum rank of 1.
· 8.5%/3.5% in mean/cell edge user throughput in full buffer traffic with maximum rank of 2.
· 4.5%/10.0% in mean/cell edge user throughput in bursty traffic (~80% RU) with maximum rank of 1.
· 13.0%/22.5% in mean/cell edge user throughput in bursty traffic (~80% RU) with maximum rank of 2.
[bookmark: _Hlk111177408]
Generalization/Scalability
In RAN1#111 [6], the following agreements were reached on generalizability and scalability of AI/ML models for CSI compression.  These agreements define various cases primarily for studying the scalability of CSI compression models across the input and output dimensions of the CSI generation part, plus the number of CSI generation or reconstruction parts used to achieve scalability.  The agreements are:

Agreement
For evaluating the generalization/scalability over various configurations for CSI compression, to achieve the scalability over different input dimensions of CSI generation part (e.g., different bandwidths/frequency granularities, or different antenna ports), the generalization cases of are elaborated as follows
· Case 1: The AI/ML model is trained based on training dataset from a fixed dimension X1 (e.g., a fixed bandwidth/frequency granularity, and/or number of antenna ports), and then the AI/ML model performs inference/test on a dataset from the same dimension X1.
· Case 2: The AI/ML model is trained based on training dataset from a single dimension X1, and then the AI/ML model performs inference/test on a dataset from a different dimension X2.
· Case 3: The AI/ML model is trained based on training dataset by mixing datasets subject to multiple dimensions of X1, X2,..., Xn, and then the AI/ML model performs inference/test on a single dataset subject to the dimension of X1, or X2,…, or Xn.
· Note: For Case 2/3, the solutions to achieve the scalability between Xi and Xj, are reported by companies, including, e.g., pre-processing to angle-delay domain, padding, additional adaptation layer in AI/ML model, etc.
· FFS the verification of fine-tuning
· FFS other additional cases

Agreement
For evaluating the generalization/scalability over various configurations for CSI compression, to achieve the scalability over different output dimensions of CSI generation part (e.g., different generated CSI feedback dimensions), the generalization cases of are elaborated as follows
· Case 1: The AI/ML model is trained based on training dataset from a fixed output dimension Y1 (e.g., a fixed CSI feedback dimension), and then the AI/ML model performs inference/test on a dataset from the same output dimension Y1.
· Case 2: The AI/ML model is trained based on training dataset from a single output dimension Y1, and then the AI/ML model performs inference/test on a dataset from a different output dimension Y2.
· Case 3: The AI/ML model is trained based on training dataset by mixing datasets subject to multiple dimensions of Y1, Y2,..., Yn, and then the AI/ML model performs inference/test on a single dataset of Y1, or Y2,…, or Yn.
· Note: For Case 1/2/3, companies to report whether the output of the CSI generation part is before quantization or after quantization.
· Note: For Case 2/3, the solutions to achieve the scalability between Yi and Yj, are reported by companies, including, e.g., truncation, additional adaptation layer in AI/ML model, etc.
· FFS the verification of fine-tuning
· FFS other additional cases

Agreement
For evaluating the generalization/scalability over various configurations for CSI compression, to achieve the scalability over different input/output dimensions, companies to report which case(s) in the following are evaluated
· Case 0 (benchmark for comparison): One CSI generation part with fixed input and output dimensions to 1 CSI reconstruction part with fixed input and output dimensions for each of the different input and/or output dimensions.
· Case 1: One CSI generation part with scalable input and/or output dimensions to N>1 separate CSI reconstruction parts each with fixed and different output and/or input dimensions
· Case 2: M>1 separate CSI generation parts each with fixed and different input and/or output dimensions to one CSI reconstruction part with scalable output and/or input dimensions
· Case 3: A pair of CSI generation part with scalable input/output dimensions and CSI reconstruction part with scalable output and/or input dimensions

Generalization is the testing of items not included in the training and testing data set with the purpose of assessing the performance of the model when new data is encountered.  Since it is difficult for the data set used to develop the model to cover all possible situations that the model may encounter when used for inference, it is important in this study item to test the performance of models when presented with situations not included in the training dataset.  Such testing can include both additional examples from the same types of scenarios used to create the dataset as well as other scenarios.  For example, a training dataset for CSI compression might be generated from a UMa scenario.  Generalization testing should consider the performance of the model when used with additional UMa samples not included in the training dataset, but also with samples from InH, RMa, or UMi scenarios.  Generalization results can be reported for each of these cases to see how the generalization performance varies.  This kind of testing also provides information about the diversity required in the training dataset in order to provide the required performance in the field.
Proposal 1:  Study various model architectures for generalization performance, including an assessment of the trade-off between performance and model complexity.
Scalability is the ability of an AI/ML model to be used for multiple system configurations.  It is important to assess scalability for CSI compression models to better understand the circumstances in which the gNB and UE would need to switch models as well as to understand the features to standardize to support model operation in different circumstances.  System configuration variables which are important to consider for scalability include:
· gNB antenna array configuration: This includes not only the number of transmit ports but also the shape of the transmit antenna array (e.g., (2,8,2) vs. (4,4,2)).
· Bandwidth, subcarrier spacing, number of subbands: The variability of bandwidth due to the configuration bandwidth part configuration should be taken into account.
· Feedback overhead configuration
[bookmark: _Hlk127512645]Next, we provide scalability results for the feedback overhead configuration through variation of the compression ratio.  We also provide results on the scalability of bandwidth.
Scalability across Compression Ratios (Payload)
Figure 6 shows a sketch of the universal AI/ML model architecture designed to achieve scalability across different output codeword lengths or compression ratios (CR). In the universal model architecture, CSI data are input into a common encoder after pre-processing.  Several sub-NNs are used for compression with various compression ratios to obtain the feedback codewords of different lengths.  The related sub-NNs decompress the feedback codeword of diverse lengths and the common decoder reconstructs the CSI data.
The experiments are conducted when CR=1/8, 1/16, 1/32, and 1/64 using 80K training samples and 20K testing samples.  The dataset is created using the Urban Macro scenario at a carrier frequency of 4GHz, a bandwidth of 20 MHz, and a subcarrier spacing of 30 kHz, where the SLS parameters are given in Table 1.  The base station has 32 TX ports using the antenna configuration given in Table 13.  In the dataset, there are 52 PRBs across the frequency band.  The model is trained to accommodate different CRs with the dataset of the single CSI input configuration using Type 1 joint training.  Note that the training for this case does not fit into any of the three cases in the second agreement listed above since the dataset does not vary in its output dimension as the CR changes.  In addition to the universal model trained for different CRs, payload-specific models are trained for each compression ratio for comparison with the universal model.  With these payload-specific models, the universal model is a Case 3 model in the agreement above on scalability (the third agreement) and the payload-specific models constitute the Case 0 baseline models.  In these experiments, the latent variables are unquantized and the number of latent variables depends on the CR.  Since there are 832 floating point inputs, the number of latent variables changes from 104 to 13 as the CR varies from 1/8 to 1/64.  The simulation results in Table 4 illustrate that the universal model of scalable CRs can achieve similar results to the payload-specific models across a wide range of CRs.  The simulation results validate that the universal model can generate CSI feedback codewords with scalable compression ratios with a tolerable loss in CSI reconstruction accuracy.
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[bookmark: _Ref131506246][bookmark: _Ref131436061][bookmark: _Ref131452125]Figure 6:  Scalability across Compression Ratios (CR)
[bookmark: _Ref131677143][bookmark: _Ref131436144]Table 4.  Scalability performance (SGCS) over different CRs
	
	CR=1/8 Unquantized
	CR=1/16
Unquantized
	CR=1/32 Unquantized
	CR=1/64
Unquantized

	Payload-specific models
	0.877
	0.792
	0.739
	0.691

	Unified model for different payloads 
	0.852
(-0.015)
	0.792
(no degradation)
	0.735
(-0.004)
	0.678
(-0.013)



[bookmark: _Ref131677111]Table 5:  Comparisons of the trainable parameters from different models
	
	CR=1/8 Unquantized
	CR=1/16
Unquantized
	CR=1/32 Unquantized
	CR=1/64
Unquantized

	Payload-specific models
	2588818
	2502134
	2458792
	2437121

	Unified model for different payloads 
	1799918



Table 5 compares the trainable parameter numbers from the models in the experiment. The comparison shows that the unified model can achieve scalability across different output codeword lengths with even fewer trainable parameters than a payload-specific model, which saves a large amount of storage memory.
Observation 2: The universal model is capable of generating CSI feedback codewords with scalable compression ratios with a tolerable loss in CSI reconstruction accuracy.
Scalability across Bandwidths
Figure 7 shows a sketch of the universal AI/ML model architecture to achieve scalability across input configurations (bandwidths, ports, and antenna array configurations). In the universal model, original CSI data of various configurations are first input into a pre-processing module, which splits the CSI matrices into CSI patches as the intermediate results. Then, the CSI patches are input into a common encoder for compression without distinction. Sub-NNs are used for compression and decompression. Then, the common decoder reconstructs the CSI data of the diverse configurations. 
The experiments are conducted over 52 and 48 PRB datasets with 80K training samples and 20K testing samples in each dataset.  The same dataset used in the payload scaling experiments is used here where the 48 PRB data is constructed by using only 48 of the 52 PRBs.  The number of base station TX port for both datasets is 32, again using the antenna configuration in Table 13.  Type 1 joint training is used for the encoder and decoder where a Case 3 mixed dataset is used (see the first agreement above on scalable input dimensions).  The unified model is a Case 3 scalability model according to the third agreement above on scalability since the encoder/decoder have scalable input/output dimensions.  The Case 0 baseline results consist of bandwidth-specific models.  CR=1/32 and CR=1/64 cases are tested without quantization.  The simulation results in Table 6 illustrate that the universal transformer scheme can achieve similar result to the bandwidth-specific model. The simulation results validate that the universal model is capable of compressing and decompressing the CSI matrices of different input configurations without a significant loss in CSI reconstruction accuracy.
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[bookmark: _Ref131436068]Figure 7:  Scalability across Bandwidths
[bookmark: _Ref131680342][bookmark: _Ref131436180]Table 6:  Scalability performance (SGCS) over different bandwidths
	Training
	Test
	CR=1/32
Unquantized
	CR=1/64
Unquantized

	Bandwidth-specific models
	52 RB
	0.739
	0.691

	
	48 RB
	0.743
	0.691

	Unified model for 2 bandwidths
	52 RB
	0.724
(-0.015)
	0.661
(-0.030)

	
	48 RB
	0.730
(-0.013)
	0.667
(-0.024)



[bookmark: _Ref131677216]Table 7:  Comparisons of the trainable parameters from different models
	Training
	Test
	CR=1/32
Unquantized
	CR=1/64
Unquantized

	Bandwidth-specific models
	52 RB
	2458792
	2437121

	
	48 RB
	2452192
	2433724

	Unified model for 2 bandwidths
	52 RB
	1694812
	1694812

	
	48 RB
	
	



Table 7 compares the trainable parameter numbers from the models in the experiment. The comparison shows that the unified model can achieve scalability across input configurations with even fewer trainable parameters than a bandwidth-specific model, which saves a large amount of storage memory.
Observation 3: The universal model is capable of compressing and decompressing the CSI matrices of different bandwidth configurations without a significant loss of CSI reconstruction accuracy.
Proposal 2:  Continue to study the universal model approach to scalability for support of wider variation in bandwidth as well as for other scalability parameters and combinations of parameters.

Quantization
In RAN1#111 [6], the agreement below was reached identifying three different cases to consider for evaluation of quantization aware and quantization non-aware training:

Agreement
For the evaluation of quantization aware/non-aware training, the following cases are considered and reported by companies:
· Case 1: Quantization non-aware training, where the float-format variables are directly passed from CSI generation part to CSI reconstruction part during the training
· Fixed/pre-configured quantization method/parameters is applied for the inference phase
· Companies to report the design of the fixed/pre-configured quantization method/parameters, e.g., quantization resolution, vector quantization codebook, etc.
· Case 2: Quantization aware training, where quantization/dequantization is involved in the training process
· Case 2-1: Fixed/pre-configured quantization method/parameters are applied during the training phase; the same quantization codebook is applied for the inference phase
· Companies to report the design of the fixed/pre-configured quantization method/parameters, e.g., quantization resolution, vector quantization codebook, etc.
· Case 2-2: The quantization method/parameters are updated in together with the AI/ML models during the training; when training is finished, the final quantization codebook is applied for the inference phase
· Companies to report how to update the quantization method/parameters during the training
· Note: the above cases apply for training Type 1/2/3
· Others are not precluded.

Quantization non-aware training assumes there is no quantization in the training phase while the quantizer and potential de-quantizer, respectively, are added to the encoder and decoder in the inference phase. Therefore, the encoder/decoder parameters do not consider the quantization properties in the training of their parameters. One advantage of this scheme is that we can decouple the AI encoder/decoder training and quantizer formulation, at the cost of possible end-to-end performance degradation. This allows the selection of various quantization schemes without needing to load a new model. This scheme consists of 3 major steps:
1. AI encoder/decoder is trained without any intermediate quantization procedure between the CSI generation and reconstruction parts. The latent feature vector is directly fed into the AI decoder for training. At the conclusion of training, a quantization training dataset of the latent feature vector samples collected during the final epoch can be provided for subsequent quantization formulation, as well as the trained AI encoder/decoder parameters.
2. The quantization procedure is formulated. Either scalar quantization or vector quantization can be adopted. For this operation, a certain distance metric should be used to measure distance between input scalar/vector and output quantized value/codeword. Quantization parameters can be designed to minimize the quantization loss and degradation of the reconstructed CSI due to the quantization. Note that it may be challenging to find the distance metric which can lead to the solution minimizing loss at Step1.
3. The formulated quantizer and potential de-quantizer, respectively, can be plugged into the overall AI encoder and decoder to check end-to-end performance. Optionally, the AI encoder/decoder can be fine-tuned with the quantizer in the chain to calibrate AI encoder/decoder parameters. Here, the quantizer operation is considered to be frozen (not subject to updates).
In quantization-aware training, the quantization procedure is determined prior to training and is incorporated into the training process.  In this contribution, we consider both sub-cases of quantization-aware training:  Case 2-1 where the quantizer is fixed prior to training and Case 2-2 where the quantizer type is determined prior to training but parameters of the quantizer are adapted during the training process.
To evaluate the performance degradation caused by a quantization block, we propose to define quantization loss as the difference between the reconstruction metric (SGCS or NMSE) obtained from testing the model trained without quantization and the reconstruction metric obtained from a model including quantization.  For the case of quantization unaware training, the quantization loss is determined using the same trained AI/ML model but comparing the unquantized output performance (in inference) with the performance when quantization of the output has been added to the model.  For the case of quantization aware training, the quantization loss is determined by comparing the reconstruction metric obtained from the model trained without quantization to the metric obtained from the model trained with quantization (whether fixed as in Case 2-1 or adapted as part of the training process as in Case 2-2).  In all cases, the performance metric is obtained through inference testing of the AI/ML model and associated quantization.  The quantization loss is reported in dB scale.
The motivation for defining the quantization loss is, as Xiaomi observed in their response to Issue 3-18 of the feature lead summary in RAN1#112 [7], is to provide a concrete upper bound for performance for assessing quantization schemes and determining the available gain which could be achieved with an improved quantization scheme.  While any implementation of an AI/ML model would use quantization, the standard will likely need to specify different feedback payloads.  This metric will provide information to aid in determining the set of allowed feedback payloads by providing information on the tradeoff between performance and overhead by assessing how near the payloads are to the achievable limit.
Proposal 3: Define quantization loss as the difference between the reconstruction metric (SGCS or NMSE) obtained from a model trained without quantization and a model which incorporates quantization whether through quantization aware or unaware training. Report the loss in dB.
In our previous contribution [3], we presented the results of a study of quantization methods using a CSI compression model based on a convolutional neural network (CNN).  In this contribution, we extend the study to a CSI compression model using the transformer architecture.  The transformer model is similar to the model shown in Figure 1, except that the model has 6 attention layers.  As in the previous study, we compare the unquantized model performance with the quantized model performance. We use both scalar quantization (SQ) and vector quantization and cover both quantization unaware training (Case 1) and quantization aware training with fixed (Case 2-1) and variable (Case 2-2) quantization.  For scalar quantization, we only consider uniform 2-bit quantization.  For vector quantization, the dimension of each segment is given by D, and B is the number of bits allocated to the VQ codebook, where B = D × Feedback bits/element.  For Case 1, the K-means algorithm is used to determine the VQ codebook. For Case 2-2, the VQ codebook elements are jointly adapted with the encoder and decoder parameters by incorporating the VQ performance into the loss function.  The training dataset is described by the parameters in Table 1 and contains a total of 630K samples.  The antenna configurations are those given in Table 13.  In all cases, the latent variable dimension is 64 for a compression ratio of 13.  
The results of the quantization study are shown in Table 8. The 6-layer transformer model yields an SGCS of 0.8702 (‑8.87 dB) without any quantization, which is significantly better than the comparable CNN performance in the previous study (0.78). In quantization aware training (Case 2-1), the same architecture transformer model can provide a SGCS of 0.8089 (-7.19 dB) with 2 bits scalar quantization (128 bits overhead).  The SGCS performance is further improved by less than 0.5 dB (0.12-0.3 dB improvement observed) with vector quantization (Quantization-aware training Case2-2), which aligns our observation with results from the CNN-based model.  However, in quantization non-aware training (Case 1), with vector quantization the same transformer model can achieve a SGCS of 0.8143 (-7.31 dB) which is slightly below the quantization aware training with vector quantization. Further SGCS improvement is expected with a better vector quantization codebook design.  Our observations from this study are mostly similar to those made with the original study.  Since only one quantization payload was considered in this study, some additional study would be required to assess the trade-offs between payload scalability using quantization-unaware training and quantization-aware training, including the application of the universal model approach to payload scaling, which was discussed earlier in this contribution.
Observation 4: Quantization-aware training performs better than quantization-unaware training due to the ability to optimize the model to the quantization method within the training process.
Observation 5: Vector quantization is found to have a smaller quantization loss than uniform scalar quantization.
Observation 6: Case-1 training can provide acceptable performance and adapt easily to different feedback sizes without the need to change the AI model.
Proposal 4: Continue to study quantization unaware and quantization aware training to assess the different approaches to payload scalability.
[bookmark: _Ref131682724]Table 8:  Vector Quantization with Transformer based model (with 6 attention layers, containing about 8 M trainable parameters in total)- SQ: Scalar quantization, VQ: Vector quantization
	Transformer
	Description
	Training 
Scheme
	Quantization (bits/element)
	Feedback 
Overhead (bits)
	SGCS
	Quantization Loss
	Codebook Size

	
	
	
	
	
	linear
	dB
	
	

	
	Unquantized
	
	32
	2048
	0.8702
	-8.87
	-
	-

	
	SQ – Uniform
	Case 2-1
	2
	128
	0.8089
	-7.19
	1.68 dB
	-

	
	VQ
	Case 1
	2 bits (D=4, B=8)
	128
	0.8143
	-7.31
	1.56 dB
	256

	
	
	Case 2-2
	2 bits (D=1, B=2)
	128
	0.8147
	-7.32
	1.55 dB
	4

	
	
	
	2 bits (D=2, B=4)
	128
	0.8176
	-7.39
	1.48 dB
	16

	
	
	
	2 bits (D=4, B=8)
	128
	0.8216
	-7.49
	1.38 dB
	256



Training Types
In RAN1#111 [6], the following agreements were reached regarding the evaluation of separate training (Type 3):

Agreement
For the evaluation of an example of Type 3 (Separate training at NW side and UE side), the following evaluation cases for sequential training are considered for multi-vendors
· Case 1 (baseline): Type 3 training between one NW part model and one UE part model
· Note 1: Case 1 can be naturally applied to the NW-first training case where 1 NW part model to M>1 separate UE part models
· Companies to report the dataset used between the NW part model and the UE part model, e.g., whether dataset for training UE part model is the same or a subset of the dataset for training NW part model
· Note 2: Case 1 can be naturally applied to the UE-first training case where 1 UE part model to N>1 separate NW part models
· Companies to report the dataset used between the NW part model and the UE part model, e.g., whether dataset for training NW part model is the same or a subset of the dataset for training UE part model
· Companies to report the AI/ML structures for the combination(s) of UE part model and NW part model, which can be the same or different
· FFS: different quantization methods between NW side and UE side
· Case 2: For UE-first training, Type 3 training between one NW part model and M>1 separate UE part models
· Note: Case 2 can be also applied to the M>1 UE part models to N>1 NW part models
· Companies to report the AI/ML structures for the M>1 UE part models and the NW part model
· Companies to report the dataset used at UE part models, e.g., same or different dataset(s) among M UE part models
· Case 3: For NW-first training, Type 3 training between one UE part model and N>1 separate NW part models
· Note: Case 3 can be also applied to the N>1 NW part models to M>1 UE part models
· Companies to report the AI/ML structures for the UE part model and the N>1 NW part models
· Companies to report the dataset used at NW part models, e.g., same or different dataset(s) among N NW part models
· FFS: whether/how to report overhead of dataset

Agreement
For the evaluation of an example of Type 3 (Separate training at NW side and UE side) with sequential training, companies to report the set of information (e.g., dataset) shared in Step 2
· For NW-first training
· Dataset construction, e.g., the set of information includes the input and output of the Network side CSI generation part, or includes the output of the Network side CSI generation part only, or other information if applicable.
· Quantization behavior, e.g., whether the shared output of the Network side CSI generation part is before or after quantization.
· For UE-first training
· Dataset construction, e.g., the set of information includes the input and label of the UE side CSI reconstruction part, or includes the input of the UE side CSI reconstruction part only, or other information if applicable.
· Quantization behavior, e.g., whether the shared input of the UE side CSI reconstruction part is before or after quantization.

In RAN1#112 [1], the following was also agreed regarding separate training (Type 3):
Agreement
For the evaluation of training Type 3 under CSI compression, besides the 3 cases considered for multi-vendors, add one new Case (1-on-1 training with joint training) as benchmark/upper bound for performance comparison.
· FFS the relationship between the pair(s) of models for Type 3 and the pair(s) of models for new Case
[bookmark: _Hlk127488474]Figure 8 depicts the procedure for UE-first separate training. On the left side of the figure, Step 1 involves simultaneously training the encoder at the UE and a hypothetical decoder on the network side.  Once the encoder/hypothetical decoder pair has been trained, a dataset is determined by running the pair in inference mode, collecting the eigenvectors prior to compression (), the unquantized encoder output (), and the quantized encoder output ().  This dataset is used in Step 2 to train the decoder at the network (NW) side, shown at the right size of the figure.  The pairs  are used to train the decoder without quantization and the pairs  are used to train the decoder with quantization.
[image: ]
[bookmark: _Ref127487822][bookmark: _Ref127487816]Figure 8: UE-first separate training procedure
  
In our previous contribution [3], we presented performance results for UE-first separate training using a matched CNN-based model architecture.  In this contribution, we present performance results for both network-first (NW-first) and UE-first separate training using the transformer model architecture, but with mismatched architectures at the NW and UE.  The NW-first training is performed using two different approaches, which are shown in Figure 9 and Figure 10.  In Method 1 (Figure 9), the network first jointly trains the hypothetical encoder (ENC1) and the decoder (DEC1) using the training dataset .  The network then collects and shares an appended dataset containing the channel eigenvectors and the corresponding feedback elements  with the UE vendor.  In the third step, the UE vendor trains its encoder (ENC2) using the dataset shared by the network.  One possible issue with this method is that the optimization in Step 3 based on the objective function  is suboptimal.  Method 2 addresses this issue.  The first step is the same as in Method 1, but in the second step the network also saves the decoder output in the dataset.  The appended dataset is now .  In the third step, the UE vendor trains a hypothetical decoder (DEC2) using the appended dataset.  Finally, the UE vendor freezes the hypothetical decoder (DEC2) and trains its encoder (ENC2).
[image: ]
[bookmark: _Ref131709447]Figure 9:  Method 1 for NW-first separate training.
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[bookmark: _Ref131709454]Figure 10:  Method 2 for NW-first separate training.
These NW-first methods for separate (Type 3) training are used with transformer-based models to explore the performance of separate training with mismatched models at the network and UE.  In the first case, the 3-layer transformer model in Figure 1 is used as the network-side model.  An independently designed 5-layer transformer model is used as the UE-side model, where there are significant differences in the layer designs of the two models.  The hypothetical decoder (DEC2) trained in Method 2 is designed to match the architecture of the independently designed model since its architecture is not known by the UE.  In the second case, the roles of the two models are reversed so that the independently designed model is now the 5-layer network-side model and the 3-layer model in Figure 1 is the UE-side model.  Finally, UE-first training is performed using the two models utilizing the procedure shown in Figure 8.  Again, two cases are simulated where each model serves in turn as the UE-side model while the other model serves as the network-side model.  For ease of identification, we will refer to the 3-layer transformer model in Figure 1 as TF1 and the independently designed model as TF2. In all cases, there are 64 latent variables at the bottleneck and the quantization scheme is 2 bits per latent variable using uniform scalar quantization for a total feedback overhead of 128 bits.
The SGCS results of the network-first and UE-first training are shown in Table 9 and Table 10, respectively.  Results are shown for the performance after the initial end-to-end training at the first now and for the final performance of the models trained at each end.  For the NW-first case, this means the performance of ENC1-DEC1 in the end-to-end step and ENC2-DEC1 in the encoder training step.  In all cases, we observe a small, if any, performance loss due to the separate training.  We also note that the performance loss is reduced when using NW-First Method 2 compared to NW-First Method 1.
Observation 7: The performance loss due to separate training with mismatched transformer-based models is small compared to joint training.
Observation 8: For NW-first training, the performance loss due to separate training is reduced when a hypothetical decoder is trained by the UE and used in the encoder training.
[bookmark: _Ref131718898]Table 9:  Network-first training results
	Training Method
	Model Roles
	End-to-End Step
	Encoder Training Step

	NW-First, Method 1
	Network-side model: TF1
UE-side model: TF2
	0.774
	0.770

	NW-First, Method 2
	Network-side model: TF1
UE-side model: TF2
	0.774
	0.774

	NW-First, Method 1
	Network-side model: TF2
UE-side model: TF1
	0.789
	0.776

	NW-First, Method 2
	Network-side model: TF2
UE-side model: TF1
	0.789
	0.781



[bookmark: _Ref131718900]Table 10:  UE-first training results
	Training Method
	Model Roles
	End-to-End Step
	Decoder Training Step

	UE-first
	Network-side model: TF1
UE-side model: TF2
	0.774
	0.787

	UE-first
	Network-side model: TF2
UE-side model: TF1
	0.791
	0.789



Network-first separate training with vector quantization
For vector quantization (VQ), the codebook acts as the anchor bridging the encoder and decoder, which has significant impact on the overall performance. To adhere to the principle of separate training, in addition to guaranteeing that the model is proprietary, a proprietary VQ codebook should also be considered. Sharing the unquantized encoder output  necessitates greater effort to align the quantizer at the UE and the dequantizer at the NW. Alternatively, if the quantized latent vector  is shared with the UE, there is a potential risk of exposing the codebook to other parties. Moreover, regardless of whether the quantized or unquantized latent vector is shared, the UE-side entity would have the capability to recreate a decoder that performs similarly to the NW. To address this issue, we devise and compare several approaches for training the UE-side model with or without disclosing the NW-proprietary codebook as shown in Table 11. To remove the ambiguity, the quantized latent vector derived based on the codebook is represented as , while the corresponding codewords that identify the closest codebook vectors associated with  are denoted as  (i.e., the codebook indices).
Approach 1: NW shares the dataset  and the finalized codebook . The UE-side entity can retrieve the quantized latent representation  by referring to the shared codebook and . The UE-proprietary encoder is trained to output a latent vector that closely matches .
Approach 2: NW only shares the dataset . The UE-proprietary encoder is trained to output the codeword  that closely matches the shared .
Approach 3: NW only shares the dataset . The UE creates a hypothetical codebook and a hypothetical decoder to facilitate the UE-side encoder training with an end-to-end KPI (e.g., SGCS).
[bookmark: _Ref131721690][bookmark: _Ref131721682]Table 11: NW-first separate training with vector quantization
	UE-side encoder
	Common NW-side decoder
	Type-1 joint training 
	Approach 1
	Approach 2
	Approach 3

	Encoder 1
	TF decoder with 6 attention layers
	0.7974
	0.7882
	0.7812
	0.7951

	Encoder 2
	
	0.8168
	0.7968
	0.792
	0.7993

	Encoder 3
	
	0.8196
	0.8011
	0.7949
	0.801



In Table 11, we also verified the impact of different NN structures at UE side. Each of these encoders utilizes the transformer architecture, but with distinct configurations. Specifically, they vary in terms of their layer sizes and number of layers. Encoder 1 consists of 4 attention layers and has forward dimensions that are 3 times the size of the embedding dimensions (). Encoder 2 has 6 attention layers and  forward dimensions. Finally, Encoder 3 contains 8 attention layers and  forward dimensions. We found that all three separate training approaches yield comparable performance to the type-1 approach. The performance of approaches 2 and 3 reveal that the UE-side encoder can be effectively trained even without knowledge of the NW-side codebook or quantized latent vector. Approach 3 trained with an end-to-end KPI slightly outperforms Approach 2. Moreover, the common NW-side decoder can accommodate all newly trained encoders with different structures.
Observation 9: A common NW-side decoder can accommodate multiple UEs with different NN structures.
Observation 10: Approach 2 & 3 demonstrate that the UE, without the knowledge of NW-side codebook for mapping codeword to latent vector, can still be effectively trained without performance degradation.
Proposal 5: For NW-first separate training with vector quantization, the UE does not need to have access to the codebook for retrieval of the quantized latent representations. The codebook for mapping the codeword to quantized latent representation can be NW-proprietary.

CSI prediction
KPIs
In RAN1#112, the following working assumption on performance reporting was adopted for re-examination at RAN1#112bis-e and for collecting performance results for RAN1#112bis-e (template omitted):
Working assumption
The following initial template is considered for companies to report the evaluation results of AI/ML-based CSI prediction with generalization verification
· To be collected before 112bis-e meeting
· FFS whether the intermediate KPI results are gain over benchmark or absolute values
· FFS whether the intermediate KPI results are in forms of linear or dB
An important metric which is not covered by the proposed reporting template is the execution latency, as CSI information is outdated extremely fast.  The execution latency includes not only the inference time, but also the time required to do any pre-processing of the CSI-RS signal and post-processing after inference (see also our discussion in [5]). Obviously, the execution latency should be significantly smaller than the intended, or achievable prediction time. Therefore, ideal values would be in the range of one to less than 10 ms for the FR1 frequency range below 6 GHz. Channel prediction for the FR2 bands becomes even more challenging due to the shorter wavelength, but also less relevant due to lower number of multipath components per narrow beam.
In addition to the effect of the model architecture on latency, the execution latency is also affected by the processing power of the UE so that execution latency could be considered as a UE capability.  The reporting of execution latency for a given model would then depend on the implementation platform assumed in the UE, if it is reported in time units.  One possible solution is to report a measure of the sequential calculation depth of the model, such as the number of layers in the model.  This measure is independent of time but can be used as an indicator of execution latency when coupled with an assumption on the UE processing capability and knowledge of the pre-processing of the CSI-RS signal and post-processing after inference.
Proposal 6:  Adopt a measure of execution latency and include it in the performance reporting template for CSI prediction.
Model Performance
In RAN1#112, the following working assumption on the performance baseline for CSI prediction was confirmed:
Agreement
For the AI/ML based CSI prediction sub use case, the nearest historical CSI w/o prediction as well as non-AI/ML/collaboration level x AI/ML based CSI prediction approach are both taken as baselines for the benchmark of performance comparison, and the specific non-AI/ML/collaboration level x AI/ML based CSI prediction is reported by companies.
· Note: the specific non-AI/ML based CSI prediction is compatible with R18 MIMO; collaboration level x AI/ML based CSI prediction could be implementation based AI/ML compatible with R18 MIMO as an example
· It does not imply any restriction on future specification for CSI prediction
· FFS how to model the simulation cases for collaboration level x CSI prediction and LCM for collaboration level y/z CSI prediction
Here, we report performance results for our CSI prediction model including both intermediate KPI results using the squared generalized cosine similarity (SGCS) and system level simulation performance results.  The results are reported relative to the baseline performance of the nearest historical CSI without prediction as indicated in the agreement.  The baseline performance uses the Rel-16 eType II codebook without prediction – i.e., a zero-order hold (ZOH).
The CSI prediction model is a convolutional LSTM model using 4 time-domain input samples as previously described in [3].  The model has 3 layers – a convolution LSTM followed by 2 common convolutional layers, with a total of 4368 trainable parameters.  A block diagram of the model is shown in Figure 11.  The model is trained using 200 UE tracks 500ms long, sampled at 5ms intervals, where 100 tracks are used for testing.  All UEs are moving at a speed of 30 km/h in an urban macro environment with all UEs in cars and the channel models employ spatial consistency procedure A.
[image: ]
[bookmark: _Ref131645614]Figure 11:  AI/ML model architecture for channel prediction to support predicted CSI feedback.
The system level simulations are performed using the assumptions given in Table 14 in the Appendix.  The MIMO scheme is SU-MIMO with a maximum rank of 2.  The base station antenna array consists of 16 ports at a carrier frequency of 2 GHz.  Simulations were run with both ideal and non-ideal CSI-RS for full buffer traffic.  In both cases, the channel estimation for downlink data transmission is modeled as non-ideal.
With AI/ML-based CSI prediction, the CSI is predicted 4ms ahead of the measured CSI-RS.  The prediction is performed by predicting the channel matrix and then forming the CSI feedback from the predicted channel using the Rel-16 eType II codebook.  For both the baseline feedback and the predicted CSI feedback, the Rel-16 eType II codebook is configured with parameter combination 4 (L=4,  ), which has a maximum feedback overhead of 315 bits for the simulated antenna array configuration.  The actual feedback overhead for the AI/ML-based predicted CSI is 303 bits on average while the baseline overhead with ZOH is also 303 bits. With ideal CSI-RS, we find that AI/ML-based CSI prediction has gains of 3% and 6% over the ZOH baseline in mean user throughput and cell edge throughput, respectively.  With non-ideal CSI-RS, these gains become 2% and 15%.  Performance in bursty traffic and with MU-MIMO is still to be evaluated.
Observation 11:  System level simulations of AI/ML-based CSI prediction show gains of somewhat less than 5% in mean user throughput with SU-MIMO in full buffer traffic.

Table 12: CSI Prediction Performance Results
	 
	 
	Source 1: Nokia 

	AI/ML model description 
	AL/ML model backbone 
	3-layer convolutional LSTM 

	
	[Pre-processing] 
	time domain interpolation / oversample factor 5 

	
	[Post-processing] 
	Type II Release 16 

	
	FLOPs/M 
	129472 FLOPs

	
	Parameters/M 
	4368 parameters

	
	[Storage /Mbytes] 
	

	
	Input type 
	complex CSI, 50 PRBs, 16 AP 

	
	Output type 
	complex CSI, 50 PRBs, 16 AP 

	Assumption 
	UE speed 
	30 kmph 

	
	CSI feedback periodicity 
	5 ms 

	
	Observation window (number/distance) 
	4 / 5 ms 

	
	Prediction window (number/distance) 
	1 / 4 ms 

	
	Whether/how to adopt spatial consistency 
	Track over 500 ms 

	Dataset size 
	Train/k 
	200 UE tracks 

	
	Test/k 
	100 UE tracks 

	Benchmark 1 
	ZOH 

	Intermediate KPI #1 of Benchmark 1 
	 
	8.65% < 0.9 SGCS [ideal CSI-RS]
80.7% < 0.9 SGCS [non-ideal CSI-RS]

	Gain for intermediate KPI#1 over Benchmark 1 
	 
	3.74% [ideal CSI-RS]
11.4% [non-ideal CSI-RS]

	Intermediate KPI #2 of Benchmark 1 
	 
	 

	Gain for intermediate KPI#2 over Benchmark 1 
	 
	 

	Intermediate KPI #1 of Benchmark 1 
	 
	 

	Gain for eventual KPI (Benchmark 1) 
	Mean UPT 
	3 % [ideal CSI-RS],
2% [non-ideal CSI-RS]

	
	5% UPT 
	6 % [ideal CSI-RS],
15% [non-ideal CSI-RS]



Conclusion
In this contribution, we have addressed evaluation issues for both CSI feedback with autoencoders and CSI prediction with AI/ML
For CSI feedback with autoencoders, our observations and proposals are:
Observation 1:  The transformer-based CSI compression model outperforms baseline Rel-16 eTypeII codebook performance based on both the SGCS metric and MU-MIMO throughput performance.  Gains up to the following are seen:
· 6.5%/2.5% in mean/cell edge user throughput in full buffer traffic with maximum rank of 1.
· 8.5%/3.5% in mean/cell edge user throughput in full buffer traffic with maximum rank of 2.
· 4.5%/10.0% in mean/cell edge user throughput in bursty traffic (~80% RU) with maximum rank of 1.
· 13.0%/22.5% in mean/cell edge user throughput in bursty traffic (~80% RU) with maximum rank of 2.

Proposal 1:  Study various model architectures for generalization performance, including an assessment of the trade-off between performance and model complexity.
Observation 2: The universal model is capable of generating CSI feedback codewords with scalable compression ratios with a tolerable loss in CSI reconstruction accuracy.
Observation 3: The universal model is capable of compressing and decompressing the CSI matrices of different bandwidth configurations without a significant loss of CSI reconstruction accuracy.
Proposal 2:  Continue to study the universal model approach to scalability for support of wider variation in bandwidth as well as for other scalability parameters and combinations of parameters.
Proposal 3: Define quantization loss as the difference between the reconstruction metric (SGCS or NMSE) obtained from a model trained without quantization and a model which incorporates quantization whether through quantization aware or unaware training. Report the loss in dB.
Observation 4: Quantization-aware training performs better than quantization-unaware training due to the ability to optimize the model to the quantization method within the training process.
Observation 5: Vector quantization is found to have a smaller quantization loss than uniform scalar quantization.
Observation 6: Case-1 training can provide acceptable performance and adapt easily to different feedback sizes without the need to change the AI model.
Proposal 4: Continue to study quantization unaware and quantization aware training to assess the different approaches to payload scalability.
Observation 7: The performance loss due to separate training with mismatched transformer-based models is small compared to joint training.
Observation 8: For NW-first training, the performance loss due to separate training is reduced when a hypothetical decoder is trained by the UE and used in the encoder training.
Observation 9: A common NW-side decoder can accommodate multiple UEs with different NN structures.
Observation 10: Approach 2 & 3 demonstrate that the UE, without the knowledge of NW-side codebook for mapping codeword to latent vector, can still be effectively trained without performance degradation.
Proposal 5: For NW-first separate training with vector quantization, the UE does not need to have access to the codebook for retrieval of the quantized latent representations. The codebook for mapping the codeword to quantized latent representation can be NW-proprietary.

For CSI prediction, our observations and proposals are:
Proposal 6:  Adopt a measure of execution latency and include it in the performance reporting template for CSI prediction.
Observation 11:  System level simulations of AI/ML-based CSI prediction show gains of somewhat less than 5% in mean user throughput with SU-MIMO in full buffer traffic.

References
[1] [bookmark: _Ref111120193][bookmark: _Ref101872208][bookmark: _Hlk131658240]“Draft Report of 3GPP TSG RAN WG1 #112 v0.4.0,” RAN1#112, Athens, Greece, 27 February – 3 March 2023. 
[2] [bookmark: _Ref127364025]R1-2212327, “Evaluation of ML for CSI feedback enhancement,” Nokia, Nokia Shanghai Bell, 3GPP RAN1#111, Toulouse, France, 14-18 November 2022.
[3] [bookmark: _Ref131506560]R1-2300604, “Evaluation of ML for CSI feedback enhancement,” Nokia, Nokia Shanghai Bell, 3GPP RAN1#112, Athens, Greece, 27 February – 3 March 2023.
[4] [bookmark: _Ref127389707]RP-223276, “WID Update: MIMO Evolution for Downlink and Uplink,” Samsung (Moderator), 3GPP RAN#98-e, 12-16 December 2022.
[5] [bookmark: _Ref101906828][bookmark: _Hlk118680629]R1-2209366, “Further discussion on the general aspects of ML for Air-interface,” Nokia, Nokia Shanghai Bell, 3GPP RAN1#110bis-e, 10-19 October 2022.
[6] [bookmark: _Ref131658383]“Final Report of 3GPP TSG RAN WG1 #111 v1.0.0,” RAN1#111, Toulouse, France, 14-18 November 2022.
[7] [bookmark: _Ref131686549]R1-2301940, “Summary#5 for CSI evaluation of [112-R18-AI/ML],” Moderator (Huawei), 3GPP RAN1#112, Athens, Greece, 27 February – 3 March 2023.
Appendix
[bookmark: _Ref131537366]Table 13: System Level Simulation Assumptions for CSI Compression
	Parameter
	Value

	Duplex, Waveform
	FDD, OFDM

	Multiple access
	OFDMA

	Scenario
	Dense Urban

	Carrier Frequency
	4 GHz

	Inter-BS distance
	200m

	Channel model
	According to TR 38.901

	Antenna setup and port layouts at gNB
	32 ports: (8.8,2,1,1,2,8), (dH,dV) = (0.5, 0.8)λ

	Antenna setup and port layouts at UE
	4 Rx: (1,2,2,1,1,1,2), (dH,dV) = (0.5, 0.5)λ

	BS Tx power
	44 dBm (20 MHz bandwidth)

	BS antenna height
	25m

	UE antenna height & gain
	According to TR 36.873

	UE receiver noise figure
	9 dB

	Modulation
	Up to 256QAM

	Subcarrier spacing
	30kHz

	Simulation bandwidth
	20 MHz

	MIMO scheme
	MU-MIMO

	CSI Feedback
	Baseline: Rel-16 Type II codebook
Scheduling delay: 4 ms

	Traffic model
	FTP 1, 2MB file size

	Traffic load (Resource utilization target)
	20/50/70 %

	UE distribution
	80% indoor (3km/h), 20% outdoor (3 km/h)

	Channel estimation
	Ideal



[bookmark: _Ref131641878]Table 14: System Level Simulation Assumptions for CSI Prediction
	Parameter
	Value

	Duplex, Waveform
	FDD, OFDM

	Multiple access
	OFDMA

	Scenario
	Dense Urban

	Carrier Frequency
	2 GHz

	Inter-BS distance
	200m

	Channel model
	According to TR 38.901

	Antenna setup and port layouts at gNB
	16 ports: (8.4,2,1,1,2,4), (dH,dV) = (0.5, 0.8)λ

	Antenna setup and port layouts at UE
	4 Rx: (1,2,2,1,1,1,2), (dH,dV) = (0.5, 0.5)λ

	BS Tx power
	41 dBm (10 MHz bandwidth)

	BS antenna height
	25m

	UE antenna height & gain
	According to TR 36.873

	UE receiver noise figure
	9 dB

	Modulation
	Up to 256QAM

	Subcarrier spacing
	15kHz

	Simulation bandwidth
	10 MHz

	MIMO scheme
	SU-MIMO

	CSI Feedback
	Baseline: Rel-16 Type II codebook, parameter combination 4
Scheduling delay: 4 ms

	Traffic model
	Full buffer

	Traffic load (Resource utilization target)
	NA

	UE distribution
	100% outdoor (30 km/h)

	Channel estimation
	Non-ideal DM-RS, ideal/non-ideal CSI-RS



[bookmark: _Ref131667276][bookmark: _Ref131667162]Table 15 System-level simulation results in agreed format for rank 1 case.
	 
	Nokia
	

	Assumptions
	Nokia #1
	
	

	CSI generation part
	AI/ML model backbone
	Transformer
	 
	 

	
	Pre-processing
	Sub-band 
averaging, SVD
	 
	 

	
	Post-processing
	None
	 
	 

	
	FLOPs/M
	~11-13
	 
	 

	
	Number of parameters/M
	0.5-0.7
	 
	 

	
	[Storage /Mbytes]
	~2.5
	 
	 

	CSI reconstruction part
	AI/ML model backbone
	Transformer
	 
	 

	
	[Pre-processing]
	 
	 
	 

	
	[Post-processing]
	 
	 
	 

	
	FLOPs/M
	~11-13
	 
	 

	
	Number of parameters/M
	0.5-0.7
	 
	 

	
	[Storage /Mbytes]
	~2.5
	 
	 

	Common description
	Input type
	Precoding 
vectors per SB
	 
	 

	
	Output type
	Precoding 
vectors per SB
	 
	 

	
	Quantization /dequantization method
	Scalar uniform quantization
	 
	 

	
	Rank/layer adaptation settings for rank>1
	yes
	 
	 

	Dataset description
	Train/k
	504
	 
	 

	
	Test/k
	126
	 
	 

	
	Ground-truth CSI quantization method (including scalar/codebook based quantization, and the parameters)
	Floating point
	 
	 

	
	Overhead reduction compared to Float32 if high resolution quantization of ground-truth CSI is applied
	 
	 
	 

	[Other assumptions/settings agreed to be reported]
	MU-MIMO
	 
	 

	Benchmark
	Rel16 eTypeII
	 
	 

	SGCS of benchmark, [layer 1]
	X: Comb1 CSI payload of 59 bits
	0.695
	 
	 

	
	Y: Comb3 CSI payload of 108 bits
	0.774
	 
	 

	
	Z: Comb8 CSI payload of 301 bits
	0.851
	 
	 

	Gain for SGCS, [layer 1]
	X: CSI payload of 52 bits
	5.6%
	 
	 

	
	Y: CSI payload of 104 bits
	1.2%
	 
	 

	
	Z: CSI payload of 312 bits
	2.2%
	 
	 

	Full Buffer Traffic
	 
	 

	Gain for Mean UPT
	X: CSI payload of 52 bits
	6.5%
	 
	 

	
	Y: CSI payload of 104 bits
	5.8%
	 
	 

	
	Z: CSI payload of 312 bits
	1.1%
	 
	 

	Gain for 5% UPT
	X: CSI payload of 52 bits
	2.5%
	 
	 

	
	Y: CSI payload of 104 bits
	2.3%
	 
	 

	
	Z: CSI payload of 312 bits
	0.0%
	 
	 

	Bursty Traffic (FTP model1)
	 
	 

	Gain for Mean UPT (for a specific CSI feedback overhead)
	[X*Max rank value], RU~30%
	1.0%
	 
	 

	
	[Y*Max rank value], RU~30%
	0.5%
	 
	 

	
	[Z*Max rank value], RU~30%
	0.6%
	 
	 

	
	[X*Max rank value], RU ~65%
	2.5%
	 
	 

	
	[Y*Max rank value], RU ~65%
	1.6%
	 
	 

	
	[Z*Max rank value], RU ~65%
	0.3%
	 
	 

	
	[X*Max rank value], RU~80%
	4.5%
	 
	 

	
	[Y*Max rank value], RU ~80%
	3.2%
	 
	 

	
	[Z*Max rank value], RU ~80%
	1.0%
	 
	 

	Gain for 5% UPT
	[X*Max rank value], RU~30%
	1.9%
	 
	 

	
	[Y*Max rank value], RU~30%
	1.2%
	 
	 

	
	[Z*Max rank value], RU~30%
	1.7%
	 
	 

	
	[X*Max rank value], RU ~65%
	2.8%
	 
	 

	
	[Y*Max rank value], RU ~65%
	2.7%
	 
	 

	
	[Z*Max rank value], RU ~65%
	0.1%
	 
	 

	
	[X*Max rank value], RU~80%
	9.5%
	 
	 

	
	[Y*Max rank value], RU ~80%
	3.6%
	 
	 

	
	[Z*Max rank value], RU ~80%
	1.7%
	 
	 

	Note: “Benchmark” means the type of Legacy CB used for comparison.
Note: “Quantization/dequantization method” includes the description of training awareness (Case 1/2-1/2-2), type of quantization/dequantization (SQ/VQ), etc.
Note: “Input type” means the input of the CSI generation part. “output type” means the output of the CSI reconstruction part.
	
	
	



[bookmark: _Ref131667279]Table 16. System-level simulation results in agreed format for maximum rank 2 case.
	 
	Nokia
	Company B

	Assumptions
	Nokia #1
	CompanyA#2
	CompanyB#1

	CSI generation part
	AI/ML model backbone
	Transformer
	 
	 

	
	Pre-processing
	Sub-band 
averaging, SVD
	 
	 

	
	Post-processing
	 
	 
	 

	
	FLOPs/M
	~11-13
	 
	 

	
	Number of parameters/M
	0.5-0.7
	 
	 

	
	[Storage /Mbytes]
	~2.5
	 
	 

	CSI reconstruction part
	AI/ML model backbone
	Transformer
	 
	 

	
	[Pre-processing]
	 
	 
	 

	
	[Post-processing]
	 
	 
	 

	
	FLOPs/M
	~11-13
	 
	 

	
	Number of parameters/M
	0.5-0.7
	 
	 

	
	[Storage /Mbytes]
	~2.5
	 
	 

	Common description
	Input type
	Precoding 
vectors per SB
	 
	 

	
	Output type
	Precoding 
vectors per SB
	 
	 

	
	Quantization /dequantization method
	Scaler uniform quantization
	 
	 

	
	Rank/layer adaptation settings for rank>1
	YES

	Dataset description
	Train/k
	504
	 
	 

	
	Test/k
	126
	 
	 

	
	Ground-truth CSI quantization method (including scalar/codebook based quantization, and the parameters)
	 Floating point
	 
	 

	
	Overhead reduction compared to Float32 if high resolution quantization of ground-truth CSI is applied
	 
	 
	 

	[Other assumptions/settings agreed to be reported]
	MUMIMO
	 
	 

	Benchmark
	Rel16 eTypeII
	 
	 

	SGCS of benchmark, [layer 1]
	X: Comb1 CSI payload of 107 bits (for 2 layers)
	0.689
	 
	 

	
	Y:  Comb3 CSI payload of 201 bits  (for 2 layers)
	0.769
	 
	 

	
	Z: Comb8 CSI payload of 599 bits  (for 2 layers)
	0.849
	 
	 

	SGCS of benchmark, [layer 2]
	X: Comb1 CSI payload of 107 bits (for 2 layers)
	0.491
	 
	 

	
	Y: Comb3 CSI payload of 201 bits  (for 2 layers)
	0.614
	 
	 

	
	Z: Comb8 CSI payload of 599 bits  (for 2 layers)
	0.750
	 
	 

	Gain for SGCS, [layer 1]
	X:  CSI payload of 104 bits (for 2 layers)
	4.20%
	 
	 

	
	Y: CSI payload of 208 bits (for 2 layers)
	1.30%
	 
	 

	
	Z: CSI payload of 624 bits (for 2 layers)
	-0.20%
	 
	 

	Gain for SGCS, [layer 2]
	X:  CSI payload of 104 bits (for 2 layers)
	14.30%
	 
	 

	
	Y: CSI payload of 208 bits (for 2 layers)
	3.60%
	 
	 

	
	Z: CSI payload of 624 bits (for 2 layers)
	5.90%
	 
	 

	Full Buffer Traffic
	 
	 

	Gain for Mean UPT
	X: CSI payload of 52 bits
	8.5%
	 
	 

	
	Y: CSI payload of 104 bits
	5.0%
	 
	 

	
	Z: CSI payload of 312 bits
	-0.2%
	 
	 

	Gain for 5% UPT
	X: CSI payload of 52 bits
	4.1%
	 
	 

	
	Y: CSI payload of 104 bits
	0.3%
	 
	 

	
	Z: CSI payload of 312 bits
	-2.1%
	 
	 

	Bursty Traffic (FTP model1)
	 
	 

	Gain for Mean UPT (for a specific CSI feedback overhead)
	[X*Max rank value], RU~15%
	2.0%
	 
	 

	
	[Y*Max rank value], RU~15%
	0.5%
	 
	 

	
	[Z*Max rank value], RU~15%
	-0.3%
	 
	 

	
	[X*Max rank value], RU ~40%
	4.3%
	 
	 

	
	[Y*Max rank value], RU ~40%
	1.2%
	 
	 

	
	[Z*Max rank value], RU ~40%
	-0.5%
	 
	 

	
	[X*Max rank value], RU~80%
	13.0%
	 
	 

	
	[Y*Max rank value], RU ~80%
	6.8%
	 
	 

	
	[Z*Max rank value], RU ~80%
	-0.2%
	 
	 

	Gain for 5% UPT
	[X*Max rank value], RU~15%
	1.1%
	 
	 

	
	[Y*Max rank value], RU~15%
	-2.0%
	 
	 

	
	[Z*Max rank value], RU~15%
	-0.5%
	 
	 

	
	[X*Max rank value], RU ~40%
	7.2%
	 
	 

	
	[Y*Max rank value], RU ~40%
	0.3%
	 
	 

	
	[Z*Max rank value], RU ~40%
	-4.0%
	 
	 

	
	[X*Max rank value], RU~80%
	22.50%
	 
	 

	
	[Y*Max rank value], RU ~80%
	11.40%
	 
	 

	
	[Z*Max rank value], RU ~80%
	-1.30%
	 
	 

	Note: “Benchmark” means the type of Legacy CB used for comparison.
Note: “Quantization/dequantization method” includes the description of training awareness (Case 1/2-1/2-2), type of quantization/dequantization (SQ/VQ), etc.
Note: “Input type” means the input of the CSI generation part. “output type” means the output of the CSI reconstruction part.
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Layer # Filter padding Returning
Filters | shape sequence
ConvLSTM1D |12 [5,11 Same True
Conv2D 12 [6,1] none n/a
Conv2D 2 6,11 none n/a





