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1 [bookmark: _Ref124589705][bookmark: _Ref129681862]Introduction
In the previous RAN1 meetings, several agreements and working assumption have been approved, where the working list is provided in Table 2 of the Appendix. This contribution provides our views on the general aspects of the AI/ML framework, lifecycle management, interaction with RAN4, and considerations on UE power consumption modelling.
2 Discussion on the general framework
This section mainly discuss the general AI/ML framework, including the terminologies, diagram on high level framework, collaboration levels and model delivery/transfer issues.
2.1 Terminologies for AI/ML framework
In previous meetings, the terminologies of model selection, and model deployment have been discussed, while no consensus was achieved. These terminologies are discussed in below.
Model selection: A process of selecting one AI/ML model among multiple alternative models with same functionality for activation. 
It is our understanding that model activation/deactivation and model switching should be based on the results of model selection. Thus model selection should be an independent process of lifecycle management.
Model deployment: Process of converting an AI/ML model into an executable form and deploy it to a target device where inference is to be performed.
· Note: The conversion may happen before or after delivery.
In our understanding, model deployment is an independent process (which may be transparent to 3GPP) of lifecycle management, instead of overlapping with another process, i.e., model delivery.
The following terminology in the working assumption can be updated, where the changed part is highlighted. 
AI/ML model transfer: Delivery of an AI/ML model over the air-interface signaling, either parameters of a model structure known at the receiving end or a new model with parameters. Delivery may contain a full model or a partial model.
As a clarification for the changing, considering the collaboration levels are categorized from the perspective of 3GPP signaling, and the key difference between level y and level z is whether model transfer is supported or not. If the model transfer is defined as a generic way without emphasizing air-interface, it may lose the distinction with level x/y.
Proposal 1:  Define the following terminologies if needed: 
· Model selection: A process of selecting one AI/ML model among multiple alternative models with same functionality for activation.
· Model deployment: Process of converting an AI/ML model into an executable form and deploy it to a target device where inference is to be performed. Note: The conversion may happen before or after delivery.
· AI/ML model transfer: Delivery of an AI/ML model over the air-interface signaling, either parameters of a model structure known at the receiving end or a new model with parameters. Delivery may contain a full model or a partial model.
The definitions of the above terminologies are summarized in Table 3 of the Appendix.
2.2 Diagram of the general AI/ML framework
A basic functional framework of AI/ML for NR RAN has been captured in TR 37.817 and provided in Figure 1. It can be considered as a starting point and reference to draw the diagram for the general AI/ML framework for air interface. Based on that, the diagram for RAN1 led air-interface AI/ML is illustrated in Figure 2, with the following 2 principles
· Strive to reuse the diagram in 37.817 as much as possible unless necessary changes are needed.
· Remove the terminologies not defined in RAN1 from the diagram in 37.817 and replace with the terminologies and LCM procedures agreed/discussed in RAN1.


[bookmark: _Ref127093039]Figure 1 Functional Framework for RAN Intelligence defined in TR 37.817
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[bookmark: _Ref126587012]Figure 2 Diagram of the general framework for air-interface AI/ML
The main modifications are summarized as following:
Firstly, model monitoring has been agreed in RAN1 as an independent procedure of LCM. Thus we delete the “model performance feedback” from “model inference” to “model training” in the diagram in 37.817, and add “model monitoring” as an independent function which has interactions with “model training”, “model inference” and “data collection”. 
Secondly, since RAN1 hasn’t defined the terminology of “actor”, the actor function and its related interactions are removed.
Thirdly, for the interactions between pairwise functions, “model training”, “model inference” and “model monitoring” all require “data collection” as input. “Training data”, “Inference data” and “Monitor data” means the model input and/or label of “model training”, “model inference” and “model monitoring”, respectively. The wording is intended to align with the diagram in 37.817. After model training, a well-trained AI/ML model should be converted into an executable form and deployed to the target device where inference is to be performed, which is defined as model deployment. When there are multiple alternative AI/ML models with same functionality, model selection procedure can be used to determine a suitable model to be used for inference; that is why the “model selection” is placed as the interaction between “model training” and “model inference”. The output of “model inference” can be used for “model monitoring”. “Model activation/deactivation/switching/fallback” are the outcome of “model monitoring” decisions and can impact “model inference” in return. “Model updating” is also the outcome of “model monitoring” which is a decision of model retraining, so it is taken as the input to “model training”.
Proposal 2: Figure 2 can be considered as the diagram for high-level general AI/ML framework.
2.3 Model transfer/delivery
In the last RAN1 meeting [1], the following agreement for the cases of model delivery/transfer to UE had been achieved. This subsection will discuss the challenges and applicable cases of model transfer/delivery. In our understanding, model transfer/delivery may face some issues/restrictions in the realistic network, which should be considered in the further study. They are mostly symmetric for the model transfer/delivery from Network to UE and from UE to Network, and are analyzed separately.
	Agreement
To facilitate the discussion, consider at least the following Cases for model delivery/transfer to UE, training location, and model delivery/transfer format combinations for UE-side models and UE-part of two-sided models. 
	Case
	Model delivery/transfer
	Model storage location
	Training location

	y
	model delivery (if needed) over-the-top
	Outside 3gpp Network
	UE-side / NW-side / neutral site

	z1
	model transfer in proprietary format
	3GPP Network
	UE-side / neutral site

	z2
	model transfer in proprietary format
	3GPP Network
	NW-side

	z3
	model transfer in open format
	3GPP Network
	UE-side / neutral site

	z4
	model transfer in open format of a known model structure at UE
	3GPP Network
	NW-side

	z5
	model transfer in open format of an unknown model structure at UE
	3GPP Network
	NW-side



Note: The Case definition is only for the purpose of facilitating discussion and does not imply applicability, feasibility, entity mapping, architecture, signalling nor any prioritization.
Note: The Case definition is NOT intended to introduce sub-levels of Level z.
Note: Other cases may be included further upon interest from companies.
FFS: Z4 and Z5 boundary 


2.3.1 Model transfer/delivery from Network to UE
Software/hardware compatibility
The algorithm design of AI/ML model to be operated at the UE modem is tightly integrated with the hardware (e.g., chipset) and the software platforms (e.g., runtime environment), so that an unseen delivered AI/ML model arbitrarily developed by the Network vendor may not be running successfully at the UE modem. In particular, the delivered UE part/UE-side model developed without involving the UE vendor may result in low operating efficiency, large operating latency, high power consumption, or even failed to run at the UE side, since the AI/ML model cannot be optimized according to the specific software/hardware at the UE modem. That is to say, the UE may suffer software/hardware compatibility issue if there is no interoperation with the Network side. To resolve this compatibility issue and allow the UE side to efficiently operate the UE part model, the Network vendor and the UE vendor may need alignment on the UE part/UE-side AI/ML model structure to some extent, which may further result in the following issues.
· Offline co-engineering. The supported model structure(s) of the UE part/UE-side model need to be somehow aligned between the Network vendor and the UE vendor in an offline manner. E.g., the UE/chipset vendor would notify the supported UE part/UE-side model backbone/structure(s) to the Network vendor, which then develops and trains the UE part/UE-side model dedicatedly. Considering different UE/chipset vendors may probably support/prefer different backbones/structures due to their different software/hard ware environments, and even for the same UE/chipset vendor, it may have diverse flavours on the backbones/structures optimized to multiple UE versions, the Network has to interoperate with various UE vendors/UE versions to dedicatedly train the UE part/UE-side models, which would cause huge work load of interoperability between Network vendors and the UE/chipset vendors.
· Burden on model maintenance/storage. Due to the co-engineering issue as analyzed above, the Network vendor needs to maintain/store numerous UE part/UE-side models from different UE vendors/UE versions. Considering there are UEs from multiple UE vendors/UE versions in the same cell, this maintenance/storage burden is imposed on the gNB as shown in Figure 3 by taking two-sided model as an example.
· Performance. Theoretically, the joint training at one entity would conduct to the optimal AI/ML model performance. However, due to the co-engineering with the UE/chipset vendors as analyzed above, the Network vendor cannot freely develop the AI/ML model to be operated at the UE side based on the specific network scenario/configuration, which may result in sub-optimal performance. Moreover, for the two-sided model, the Network part model is simultaneously trained to multiple UE part models subject to different UE/chipset vendors as shown in Figure 3; this is similar to the training collaboration Type 2 between 1 Network part to M>1 UE parts, where further potential performance loss will turn out.
[image: ]
[bookmark: _Ref127349214]Figure 3 An example of joint training for 1 Network to multiple UEs at Network side
Observation 1: For model transfer/delivery from Network to UE, UE may suffer software/hardware compatibility issue (power/latency, etc.) if it is to implement a totally unseen model structure arbitrarily developed by Network, as the UE part/UE-side AI/ML model structure is tightly integrated with the software/hardware environment of the UE modem.
Observation 2: For model transfer/delivery from Network to UE, offline co-engineering between the Network vendor and the UE vendor may be needed to achieve the UE part/UE-side AI/ML model structures compatible to the software/hardware environment of the UE modem. This may result in the following issues:
· Network may have to interoperate with various UE vendors/UE versions to dedicatedly train the UE part/UE-side models, which breaches the engineering isolation.
· Network, in particular gNB, may have to maintain/store multiple UE part/UE-side models trained for different UE vendors/UE versions.
· Network vendor may not freely develop the AI/ML model to be operated at the UE side based on the specific network scenario/configuration, which may result in sub-optimal performance.
Model proprietary
The implementation of AI/ML models are usually proprietary. When Network side model is transferred/delivered to the UE, the model proprietary of the Network side will be disclosed to the UE side. Whether or how to keep the proprietary of AI/ML models needs to be further studied.
Model transfer/delivery formats
In the RAN1#111 meeting, the following working assumption on model representation formats has been achieved. To our understanding, the proprietary format is interpreted as the binary image compiled from the open format and to be implemented at the UE device.
	Working Assumption
Consider “proprietary model” and “open-format model” as two separate model format categories for RAN1 discussion, 
	Proprietary-format models
	ML models of vendor-/device-specific proprietary format, from 3GPP perspective
NOTE: An example is a device-specific binary executable format

	Open-format models
	ML models of specified format that are mutually recognizable across vendors and allow interoperability, from 3GPP perspective


From RAN1 discussion viewpoint, RAN1 may assume that:
· Proprietary-format models are not mutually recognizable across vendors, hide model design information from other vendors when shared.
· Open-format models are mutually recognizable between vendors, do not hide model design information from other vendors when shared


As explained above, we understand the AI/ML model with proprietary format corresponds to the binary image after compiling. Different from the open format which describes the model structure and parameters, proprietary format describes how the model is implemented and integrated into the hardware/software environment. Therefore, the interpretation of the proprietary format would be tightly related with the hardware/software environment of the UE device to implement the AI/ML model, which is proprietary of the UE vendors. Having that in mind, it is quite challenging for the Network to obtain the compiling environment of the UE device and send UE the compiled binary image subject to the proprietary format.
Observation 3: For model transfer/delivery from Network to UE, it may be challenging for Network to obtain the compiling environment of the UE device and send UE the binary image compiled by Network subject to the proprietary format.
Case z1 and z2: Model transfer in proprietary format.
The alternatives, as illustrated as Case z1 and z2 of Figure 4, are that the AI/ML model with open format is compiled at the non-3GPP entity of the UE side, after which the binary image is then delivered to and stored at the Network side. If a UE device needs the AI/ML model, Network will then transfer/deliver the AI/ML model via 3GPP signaling. However, it incurs the round-trip model delivery from the non-3GPP entity to Network and from Network to UE device for Case z1/z2; on top of that, an additional model delivery path with open format from Network to the non-3GPP entity of UE side is needed for Case z2. These model delivery procedures introduce unnecessary latency, as opposed to Case y where the AI/ML model subject to the proprietary format is directly delivered from the non-3GPP entity to UE device in a spec transparent way. Moreover, the interaction of model delivery between Network entity and the non-3GPP entity may need additional spec effort in SA, e.g., which network entity (CN/OAM) is to communicate with the non-3GPP entity, and the model delivery among the network entities.
For AI/ML model transfer/delivery in open format, the straightforward way is that the Network delivers the UE part/UE-side model to the UE device which then implements the model. However, as far as we know, it is challenging for the UE modem to support the capability in short/medium term to compile the AI/ML model. In this regard, 3 alternatives are raised for discussions as shown in Figure 4.
Case y: Spec transparent delivery.
Network trains AI/ML models and delivers the trained models in open format to the non-3GPP entity of the UE side in an offline manner. Models are compiled and stored at the non-3GPP entity. The non-3GPP entity can deliver the compiled model to the UE device in a spec transparent way when this AI/ML model is activated by the Network. This case can work under a spec transparent way, while offline interoperation is needed for the model delivery from Network to UE side. However, as the model delivery is performed in an offline manner and additional latency is introduced for the compiling at the non-3GPP entity, the overall latency is suboptimal. In addition, to avoid spec impact in SA, if the training location is at Network side, the training entity of gNB/OAM may need to be precluded. Therefore, the model training/updating flexibility is significantly limited, and may hard to support scenario/site specific model training.
Case z4: Model transfer with open format and known/aligned model structure.
Network and UE align the model structure in an offline manner, and the AI/ML model for the UE device is pre-compiled. Network trains the AI/ML models by only updating the parameters (without changing the structure) and stores the trained models with open format. Since the UE has already known the model structure, Network only needs to transfer model parameters to UE. As the AI/ML model at the UE device is unchanged, UE can directly update the parameters into the model and implement without compiling. Compared to Case y, it has smaller latency as the delivery consumes only one trip and the time for compiling is unneeded. But the structure of the UE part/UE-side model is fixed, and offline co-engineering is needed with Network for the structure alignment.
Case z3 and z5: Model transfer with open format and unknown/non-aligned model structure.
Network (Case z5) or UE (Case z3) trains AI/ML models and then the models are stored at the Network side. When a UE needs the AI/ML model, the Network transfers the model in open format to the UE device over 3GPP signalling. The UE device then uploads the models to the non-3GPP entity of the UE side for compiling and the non-3GPP entity transparently delivers the compiled models back to the UE device for inference. Compared to Case y, Case z3/z5 consume more air-interface resources and introduce an additional round-trip of model uploading/downloading to UE which leads to longer latency. On top of that, Case z3 needs an additional model delivery path with open format from the non-3GPP entity to Network, which further harms the latency.
From the spec impact perspective, Case z5 has no offline model delivery, so it does not necessarily involve the spec effort of SA. In contrast, the interaction of model delivery between the Network entity and the non-3GPP entity in Case z3 may need additional spec effort in SA.
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[bookmark: _Ref127355008]Figure 4 Potential cases for AI/ML model transfer/delivery from Network to UE
Observation 4: UE modem may not have the capability of compiling AI/ML models subject to the open format in short/medium term. Due to this restriction, for the model transfer/delivery from Network to UE with open format,
· Case y may incur additional latency due to offline model delivery, and the model training/updating flexibility is largely restricted.
· Case z4 imposes restriction of fixed and pre-aligned UE part/UE-side model structure between Network and UE.
· Case z3 and z5 incur additional model uploading/downloading links at the UE side for compiling.
Among the 6 cases, it seems unnecessary and complicated to train the UE part/UE-side model at the UE side but adopts a round-trip to the Network to transfer the model (i.e., z1 and z3), which involves the offline interaction between UE side and Network side as well as among entities of the Network side (which may have SA impact). For z2, it is a similar situation where the compiling is at the non-3GPP entity of the UE side, although the model is trained at the Network side. In contrast, a more independent way is to directly deliver the model from the non-3GPP entity (which trains/compiles model) to the UE device in a spec transparent way. 
Observation 5: For model transfer/delivery to UE, the motivation for the cases where the AI/ML model is trained/compiled at UE side/neutral site, and stored at/transferred by Network (i.e., z1, z2, z3) is not clear:
· It may unnecessarily increase the latency, and incurs the potential spec effort at SA.
· As a more independent alternative, the training/compiling entity can directly deliver the compiled model to the UE device in a spec transparent way.
For the remaining Case y, Case z4 and Case z5, the offline interoperation efforts for model training decreases (which also means the increase of flexibility of training/updating the model) from y, z4 to z5. The pros and cons among the three cases can be further discussed.
2.3.2 Model transfer/delivery from UE to Network
For the model transfer/delivery from UE to Network, the issues/restrictions are mostly mirrored, except that the gNB is expected to have a stronger capability to support compiling, and the UE device is not supposed to maintain/store multiple NW part/NW-side models trained for different Network vendors/versions as it only camps in one cell at a time. However, gNB still needs to maintain/store/run multiple NW part/NW-side models trained by different UE vendors which camp in one cell. 
Observation 6: For model transfer/delivery from UE to Network, gNB may suffer software/hardware compatibility issue (power/latency, etc.) if it is to implement a totally unseen model structure arbitrarily developed by UE side, as the NW part/NW-side AI/ML model structure is tightly integrated with the software/hardware environment of the gNB.
Observation 7: For model transfer/delivery from UE to Network, offline co-engineering between the Network vendor and the UE vendor may be needed to achieve the NW part/NW-side AI/ML model structures compatible to the software/hardware environment of the gNB. This may result in the following issues:
· UE side may have to interoperate with various Network vendors/Network versions to dedicatedly train the NW part/NW-side models, which breaches the engineering isolation.
· Network, in particular gNB, have to maintain/store/run multiple NW part/NW-side models transferred/delivered from different UE vendors/UE versions.
· UE vendor may not freely develop the AI/ML model to be operated at the Network side based on the specific network scenario/configuration, which may result in sub-optimal performance.
Observation 8: For model transfer/delivery from UE to Network, it may be challenging for UE side to obtain the compiling environment of the gNB and send Network the binary image compiled by UE side subject to the proprietary format.
Note that the complexity of running different Network part models (corresponding to different UEs) is much higher than running the same Network part models for multiple UEs, since the latter can process the inference inputs over multiple UEs as one batch by making use of the GPU processing. Thus, the gNB complexity of running the model transferred from UE is higher than the other way around. In addition, the size of the Network part models is generally larger than the UE part model for two-sided model, so model transfer/delivery from UE to Network may impose heavier burden on the gNB storage than the other way around.
Based on the above analysis, it is proposed to deprioritize the model transfer/delivery from UE to Network.
Proposal 3: Deprioritize the model transfer/delivery from UE to Network.
2.3.3 Applicable cases of model transfer/delivery
In our companion contribution of CSI feedback case [2], it has been shown that a generalized AI/ML model trained by mixed training dataset show good performance on various scenarios/configurations/sites. Therefore, the generalized AI/ML model may not need to be updated frequently when the UE mobiles into a different cell, or the distribution of the channel characteristics for the cell slightly varies. 
On the other hand, for a model with large size, the overhead of air interface and latency due to the model transfer/delivery will be also more serious. If the UE part/UE-side model with the size of up to tens of MB needs to be frequently updated to the UE by model transfer/delivery (e.g., as long as hand over occurs), it will impose huge burden on the total overhead of the AI/ML enabled features.
Moreover, if the model with large size is assumed for model transfer/delivery, it needs non-trivial impact on the RAN2 spec of enhancing the legacy RRC signaling which currently supports up to 9K bytes.
In light of that, it should be avoided to transfer/deliver the model with large size in a timely or frequent manner. For the model with large size, it should be either considered to adopt other training types, e.g., Type 3. For the spec impact discussion of model transfer/delivery, small model size should be assumed as a starting point to save the RAN2 study/spec effort.
Observation 9: The motivation for specified model transfer/delivery between Network and UE with large model size is not clear.
Proposal 4: For the study of model transfer/delivery from Network to UE, small model size (e.g., to ensure no strong impact to legacy RRC signaling) should be assumed as a starting point for the potential spec impact analysis.
3 Lifecycle management
3.1 Data collection
Network and UE can update the model based on training data collected from realistic networks, or perform model selection/switching based on the distribution of the collected data samples. The collected data from realistic networks can also be used for model monitoring, e.g., for calculating the accuracy of the AI/ML inference to make monitoring decisions. For the above procedures, as the channel environment changes over time, model monitoring, and model selection/switching may all occur in an on-demand manner. Thus the on-demand data collection from the realistic network should be studied, otherwise Network and UE cannot perform the above procedures with respect to the changing of environment. It is worth noting that model monitoring and model selection/switching only require relatively small amount of samples and thus the overhead of timely data collection is negligible. Though model training or model updating which require relatively large number of samples, as the training/updating would happen infrequently, e.g., with the period of days/weeks, it does not require data collection frequently.
To this end, the procedure and specification impacts for data collection from realistic networks need to be studied. Since the collected data format and detailed procedure are strongly related to different use cases, e.g., ground-truth CSI for the CSI feedback case (details can refer to [2]), or RSRP/best beam ID to derive the ground-truth beam ID for the BM case (details can refer to [3]), or ground-truth UE coordinate (details can refer to [4]). The details should be discussed in each use cases and 9.2.1 can discuss and provide some common principles. As examples of spec impact, the enhanced/dedicated RS design, the enhanced UE measurement/report procedure, and the signaling for indicating/requesting data collection can be studied.
Proposal 5: Study the potential spec impact of data collection from realistic networks for supporting the LCM of AI/ML model, including at least:
· Enhanced/dedicated RS design.
· Enhanced UE measurement/report.
· Type/format of the data sample(s).
· Signaling for indicating/requesting data collection.
3.1.1 Container for data collection
Data collection can be realized by PHY signaling (e.g., UCI) or by RRC signaling (e.g., L3/MDT report). As shown in the general AI/ML framework in previous section, data collection may have different purposes, e.g., model training, model updating and model monitoring. Model training may require large amount of training samples but with low frequency and relaxed real-time requirement. Thus data collection for model training can be based on RRC signaling and the data samples can be reported in a batch, e.g., UE can report several hundreds of data samples in a batch after a relative longer time of measurement over reference signals. Model monitoring may be performed frequently and has real-time requirement to monitor the performance of AI/ML model, while it only requires a small number of data sample(s). Thus, data collection for model monitoring can be based on PHY signaling (e.g., UCI) and the data can be reported per sample. E.g., our companion contribution of CSI feedback case [2] has shown that the overhead of ground-truth CSI per sample can be as small as 127 Bytes and this is still acceptable to be carried on UCI.
Observation 10: Frequent and timely measurement and report, e.g., based on PHY signaling may be applicable for data collection with the purposes of monitoring and training/updating.
Observation 11: Infrequent and relaxed measurement and report, e.g., based on RRC signaling may be applicable for data collection with the purpose of training/updating.
Proposal 6: For data collection, study the procedure/signaling to generate/carry data sample(s), including both L1 and L3 measurement/reporting.
3.1.2 Data collection quality
Moreover, the improvement of the dataset during the data collection procedure may introduce spec impacts that are different from legacy reporting procedure. As one of the key impact factor for AI/ML features, dataset quality would directly affect the performance of the trained/fine-tuned model and the accuracy of model monitoring; however, as field data normally suffers from imperfection (e.g., channel estimation error), how to improve the quality of the data samples (e.g., improve the accuracy of measured labels) can be studied. In addition, proactively indicating the quality requirement of data samples (e.g., SNR/RSRP) to be reported is also of much help, where the data samples which cannot achieve the quality requirement are precluded from reporting, so it can guarantee good quality of all data samples in the dataset.
Proposal 7: Study the following aspects to improve the quality of dataset during data collection:
· Improving the quality of data samples, e.g., improving the accuracy of the measured labels.
· Indicating the quality requirement of data samples to be reported.
3.1.3 Overhead for data collection and dataset delivery
Normally, the period of performing training/updating can be relatively long (e.g., days to months), and data collection is not required to be performed very frequently neither. Therefore, the average overhead for data collection would not be a critical issue. Moreover, some quantization or compression methods can be adopted to largely reduce the overhead of data collection, as analyzed in our companion contributions [2]. In addition, the delivery of data samples can be distributed over tremendous number of UEs in one cell or multiple cells; thus the overhead of data collection or dataset delivery over air-interface is not a big burden [5].
Observation 12: The overhead of data collection and dataset delivery over air-interface is not a big issue, considering:
· The time period of data collection and dataset delivery is relatively short compared to the long period of lifecycle management.
· A massive number of UEs can assist the data collection/dataset delivery.
3.1.4 Assistance information
In the last RAN1 meeting [1], the following proposal of assistance information had been discussed.
	Proposal 5-15d:
Assistance information from Network to UE for at least training data collection, inference, and various other LCM purposes may be implied carried by a functionality itself or via configurations within a functionality. 
Note: Other ways of providing assistance information can be further discussed in each use case agenda.
Note: The provision of assistance information needs to consider feasibility of disclosing proprietary information to the other side.


For studying data collection (and inference operations also), the assistance information that may involve privacy issues shall be carefully studied for data collection, e.g. UE positioning information. The discussion of assistance information should follow the principle on user data privacy as captured in the SID, i.e., user data privacy needs to be preserved. 
In addition, for the necessity of introducing the assistance information, it may need some further clarifications.
· For the RRC configurations, e.g., CSI-RS configurations, Cell ID, etc., the UE can naturally obtain such RRC configurations with the legacy configuration signalings.
· For the antenna layout/TxRU mapping information or deployment information, it is still part of the Network/MNO proprietary if the UE side needs to know the interpretation of the ID.
· For the scenario/zone/site information, e.g., urban, suburban, rural, UE speed, etc., the UE can obtain the geographic position with its own positioning functionality without being notified by gNB.
In addition, as different vendors have different categorization rules on the scenarios/configurations, it may need further study and clarification on how to harmonize the understandings of the categorization, e.g., for the same scenario/configuration, Network vendor and UE vendor may have different understandings on its categorization, or different Network vendors may categorize it to different classes. If the UE/Network side who receives this assistance information from the opposite side splits the data into different datasets as long as there are different understandings, it may lead to tremendous number of AI/ML models.
Furthermore, in our companion contributions, the considered AI/ML solutions (i.e., for CSI [2], BM [3], positioning [4]) can achieve considerable performance gains even without introducing additional assistance information.
Proposal 8: The necessity of introducing new assistance information for data collection/categorization needs to be clarified/justified, considering:
· UE can sense the scenario autonomously without being notified by gNB or with legacy signaling.
· The categorization or granularity of the scenarios identified by Network vendor may not match the categorization principle of the UE side.
· Generalized model can be trained over scenarios/configurations.
Observation 13: Some of the assistance information for data collection/categorization brought up by some companies may disclose the proprietary/privacy, e.g., TxRU mapping information, UE positioning information.
In the end, if such assistance information from the opposite side is justified, it should be in forms of a virtualized scenario ID for data categorization rather than with explicit interpretation. In that regard, the Network side and the UE side can both provide the virtualized scenario ID to the other side, with symmetric benefits, i.e., to distinguish the differentiated data distributions caused by the factors of the Network side (e.g., antenna, site, etc.) or the UE side (e.g., antenna, channel measurement algorithm, etc.).
Proposal 9: The assistance information for data collection/categorization, if studied, should be in forms of virtualized ID to avoid the disclosure of proprietary.
· Such assistance information can be sent from Network to UE or from UE to Network.
3.2 Model training
AI/ML model training can be discussed from aspects of online/offline training, one-sided model, and two-sided model.
3.2.1 Online/offline training
The terminologies of online/offline training have been agreed in RAN1#110. For Network-side model, whether the Network trains the model continuously in real time or based on collected dataset is up to implementation. The UE will assist the Network in data collection, but not necessarily to be aware of whether online/offline training is performed at Network side. On the other hand, for UE-side model or two-sided model, online and offline training may have different spec impacts, for example, the model identification procedure may be distinct according the different model updating manner. However, it may be difficult to make a conclusion on whether online training or offline training should be prioritized. Therefore, detail training types can be further discussed in each use cases.
Observation 14: For Network-side model, online/offline training is up to implementation.
As defined, online and offline training is distinct from the perspective that whether the model is trained in real-time or in non-real time. Online/offline training describes how training procedure is performed, and is decoupled with how the training dataset is obtained. For example, for offline training, the training dataset can be obtained via data collection/dataset delivery via either air-interface or non-air-interface.
Proposal 10: The discussion of online/offline training should be decoupled with whether the data collection/dataset delivery is performed via air-interface or non-air-interface.
3.2.2 Model training of one-sided (AI/ML) model
One-sided (AI/ML) model can be a Network-side model or UE-side model. From potential spec impact perspective, model training of one-sided model can be categorized as model training with model transfer/delivery and model training without model transfer/delivery.
Model training with model transfer/delivery
For Network-side model, the motivation of On-UE training with model transfer/delivery to Network is not clear.
For UE-side model, On-Network training with model transfer/delivery to UE may be helpful for scenario- or site-specific AI/ML model. 
However, model transfer/delivery may face several issues/restrictions as analyzed in Section 2.3, e.g. software/hardware compatibility, model format, etc. On the other hand, different from two-sided model where the performance of model training types without model transfer/delivery may more or less suffer performance loss (though the performance under model transfer/delivery may also be suboptimal under some restrictions identified in Section 2.3) or flexibility restriction, the training of the one-sided model is straightforwardly performed at the side which performs inference without any loss due to lack of collaboration during the training; therefore, we should study the model training for one-sided model without model transfer/delivery as a starting point.
Model training without model transfer/delivery 
Model training and model inference can be at the same node for one-sided AI/ML model. 
For On-Network training, although the model training is entirely performed at the Network side, it may require UE to assist the collection of training samples as described in Section 3.1, e.g., best beam ID as well as RSRPs for BM case, and ground-truth location obtained by positioning reference unit (PRU) for positioning case. Although Network may require UE to assist the collection of training samples, the implementation of training process itself is transparent to UE. In addition, the entity to perform training (e.g., gNB, OAM, LMF, etc.) and the specific training approach should be up to implementation. 
Similar as On-Network model training, the entity of the UE side to perform the training is up to UE implementation also. Whether/how it needs the Network to assist the collection of training samples can be further studied.
Observation 15: For On-Network model training, the training procedure is transparent to UE (except for potential feedback enhancement for data collection/delivery).
Proposal 11: For the study of one-sided AI/ML model, model training without model transfer/delivery should be considered as a starting point, i.e.,
· On-Network training for Network-side model.
· On-UE training for UE-side model.
3.2.3 Model training of two-sided (AI/ML) model
Two-sided AI/ML model consists a pair of NW part model and UE part model over which joint inference is performed across the UE and the Network, respectively. In RAN1#110 meeting, three types of training method for two-sided model have been agreed as follows:
	Agreement
In CSI compression using two-sided model use case, the following AI/ML model training collaborations will be further studied:
· Type 1: Joint training of the two-sided model at a single side/entity, e.g., UE-sided or Network-sided.
· Type 2: Joint training of the two-sided model at Network side and UE side, respectively.
· Type 3: Separate training at Network side and UE side, where the UE-side CSI generation part and the Network-side CSI reconstruction part are trained by UE side and Network side, respectively.
· Note: Joint training means the generation model and reconstruction model should be trained in the same loop for forward propagation and backward propagation. Joint training could be done both at single node or across multiple nodes (e.g., through gradient exchange between nodes).
· Note: Separate training includes sequential training starting with UE side training, or sequential training starting with Network side training [, or parallel training] at UE and Network
· Other collaboration types are not excluded. 


For the agreed three types of training methods, their pros and cons are analyzed in our companion contribution [5], and briefly summarized as follows: 
Type 1 - Joint training of the two-sided model at a single side/entity.
For Type 1, there can be two candidates: joint training at Network side, and joint training at UE side. For the joint training at Network side, Network vendor can flexibly perform cell/scenario specific model training based on specific network planning and site types, thus it is more realistic for Network to train AI/ML models that best match the cell environment. As a comparison, for the joint training at UE side, dataset collected by UE vendors may not match the specific cell environment of the Network vendor/MNO, so that the model would be suboptimal.
In addition, the model update for the joint training at Network side (which can train the model at the gNB with an on-demand manner) is much easier and more flexible than model update at the UE side which cannot train the model at the UE device.
Moreover, for the joint training at Network side, UE device only needs to store one AI/ML model of the cell being camped. As a comparison, for the joint training at UE side, gNB has to store/run multiple models trained by different UE vendors/UE versions since it has to serve multiple UEs from different UE vendors or different UE versions of the same vendor in one cell. 
Proposal 12: For training Type 1 (joint training of the two-sided model at a single side/entity), prioritize the study of joint model training at Network side and transfer/deliver the model to the UE side.
Type 2 - Joint training of the two-sided model at Network side and UE side, respectively. 
In this type, both Network and UE are involved in model training while no AI/ML model is transferred over air-interface and no disclosure of the AI/ML model to the opposite side. The parameters of NW part model and UE part model can be trained jointly through iterative FP/BP loops, and the gradients of BP and the results of FP during training process can be exchanged. This approach relies on complicated design for the Network-UE interaction to support real-time interaction of FP/BP iterations between Network and UE, which introduces challenges as also analyzed in [2]. For multi-vendor cases, such challenges are more severe as the interactions may need to be simultaneously performed over multi-Network vendors and multi-UE vendors, over which the timelines of model/product development are hardly aligned.
Observation 16: For training Type 2 (joint training of the two-sided model at Network side and UE side, respectively), it relies on complicated interoperation to support real-time interaction of FP/BP iterations between Network and UE which introduces significant challenges to engineering isolation especially for the case of multi-Network vendors to multi-UE vendors.
Type 3 - Separate training at Network side and UE side. 
It includes two candidates: UE-first training, and NW-first training.
For NW-first training, Network can deploy a unified AI/ML model to match multiple UE vendors; The UE can also maintain a unified AI/ML model with some generalization methods, as evaluated in [2]. Even though a UE vendor may maintain multiple non-generalized AI/ML models for different Network vendors, they do not necessarily need to be all stored at the UE device but other UE side non-3GPP entities, and the UE only operates with the AI/ML model of a single Network vendor when camping in one cell or the cells of the same Network vendor. When the UE hands over to a cell with a different Network part model (which may happen infrequently), it can download the corresponding UE part model from the non-3GPP entity. Therefore, it would not cause burden on the maintenance/storage of multiple UE part models at the UE device to pair with different Network vendors.
For UE-first training, there are a couple of issues under this candidate: 1) the dataset collected from UE side may not well match the channel characteristics of the Network, regarding the Network vendor may want to perform cell/scenario specific model trainings while the dataset provided by UE vendors may not involve that categorization; 2) different from the NW-first training, gNB may have to maintain multiple NW part models corresponding to multiple UE vendor’s shared datasets, respectively, as it has to serve multiple UEs from different vendors in one cell, which would impose heavy burden of storage on gNB; 3) model updating is less flexible as compared to the NW first training, where the gNB can perform the model updating as soon as the cell environment changes, while the UE device can hardly perform model updating (but relies on the non-3GPP entities in a non-real time manner).
Observation 17: For training Type 3 of CSI compression, compared with NW first training, performing UE first training incurs extra challenges for Network due to the following reasons:
· Inconvenience of training cell/scenario specific models.
· Inflexible model update.
· Burden of maintaining/storing multiple Network part models at gNB to pair with multiple UE vendors/ UE versions.
3.3 Model/functionality identification
In the last RAN1 meeting, the following agreements about model/functionality identification are achieved. This section will further discuss model identification and functionality identification.
	Agreement
For UE-side models and UE-part of two-sided models:
· For AI/ML functionality identification
· Reuse legacy 3GPP framework of Features as a starting point for discussion.
· UE indicates supported functionalities/functionality for a given sub-use-case.
· UE capability reporting is taken as starting point.
· For AI/ML model identification 
· Models are identified by model ID at the Network. UE indicates supported AI/ML models.
· In functionality-based LCM
· Network indicates activation/deactivation/fallback/switching of AI/ML functionality via 3GPP signaling (e.g., RRC, MAC-CE, DCI). 
· Models may not be identified at the Network, and UE may perform model-level LCM.
· Study whether and how much awareness/interaction NW should have about model-level LCM
· In model-ID-based LCM, models are identified at the Network, and Network/UE may activate/deactivate/select/switch individual AI/ML models via model ID. 
FFS: Relationship between functionality identification and model identification
FFS: Performance monitoring and RAN4 impact 
FFS: detailed understanding on model 
Agreement
· AI/ML-enabled Feature refers to a Feature where AI/ML may be used. 
Agreement
· For functionality identification, there may be either one or more than one Functionalities defined within an AI/ML-enabled feature.


3.3.1 Functionality identification
Granularity of functionality identification
One controversial issue in the last meeting is whether the functionality is equal to the sub use case (e.g., UE feature group) or can be smaller than the sub use case. In our understanding, it can be smaller than sub use case for better awareness and interaction between Network and UE. E.g., if a UE supports multiple models with different combinations of AI/ML related RRC parameters (e.g., required RS configuration, Set A/B, Top-K, etc.), it can report multiple functionalities each corresponding to a combination of AI/ML related RRC parameters; thus, the gNB will be aware that the UE may potentially switch the model if gNB reconfigures some specific RRC parameters which lead to change of functionalities (so that gNB can trigger the monitoring after such RRC reconfiguration), or, gNB can proactively reconfigure these RRC parameters to potentially achieve the target of model switching.
One question raised in the last meeting is, what is the boundary between functionality identification and model identification, if the granularity of the functionality can be smaller than the sub use case. In the RAN2#121 agreements, it has been assumed that the model ID is globally unique. To our understanding, one key difference between functionality identification and model identification is that functionality identification is based on UE capability report without a model registration procedure, where the functionality information is per UE basis. E.g., after the UE is powered off, the CN will release its reported UE capability information; thus the UE needs to report its functionalities again when it is powered on later. Moreover, different UEs will report functionalities separately, so that Network has to treat these functionalities individually even though they may correspond to the same UE-side/UE part model and are supposed to have the same performance.
Proposal 13: The granularity of functionality can be smaller than sub use case, so that Network can better be aware and interact with the UE-side/UE part model, e.g., reconfiguration of specific RRC parameters may result in potential model switching. 
Categorization of functionality identification
Based on our understanding, functionality identification can be categorized into two modes, namely basic mode and enhanced mode, as shown in Figure 5 and Figure 6, respectively, depending on whether to introduce the globally unique scenario ID/dataset ID.
For the basic mode in Figure 5, the UE capability report includes a set of functionalities, each of which corresponds to a combination of specified RRC configurations (RS config, SetA/SetB/Top-K, CSI observation/prediction window, etc.). As mentioned above, gNB can potentially achieve the model switching by indirectly reconfiguring specific RRC parameters.
On the other hand, Network will not notify the vendor customized scenario information (e.g., the virtualized scenario ID) for data categorization. The UE can perform the data categorization based on autonomous sensing as mentioned in Section 3.1.4. That is to say, the “applicable conditions” discussed in the last meeting include the specified RRC parameters while do not include the vendor customized scenario information for the basic mode.
In this mode, there is no need to introduce any globally unique ID, since the interaction of the functionality information is purely based on legacy operations of UE capability report and gNB RRC configuration, so this mode can be discussed inside RAN without cross-WG effort.
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[bookmark: _Ref131424735]Figure 5 Functionality identification-basic
For enhanced mode in Figure 6, a globally unique ID of scenario ID or dataset ID is introduced to facilitate UE to perform data categorization. 
· For one-sided model, during the data collection phase, gNB will send a vendor customized scenario ID to UE for UE side data categorization, where different datasets can be used for training different models. During the inference phase, UE will report the functionality information including the supported scenario IDs to Network as part of UE capability; then the Network can configure the UE with a specific scenario ID to indirectly intervene the model selection/switching, similar as the basic mode.
· For training Type 3 of two-sided model, in particular, the gNB can deliver the dataset to the UEs for training the UE part model as described in our companion contribution [5]. A dataset ID can be attached to the delivered dataset, so that during the inference phase, the gNB can achieve the pairing with the UE part model by indicating UE with a specific dataset ID, i.e., the model pairing of both sides can work without introducing model ID.
That is to say, the “applicable conditions” discussed in the last meeting include the specified RRC parameters as well as the vendor customized scenario ID/dataset ID for the enhanced mode.
It should be noted that as the globally unique ID is introduced, it needs to discuss who/how to assign this ID, and the notification of this ID over the Network side entities (e.g., OAM, gNB, etc.). E.g., if it is assigned by gNB without coordination among vendors, it may probably lead to ID conflict. As the assignment of the globally unique ID would be performed by a network entity other than gNB, potential SA impact is anticipated.
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Proposal 14: Categorize the functionality identification modes into the following two modes
· Mode 1: Functionality identification-basic, where NO globally unique ID is needed.
· Mode 2: Functionality identification-enhanced, where globally unique scenario ID and/or globally unique dataset ID is needed, which may have SA impact.
3.3.2 Model identification
For model identification, as shown in Figure 7, model registration is required to let the Network/mobile Network operator (MNO) assign a globally unique model ID. This is to better manage both the UE part model and the UE-side models by MNOs and avoid conflict indication of model ID over different UE vendors, which is similar with excessively adopted ID management of, e.g., SUPI, TMSI, etc. In that way, Network can explicitly manage the UE-side/UE part model in per model basis rather than per UE basis. E.g., gNBs in different areas/cities can select the same UE-side/UE part model ID to serve different UEs which are yet anticipated to achieve the same/similar performance.
Observation 18: Compared with functionality identification, model registration procedure is needed for model identification to achieve globally unique model ID, so that the UE-side/UE part model can be managed by Network in per model basis rather than per UE basis.
· E.g., different gNBs can select the same UE-side/UE part model ID to serve different UEs which are yet anticipated to achieve the same/similar performance
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Online/offline model registration
The model registration procedure can be Option 1: online (registered by the UE device) or Option 2: offline (registered by a non-3GPP entity) as shown in Figure 7. 
Online registration can include both the directions of identification from Network to UE (i.e., with model delivery) and from UE to Network (i.e., without model delivery). For the direction from Network to UE, the globally unique model ID (as well as the meta information) can be assigned and indicated to UE in together with the associated model to be transferred. For the direction from UE to Network, the UE announces a new model to the Network (in together with the meta information), and the Network will assign the globally unique model ID to the UE.
Two options can be considered for the online registration:
· Option 1-1: Model registration between UE and gNB. This procedure can be discussed inside RAN.
· Option 1-2: Model registration between UE and CN. This procedure may need to involve SA2.
For offline registration procedure, it may be RAN transparent, but whether it is 3GPP transparent may need further discussion from SA.
· Option 2-1: Model registration between non-3GPP entity and OAM. This procedure can be discussed inside SA5.
· Option 2-2: Model registration between non-3GPP entity and CN. This procedure may need to involve SA2/SA3.
Observation 19: For model identification, online registration (registered by the UE device) can include both the directions of identification from Network to UE (i.e., with model delivery) and from UE to Network (i.e., without model delivery).
Observation 20: For model identification, it may have spec impact at SA, if the model registration is performed between UE device and CN, or between non-3GPP entity and OAM/CN.
Interpretation of model ID
During the last RAN1 meeting, there is a discussion on whether the model ID is assigned for model structure and parameters or for model structure only. Based on our understanding, model ID is globally unique and used to identify models with different performances/applicable cases. For LCM without model delivery, there is no need to distinguish whether the new UE-side/UE part model is subject to a new structure or an old structure and thus the structure ID is not applicable; for LCM with model delivery, Network may send UE with a new model structure or only the parameters, where the parameter ID is only applicable to the latter case. Targeting to a unified design, the model ID is applicable to the model plus parameters, and the hierarchical model ID is not necessary. That is to say, even for model parameter update, a new model ID should be assigned.
Proposal 15: Consider a unified design to use model ID to differentiate different models regardless of whether they are subject to the same or different model structures.
· Regardless the UE-side/UE part model to be registered only updates the parameters or adopts a new model structure with new parameters, it is regarded as a new model at the Network side, and is assigned with a new model ID.
For two-sided models, the key issue is how to pair UE part model and Network part model. From our understanding, model ID can be interpreted as logic ID or pairing ID. If multiple physical UE part models with same or different model structure can match to same Network part model with similar performance (e.g., multiple UE part models trained by same dataset for Network first training type 3), the Network may not need to be aware of them and thus a single logic ID/pairing ID can be used. 
Similarly, for one-sided models, as the physical models are quite UE implementation, it may be difficult for Network to be aware of a specific physical model running at the UE. The logic ID can be mapped to one or more physical UE-side models up to UE implementation.
Therefore, the model ID should take logic ID/pairing ID as a starting point.
Proposal 16: The model ID should take logic ID/pairing ID as a starting point; whether a logic ID/pairing ID corresponds to one or more physical UE part model is implementation. 
Relationship between functionality identification and model identification
Considering the descriptions on functionality identification (per UE basis) and model identification (per model basis) previously in this section, they should be two orthogonal identification modes, i.e., model identification is not required to be supported on top of the functionality identification mode. E.g., for model identification, the UE can report merely model ID(s) as AI/ML related UE capability without other functionality oriented parameters.
Proposal 17: Consider model identification as a parallel mode with functionality identification (i.e., model identification mechanism is not supported on top of functionality identification mechanism). 
UE capability report for model identification
Another issue related with model ID based LCM is that, though multiple UE part/UE-side models for a functionality are identified at Network, they may not all be supported by UE for inference at any time. E.g., for the set of identified AI/ML models, different UE devices may have different capabilities to perform the inference over these identified models; moreover, even for a single UE, the capability of supporting a identified model may also vary over time due to its complexity, battery life status, etc. However, if the Network is not aware of the changes of UE capability on supporting the identified models, it may wrongly activate or select a UE part/UE-side model that cannot be supported by the UE device at the moment, causing unneeded interaction between Network and UE. Therefore, it will be beneficial to enable the UE to report/update to Network with the currently supported list of one or multiple UE part/UE-side models, which may be a subset of the identified models, in a timely manner; thus the Network can efficiently activate/select the model from the reported list of models that are all available to apply. This can be also regarded as part of the varying UE capability report as will be discussed in Section 3.8.
Proposal 18: For model identification, study the mechanism to allow UE to timely report the list of currently supported UE part/UE-side models after identification, where the supported models may be a subset of all identified models.
3.3.3 Comparison of functionality identification modes and model identification
Based on the above analysis, the comparison between functionality identification and model identification are summarized in Table 1.
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	Functionality identification-basic
	Functionality identification-enhanced
	Model identification

	Model registration
	Not needed
	Not needed
	Needed

	UE capability report
	Set of specified configurations (RS config, SetA/SetB/Top-K, CSI observation/prediction window, etc.)
	Set of specified configurations and customized scenario ID/dataset ID
	Set of Model IDs

	Awareness/interaction of Network
	Aware and implicitly intervene the model selection/switching by RRC reconfiguration
	Aware and implicitly intervene the model selection/switching by RRC reconfiguration, including scenario ID/dataset ID reconfiguration
	Aware and explicitly intervene the model selection/switching by designating model ID.

	Data/dataset categorization
	UE autonomous
	gNB indicates scenario ID to facilitate data collection;
gNB indicates dataset ID for dataset delivery
	UE autonomous or gNB indicates scenario ID/dataset ID

	ID management
	Local
	Globally unique scenario ID/ dataset ID
	Globally unique model ID

	Type of model
	UE-side model
	UE-side model [/UE part model (if dataset ID is applied)]
	UE-side model/UE part model

	Model delivery
	Without model transfer/delivery
	Without model transfer/delivery
	With or without model transfer/delivery

	WG involved
	RAN1/RAN2
	RAN1/RAN2/[SA2/SA3/SA5]
	RAN1/RAN2/[SA2/SA3/SA5]


As analyzed above, it is identified that the introduction of globally unique ID, including scenario ID, dataset ID, and model ID would bring potential SA impact on who/how to assign these IDs, and the notification of these IDs over the network side entities (CN, OAM, gNB etc.). In addition, it is identified that for model identification, some candidates of the model registration procedure may have SA impact. Therefore, it is proposed to send LS to SA2/SA3/SA5 to clarify the feasibility and potential SA spec impact.
Proposal 19: Send LS to SA2/SA3/SA5 for clarifying the feasibility and potential SA impact on functionality identification-enhanced and model identification.
· For functionality identification-enhanced, the potential SA impact from the aspects of globally unique scenario ID, and globally unique dataset ID.
· For model identification, the potential SA impact from the aspects of globally unique model ID, and model registration 
3.4 Model inference
Model inference operation is strongly related to the use case, and thus the detail should be discussed in each use case.
One common aspect among the three use cases is pre/post-processing which can be applied to enhance the scalability of the model inference. For example, the dimension of data can be adjusted through data padding, truncation, or adaptation layer, so that data of different input and output dimensions may be used to train a single AI/ML model. Thus, the Network or the UE only needs to store a limited number of trained AI/ML models that can be generalized to different system settings. The data pre-processing for scalability can be performed to adapt to different input dimensions such as various sizes of subbands/antenna ports for the original CSI in the CSI feedback case, or various sizes of Set B in the beam prediction case; the data post-processing for scalability can be performed to adapt to different output dimensions such as various payload sizes for the reported CSI in the CSI feedback case, or various sizes of predicted beams (i.e., Top-K) in the beam prediction case. 
Another kind of pre/post-processing is the processing to the measured channel or the output of the AI/ML model, e.g., the SVD decomposition to convert the measured channel matrix to eigenvector, the quantization of the measured channel matrix/eigenvector for CSI compression, the quantization/dequantization of the CSI feedback, the quantization of the measured channel impulse response (CIR)/power delay profile (PDP) for positioning, etc.
The spec impact can be studied on how to align the above pre/post-processing between Network and UE.
Proposal 20: Study the following aspects for pre/post-processing: 
· Pre/post-processing methods, e.g. scalability to different input/output dimensions, channel conversion, quantization methods, etc. 
· Potential spec impact on how to align the pre/post-processing methods between Network and UE.
3.5 Model configuration
From the previous meeting, the definition of model configuration is still not clear. From our understanding, model configuration may refer to configuring the settings of the model, e.g., input/output, pre/post-processing, measurement/report, etc. These configurations can be done in per LCM procedure, such as model training, model monitoring, model inference, updating, etc. Thus, there is no need to define model configuration as a specific procedure of LCM.
Proposal 21: Whether to consider model configuration as an individual procedure in LCM can be postponed until its definition is clear.
3.6 Model monitoring
In the RAN1#110bis-e meeting, the following agreements on model monitoring had been approved.
	Agreement
Study AI/ML model monitoring for at least the following purposes: model activation, deactivation, selection, switching, fallback, and update (including re-training).
FFS: Model selection refers to the selection of an AI/ML model among models for the same functionality. (Exact terminology to be discussed/defined)

Agreement
Study at least the following metrics/methods for AI/ML model monitoring in lifecycle management per use case:
· Monitoring based on inference accuracy, including metrics related to intermediate KPIs
· Monitoring based on system performance, including metrics related to system performance KPIs
· Other monitoring solutions, at least following 2 options.
· Monitoring based on data distribution
· Input-based: e.g., Monitoring the validity of the AI/ML input, e.g., out-of-distribution detection, drift detection of input data, or SNR, delay spread, etc.
· Output-based: e.g., drift detection of output data
· Monitoring based on applicable condition
Note: Model monitoring metric calculation may be done at NW or UE


Model monitoring requires to collect information that reflects the model status/effects, e.g., data collection is needed for obtaining the RSRP and ground-truth beam ID for BM, ground-truth CSI for CSI compression, or ground-truth location for positioning, and thereby the corresponding measurement and report can be considered for potential spec impact. In addition, as falling back to the legacy non-AI/ML mode acts as a backup of AI/ML functionalities, the co-existence of AI/ML and non-AI/ML mode should be supported.
Proposal 22: Study the potential procedures included by model monitoring, including data collection, measurement and report, AI/ML and non-AI/ML co-existence. 
Latency/overhead analysis for monitoring
Model monitoring can operate in event-driven or periodic manner. Yet, the process of model monitoring does not need to be always-on, but rather be configured as a triggered/configured monitoring window, otherwise the monitoring overhead would be heavy. For the periodic monitoring, the period of the monitoring window could be in terms of, e.g., hours or days, while the inputs for monitoring (e.g., labels) collected within the monitoring window can be subject to hundreds or thousands of TTIs, thereby the resulting overhead of model monitoring can be negligible on average, taking a tiny portion of time during LCM. For the event-driven monitoring, the monitoring window is triggered by gNB only when it detects the network performance fluctuation or degradation, and the monitoring window will expire after the needed data samples have been collected, so the proportion of the monitoring window is also small.
Observation 21: Overhead of reporting the model monitoring metrics (e.g., ground-truth labels) via air-interface may be negligible with respect to relatively small monitoring window within long lifecycle management duration.
For the latency requirement, real time reporting is necessary to enable the gNB to identify the reason of the performance fluctuation/deterioration as soon as possible at least for CSI and BM. E.g., when the throughput of the UE running a specific model suddenly degrades, gNB has to fast identify what is the reason leading to this degradation (AI/ML, scheduling, etc.), so that it can deactivate the model if it is due to the AI/ML model failure. The late awareness of the AI/ML model failure by the gNB may lead to persistence performance degradation before the report of metrics is received. Compared to L1 signaling which is ~ms level latency, the latency of L3/MDT report is as large as 120ms~30min (as per the identified report interval for L3/MDT report in RAN2#121 agreements), which can hardly meet the requirement of fast identification of AI/ML model failure, as shown in Figure 8. On the other hand, as the monitoring window will expire after a number of samples have been collected, it would not bring heavy overhead in contrast to L3/MDT report.
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Observation 22: For Network side monitoring based on intermediate KPI, the reporting of the monitoring metrics by the UE via L1 signaling has comparable overhead with RRC signaling but with much less latency which can enable fast identification of performance fluctuation/degradation.
Proposal 23: For the container of Network side monitoring based on intermediate KPI, at least consider L1 signaling for the UE report to enable fast identification of AI/ML model failure.
Metrics for monitoring
The feasibility of monitoring based on inference accuracy or system performance is self-evident. However, for input or output data based monitoring, since the monitoring metrics are not directly related to the KPIs of AI/ML model, the impact to the end-to-end performance is not clear. Thus, it needs to be first evaluated on: how the drift of input/output data distribution impacts the intermediate KPI and eventual KPI (e.g., for a specific bias of data distribution, how much performance loss it will cause); what metrics can be adopted for evaluating the feature of monitored data (e.g., how to quantize the bias between training set and monitor set); how to generate the distribution of data (e.g., the distribution of intermediate KPIs of CSI accuracy/beam prediction accuracy/intermediate positioning accuracy for monitored samples?). These methods should be evaluated in each use case before further discussed.
In theory, the distribution of input data would impact the performance of AI/ML models, which can be used as an assistance information for model switching. If distribution of monitored input data is very different from the distribution of training data, it means unseen data is taken for inference, which may result in degraded inference performance. For the distribution of output data, in contrast, it is rather a result of AI/ML models than the reason of what impacts the AI/ML model, e.g., for biased input data, the output may still be mostly unchanged after the AI/ML inference (as the AI/ML has not learnt the feature of the biased/unseen input data), thus the failure of the AI/ML model may hardly be reflected by the output drift.
Observation 23: Motivation for output data drift is not clear, since the failure of AI/ML model may not be reflected by the output drift.
Proposal 24: The input or output data based monitoring should be evaluated before being further discussed for potential spec impact, including: what metrics can be adopted for evaluating the distribution, how to generate the distribution of data, how accurate the data drift reflects the AI/ML model performance.
Operation modes for monitoring
The monitoring manner can be different depending on the execution node (e.g., Network and UE) of these steps, which is analyzed as follows:
· Network-side model:
· For one option, the monitoring can be entirely performed at the Network. For example, Network can collect the ground-truth labels (e.g., optimal beam ID) fed back from the UE as monitoring inputs and calculates the KPI (e.g., beam selection accuracy), then makes monitoring decisions according the KPI, including model activation/deactivation/switching/updating.
· Alternatively, the operation of monitoring inputs collection and KPI calculation (e.g., RSRP) can be performed at the UE, then UE feeds back the resulting KPI to Network, and Network performs the eventual decision making.
· UE-side model:
· For one option, UE collects monitoring inputs and calculating KPI, and then feeds back the KPI to Network, then relies on the Network to make the decision. 
· For another option, the monitoring process can be entirely performed up to UE, with potentially requesting Network to send assistant signals (AI/ML-related RS, etc.) to facilitate the UE to obtain monitoring inputs.
· Two-sided model:
· Network can collect the monitoring inputs and calculate the KPI. The inputs can be the feedback from UE including ground-truth labels or instantaneous performance indicator (e.g., throughput, ACK/NACK, etc.). After the KPI is calculated, Network can activate/deactivate models and indicate the UE to perform accordingly. 
· Similar to Network-side model, the inputs collection and KPI calculation can be performed at UE side based on UE measurements, and Network performs the eventual decision based on UE feedback. 
Therefore, depending on the execution node (e.g., Network or UE) of these steps, model monitoring can be classified into three modes:
Mode 1: Network collects inputs for monitoring, calculating monitoring KPI, and making the monitoring decision. This case is applicable to at least Network-side model and the two-sided model.
Mode 2: UE collects inputs for monitoring, calculates monitoring KPI, feeding back the KPI to Network, and Network makes the decision. This case is applicable to Network-side model and UE-side model as well. Two-sided model can also use this monitoring type.
Mode 3: UE collects inputs for monitoring, calculates monitoring KPI, and makes the monitoring decision. In particular, to facilitate the UE to make a proper decision, Network can configure the threshold criterion (e.g., threshold of throughput/RSRP, or intermediate KPIs) to UE. In addition, the decision result made by UE is reported to Network, and Network will then indicate UE to execute the decision of activate/deactivate/switch/update the model accordingly. This mode can be applied to monitor the UE-side model.
Proposal 25: Study the following three modes of model monitoring:
· Mode 1: Network collects inputs for monitoring, calculates monitoring KPI, and makes monitoring decision.
· This case is applicable to Network-side model and two-sided model.
· Mode 2: UE collects inputs for monitoring, calculates monitoring KPIs which are then fed back to Network, and Network makes monitoring decision.
· This case is applicable to Network-side model, UE-side model, and two-sided model.
· Mode 3: UE collects inputs for monitoring, calculates monitoring KPI, makes monitoring decision, and reports the decision to Network; Network will indicate UE to execute the decision accordingly.
· This case is applicable to UE-side model.
· Network may configure a threshold criterion (e.g., threshold throughput/RSRP, or threshold intermediate KPIs) to facilitate UE to make decision.
Benchmark for performance comparison
One of the key motivations of model monitoring is to enable Network/UE to understand whether the undergoing model still works well and outperforms the benchmark solutions over the time-varying environment. Based on the monitoring, the Network or UE can make the decision on whether to continue the operation of the activated AI/ML model, to deactivate the undergoing AI/ML model, or to switch to an alternative AI/ML model which is inactive at the moment. Therefore, the benchmark solutions need to be studied. One alternative is the legacy non-AI/ML solution, e.g., legacy e-Type II CB, sample-and-hold, legacy BM solution, etc., which can be compared to make the decision of model deactivation/fallback. The other alternative is a backup inactive AI/ML model, which can be compared to make the decision of model switching.
Proposal 26: Study the benchmark solutions for model monitoring, including at least:
· Non-AI/ML solution, to make the decision of deactivation/fallback based on the performance comparison with the undergoing AI/ML solution.
· AI/ML solution subject to an inactive model, to make the decision of model switching based on the performance comparison with the undergoing AI/ML solution.
3.7 Model selection, activation, deactivation, switching, and updating
Model deactivation/switching/updating may occur in the following situations:
· Performance degradation of the ongoing AI/ML is detected through model monitoring.
· Cell handover while different AI/ML models are applicable to different cells or Network vendors. Note that the AI/ML models can be maintained per cell, or per area/per site which includes a group of cells.
· The limitation on UE/gNB’s computation/storage that the ongoing AI/ML model can no longer be supported.
In the RAN1#110bis-e meeting, the following agreements on model selection, activation, deactivation and switching had been approved. In the following, the mechanisms of managing UE part/UE-side models are further analysed.
	Agreement
For model selection, activation, deactivation, switching, and fallback at least for UE sided models and two-sided models, study the following mechanisms:
· Decision by the network 
· Network-initiated
· UE-initiated, requested to the network
· Decision by the UE
· Event-triggered as configured by the network, UE’s decision is reported to network
· UE-autonomous, UE’s decision is reported to the network
· UE-autonomous, UE’s decision is not reported to the network
FFS: for network sided models
FFS: other mechanisms


Operation modes
As analysed in Section 3.3, the Network is responsible for the performance of the entire cellular network, and takes the obligation to guarantee a robust performance. Thereby it is necessary to let Network eventually confirm the activation/deactivation/switching/updating of UE part/UE-side AI/ML models for the purpose of guaranteeing the Network performance, which is the same principle as enabling/disabling UE functionality as widely applied in legacy. To elaborate this, model activation/deactivation/switching/ updating are discussed based on the following operation modes:
· Decision by the Network: Network can activate or deactivate the model based on the monitoring results with necessary UE feedback information, while when/why to activate/deactivate is decided by Network based on the specific network management strategy, e.g., scheduling, paring, carrier assignment, etc. Similarly, the model switching/updating operation for UE part/UE-side AI/ML models can be decided by Network based on the 
· Decision by the UE: UE can make the decision to activate/deactivate/switch/update the UE-side model based on its own monitoring. Such UE side monitoring includes performance monitoring as well as other impact factors, such as complexity, power consumption, etc., which can hardly be monitored by Network. However, the decision of UE needs to be informed to Network to make the indication of activation/deactivation/switching/updating, etc., instead of autonomously making the decision without notifying the Network or making the decision before notifying the Network. Otherwise, the Network has no information on the reason of the fluctuation of the performance which is actually due to the UE autonomous model operation. E.g., if the network performance suffers degradation, Network cannot identify whether it results from incorrect network management strategy or due to the UE autonomous model operation. In addition, the UE may not be aware of all aspects impacting the AI/ML model operation, e.g., scheduling, beamforming, etc., so that the decision may not be accurately made. Furthermore, if the UE autonomously makes the decision to switch the model with a different input/output dimension, or makes the decision to fallback to non-AI/ML mode, without telling the gNB, the previous RS configurations and the content/dimension of the expected UE report would be both misaligned between gNB and UE. To avoid this issue, at least the UE’s decision should be pre-configured by the Network, e.g., event-triggered as configured by the Network. Alternatively, the UE can make the decision itself, but it needs to report to Network for approval, i.e., the eventual activation/deactivation/switching/updating action is configured/indicated by Network (which is same as enabling/disabling legacy UE functionalities), taking into account the UE report.
Observation 24: For the UE-autonomous mode where decisions of model selection, activation, deactivation, switching, and fallback are made without or before notifying to Network, 
· The UE may not be aware of all aspects impacting the AI/ML model operation.
· Network would suffer unidentified network performance fluctuation/loss.
· gNB is not aware of the change of the model input/output, which may result in mismatched RS configurations and/or mismatched content/payload size of the expected UE report.
The following proposal is provided based on the agreement in the RAN1#110bis-e meeting and the discussions above, where the updates are highlighted.
Proposal 27: For model selection, activation, deactivation, switching, and fallback at least for UE-side models and two-sided models, take the following modes as baseline:
· Decision by the network
· Network-initiated
· UE-initiated, requested to the network
· Decision by the UE
· Event-triggered as configured by the network, UE’s decision is reported to network
· UE-autonomous, UE’s decision is reported to the network, and the network indicates UE to execute the decision accordingly
AI/ML model pre-monitoring before activation/selection/switching
For the Network-side model, it is intuitive that the model should be verified with good performance before being operated for inference; for the UE part model or UE-side model that are known by the Network, Network also needs to first verify the model performance before activating/selecting/switching the model for inference, in order to ensure that the model meets the Network’s requirements. Such performance verification before activation is named as pre-monitoring.
This pre-monitoring can happen before the model activation/selection. For example, for BM, Network needs to ensure the beam prediction accuracy before activating an AI/ML model; for CSI compression, Network needs to ensure the CSI recovery accuracy before activating an AI/ML model. Note that such pre-monitor is similar to the procedure of the performance monitoring of an activated/undergoing model as analysed in Section 3.6 but occurs before model activation.
This pre-monitoring can also happen before the model switching. Different from the model activation/selection where only one model is triggered for monitoring, the pre-monitoring of the model before model switching needs to trigger more than one model for monitoring and performance comparison, so that the model with the better/best performance will be switched to. E.g., for the BM case, besides the monitoring of the undergoing model, the candidate inactive model is also triggered to run the performance during the monitoring procedure, which is taken as a benchmark for the performance comparison of the undergoing model.
Proposal 28: Study the case where Network pre-monitors the performance of the UE part model or UE-side model before model activation/switching for guaranteeing the network performance.
3.8 UE capability
UE capability reporting matters whether AI/ML can work properly for air-interface as Network relies on this procedure to know UE’s capability and configure the AI/ML functionality/model accordingly. Following is an initial list of UE capability items which we identify are not naturally supported by UE. For the detailed capabilities, they can be discussed in per use case basis.
Proposal 29: Study UE capability for the following procedures of the LCM:
· Capability of dataset delivery
· Capability of data collection
· Capability of model training
· Capability of inference latency
· Capability of monitoring
· Capability of models switching
· Capability of model updating
It should be noted the UE capability is affected by the UE status and application scenarios (e.g., battery level, temperature, and user instruction), thus the UE capability may be varying over time. Although the UE capability may not be varied in a very dynamic manner (e.g., hours or days), the Network still needs to be aware of the changes of UE capability for ensuring the AI/ML performance, for example, updating the currently used model or switching to another model, or fall back to non-AL/ML mode. The reporting mechanism due to varying capability for a specific AI/ML model or for an AI/ML functionality should be studied; e.g., if the UE cannot support the previously reported capability any longer, it can request to deactivate the model. 
Proposal 30: Study the reporting mechanism due to varying UE capability for a specific AI/ML model or for an AI/ML functionality.
4 Interaction with RAN4
To achieve the testability of the AI/ML feature, following aspects should be considered at RAN4 which may also need the interaction with RAN1.
Scenarios for performance test 
As the AI/ML operation is data-driven, the performance of the AI/ML model largely depends on whether the AI/ML model has been trained with the similar data characteristics to the inference scenario. That is to say, on essential aspect for testing the AI/ML specific solution is the potential performance variation over various scenarios/testing dataset as opposed to the legacy solution which is robust over scenarios. Therefore, two options can be considered for the test of the AI/ML performance.
· Option 1: Static scenario, where a fixed scenario, e.g., the UMa, UMi, rural, etc., is considered to construct the testing dataset. This can be used to verify the scenario-specific AI/ML model.
· Option 2: Variable scenario, where more than one scenario is considered to construct the testing dataset, e.g., the same AI/ML model is to be tested separately over UMa, UMi, rural, etc., so that its generalization performance can be verified. If the AI/ML model has moderate performance over the scenarios, it is verified as a generalized model; otherwise, if it has good performance under some certain scenarios while deteriorate under other scenarios, it is verified as a scenario-specific model.
In addition, when discussing the performance requirement, the performance requirements for scenario specific models and generalized models may be separately defined. E.g., the requirement for the generalized model can be somewhat relaxed than that of the scenario specific model.
To facilitate RAN4 to generate the scenarios for the testing under Option 1 and Option 2, RAN1 may need to provide information on the typical scenarios to RAN4. The specific scenarios can refer to the set of scenarios for the generalization verification for the evaluation of CSI, BM, and PoS.
Proposal 31: The performance test at RAN4 can consider the following two options
· Option 1: Static scenario, where a fixed scenario is considered to construct the testing dataset.
· Option 2: Variable scenario, where more than one scenario is considered to construct the testing dataset to separately test the same AI/ML model.
Proposal 32: RAN1 may need to provide information on the typical scenarios for performance test in RAN4, e.g., by referring the set of scenarios for the generalization verification.
Dataset for determining the performance requirements
In the legacy RAN4 test, the performance requirements are generally determined by running the simulation and collect results over companies. For AI/ML, the performance of the AI/ML feature may differ over companies, due to different simulation platforms, different datasets, different AI/ML algorithms, etc. To better align the environment of the simulation over companies, the dataset can be aligned for each specific scenario. In light of this, a common dataset over companies can be generated for each scenario; alternatively, the methodology of generating the dataset can be aligned as a simpler way, e.g., by aligning the EVM over companies as RAN1 did for the evaluations; on top of that, the method to sample the data (the dimension of the data, period to sample the data, etc.) can also be aligned.
Proposal 33: RAN1 may need to provide training dataset related information to RAN4 for determining the performance requirements. The following two options can be considered:
· Option 1: Construct a common training dataset for each scenario.
· Option 2: The methodology of generating the training dataset, e.g., the EVM of simulation for each scenario, and the method to sample the data in simulation.
Test on training
Different from the performance test for inference, the LCM test is more like a functionality test, i.e., to verify the AI/ML feature can achieve the functionality of training/updating, monitoring, model activation/deactivation/selection/switching, etc.
In particular, for the model training/updating, the test may need to consider the AI/ML model is trainable at the UE/Network side to achieve the target performance. Take two-sided model for example, RAN1 has defined three training types. Since different training types have different training procedures, RAN4 may need to separately consider test procedures. 
For training Type 1, RAN4 may study the test scenario for testing the compatibility to various models. Some reference models or model backbones which have been evaluated in RAN1 may be provided to RAN4 as a reference to determine how to test the compatibility to various models.
For training Type 3, RAN4 may study how to test whether the gNB/UE supports separate training. An alternative is to specify the dataset for training the UE part model/Network part model for NW first training/UE first training, respectively, so that both the UE part model/Network part model and the TE part model can be trained based on the specified dataset before going to the test, and the test is performed by verifying whether/how the UE part model/Network part model can pair with the TE part model.
To facilitate RAN4 to perform the test on training types, RAN1 may need to provide the information on the procedures and performances of the types that have been identified.
Proposal 34: To facilitate RAN4 to perform the test on training, RAN1 may need to provide information on the procedures of training types that have been identified.
RAN4 test and monitoring
One issue that may need to be discussed at RAN4 is whether each specific model developed by Network vendors and/or UE vendors needs to pass the RAN4 test, and if so, after the deployment of the model, whether the test needs to persistently performed to ensure the robustness of the model in the realistic network.
In our understanding, the purpose of RAN4 testing is to ensure the AI/ML feature is workable in realistic network, but the test does not necessarily be applied to each single model. In addition, after the model has been deployed, the robustness of the running model is guaranteed by the Network vendors and/or UE vendors, by using model monitor.
Observation 25: RAN4 testing is applied before model deployment and is to ensure the AI/ML model can reach the minimal requirement,
· RAN4 testing does not necessarily be applied to each single model that has been developed.
· After model deployment in the realistic network, the performance and robustness of the model is guaranteed by model monitoring.
5 Considerations on UE power consumption modelling
In our previous contribution, a power consumption model has been presented. The consumed energy of running an AI/ML model on an AI/ML accelerator can be modelled as
	
	(1)


where N is the computational complexity in FLOPs (e.g.,  and  for AI/ML model and legacy algorithm, respectively).  is a constant which reflects the bottom power consumption.  is the computing resource utilization and reflects the matching between an AI/ML model structure and an AI/ML accelerator. The energy efficacy E of an AI/ML accelerator can be expressed as .  is the peak computational capability (in FLOPS) and   is the peak power (in Watt), which could be obtained from public product information. For general processors where legacy methods may employed, the consumed energy can also be modelled in a similar form as (1).
The model can be simplified to facilitate analysis. Most of current well-designed accelerators could reach a similar value of , e.g., 0.2. For those widely used model structures which can be well supported by most of the AI/ML accelerators (e.g., CNN),  can approach to 1 (e.g., 0.8). 
In ideal case (e.g., ) , (1) can be simplified to 
                                                                                                                                                   (2)
In the worst case with the extreme mismatch between the AI/ML model structure and the AI/ML accelerator,  may approach to 0, and the consumed energy (1) will increase to an unacceptable large value. In order to avoid this situation, basic match between the AI/ML model structure and the AI/ML accelerator should be satisfied to guarantee a minimum  (e.g., ). When , (1) can be simplified to
                                                                       (3)
Therefore, with computational complexity N and accelerator energy efficiency E, the power consumption of different methods can be obtained within a range.
Typically, AI/ML accelerators have a higher energy efficiency than general processors. So even if the FLOPs of an AI/ML model is larger than legacy algorithm, using AI/ML may still achieve a lower power consumption. That is to say, besides system performance gain, power consumption may also provide a dimension for evaluating the gain when introducing AI/ML.
Proposal 35:  Adopt power consumption in common KPI for evaluating the performance benefit of AI/ML. Companies are encouraged to report power consumption for the AI/ML model as part of the evaluation.
6 Conclusions
According to the discussions, following observations and proposals are provided:
Observation 1: For model transfer/delivery from Network to UE, UE may suffer software/hardware compatibility issue (power/latency, etc.) if it is to implement a totally unseen model structure arbitrarily developed by Network, as the UE part/UE-side AI/ML model structure is tightly integrated with the software/hardware environment of the UE modem.
Observation 2: For model transfer/delivery from Network to UE, offline co-engineering between the Network vendor and the UE vendor may be needed to achieve the UE part/UE-side AI/ML model structures compatible to the software/hardware environment of the UE modem. This may result in the following issues:
· Network may have to interoperate with various UE vendors/UE versions to dedicatedly train the UE part/UE-side models, which breaches the engineering isolation.
· Network, in particular gNB, may have to maintain/store multiple UE part/UE-side models trained for different UE vendors/UE versions.
· Network vendor may not freely develop the AI/ML model to be operated at the UE side based on the specific network scenario/configuration, which may result in sub-optimal performance.
Observation 3: For model transfer/delivery from Network to UE, it may be challenging for Network to obtain the compiling environment of the UE device and send UE the binary image compiled by Network subject to the proprietary format.
Observation 4: UE modem may not have the capability of compiling AI/ML models subject to the open format in short/medium term. Due to this restriction, for the model transfer/delivery from Network to UE with open format,
· Case y may incur additional latency due to offline model delivery, and the model training/updating flexibility is largely restricted.
· Case z4 imposes restriction of fixed and pre-aligned UE part/UE-side model structure between Network and UE.
· Case z3 and z5 incur additional model uploading/downloading links at the UE side for compiling.
Observation 5: For model transfer/delivery to UE, the motivation for the cases where the AI/ML model is trained/compiled at UE side/neutral site, and stored at/transferred by Network (i.e., z1, z2, z3) is not clear:
· It may unnecessarily increase the latency, and incurs the potential spec effort at SA.
· As a more independent alternative, the training/compiling entity can directly deliver the compiled model to the UE device in a spec transparent way.
Observation 6: For model transfer/delivery from UE to Network, gNB may suffer software/hardware compatibility issue (power/latency, etc.) if it is to implement a totally unseen model structure arbitrarily developed by UE side, as the NW part/NW-side AI/ML model structure is tightly integrated with the software/hardware environment of the gNB.
Observation 7: For model transfer/delivery from UE to Network, offline co-engineering between the Network vendor and the UE vendor may be needed to achieve the NW part/NW-side AI/ML model structures compatible to the software/hardware environment of the gNB. This may result in the following issues:
· UE side may have to interoperate with various Network vendors/Network versions to dedicatedly train the NW part/NW-side models, which breaches the engineering isolation.
· Network, in particular gNB, have to maintain/store/run multiple NW part/NW-side models transferred/delivered from different UE vendors/UE versions.
· UE vendor may not freely develop the AI/ML model to be operated at the Network side based on the specific network scenario/configuration, which may result in sub-optimal performance.
Observation 8: For model transfer/delivery from UE to Network, it may be challenging for UE side to obtain the compiling environment of the gNB and send Network the binary image compiled by UE side subject to the proprietary format.
Observation 9: The motivation for specified model transfer/delivery between Network and UE with large model size is not clear.
Observation 10: Frequent and timely measurement and report, e.g., based on PHY signaling may be applicable for data collection with the purposes of monitoring and training/updating.
Observation 11: Infrequent and relaxed measurement and report, e.g., based on RRC signaling may be applicable for data collection with the purpose of training/updating.
Observation 12: The overhead of data collection and dataset delivery over air-interface is not a big issue, considering:
· The time period of data collection and dataset delivery is relatively short compared to the long period of lifecycle management.
· A massive number of UEs can assist the data collection/dataset delivery.
Observation 13: Some of the assistance information for data collection/categorization brought up by some companies may disclose the proprietary/privacy, e.g., TxRU mapping information, UE positioning information.
Observation 14: For Network-side model, online/offline training is up to implementation.
Observation 15: For On-Network model training, the training procedure is transparent to UE (except for potential feedback enhancement for data collection/delivery).
Observation 16: For training Type 2 (joint training of the two-sided model at Network side and UE side, respectively), it relies on complicated interoperation to support real-time interaction of FP/BP iterations between Network and UE which introduces significant challenges to engineering isolation especially for the case of multi-Network vendors to multi-UE vendors.
Observation 17: For training Type 3 of CSI compression, compared with NW first training, performing UE first training incurs extra challenges for Network due to the following reasons:
· Inconvenience of training cell/scenario specific models.
· Inflexible model update.
· Burden of maintaining/storing multiple Network part models at gNB to pair with multiple UE vendors/ UE versions.
Observation 18: Compared with functionality identification, model registration procedure is needed for model identification to achieve globally unique model ID, so that the UE-side/UE part model can be managed by Network in per model basis rather than per UE basis.
· E.g., different gNBs can select the same UE-side/UE part model ID to serve different UEs which are yet anticipated to achieve the same/similar performance
Observation 19: For model identification, online registration (registered by the UE device) can include both the directions of identification from Network to UE (i.e., with model delivery) and from UE to Network (i.e., without model delivery).
Observation 20: For model identification, it may have spec impact at SA, if the model registration is performed between UE device and CN, or between non-3GPP entity and OAM/CN.
Observation 21: Overhead of reporting the model monitoring metrics (e.g., ground-truth labels) via air-interface may be negligible with respect to relatively small monitoring window within long lifecycle management duration.
Observation 22: For Network side monitoring based on intermediate KPI, the reporting of the monitoring metrics by the UE via L1 signaling has comparable overhead with RRC signaling but with much less latency which can enable fast identification of performance fluctuation/degradation.
Observation 23: Motivation for output data drift is not clear, since the failure of AI/ML model may not be reflected by the output drift.
Observation 24: For the UE-autonomous mode where decisions of model selection, activation, deactivation, switching, and fallback are made without or before notifying to Network, 
· The UE may not be aware of all aspects impacting the AI/ML model operation.
· Network would suffer unidentified network performance fluctuation/loss.
· gNB is not aware of the change of the model input/output, which may result in mismatched RS configurations and/or mismatched content/payload size of the expected UE report.
Observation 25: RAN4 testing is applied before model deployment and is to ensure the AI/ML model can reach the minimal requirement,
· RAN4 testing does not necessarily be applied to each single model that has been developed.
· After model deployment in the realistic network, the performance and robustness of the model is guaranteed by model monitoring.

Proposal 1:  Define the following terminologies if needed: 
· Model selection: A process of selecting one AI/ML model among multiple alternative models with same functionality for activation.
· Model deployment: Process of converting an AI/ML model into an executable form and deploy it to a target device where inference is to be performed. Note: The conversion may happen before or after delivery.
· AI/ML model transfer: Delivery of an AI/ML model over the air-interface signaling, either parameters of a model structure known at the receiving end or a new model with parameters. Delivery may contain a full model or a partial model.
Proposal 2: Figure 2 can be considered as the diagram for high-level general AI/ML framework.
Proposal 3: Deprioritize the model transfer/delivery from UE to Network.
Proposal 4: For the study of model transfer/delivery from Network to UE, small model size (e.g., to ensure no strong impact to legacy RRC signaling) should be assumed as a starting point for the potential spec impact analysis.
Proposal 5: Study the potential spec impact of data collection from realistic networks for supporting the LCM of AI/ML model, including at least:
· Enhanced/dedicated RS design.
· Enhanced UE measurement/report.
· Type/format of the data sample(s).
· Signaling for indicating/requesting data collection.
Proposal 6: For data collection, study the procedure/signaling to generate/carry data sample(s), including both L1 and L3 measurement/reporting.
Proposal 7: Study the following aspects to improve the quality of dataset during data collection:
· Improving the quality of data samples, e.g., improving the accuracy of the measured labels.
· Indicating the quality requirement of data samples to be reported.
Proposal 8: The necessity of introducing new assistance information for data collection/categorization needs to be clarified/justified, considering:
· UE can sense the scenario autonomously without being notified by gNB or with legacy signaling.
· The categorization or granularity of the scenarios identified by Network vendor may not match the categorization principle of the UE side.
· Generalized model can be trained over scenarios/configurations.
Proposal 9: The assistance information for data collection/categorization, if studied, should be in forms of virtualized ID to avoid the disclosure of proprietary.
· Such assistance information can be sent from Network to UE or from UE to Network.
Proposal 10: The discussion of online/offline training should be decoupled with whether the data collection/dataset delivery is performed via air-interface or non-air-interface.
Proposal 11: For the study of one-sided AI/ML model, model training without model transfer/delivery should be considered as a starting point, i.e.,
· On-Network training for Network-side model.
· On-UE training for UE-side model.
Proposal 12: For training Type 1 (joint training of the two-sided model at a single side/entity), prioritize the study of joint model training at Network side and transfer/deliver the model to the UE side.
Proposal 13: The granularity of functionality can be smaller than sub use case, so that Network can better be aware and interact with the UE-side/UE part model, e.g., reconfiguration of specific RRC parameters may result in potential model switching. 
Proposal 14: Categorize the functionality identification modes into the following two modes
· Mode 1: Functionality identification-basic, where NO globally unique ID is needed.
· Mode 2: Functionality identification-enhanced, where globally unique scenario ID and/or globally unique dataset ID is needed, which may have SA impact.
Proposal 15: Consider a unified design to use model ID to differentiate different models regardless of whether they are subject to the same or different model structures.
· Regardless the UE-side/UE part model to be registered only updates the parameters or adopts a new model structure with new parameters, it is regarded as a new model at the Network side, and is assigned with a new model ID.
Proposal 16: The model ID should take logic ID/pairing ID as a starting point; whether a logic ID/pairing ID corresponds to one or more physical UE part model is implementation. 
Proposal 17: Consider model identification as a parallel mode with functionality identification (i.e., model identification mechanism is not supported on top of functionality identification mechanism). 
Proposal 18: For model identification, study the mechanism to allow UE to timely report the list of currently supported UE part/UE-side models after identification, where the supported models may be a subset of all identified models.
Proposal 19: Send LS to SA2/SA3/SA5 for clarifying the feasibility and potential SA impact on functionality identification-enhanced and model identification.
· For functionality identification-enhanced, the potential SA impact from the aspects of globally unique scenario ID, and globally unique dataset ID.
· For model identification, the potential SA impact from the aspects of globally unique model ID, and model registration 
Proposal 20: Study the following aspects for pre/post-processing: 
· Pre/post-processing methods, e.g. scalability to different input/output dimensions, channel conversion, quantization methods, etc. 
· Potential spec impact on how to align the pre/post-processing methods between Network and UE.
Proposal 21: Whether to consider model configuration as an individual procedure in LCM can be postponed until its definition is clear.
Proposal 22: Study the potential procedures included by model monitoring, including data collection, measurement and report, AI/ML and non-AI/ML co-existence. 
Proposal 23: For the container of Network side monitoring based on intermediate KPI, at least consider L1 signaling for the UE report to enable fast identification of AI/ML model failure.
Proposal 24: The input or output data based monitoring should be evaluated before being further discussed for potential spec impact, including: what metrics can be adopted for evaluating the distribution, how to generate the distribution of data, how accurate the data drift reflects the AI/ML model performance.
Proposal 25: Study the following three modes of model monitoring:
· Mode 1: Network collects inputs for monitoring, calculates monitoring KPI, and makes monitoring decision.
· This case is applicable to Network-side model and two-sided model.
· Mode 2: UE collects inputs for monitoring, calculates monitoring KPIs which are then fed back to Network, and Network makes monitoring decision.
· This case is applicable to Network-side model, UE-side model, and two-sided model.
· Mode 3: UE collects inputs for monitoring, calculates monitoring KPI, makes monitoring decision, and reports the decision to Network; Network will indicate UE to execute the decision accordingly.
· This case is applicable to UE-side model.
· Network may configure a threshold criterion (e.g., threshold throughput/RSRP, or threshold intermediate KPIs) to facilitate UE to make decision.
Proposal 26: Study the benchmark solutions for model monitoring, including at least:
· Non-AI/ML solution, to make the decision of deactivation/fallback based on the performance comparison with the undergoing AI/ML solution.
· AI/ML solution subject to an inactive model, to make the decision of model switching based on the performance comparison with the undergoing AI/ML solution.
Proposal 27: For model selection, activation, deactivation, switching, and fallback at least for UE-side models and two-sided models, take the following modes as baseline:
· Decision by the network
· Network-initiated
· UE-initiated, requested to the network
· Decision by the UE
· Event-triggered as configured by the network, UE’s decision is reported to network
· UE-autonomous, UE’s decision is reported to the network, and the network indicates UE to execute the decision accordingly
Proposal 28: Study the case where Network pre-monitors the performance of the UE part model or UE-side model before model activation/switching for guaranteeing the network performance.
Proposal 29: Study UE capability for the following procedures of the LCM:
· Capability of dataset delivery
· Capability of data collection
· Capability of model training
· Capability of inference latency
· Capability of monitoring
· Capability of models switching
· Capability of model updating
Proposal 30: Study the reporting mechanism due to varying UE capability for a specific AI/ML model or for an AI/ML functionality.
Proposal 31: The performance test at RAN4 can consider the following two options
· Option 1: Static scenario, where a fixed scenario is considered to construct the testing dataset.
· Option 2: Variable scenario, where more than one scenario is considered to construct the testing dataset to separately test the same AI/ML model.
Proposal 32: RAN1 may need to provide information on the typical scenarios for performance test in RAN4, e.g., by referring the set of scenarios for the generalization verification.
Proposal 33: RAN1 may need to provide training dataset related information to RAN4 for determining the performance requirements. The following two options can be considered:
· Option 1: Construct a common training dataset for each scenario.
· Option 2: The methodology of generating the training dataset, e.g., the EVM of simulation for each scenario, and the method to sample the data in simulation.
Proposal 34: To facilitate RAN4 to perform the test on training, RAN1 may need to provide information on the procedures of training types that have been identified.
Proposal 35:  Adopt power consumption in common KPI for evaluating the performance benefit of AI/ML. Companies are encouraged to report power consumption for the AI/ML model as part of the evaluation.
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Appendix: Working list of terminologies
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	Terminology
	Description

	Data collection
	A process of collecting data by the Network nodes, management entity, or UE for the purpose of AI/ML model training, data analytics and inference

	AI/ML Model
	A data driven algorithm that applies AI/ML techniques to generate a set of outputs based on a set of inputs. 

	AI/ML model training
	A process to train an AI/ML Model [by learning the input/output relationship] in a data driven manner and obtain the trained AI/ML Model for inference

	AI/ML model Inference
	A process of using a trained AI/ML model to produce a set of outputs based on a set of inputs

	AI/ML model validation
	A subprocess of training, to evaluate the quality of an AI/ML model using a dataset different from one used for model training, that helps selecting model parameters that generalize beyond the dataset used for model training.

	AI/ML model testing
	A subprocess of training, to evaluate the performance of a final AI/ML model using a dataset different from one used for model training and validation. Differently from AI/ML model validation, testing does not assume subsequent tuning of the model.

	UE-side (AI/ML) model
	An AI/ML Model whose inference is performed entirely at the UE

	Network-side (AI/ML) model
	An AI/ML Model whose inference is performed entirely at the Network

	One-sided (AI/ML) model
	A UE-side (AI/ML) model or a Network-side (AI/ML) model

	Two-sided (AI/ML) model
	A paired AI/ML Model(s) over which joint inference is performed, where joint inference comprises AI/ML Inference whose inference is performed jointly across the UE and the Network, i.e, the first part of inference is firstly performed by UE and then the remaining part is performed by gNB, or vice versa.

	AI/ML model transfer
	Delivery of an AI/ML model via air-interface, either parameters of a model structure known at the receiving end or a new model with parameters. Delivery may contain a full model or a partial model.

	Model download
	Model transfer from the Network to UE

	Model upload
	Model transfer from UE to the Network

	Federated learning / federated training
	A machine learning technique that trains an AI/ML model across multiple decentralized edge nodes (e.g., UEs, gNBs) each performing local model training using local data samples. The technique requires multiple interactions of the model, but no exchange of local data samples.

	Offline field data
	The data collected from field and used for offline training of the AI/ML model

	Online field data
	The data collected from field and used for online training of the AI/ML model

	Model monitoring
	A procedure that monitors the inference performance of the AI/ML model

	Supervised learning
	A process of training a model from input and its corresponding labels. 

	Unsupervised learning
	A process of training a model without labelled data.

	Semi-supervised learning 
	A process of training a model with a mix of labelled data and unlabeled data

	Reinforcement Learning (RL)
	A process of training an AI/ML model from input (a.k.a. state) and a feedback signal (a.k.a.  reward) resulting from the model’s output (a.k.a. action) in an environment the model is interacting with.

	Model activation
	enable an AI/ML model for a specific function

	Model deactivation
	disable an AI/ML model for a specific function

	Model switching
	Deactivating a currently active AI/ML model and activating a different AI/ML model for a specific function

	Online training
	An AI/ML training process where the model being used for inference) is (typically continuously) trained in (near) real-time with the arrival of new training samples. 
Note: the notion of (near) real-time vs. non real-time is context-dependent and is relative to the inference time-scale.
Note: This definition only serves as a guidance. There may be cases that may not exactly conform to this definition but could still be categorized as online training by commonly accepted conventions.
Note: Fine-tuning/re-training may be done via online or offline training. (This note could be removed when we define the term fine-tuning.)

	Offline training
	An AI/ML training process where the model is trained based on collected dataset, and where the trained model is later used or delivered for inference.
Note: This definition only serves as a guidance. There may be cases that may not exactly conform to this definition but could still be categorized as offline training by commonly accepted conventions.

	AI/ML model delivery
	A generic term referring to delivery of an AI/ML model from one entity to another entity in any manner.
Note: An entity could mean a Network node/function (e.g., gNB, LMF, etc.), UE, proprietary server, etc.

	Proprietary-format models
	ML models of vendor-/device-specific proprietary format, from 3GPP perspective
Note: An example is a device-specific binary executable format

	Open-format models
	ML models of specified format that are mutually recognizable across vendors and allow interoperability, from 3GPP perspective

	Model identification
	A process/method of identifying an AI/ML model for the common understanding between the NW and the UE
Note: The process/method of model identification may or may not be applicable.
Note: Information regarding the AI/ML model may be shared during model identification.

	Functionality identification
	A process/method of identifying an AI/ML functionality for the common understanding between the NW and the UE
Note: Information regarding the AI/ML functionality may be shared during functionality identification.
FFS: granularity of functionality

	Model update
	Process of updating the model parameters and/or model structure of a model

	Model parameter update
	Process of updating the model parameters of a model
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	Model selection
	A process of selecting one AI/ML model among multiple alternative models with same functionality for activation.

	AI/ML model transfer
	Delivery of an AI/ML model via air-interface signaling, either parameters of a model structure known at the receiving end or a new model with parameters. Delivery may contain a full model or a partial model.

	Model deployment
	Process of converting an AI/ML model into an executable form and deploy it to a target device where inference is to be performed.
Note: The conversion may happen before or after delivery
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