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[bookmark: _Toc118718111][bookmark: _Toc131525188]Introduction and Overview
This contribution concerns Agenda Item 9.1.4.1, Evaluation on AI/ML for positioning accuracy enhancements. A summary of relevant past agreements for the agenda item can be found in the Appendix.
The paper outline is as follows:
· Section 1: An overview of the evaluation results is provided, and key observations are drawn.
· Section 2:  Evaluation results and analysis are provided when the model input is CIR, PDP, and DP (Delay Profile). Three AI/ML methods are studied using supervised learning, with two variants of AI/ML assisted approach and the direct AI/ML approach.
· Section 3: The focus here is model monitoring. 
· Section 4 concludes the paper with a list of observations and proposals. 
[bookmark: _Ref117777763][bookmark: _Toc118718113][bookmark: _Ref126844379]We present evaluation results for a few selected cases in this section. The intention of all evaluated use cases is to improve network-based positioning using AI/ML models for the InF-DH deployment scenario. 
[bookmark: _Toc118718114][bookmark: _Toc131525189]Overview of positioning solutions for the NG-RAN
In a radio environment, such as the InF-DH {40%, 2m, 2m} environment, there exists enough number of LoS links from a UE to the 18 TRPs. ML models can be used to identify LoS links and estimate the observable first path ToA. As illustrated in Figure 1, the observable first path ToA, , is the delay of the first path in the received channel impulse responses (CIRs). These observable first path ToA estimates for the identified LoS links can be used by conventional triangulation-based positioning algorithms to determine UE positions accurately.
[image: ] [image: ]
 (a) LoS example  (taps)	    (b) NLoS example  (taps)
[bookmark: _Ref117777689]Figure 1: Example magnitudes of LoS and NLoS channel impulse responses.
However, in a highly NLoS environment such as the InF-DH {60%, 6m, 2m} environment, it is not possible to rely only on LoS links to perform UE localization. As illustrated in Figure 2, in a NLoS environment, the observable first path ToA, , does not correctly reflect the true distance between the UE and TRP. Using these observable first path ToAs in a conventional positioning algorithm will lead to inaccurate UE position estimates.
[image: ]
[bookmark: _Ref117777702]Figure 2: Illustration of observable first path and unobservable direct path between a pair of TX and RX nodes.
Instead, as illustrated in Figure 2, estimates of the unobserved direct path ToAs, , which is defined as the time needed for the radio wave to travel across the 3D distance between the TX and RX ignoring all blockers (if any) in between,

should be supplied to conventional positioning algorithms. An example is provided in Figure 1 (b). The observable first path ToA, , can be estimated accurately from the received CIR using either conventional signal processing algorithms or ML modes, which in this case is at tap 79.4. On the other hand, the unobserved direct path ToAs, , calculated from the relative distance is in fact 30.2 taps.
After describing the datasets in Section 1.12, we investigate three different ML assisted or ML based positioning solutions for the NG-RAN:
· In Section 2.1, we consider semi-distributed ML models at different gNBs to estimate the unobserved direct path ToAs, , at individual TRPs independently for a highly NLoS environment such as the InF-DH {60%, 6m, 2m} environment. UE positions are obtained with conventional positioning algorithms. It is noted that while for simplicity, N/3 gNBs are assumed in this discussion, it is also possible that a single gNB is connected to all N TRPs (similar to that of Section 3.12), and the gNB maintains N/3 AI/ML models, with one model covering 3 TRPs. From AI/ML performance evaluation perspective, there is no difference due to such architecture differentiation. Thus the evaluation results are equally valid for such architecture variations.
· This is a Case 3a scenario (NG-RAN node assisted positioning with gNB-side model, AI/ML assisted positioning), with three-TRP construction and different models for N/3 gNBs. The AI/ML model resides at gNB side, where one gNB is connected to the multiple TRPs (3 TRP in this example).
· In Section 2.2, we consider a centralized ML model to jointly estimate all 18 unobserved direct path ToAs, , from the CIRs collected from all TRPs for a highly NLoS environment such as the InF-DH {60%, 6m, 2m} environment. UE positions are obtained with conventional positioning algorithms.
· This is a Case 3a scenario (NG-RAN node assisted positioning with gNB-side model, AI/ML assisted positioning), with multi-TRP (specifically, all-TRP) construction. The AI/ML model resides at gNB side, where one gNB is connected to all the TRPs (18 TRP in this example).
· In Section 2.3, we consider a centralized ML model to directly generate UE positions from the CIRs collected from all TRPs for a highly NLoS environment such as the InF-DH {60%, 6m, 2m} environment. UE positions are generated by the ML models directly.
· This is a Case 3b scenario (NG-RAN node assisted positioning with LMF-side model, direct AI/ML positioning)
An overview of the considered positioning architectures for the NG-RAN is provided in Figure 3 below.

	[image: ]

	(a) Section 2.1: AI/ML assisted positioning, multi-TRP with N/3 different models for N/3 gNBs, where N=18. Model output = a vector of 3  estimations.
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	(b) Section 2.2: AI/ML assisted positioning, multi-TRP construction for N=18 TRPs. Model output = a vector of 18  estimations
	(c) Section 2.3: direct UE positioning. Model output = UE horizontal coordinates



[bookmark: _Ref117778114]Figure 3: Overview of the considered positioning architectures for the NG-RAN.

[bookmark: _Toc131525190][bookmark: _Toc118718115]Model and computational complexity reporting for 3GPP discussion
During the RAN1 #111 discussion, it was identified that the computational complexity values reported by different companies may not be mutually comparable since some of them are deviating from generally observed trend by two orders of magnitude or more. This is illustrated in Figure 4.
· Since each parameter of a model should be used at least once, we can use the number of parameters as a lower bound for the computational complexity (shown as lower bound 1 in the figure).
· For both dense and convolutional layers, the number of multiplicative parameters dominates the total number of parameters. The number of parameters can be used as an approximate lower bound on the number of MACs (multiply-accumulate). Hence, a second approximate lower bound on the computational complexity FLOPs can be obtained as two times the number of parameters (shown as lower bound 2 in the figure).
· Due to its nature of weight sharing, convolutional neural networks tend to exhibit much higher FLOPs-to-parameters ratios than these lower bounds.
· Two regression lines are fitted to the reported model vs computational complexity values. The first regression excludes one source below the lower bounds. The second regression excludes five sources near or below the lower bounds. 
· It can be observed that most reported model and computational complexity values are near or at least within an order of magnitude of the regression lines. However, there are some outliers that deviate substantially from the general trend of model complexity vs computational complexity.
[image: ]
[bookmark: _Ref126834708]Figure 4: Model complexity vs computational complexity for direct positioning models as reported in RAN1 #111 except for six updated Ericsson’s reported values from RAN1 #112b.
To assist with this discussion, we consider a simple example where the computational complexity can be exactly calculated by hand.
Example:
Given a BHiWiCi =132323 input tensor to a convolutional layer with
· Batch size B = 1 
· Kernel size: HkWk =33
· Stride: 11
· Padding: “VALID”, i.e., without padding 
· Number of input channels Ci=3
· Number of output channels: Co =16
The shape of the output tensor becomes BHoWoCo =1303016. That is, Co =16 output channels each with size HoWo =3030.

The convolutional layer will need
· HkWkCiCo =33316 = 432 parameters for the kernel
· Co =16 parameters for the bias
TensorFlow/PyTorch tools report the total number of parameters as 448 as expected, i.e., the same as the calculation above.

In this simple example, one can calculate the nominal computational complexity by hand:
· The number of MACs (multiply-accumulate) using the convolutional kernel can be calculated as (HkWkCi) (HoWoCo) =(333) (303016)=388,800.
· The number of ADDs (addition) using the bias can be calculated as HoWoCo =303016 = 14,400.
· The total number of FLOPs is given by 2MACs + ADDs = 792,000.
On a CPU platform, TensorFlow/PyTorch tools report the same number of FLOPs as hand calculated above.
On a GPU or TPU platform, some TensorFlow/PyTorch tools may report a number of FLOPs that can be one, two or even more orders of magnitude lower. It is assumed these lower FLOP numbers are accelerator-optimized computational complexity for the underlying GPU/TPU.

It can be observed from the above example that
· Nominal computational complexity is a general characterization of a model’s algorithmic complexity that can be compared across different sources. To a first degree, this complexity can even by calculated by hand, as demonstrated by the example above.
· The accelerator-optimized complexity is specific to a particular hardware platform and its computational capability.
· Since it’s unlikely to deploy a full-blown data-center class GPU/TPU in a UE or even a gNB, these GPU/TPU optimized complexity values do not provide useful information to the discussion in 3GPP.
· No explanation on what these accelerator-optimized complexity values mean was given by these software tools, either. Taking one of our large centralized model with 11.2 M parameters as an example. While the nominal complexity is 410 M FLOPs, the reported accelerator-optimized complexity for a GPU is given as 4.3 M FLOPs, which is well below the lower bounds. Since all those MACs cannot just disappear simply because the model is executed on a GPU, these accelerator-optimized complexity values seem more related to clock cycles of the GPU than the algorithmic complexity of the model.
· Furthermore, given different sources will have different ML-optimized implementations, such type of computational complexity numbers is not comparable across sources.
Moreover, the discussion above echoes the Conclusions that RAN1 has made:

	Conclusion (RAN1#110bis)
This RAN1 study considers ML TOP/FLOP/MACs as KPIs for computational complexity for inference. However, there may be a disconnection between actual complexity and the complexity evaluated using these KPIs due to the platform- dependency and implementation (hardware and software) optimization solutions, which are out of the scope of 3GPP.

Conclusion (RAN1#111)
Companies describe how their computational complexity values are obtained. 
· It is out of 3GPP scope to consider computational complexity values that have platform-dependency and/or use implementation (hardware and software) optimization solutions.



[bookmark: _Hlk130291957]Since different companies use different deep learning frameworks, it was identified in RAN1 #112 that a common reference point for computing the nominal computational complexity values is needed. Toward this end, we point to the toolchain envisioned by the OpenXLA project (https://github.com/openxla). According to its documentation,
· The OpenXLA project is co-developed by AI/ML industry leaders including Alibaba, Amazon Web Services, AMD, Apple, Arm, Cerebras, Google, Graphcore, Hugging Face, Intel, Meta, and NVIDIA. 
· It enables developers to compile and optimize models from all leading ML frameworks for efficient training and serving on a wide variety of hardware.
· OpenXLA eliminates barriers for ML developers via a modular toolchain that is supported by all leading frameworks through a common compiler interface, leverages standardized model representations that are portable, and provides a domain-specific compiler with powerful target-independent and hardware-specific optimizations.
As copied in Figure 5, OpenXLA provides a modular toolchain that is supported by all leading frameworks through a common compiler interface, leverages standardized model representations that are portable, and provides a domain-specific compiler with powerful target-independent and hardware-specific optimizations. This toolchain includes XLA, StableHLO, and IREE, all of which leverage MLIR: a compiler infrastructure that enables machine learning models to be consistently represented, optimized and executed on hardware.
For the purpose of the nominal computational complexity reporting, we identify the portable StableHLO layer as the appropriate target of nominal computational complexity computing. As observed in Figure 5, StableHLO is the OpenXLA input, and does not consider any target-independent optimization nor any hardware-dependent optimization. According to its documentation, StableHLO, a portability layer between ML frameworks and ML compilers, is an operation set for high-level operations (HLO) that supports dynamism, quantization, and sparsity. Furthermore, it can be serialized into MLIR bytecode to provide compatibility guarantees. All major ML frameworks (JAX, PyTorch, TensorFlow) can produce StableHLO.

[bookmark: _Hlk131079744][bookmark: _Toc131788488]For 3GPP AI/ML for PHY SI discussion, companies shall report nominal computational complexity values based on HLO representations (and not accelerator-optimized computational complexity values). Otherwise, the reported computation complexity value cannot be included for a fair cross-company comparison.

[image: Flow chart depicting high-level OpenXLA compilation flow and architecture showing depicted optimizations, frameworks and hardware targets]
[bookmark: _Ref130292051]Figure 5: Modular toolchain architecture of OpenXLA is supported by all leading framework (https://opensource.googleblog.com/2023/03/openxla-is-ready-to-accelerate-and-simplify-ml-development.html).

To further 3GPP discussion and preparation of observations/conclusions for the technical report TR38.843, we propose three model size classes based on the reported model and computational complexity values. This is tabulated in Table 1.
[bookmark: _Ref126917195]Table 1 Proposed model size classes.
	Model class
	Model complexity 
[# of parameters]
	Computational complexity [FLOPs]
	Number of sources as reported in RAN1 #111 for direct positioning

	Small models
	< 1 M
	< [60] M
	4

	Medium-size models
	1 – 8 M
	[60 – 300] M
	8

	Large models
	> 8 M
	> [300] M
	5



[bookmark: _Toc131788489]To further 3GPP discussion and preparation of observations/conclusions for the technical report, three model size classes are defined for the positioning use case as follows:
- Small models: < 1 M model parameters
- Medium-size models: 1 – 8 M model parameters
- Large models: > 8 M model parameters

[bookmark: _Ref126851995][bookmark: _Toc131525191]Impact of training dataset sizes – Number of samples
The following was agreed in RAN1 #111:
Agreement
Study how AI/ML positioning accuracy is affected by: user density/size of the training dataset.
Note: details of user density/size of training dataset to be reported in the evaluation.
Toward this end, we provide extensive investigation on the tradeoff between training dataset size and model performance. As described in Section 1.12, our datasets are compiled based on uniform random sampling of UE locations over the entire 60 m × 120 m = 7,200 m2 InF factor floor as illustrated in Figure 13 in Section 1.12. Hence, the user densities for the four different train dataset sizes we investigated are as follows:
Table 2 Train dataset sizes and user density of our uniformly randomly sampled datasets.
	Train dataset size over 7,200 m2
	User density [UE/m2]
	Average distance between training samples (m)

	10,000
	1.39
	0.85

	20,000
	2.79
	0.60

	40,000
	5.56
	0.42

	80,000
	11.11
	0.30



It is clear that a larger train dataset size helps model training and improves trained model performance. However, it’s also costly to compile large datasets. Data augmentation techniques have been developed and investigated by the deep learning community [14] to make the most use out of a fixed dataset. We found many of these techniques are very helpful in improving the 2D positioning accuracy of trained models. In fact, we found moderate network synchronization errors can be treated as a data augmentation technique to improve model performance. We also found that increasing the number of training epochs to those reported in [10][11] improves model performance.

[bookmark: _Toc131788450]For a given train dataset size, data augmentation techniques and more training epochs can improve trained model performance.

The deep learning community has developed and investigated a variety of solutions to reduce the model size and computational complexity of deep learning models [13]. Compared to the models we investigated for RAN1 #111 [9], we have adopted low-cost convolution solutions to reduce the model size and computational complexity of the models we investigated in the rest of this contribution. We further investigated the tradeoff between model complexity and model performance in the rest of this section.
For an environment with sufficient LoS links such as the {40%, 2m, 2m} InF-DH scenario, very high positioning accuracy (90%tile 2D error < 0.2 m) can be achieved with small models (<1M parameters and < 50 MFLOPs) with around 5,000 training samples as summarized in Table 3.

[bookmark: _Ref127188602]Table 3 90%tile 2D positioning accuracy for different model sizes in the {40%, 2m, 2m} InF-DH scenario.
	Model class
	Positioning approach
	Model complexity
[# parameters]
	Computational complexity
[FLOPs]
	90%tile 2D positioning error [m] in {40%, 2m, 2m} InF-DH

	
	
	
	
	Training dataset size = 5,400

	Small models CIR
	Distributed Assisted
	0.071 M
	18 x 405 K = 7.3 M
	0.109

	
	
	0.073 M
	18 x 944 K = 17 M
	0.062



For a highly non-LoS environment such as the {60%, 6m, 2m} InF scenario, we summarized our results in Table 4. Correspondingly, the positioning accuracy achieved is plotted in Figure 6 as a function of training dataset size.
· The first row of each model classes contains the 90%tile 2D positioning errors of the distributed ML-assisted positioning approach in Section 2.1. The second row contains the performance of the centralized ML-assisted positioning approach in Section 2.2. The third row contains the performance of the centralized ML direct positioning approach in Section 2.3.
· With a small train dataset size of 10,000 CIR samples, sub-meter 90%tile 2D error is achievable with all three model size classes. 
· With a medium-size dataset size of 20,000 CIR samples, 90%tile 2D error < 0.5 m can be achieved with medium-size or large models.
· With a large dataset size of 40,000 CIR samples, all model classes achieve 90%tile 2D error < 0.5 m. Large models also approach 0.25 m 90%tile 2D errors.
· With a very large dataset sizes of 80,000 CIR samples, medium-size and large models can achieve 90%tile 2D error < 0.25 m.

[bookmark: _Ref126851896]Table 4 90%tile 2D positioning accuracy using CIR inputs for different model size classes and different training dataset sizes in the {60%, 6m, 2m} InF-DH scenario.
	Model class
	Positioning approach
	Model complexity
[# parameters]
	Computational complexity
[FLOPs]
	90%tile 2D positioning error [m]
with different train set sizes in 
{60%, 6m, 2m} InF-DH

	
	
	
	
	80,000
	40,000
	20,000
	10,000

	Small models CIR
	Dist. Assist.
	0.86 M
	36 M
	0.366
	0.453
	0.665
	0.954

	
	Cent. Assist.
	0.73 M
	32 M
	0.306
	0.371
	0.512
	0.720

	
	Cent. Direct
	0.73 M
	32 M
	0.300
	0.373
	0.498
	0.718

	Medium-size models CIR
	Dist. Assist.
	3.37 M
	132 M
	0.215
	0.310
	0.483
	0.795

	
	Cent. Assist.
	2.85 M
	110 M
	0.194
	0.260
	0.378
	0.583

	
	Cent. Direct
	2.85 M
	110 M
	0.199
	0.268
	0.385
	0.597

	Large models CIR
	Dist. Assist.
	11.2 M
	425 M
	0.171
	0.258
	0.417
	0.762

	
	Cent. Assist.
	11.26 M
	410 M
	0.156
	0.223
	0.330
	0.539

	
	Cent. Direct
	11.26 M
	410 M
	0.155
	0.233
	0.354
	0.556



The evaluation results in Table 4 are also plotted in Figure 5, where the positioning accuracy achieved is plotted as a function of training dataset size. Comparing the achieved positioning accuracy with the average distance between training dataset samples, it is clear that the small models can achieve accuracy comparable to the average sample distance, while larger models can achieve substantially better accuracy. This is a proof that all the designed models are efficient for the positioning use cases. They present a range of good AI/ML design options for engineers to choose from, each with their own set of advantages and disadvantages. 
[image: ]
[bookmark: _Ref131578614]Figure 6: Positioning accuracy vs training data size according to Table 4. Model input is CIR.

[bookmark: _Toc131788451]Using semi-distributed or centralized ML assisted positioning or centralized ML direct positioning approaches with CIR inputs in a highly non-LoS environment such as the {60%, 6m, 2m} InF-DH scenario,
- sub-meter 90%tile 2D error is achievable with a small train dataset;
- 90%tile 2D error < 0.5 m can be achieved with a medium-size train dataset and large enough ML models;
- 90%tile 2D error approaching or below 0.25 m requires large train datasets as well as large enough ML models.
[bookmark: _Toc131788452]Positioning accuracy significantly better than the average training sample distance can be achieved using distributed or centralized ML assisted positioning or centralized ML direct positioning approaches with CIR inputs in a highly non-LoS environment such as the {60%, 6m, 2m} InF-DH scenario.

To further 3GPP discussion and preparation of observations/conclusions for the technical report, we propose to define four train dataset size classes. We further note that some sources do not simulate for the baseline assumption (i.e., distribute UEs in the whole hall area), rather simulate the optional case of distributing the UEs only over “the convex hull of horizontal BS deployment,” which translates into sampling only over an area of 40 m × 100 m = 4,000 m2. The area UEs are distributed significantly affect the training dataset size. For example, a 20,000-sample dataset over 60 m × 120 m has almost the same user density as a 11,000-sample dataset over 40 m × 100 m. To reflect such large sampling size differences, we propose to categorize the dataset size in terms of the more easily comparable metric of user density in Table 5.
[bookmark: _Ref127263182]Table 5 Proposed dataset size classes.
	Train dataset size class
	User density [UE/m2]
	Number of samples over
60 m × 120 m
	Number of samples over
40 m × 100 m
	Number of sources reported in RAN1 #111 for direct positioning

	Small datasets
	~1.39
	~10,000
	~5,556
	[~3]

	Medium-size datasets
	~2.79
	~20,000
	~11,111
	[~5]

	Large datasets
	~5.56
	~40,000
	~22,222
	[~3]

	Very large datasets
	>6.94
	>50,000
	>27,778
	[~7]



[bookmark: _Toc127104402][bookmark: _Toc127122457][bookmark: _Toc131788490]To further 3GPP discussion and preparation of observations/conclusions for the technical report, four train dataset size classes are defined as follows:
- Small datasets: density ~1.39 UE/m2
- Medium-size datasets: density ~2.79 UE/m2
- Large datasets: density ~5.56 UE/m2 
- Very large datasets: >6.94 UE/m2

[bookmark: _Ref131414866][bookmark: _Toc131525192]Impact of training dataset sizes – Type of samples
Most sources have used time domain channel impulse responses (CIR) or power delay profiles (PDP) as input to the AI/ML models. As in the following agreement, the CIRs and PDPs are typically truncated after a certain number of taps suitable for the specific sampling rates used and the intended uses cases. If the TRPs are equipped with multiple RX antenna ports, the CIR and PDP may take on additional dimensions.
Agreement
For the model input used in evaluations of AI/ML based positioning, if time-domain channel impulse response (CIR) or power delay profile (PDP) is used as model input in the evaluation, companies report the input dimension NTRP * Nport * Nt, where NTRP is the number of TRPs, Nport is the number of transmit/receive antenna port pairs, Nt is the number of time domain samples. 
· Note: CIR and PDP may have different dimensions. 
· Note: Companies provide details on their assumption on how PDP is constructed and how (if applicable) it is mapped to Nt samples.
In addition to the above agreement, we note that
· For a TRP equipped with multiple RX antenna ports, there is in fact no need to keep the port dimension for the PDP. This is because the actual power delay profile of the channel is identical for all RX ports. Instead, the PDP should be averaged over all RX ports as an additional averaging over fast fading. This average over RX ports results in a more correct dimension of NTRP * 1 * Nt.
· The time domain CIRs represented by complex values since both the I and Q branches are needed. Hence, a CIR sample requires NTRP * Nport * Nt * 2 * Breal bits, where Breal is the number bits for a real value.
· On the other hand, PDP is represented by real values. Hence, a PDP sample requires NTRP * 1 * Nt * Breal bits.
An example to compare the CIR and PDP type inputs is provided in Figure 7 and Figure 8. We can observe that, in the conversion from CIR to PDP: 
· Phase information is lost
· Multi-port resolution is lost
And only the magnitude information averaged across ports is retained.
[image: ][image: ]
[bookmark: _Ref131409359][bookmark: _Ref131397188]Figure 7: Example of a complex dual polarization port channel impulse response sample.
[image: ]
[bookmark: _Ref131409381][bookmark: _Ref131509827]Figure 8: Example of a power delay profile sample derived from the CIR in Figure 7.
To make a rough comparison amongst the two types of model inputs, the following specific values are used as an example for high resolution training datasets:
· NTRP = 18
· Nport = 2
· Nt = 256
· Breal = 32
· Nsamples = 40,000
The dataset sizes are:
· 2.949 GB for full 256-tap CIR inputs
· 737.3 MB for full 256-tap PDP inputs
Taking the above in consideration, we can make the following observation.

[bookmark: _Toc131788453]For a given number of TRPs and number of time domain taps, a PDP sample requires 1/(2*Nport) the number of bits for a CIR sample.

Another consequence of reducing the input dimensions is the reduction of ML model complexity. We kept the same model architectures but swapped out components designed for complex values with those for real values. The resulting model and computational complexity values for the CIR and PDP input types are compared in Table 6. It can be observed that:
· The model complexity in terms of number of (real-equivalent) parameters is reduced by half when switching from CIR to PDP inputs while keeping the same model architectures.
· The nominal computational complexity in terms of FLOPs is reduced by around two thirds.

[bookmark: _Toc131788454]For a given model architecture, model complexity can be reduced by half and computational complexity can be reduced by two thirds when switching the inputs from complex dual-port CIR to PDP.

[bookmark: _Ref131410859]Table 6 Model and computational complexity comparison between CIR and PDP input types.
	Model class
	Positioning approach
	CIR inputs
	PDP inputs

	
	
	Model complexity
[# parameters]
	Computational complexity
[FLOPs]
	Model complexity
[# parameters]
	Computational complexity
[FLOPs]

	Small models
	Dist. Assist.
	0.86 M
	36 M
	0.43 M
	11.5 M

	
	Cent. Assist.
	0.73 M
	32 M
	0.36 M
	9 M

	
	Cent. Direct
	0.73 M
	32 M
	0.36 M
	9 M

	Medium-size models
	Dist. Assist.
	3.37 M
	132 M
	1.69 M
	43 M

	
	Cent. Assist.
	2.85 M
	110 M
	1.4 M
	34 M

	
	Cent. Direct
	2.85 M
	110 M
	1.4 M
	34 M

	Large models
	Dist. Assist.
	11.2 M
	425 M
	5.6 M
	140 M

	
	Cent. Assist.
	11.26 M
	410 M
	5.6 M
	132 M

	
	Cent. Direct
	11.26 M
	410 M
	5.6 M
	132 M



For a highly non-LoS environment such as the {60%, 6m, 2m} InF scenario, we summarized our results in Table 7. The results are also shown in Figure 9. 
· The first row of each model classes contains the 90%tile 2D positioning errors of the semi-distributed ML-assisted positioning approach in Section 2.1. The second row contains the performance of the centralized ML-assisted positioning approach in Section 2.2. The third row contains the performance of the centralized ML direct positioning approach in Section 2.3.
· With a small train dataset size of 10,000 PDP samples, sub-meter 90%tile 2D error is achievable with centralized or large models. 
· With a medium-size dataset size of 20,000 PDP samples, 90%tile 2D error < 0.5 m can be achieved with medium-size or large centralized models.
· With a large dataset size of 40,000 PDP samples, centralized model classes achieve 90%tile 2D error < 0.5 m. Large models also approach 0.25 m 90%tile 2D errors.
· With a very large dataset sizes of 80,000 PDP samples, large models can achieve 90%tile 2D error < 0.25 m.

[bookmark: _Toc131788455]Using centralized ML assisted positioning or centralized ML direct positioning approaches with PDP inputs in a highly non-LoS environment such as the {60%, 6m, 2m} InF-DH scenario,
- sub-meter 90%tile 2D error is achievable with a small train dataset;
- 90%tile 2D error < 0.5 m can be achieved with a medium-size train dataset and large enough ML models;
- 90%tile 2D error approaching or below 0.25 m requires large train datasets as well as large enough ML models.
For the semi-distributed ML assisted positioning approach with PDP inputs, one class large datasets are generally needed than those for centralized ML positioning approaches.
[bookmark: _Toc131788456]Positioning accuracy significantly better than the average training sample distance can be achieved using centralized ML assisted positioning or centralized ML direct positioning approaches with PDP inputs in a highly non-LoS environment such as the {60%, 6m, 2m} InF-DH scenario. For the semi-distributed ML assisted positioning approach with PDP inputs, large models are needed to achieve positioning accuracy significantly better than the average training sample distance.

[bookmark: _Ref131409560]Table 7 90%tile 2D positioning accuracy using PDP inputs for different model size classes and different training dataset sizes in the {60%, 6m, 2m} InF-DH scenario.
	Model class
	Positioning approach
	Model complexity
[# parameters]
	Computational complexity
[FLOPs]
	90%tile 2D positioning error [m]
with different train set sizes in 
{60%, 6m, 2m} InF-DH

	
	
	
	
	80,000
	40,000
	20,000
	10,000

	Small models PDP
	Dist. Assist.
	0.43 M
	11.5 M
	0.531
	0.680
	0.902
	1.249

	
	Cent. Assist.
	0.36 M
	9 M
	0.426
	0.524
	0.658
	0.873

	
	Cent. Direct
	0.36 M
	9 M
	0.426
	0.510
	0.656
	0.863

	Medium-size models PDP
	Dist. Assist.
	1.69 M
	43 M
	0.351
	0.476
	0.675
	1.004

	
	Cent. Assist.
	1.4 M
	34 M
	0.282
	0.360
	0.474
	0.707

	
	Cent. Direct
	1.4 M
	34 M
	0.269
	0.349
	0.496
	0.735

	Large models PDP
	Dist. Assist.
	5.6 M
	140 M
	0.273
	0.403
	0.596
	0.933

	
	Cent. Assist.
	5.6 M
	132 M
	0.202
	0.271
	0.397
	0.629

	
	Cent. Direct
	5.6 M
	132 M
	0.214
	0.288
	0.425
	0.653



[image: ]
[bookmark: _Ref131776327]Figure 9: Positioning accuracy vs training data size according to Table 7. Model input is PDP.

Comparing Table 4 and Table 7, we can observe that:
· For the same number of training samples, models using CIR inputs achieve better positioning accuracy than those using PDP inputs.
· However, models using PDP inputs achieve better positioning accuracy than those using CIR inputs if the number of training samples is doubled for the PDP models.
· That is, it can be observed that PDP models with 20,000 training samples perform better than CIR models with 10,000 samples. Similarly, for 40,000 PDP vs 20,000 CIR and so forth.
· Furthermore, for the same storage sizes of the training datasets, models using PDP inputs may achieve substantially better positioning accuracy than those using CIR inputs.
· Assuming of a 4-to-1 ratio between the storage size of a CIR sample to that of a PDP sample, it can be observed that PDP models with 40,000 training samples perform substantially better than CIR models with 10,000 samples.
· It should, however, be noted that the most complicated / time consuming part of training data collection is the obtaining of highly accurate true UE positions. Quadrupling collection of such ground truths may not be a favourable trade-off against recording the rich CIR information with fewer UE position drops.
Further comparison is presented in the next section.

[bookmark: _Toc131788457]For a highly non-LoS environment such as the {60%, 6m, 2m} InF-DH scenario and assuming the same time domain resolution (i.e., the same sampling rate and the same number of taps),
- For the same number of training samples, models using CIR inputs achieve better positioning accuracy than those using PDP inputs.
- For the same storage sizes of the training datasets, models using PDP inputs can achieve better positioning accuracy than those using CIR inputs. It is, however, noted that doubling or quadrupling collection of ground truth UE positions may not be a favourable trade-off against recording the rich CIR information with fewer UE position drops. 
Further comparison is made in Observation 12.

[bookmark: _Toc131525193]Impact of training dataset sizes – Size of samples
Sources have used time domain CIR or PDP on a regular sampling grid as input to the AI/ML models. To store Nsamples of the CIR or PDP samples, the dataset will use:
· For CIR: Nsamples * NTRP * Nport * Nt * 2 * Breal bits
· For PDP: Nsamples * NTRP * 1 * Nt * Breal bits
Some sources have suggested sub-sampling from the regular sampling grid to reduce the datasets.
Agreement
For both the direct AI/ML positioning and AI/ML assisted positioning, study the model input, considering the trade-off among model performance, model complexity and computational complexity.
· The type of information to use as model input. The candidates include at least: time-domain CIR, PDP.
· The dimension of model input in terms of NTRP, Nt, and Nt’.
· Note: For the direct AI/ML positioning, model input size has impact to signaling overhead for model inference.
One way to reduce the number of active (nonzero) time domain taps while keeping as much radio environment information as possible is to down-select from the Nt taps only the Nt’ taps with stronger powers than the rest of the taps. For the CIR, such tap down selection is determined by average the power over RX ports.
A generic representation of such sub-sampled CIR or PDP is to store each sample in two pieces of information:
· A length-Nt bitmap representing the locations of the nonzero taps for a TRP link.
· The values of the nonzero taps.
To store Nsamples of the down sampled CIR samples, the dataset will use:
· Nsamples * NTRP * Nt bits for the bitmaps.
· Nsamples * NTRP * Nport * Nt’ * 2 * Breal bits for the nonzero taps.
To store Nsamples of the down sampled PDP samples, the dataset will use:
· Nsamples * NTRP * Nt bits for the bitmaps.
· Nsamples * NTRP * 1 * Nt’ * Breal bits for the nonzero taps.
To make a rough comparison amongst the two types of model inputs, the following specific values are used as an example for high resolution training datasets:
· NTRP = 18
· Nport = 2
· Nt = 256
· Nt’ = 32
· Breal = 32
· Nsamples = 40,000
The dataset sizes are
· 2.949 GB for full 256-tap CIR inputs
· 737.3 MB for full 256-tap PDP inputs
· 391.7 MB for 32-tap CIR inputs
· 115.2 MB for 32-tap PDP inputs

[bookmark: _Toc131788458]One way to reduce the number of active (nonzero) time domain taps while keeping as much radio environment information is to down-select from the Nt taps only the Nt’ taps with stronger power than the rest of the taps. For the CIR, such tap down-selection is determined by average the power over RX ports.
[bookmark: _Toc131788459]A generic representation of sub-sampled CIR or PDP is to store each sample in two pieces of information: (1) a length-Nt bitmap representing the location of the nonzero taps; and (2) the values of the nonzero taps.

We conducted this investigation using the smallest models in the three positioning approaches. For a highly non-LoS environment such as the {60%, 6m, 2m} InF scenario, we summarized our results in Table 8.
· The first row of each model classes contains the 90%tile 2D positioning errors of the semi-distributed ML-assisted positioning approach in Section 2.1. The second row contains the performance of the centralized ML-assisted positioning approach in Section 2.2. The third row contains the performance of the centralized ML direct positioning approach in Section 2.3.
· As expected, positioning accuracy improves with the number of retained CIR or PDP taps.
· Zeroing out half of the 256 taps result in negligible positioning accuracy losses.
· Approaching or better than 1 m UE positioning accuracy can be achieved by retaining only 9 strongest CIR or PDP taps with the centralized models. For the semi-distributed models, 16 or 32 taps are needed for the PDP or CIR inputs, respectively.
· Approaching or better than 0.5 m UE positioning accuracy can be achieved by retaining 64 strongest CIR taps with the centralized models or by retaining 128 strongest CIR taps with for the semi-distributed models.

[bookmark: _Toc131788460]Retaining a smaller number of strongest CIR or PDP taps can be an effective approach to reduce training dataset sizes.
- Zeroing out half of the 256 taps result in negligible positioning accuracy losses.
- Approaching or better than 1 m UE positioning accuracy can be achieved by retaining only 9 strongest CIR or PDP taps with the centralized models.
- Approaching or better than 0.5 m UE positioning accuracy can be achieved by retaining 64 strongest CIR taps with the centralized models.

[bookmark: _Ref131412693]Table 8 UE 2D positioning errors for {60%, 6m, 2m} test dataset at different percentiles and different numbers of down sampled taps (training dataset size = 40,000 samples).
	Model class
	Positioning approach
	Model complexity
[# paras]
	90%tile 2D positioning error [m] with numbers of down sampled taps in {60%, 6m, 2m} InF-DH

	
	
	
	256 taps
	128 taps
	64 taps
	32 taps
	16 taps
	9 taps

	Small models CIR
	Dist. Assist.
	0.86 M
	0.453
	0.478
	0.558
	0.764
	1.208
	1.995

	
	Cent. Assist.
	0.73 M
	0.371
	0.372
	0.434
	0.545
	0.678
	0.805

	
	Cent. Direct
	0.73 M
	0.373
	0.382
	0.425
	0.540
	0.678
	0.824

	Small models PDP
	Dist. Assist.
	0.43 M
	0.680
	0.687
	0.732
	0.856
	1.001
	1.452

	
	Cent. Assist.
	0.36 M
	0.524
	0.534
	0.514
	0.604
	0.698
	0.868

	
	Cent. Direct
	0.36 M
	0.510
	0.522
	0.522
	0.580
	0.689
	0.824



Comparing Table 8 and Table 7, we can observe that:
· A CIR training dataset with 40,000 samples of 64 strongest taps allows the models to achieve better positioning accuracy than a PDP training dataset with 40,000 samples of 256 strongest taps.
· A CIR training dataset with 40,000 samples of 64 strongest taps allows the models to achieve similar positioning accuracy than a PDP training dataset with 80,000 samples of 256 strongest taps.
· For small number of retained taps, centralized models using either CIR or PDP inputs achieve quite similar positioning accuracy. More specifically, for 9, 16 or 32 taps, the centralized models using CIR inputs achieve positioning errors less than 10% lower than those achieved by centralized models using PDP inputs.
· On the other hand, for full 256-tap inputs, centralized models using CIR inputs achieve >25% lower positioning errors than centralized models using PDP inputs.

[bookmark: _Ref131414119][bookmark: _Toc131788461]For a highly non-LoS environment such as the {60%, 6m, 2m} InF-DH scenario and considering the possibility of reducing training dataset storage sizes with down sampling, models using CIR or PDP inputs can achieve similar positioning accuracy at similar storage sizes of the training datasets.
[bookmark: _Ref131416293][bookmark: _Toc131788462]For a highly non-LoS environment such as the {60%, 6m, 2m} InF-DH scenario, centralized models using either CIR or PDP inputs achieve similar positioning accuracy for small number of retained taps (e.g., 9, 16 or 32 taps).

[bookmark: _Toc131525194]Impact of training dataset sizes – Minimal samples
In Section 1.4, we observe that, in the conversion from CIR to PDP:
· Phase information is lost
· Multi-port resolution is lost
And only the magnitude information averaged across ports is retained. 
Furthermore, in the last observation (Observation 13), we find the addition of phase and multi-port resolution does not aid much to centralized models’ positioning accuracy when only small number of taps are retained. This indicates that, for small number of retained taps, most of the useful information resides in the location of the retained taps rather than the contents of these taps. 
Hence, to further reduce the dataset sizes, we take such information reduction to its logical end: 
· We consider discarding the tap powers and using only the delay profile (DP) as inputs to the AI/ML models. 
An example to compare the CIR, PDP and DP type inputs is provided in Figure 7, Figure 10 and Figure 11. In a DP input, each is either 1 or 0 where the locations of value 1s are determined from the strongest taps in a PDP. One can view the DP type model inputs as 1-bit quantization of down-sampled PDP type model inputs.
[image: ]
[bookmark: _Ref131415059]Figure 10: Example of a power delay profile sample derived from the CIR in Figure 7.
[image: ]
[bookmark: _Ref131415062]Figure 11: Example of a 16-tap delay profile sample derived from the PDP in Figure 10.
That is, to store Nsamples of the down sampled DP samples, the dataset can use
· Nsamples * NTRP * Nt bits for the bitmaps.
To make a rough comparison amongst the three types of model inputs, the following specific values are used as an example for high resolution training datasets:
· NTRP = 18
· Nport = 2
· Nt = 256
· Nt’ = 32 or 16
· Breal = 32
· Nsamples = 40,000
The dataset sizes are
· 2.949 GB for full 256-tap CIR inputs
· 737.3 MB for full 256-tap PDP inputs
· 391.7 MB for 32-tap CIR inputs
· 115.2 MB for 32-tap PDP inputs
· 207.36 MB for 16-tap CIR inputs
· 69.12 MB for 16-tap PDP inputs
· 23.04 MB for 32-tap DP inputs
It can be observed that for a given number of TRPs and number of time domain taps, a dataset of DP samples may require a fraction of storage spaces for datasets of CIR or PDP samples. Compared to the full CIR input dataset, the size reduction is more than two orders of magnitude.

[bookmark: _Toc131788463]For a given number of time domain taps, a dataset of DP samples only require a fraction of storage spaces for datasets of CIR or PDP samples.

For a highly non-LoS environment such as the {60%, 6m, 2m} InF scenario, we investigate the performance of DP inputs with different numbers of non-zero taps for the smallest centralized ML assisted positioning or direct positioning models in Section 2.2.3.3 and Section 2.3.3.3, respectively. We found there is an optimal setting of non-zero taps. This is to be expected:
· With too few taps, the DP inputs don’t capture all useful information.
· With too many taps, useful information is compromised since both strong taps and tiny taps are represented by the same value 1.
For the centralized ML assisted positioning approach, we found 32-tap DP achieves the lowest 90%tile positioning error of 0.653 m. For the centralized ML direct positioning approach, we found 32-tap DP achieves 90%tile positioning error of 0.658 m, which is very slightly higher than 0.639 m achieved by 64-tap DP. Going forward, we use 32-tap DP inputs for both types of centralized ML positioning approach. 
For a highly non-LoS environment such as the {60%, 6m, 2m} InF scenario, we summarized our results in Table 9.
· The first row contains the performance of the centralized ML-assisted positioning approach in Section 2.2. The second row contains the performance of the centralized ML direct positioning approach in Section 2.3.
· With a small train dataset size of 10,000 DP samples, sub-meter 90%tile 2D error is achievable with all medium or large model size classes. For the small models, 90%tile 2D errors approaches 1 m.
· With a medium dataset size of 20,000 DP samples for large size models or a large dataset size of 40,000 DP samples for medium size models, 90%tile 2D errors approaching or better than 0.5 m can be achieved.
· With a very large dataset sizes of 80,000 DP samples, large models can achieve 90%tile 2D error < 0.30 m.

[bookmark: _Toc131788464]Using centralized ML assisted positioning or centralized ML direct positioning approaches with 32-tap DP inputs in a highly non-LoS environment such as the {60%, 6m, 2m} InF-DH scenario,
- sub-meter 90%tile 2D error is achievable with a small train dataset and medium-size or large ML models;
- 90%tile 2D error < 0.5 m can be achieved with a medium-size train dataset and large ML models or a large train dataset and medium-size ML models;
- 90%tile 2D error approaching or below 0.30 m requires very large train datasets and large ML models.
[bookmark: _Toc131788465]Positioning accuracy better than the average training sample distance can be achieved using centralized ML assisted positioning or centralized ML direct positioning approaches with 32-tap DP inputs in a highly non-LoS environment such as the {60%, 6m, 2m} InF-DH scenario.

[bookmark: _Ref131422680]Table 9 90%tile 2D positioning accuracy using 32-tap DP inputs for different model size classes and different training dataset sizes in the {60%, 6m, 2m} InF-DH scenario.
	Model class
	Positioning approach
	Model complexity
[# parameters]
	Computational complexity
[FLOPs]
	90%tile 2D positioning error [m]
with different train set sizes in 
{60%, 6m, 2m} InF-DH

	
	
	
	
	80,000
	40,000
	20,000
	10,000

	Small models DP
	Cent. Assist.
	0.36 M
	9 M
	0.571
	0.653
	0.798
	0.989

	
	Cent. Direct
	0.36 M
	9 M
	0.558
	0.658
	0.789
	1.014

	Medium models DP
	Cent. Assist.
	1.4 M
	34 M
	0.390
	0.477
	0.600
	0.834

	
	Cent. Direct
	1.4 M
	34 M
	0.391
	0.465
	0.600
	0.823

	Large models DP
	Cent. Assist.
	5.6 M
	132 M
	0.294
	0.371
	0.502
	0.715

	
	Cent. Direct
	5.6 M
	132 M
	0.298
	0.379
	0.522
	0.758



[image: ]
Figure 12: Positioning accuracy vs training data size according to Table 9. Model input is DP.

Comparing Table 9 and Table 8 and Table 7 and Table 4, we can further observe that
· Models using 32-tap DP inputs achieve better positioning accuracy than those using full 256-tap PDP inputs if the number of training samples is doubled for the DP models.
· That is, it can be observed that 32-tap DP models with 20,000 training samples perform better than 256-tap PDP models with 10,000 samples. Similarly, for 40,000 32-tap DP vs 20,000 256-tap PDP and so forth.
· Models using 32-tap DP inputs achieve comparable positioning accuracy than those using full 256-tap CIR inputs if the number of training samples is doubled for the DP models.
· That is, it can be observed that 32-tap DP models with 20,000 training samples perform similarly to 256-tap CIR models with 10,000 samples. Similarly, for 40,000 32-tap DP vs 20,000 256-tap CIR and so forth.
· For 40,000 samples and the small models, models using 32-tap DP inputs achieve comparable positioning accuracy as models using 16-tap CIR or models using 32-tap PDP inputs.

[bookmark: _Toc131788466]Delay profile input type is highly effective for centralized direct positioning or assisted positioning models. Models using 32-tap DP inputs can achieve positioning accuracy comparable to that achieved by models using CIR or PDP inputs but with a fraction of the training dataset storage sizes.

[bookmark: _Toc131525195]Impact of train dataset labelling errors
It was agreed in RAN1 #112 to investigate the impact of training dataset labelling errors:
Agreement
For direct AI/ML positioning, study the impact of labelling error to positioning accuracy:  
· The ground truth label error in each dimension of x-axis and y-axis can be modeled as a truncated Gaussian distribution with zero mean and standard deviation of L meters, with truncation of the distribution to the [-2*L, 2*L] range. 
· Value L is up to sources. 
· Other models are not precluded
· [Whether/how to study the impact of labelling error to label-based model monitoring methods]
· [Whether/how to study the impact of labelling error for AI/ML assisted positioning.]
It should be noted that the labelling errors are added per dimension. That is, a 2D UE position with labelling errors  is given by

where  is the true 2D UE position and  and  are independent random variables following a zero-mean truncated Gaussian distribution with standard deviation of . Therefore, the 2D distance errors of the labels 

have a standard deviation close to .
We conducted this investigation using the smallest models in the three positioning approaches. Our investigation results are summarized in Table 10, Table 11, and Table 12 for the CIR, PDP or DP inputs, respectively. We can evaluate the sensitivity of different ML positioning approaches and different input types to labelling errors with a simple regression of the 90%tile 2D positioning error with labelling error on the standard deviation of the labelling errors:

We can observe that
· For the CIR inputs, the semi-distributed assisted model exhibits lower sensitivity to labelling errors with a  than the centralized models with .
· For the PDP inputs, all three ML positioning approaches exhibit lower sensitivity to labelling errors with  for the semi-distributed assisted model and with  for the centralized models.
· With the DP inputs, the centralized models obtained further lower sensitivity to labelling errors with .
· Sub-meter 90%tile 2D positioning errors can be achieved with labeling error STD less than 1 m.

[bookmark: _Toc131788467]Different ML positioning approaches can exhibit different levels of sensitivity to labeling errors. Semi-distributed ML assisted positioning approaches exhibit lower sensitivity to labeling errors than centralized ML positioning approaches.
[bookmark: _Toc131788468]Different model inputs can affect the sensitivity of the ML models to labeling errors. For the centralized ML assisted positioning or direct positioning approaches, higher sensitivity to labeling errors is observed with CIR inputs than with PDP or DP inputs.

[bookmark: _Ref131497361]Table 10 90%tile 2D positioning accuracy using CIR inputs for different training dataset labeling error STD [m] in the {60%, 6m, 2m} InF-DH scenario.
	Model class
	Positioning approach
	Model complexity
[# parameters]
	Computational complexity
[FLOPs]
	90%tile 2D positioning error [m]
with different labelling error STD in 
{60%, 6m, 2m} InF-DH

	
	
	
	
	0 m
	0.25 m
	0.5 m
	1 m

	Small models CIR
	Dist. Assist.
	0.86 M
	36 M
	0.453
	0.552
	0.704
	1.116

	
	Cent. Assist.
	0.73 M
	32 M
	0.371
	0.462
	0.702
	1.253

	
	Cent. Direct
	0.73 M
	32 M
	0.373
	0.478
	0.709
	1.262



[bookmark: _Ref131497376]Table 11 90%tile 2D positioning accuracy using PDP inputs for different training dataset labeling error STD [m] in the {60%, 6m, 2m} InF-DH scenario.
	Model class
	Positioning approach
	Model complexity
[# parameters]
	Computational complexity
[FLOPs]
	90%tile 2D positioning error [m]
with different labelling error STD in 
{60%, 6m, 2m} InF-DH

	
	
	
	
	0 m
	0.25 m
	0.5 m
	1 m

	Small models PDP
	Dist. Assist.
	0.43 M
	11.5 M
	0.680
	0.734
	0.866
	1.234

	
	Cent. Assist.
	0.36 M
	9 M
	0.524
	0.563
	0.690
	1.142

	
	Cent. Direct
	0.36 M
	9 M
	0.510
	0.566
	0.708
	1.141



[bookmark: _Ref131497380]Table 12 90%tile 2D positioning accuracy using 32-tap DP inputs for different training dataset labeling error STD [m] in the {60%, 6m, 2m} InF-DH scenario.
	Model class
	Positioning approach
	Model complexity
[# parameters]
	Computational complexity
[FLOPs]
	90%tile 2D positioning error [m]
with different labelling error STD in 
{60%, 6m, 2m} InF-DH

	
	
	
	
	0 m
	0.25 m
	0.5 m
	1 m

	Small models DP
	Cent. Assist.
	0.36 M
	9 M
	0.653
	0.717
	0.824
	1.220

	
	Cent. Direct
	0.36 M
	9 M
	0.658
	0.694
	0.803
	1.216





[bookmark: _Toc131525196]Impact of fine-tuning dataset sizes
The four different AI/ML positioning approaches we study in this contribution and [9] exhibit different sensitivity to environmental changes.
· We found the models estimating observable first path delays for the LoS links to be insensitive to different random seeds for UE location, 3GPP spatial model, and propagation seeds. In fact, the quality of observable first path delays for the LoS links remain accurate even when the models are deployed to completely different InF environments. These models behave almost like conventional signal processing algorithms in terms of their robustness to various environmental changes.
· The caveat is, for environments without enough LoS links, accurate UE positioning cannot be obtained using the outputs from this type of model, since the conventional positioning methods need to have at least 3 LoS links to produce accurate horizontal position estimation.
· The models estimating unobservable direct path delays for all links and the models estimating the UE positions directly are rather sensitive to different random seeds for UE location, 3GPP spatial model, and propagation seeds. This is because these models are in essence performing fingerprinting either locally or regionally/globally. When the operating environment changes, mitigation solutions are needed.
Since the fingerprinting type AI/ML models are sensitive to operating environment changes, it is necessary to address solutions for operating environment changes:
· We consider in this section solutions using fine-tuning for models trained in one environment to adapt to a second environment.
· We consider in the next section solutions to train models using data from more than one environment such that the trained model can operate in a diverse variety of environments.

The following was agreed in RAN1 #111:
Agreement
For both direct and AI/ML assisted positioning methods, investigate at least the impact of the amount of fine-tuning data on the positioning accuracy of the fine-tuned model.
· The fine-tuning data is the training dataset from the target deployment scenario.
Toward this end, we investigate the performance of fine-tuning a model originally trained with samples collected from the {60%, 6m, 2m} InF-DH scenario using samples collected from the {40%, 2m, 2m} InF-DH scenario. 
We conducted this investigation using the smallest models in the three positioning approaches. Our investigation results are summarized in Table 13 to Table 15.
· The first row of each model classes contains the 90%tile 2D positioning errors of the distributed ML-assisted positioning approach in Section 2.1. The second row contains the performance of the centralized ML-assisted positioning approach in Section 2.2. The third row contains the performance of the centralized ML direct positioning approach in Section 2.3.
· With a small number of fine-tuning samples (e.g., 1,000 or 2,000 samples), the accuracy of the models can be improved substantially. The 90%tile positioning errors are reduced by at least 50% with all three models. However, even with such improvements, the accuracy (with 90%tile positioning errors > 2 m) is still not acceptable.
· However, further increases of fine-tuning dataset sizes improve the model performance only gradually. To achieve sub-meter 90%tile positioning errors, a fine-tuning dataset size of at least 10,000 samples is needed.
· To reach the best achievable performance, the fine-tuning dataset size essentially has to increase to the same level as training a model from scratch.
· For instance, with the distributed assisted models, fine-tuning requires the same number of samples as training from scratch.
· For the centralized models, fine-tuning may be able to provide some reduction in the required number of samples. However, the saving may be no more than 10% reduction.

[bookmark: _Toc131788469]Fine-tuning is a viable technique to adapt models originally trained for a first environment to operate in a second, substantially different, environment. However, fine-tuning does not appear to provide much saving in the number of samples to reach state-of-the-art positioning accuracy when compared to training the models from scratch.

[bookmark: _Ref131781094]Table 13. 90%tile UE 2D positioning errors for small Model I trained with 40,000 CIR samples from {60%, 6m, 2m} and fine-tuned with different number of CIR samples from {40%, 2m, 2m}. Tested on {40%, 2m, 2m} test dataset.
	Positioning approach
	Model complexity [# of parameters]
	90%tile UE 2D positioning errors [m] – small Model I

	
	
	Trained with samples from {40%, 2m, 2m}
	Originally trained with 40,000 samples from 
{60%, 6m, 2m} and fine-tuned with 
different number of samples from {40%, 2m, 2m}
	Trained with samples from {60%, 6m, 2m}

	
	
	40,000
	40,000
	20,000
	10,000
	4,000
	2,000
	1,000
	40,000

	Dist. Assist.
	0.86 M
	0.409
	0.420
	0.543
	0.782
	1.285
	1.808
	2.404
	8.720

	Cent. Assist.
	0.73 M
	0.697
	0.621
	0.818
	1.141
	1.806
	2.284
	2.885
	6.913

	Cent. Direct
	0.73 M
	0.674
	0.621
	0.841
	1.177
	1.801
	2.329
	3.030
	7.354



Table 14. 90%tile UE 2D positioning errors for small Model I trained with 40,000 PDP samples from {60%, 6m, 2m} and fine-tuned with different number of PDP samples from {40%, 2m, 2m}. Tested on {40%, 2m, 2m} test dataset.
	Positioning approach
	Model complexity [# of parameters]
	90%tile UE 2D positioning errors [m] – small Model I

	
	
	Trained with samples from {40%, 2m, 2m}
	Originally trained with 40,000 samples from 
{60%, 6m, 2m} and fine-tuned with 
different number of samples from {40%, 2m, 2m}
	Trained with samples from {60%, 6m, 2m}

	
	
	40,000
	40,000
	20,000
	10,000
	4,000
	2,000
	1,000
	40,000

	Dist. Assist.
	0.43 M
	0.596
	0.552
	0.738
	0.989
	1.408
	1.882
	2.486
	8.176

	Cent. Assist.
	0.36 M
	0.854
	0.782
	0.983
	1.269
	1.879
	2.378
	2.843
	6.904

	Cent. Direct
	0.36 M
	0.810
	0.791
	0.991
	1.267
	1.876
	2.418
	2.880
	6.542



[bookmark: _Ref131781098]Table 15. 90%tile UE 2D positioning errors for small Model I trained with 40,000 DP samples from {60%, 6m, 2m} and fine-tuned with different number of DP samples from {40%, 2m, 2m}. Tested on {40%, 2m, 2m} test dataset.
	Positioning approach
	Model complexity [# of parameters]
	90%tile UE 2D positioning errors [m] – small Model I

	
	
	Trained with samples from {40%, 2m, 2m}
	Originally trained with 40,000 samples from 
{60%, 6m, 2m} and fine-tuned with 
different number of samples from {40%, 2m, 2m}
	Trained with samples from {60%, 6m, 2m}

	
	
	40,000
	40,000
	20,000
	10,000
	4,000
	2,000
	1,000
	40,000

	Cent. Assist.
	0.36 M
	1.071
	1.025
	1.281
	1.614
	2.455
	3.164
	3.972
	11.940

	Cent. Direct
	0.36 M
	1.033
	1.036
	1.294
	1.618
	2.441
	3.230
	3.902
	11.554



It should however be further pointed out that, once these models are fine-tuned to operate for a substantially different, new, environment, they no longer perform adequately for the original environment. Our investigation results are summarized in Table 16 to Table 18.
· The first row of each model classes contains the 90%tile 2D positioning errors of the distributed ML-assisted positioning approach in Section 2.1. The second row contains the performance of the centralized ML-assisted positioning approach in Section 2.2. The third row contains the performance of the centralized ML direct positioning approach in Section 2.3.
· With a small number of fine-tuning samples (e.g., 1,000 or 2,000 samples), the accuracy of the original models on the original operating environment is substantially degraded. The 90%tile 2D positioning errors of all three models jump from below 0.5 m to more than 6 m.
· It is, however, surprising to observe that the performance of these models being fine-tuned for a substantially different, new, environment actually recover some of their performance on the original environment with more fine-tuning samples. The models appear to attempt good performance in both environments. But they fail to achieve state-of-the-art accuracy for both. 
· That is, in order to operate at state-of-the-art performance in multiple environments, multiple sets of model weights will need to be kept. This is rather different than the mixed dataset training to be discussed in the next section.

[bookmark: _Toc131788470]Once the models are fine-tuned to operate for a substantially different, new, environment, they no long perform adequately for the original environment. That is, if operation at state-of-the-art performance in multiple environments is needed, multiple sets of model weights need to be stored.

[bookmark: _Ref131781127]Table 16. 90%tile UE 2D positioning errors for small Model I trained with 40,000 CIR samples from {60%, 6m, 2m} and fine-tuned with different number of CIR samples from {40%, 2m, 2m} and test on {60%, 6m, 2m} test dataset.
	Positioning approach
	Model
complexity 
[# of 
parameters]
	90%tile UE 2D positioning errors [m] – small Model I

	
	
	Trained with samples from {60%, 2m, 2m}
	Originally trained with 40,000 samples from 
{60%, 6m, 2m} and fine-tuned with 
different number of samples from {40%, 2m, 2m}

	
	
	40,000
	40,000
	20,000
	10,000
	4,000
	2,000
	1,000

	Dist. Assist.
	0.86 M
	0.451
	2.111
	2.653
	3.465
	4.293
	5.267
	5.863

	Cent. Assist.
	0.73 M
	0.371
	1.358
	1.549
	1.865
	2.473
	2.911
	3.258

	Cent. Direct
	0.73 M
	0.373
	1.351
	1.668
	1.993
	2.632
	3.453
	3.352



Table 17. 90%tile UE 2D positioning errors for small Model I trained with 40,000 PDP samples from {60%, 6m, 2m} and fine-tuned with different number of PDP samples from {40%, 2m, 2m} and test on {60%, 6m, 2m} test dataset.
	Positioning approach
	Model
complexity 
[# of 
parameters]
	90%tile UE 2D positioning errors [m] – small Model I

	
	
	Trained with samples from {60%, 2m, 2m}
	Originally trained with 40,000 samples from 
{60%, 6m, 2m} and fine-tuned with 
different number of samples from {40%, 2m, 2m}

	
	
	40,000
	40,000
	20,000
	10,000
	4,000
	2,000
	1,000

	Dist. Assist.
	0.43 M
	0.684
	2.424
	2.813
	3.417
	4.123
	4.962
	5.110

	Cent. Assist.
	0.36 M
	0.524
	1.383
	1.515
	1.803
	2.352
	2.917
	2.911

	Cent. Direct
	0.36 M
	0.510
	1.379
	1.591
	1.795
	2.455
	2.794
	3.013



[bookmark: _Ref131781131]Table 18. 90%tile UE 2D positioning errors for small Model I trained with 40,000 DP samples from {60%, 6m, 2m} and fine-tuned with different number of DP samples from {40%, 2m, 2m} and test on {60%, 6m, 2m} test dataset.
	Positioning approach
	Model
complexity 
[# of 
parameters]
	90%tile UE 2D positioning errors [m] – small Model I

	
	
	Trained with samples from {60%, 2m, 2m}
	Originally trained with 40,000 samples from 
{60%, 6m, 2m} and fine-tuned with 
different number of samples from {40%, 2m, 2m}

	
	
	40,000
	40,000
	20,000
	10,000
	4,000
	2,000
	1,000

	Cent. Assist.
	0.36 M
	0.653
	1.880
	2.143
	2.430
	3.264
	3.580
	4.047

	Cent. Direct
	0.36 M
	0.658
	1.957
	2.242
	2.436
	3.346
	3.715
	3.967



[bookmark: _Ref131524911][bookmark: _Toc131525197]Effectiveness of mixed dataset training
To operate at state-of-the-art performance in multiple substantially different environments, mixed dataset training may be a superior approach than either training multiple models from scratch or storing multiple fine-tuned models. To investigate, we compare the performance of models trained with three different train datasets:
· Train with 40,000 samples from {60%, 6m, 2m}
· Train with 40,000 samples from {40%, 2m, 2m}
· Train with 40,000 samples from {60%, 6m, 2m} and 40,000 samples from {40%, 2m, 2m}
We believe this is a fair comparison between these two operating scenarios:
· Train two models to operate in two different environments at high performance
· Train a single model to operate in two different environments at high performance
Since there do exist training samples from two different environments to train two different models for the two substantially different environments, the entirety of the training samples should be used when training a single model to operate in two different environments.
We conducted this investigation using the smallest models in the three positioning approaches. Our investigation results are summarized in Table 19 to Table 21.
· The first row of each model classes contains the 90%tile 2D positioning errors of the distributed ML-assisted positioning approach in Section 2.1. The second row contains the performance of the centralized ML-assisted positioning approach in Section 2.2. The third row contains the performance of the centralized ML direct positioning approach in Section 2.3.
· The test results show that even small models trained with mixed datasets from two substantially different environments can operate at high accuracy in four different environments.
· In fact, in some cases, models trained with mixed datasets achieve better performance in an environment than models trained exclusively using samples from that environment. We expect such outperformance to be even more prevalent with larger model sizes.
· These models trained with mixed datasets achieve such state-of-the-art performance without the need to explicitly identifying the operating environment or switching of models.
· For the alternative approach of keeping multiple models for multiple operating environments, reliability of environment identification becomes the critical point of failure. Evidence of environment identification reliability should be provided by proponent companies and studied further.
· From the first principle of representation learning, having several discrete models doing similar/related jobs based on the same inputs wastes the complexity budget. By pooling them into a single model like the mixed dataset, training here allows the single model to share commonly useful features (constructed by early layers) and achieve better performance in all similar/related jobs for the same complexity budget.

[bookmark: _Toc131788471]Even with small model sizes, models trained with mixed datasets can operate at state-of-the-art performance in multiple substantially different environments with no need of explicit environment identification and model switching.
[bookmark: _Toc131788472]For the alternative approach of keeping multiple models for multiple operating environments, reliability of environment identification becomes the critical point of failure.
[bookmark: _Toc131788473]To operate at state-of-the-art performance in multiple substantially different environments, mixed dataset training is superior to either training multiple models from scratch or storing multiple fine-tuned models with explicit environment identification and model switching.

[bookmark: _Ref131781522]Table 19. 90%tile UE 2D positioning errors for small Model I trained with 40,000 CIR samples from {60%, 6m, 2m} and/or {40%, 2m, 2m} and tested on four different environments.
	Positioning approach
	Model complexity [# of parameters]
	Training
dataset
	90%tile UE 2D positioning errors [m] – small Model I
on different test sets

	
	
	
	{40%, 2m, 2m}
	{60%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 6m, 2m}

	Dist. Assisted
	0.86 M
	{60%, 6m, 2m}
	8.720
	4.284
	0.489
	0.451

	
	
	{40%, 2m, 2m}
	0.409
	0.594
	2.045
	2.317

	
	
	{40%, 2m, 2m} {60%, 6m, 2m}
	0.473
	0.553
	0.602
	0.594

	Cent. Assisted
	0.73 M
	{60%, 6m, 2m}
	6.913
	2.935
	0.412
	0.371

	
	
	{40%, 2m, 2m}
	0.697
	0.8
	1.477
	1.591

	
	
	{40%, 2m, 2m} {60%, 6m, 2m}
	0.641
	0.564
	0.428
	0.415

	Cent. Direct
	0.73 M
	{60%, 6m, 2m}
	7.354
	3.275
	0.419
	0.373

	
	
	{40%, 2m, 2m}
	0.674
	0.770
	1.461
	1.595

	
	
	{40%, 2m, 2m} {60%, 6m, 2m}
	0.616
	0.552
	0.421
	0.410



Table 20. 90%tile UE 2D positioning errors for small Model I trained with 40,000 PDP samples from {60%, 6m, 2m} and/or {40%, 2m, 2m} and tested on four different environments.
	Positioning approach
	Model complexity [# of parameters]
	Training
dataset
	90%tile UE 2D positioning errors [m] – small Model I
on different test sets

	
	
	
	{40%, 2m, 2m}
	{60%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 6m, 2m}

	Dist. Assisted
	0.43 M
	{60%, 6m, 2m}
	8.176
	4.134
	0.728
	0.684

	
	
	{40%, 2m, 2m}
	0.596
	0.891
	2.555
	2.841

	
	
	{40%, 2m, 2m} {60%, 6m, 2m}
	0.601
	0.701
	0.792
	0.784

	Cent. Assisted
	0.36 M
	{60%, 6m, 2m}
	6.904
	2.453
	0.549
	0.524

	
	
	{40%, 2m, 2m}
	0.854
	0.900
	1.408
	1.518

	
	
	{40%, 2m, 2m} {60%, 6m, 2m}
	0.816
	0.707
	0.592
	0.586

	Cent. Direct
	0.36 M
	{60%, 6m, 2m}
	6.542
	2.463
	0.544
	0.510

	
	
	{40%, 2m, 2m}
	0.810
	0.883
	1.413
	1.521

	
	
	{40%, 2m, 2m} {60%, 6m, 2m}
	0.807
	0.701
	0.587
	0.579



[bookmark: _Ref131781524]Table 21. 90%tile UE 2D positioning errors for small Model I trained with 40,000 DP samples from {60%, 6m, 2m} and/or {40%, 2m, 2m} and tested on four different environments.
	Positioning approach
	Model complexity [# of parameters]
	Training
dataset
	90%tile UE 2D positioning errors [m] – small Model I
on different test sets

	
	
	
	{40%, 2m, 2m}
	{60%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 6m, 2m}

	Cent. Assisted
	0.36 M
	{60%, 6m, 2m}
	11.940
	3.867
	0.705
	0.653

	
	
	{40%, 2m, 2m}
	1.071
	1.168
	1.888
	2.047

	
	
	{40%, 2m, 2m} {60%, 6m, 2m}
	1.052
	0.919
	0.762
	0.750

	Cent. Direct
	0.36 M
	{60%, 6m, 2m}
	11.554
	3.889
	0.693
	0.658

	
	
	{40%, 2m, 2m}
	1.033
	1.116
	1.860
	1.977

	
	
	{40%, 2m, 2m} {60%, 6m, 2m}
	1.024
	0.909
	0.736
	0.720



[bookmark: _Toc131525198] Impact of network synchronization errors
In this section, we investigate and analyze the performance of the ML models against network synchronization errors. We first train Model I with 40,000 samples without network synchronization errors. We further train the same model with STD = 25 ns and STD = 50 ns network synchronization errors. Then, we test these models against test dataset 1f with random network synchronization errors at various STD values (X ns). As agreed in a previous RAN1 meeting, the random network synchronization errors are generated according to a truncated Gaussian distribution with a (pre-truncation) STD (aka, ) and truncation at ±2*STD (aka,  ). 
We conducted this investigation using the smallest models. Our investigation results for the centralized models are summarized in Table 22, Table 23 and Table 24 for the CIR, PDP or DP inputs, respectively. We can observe that:
· For ML positioning models trained without any network synchronization errors, positioning accuracy can still maintain a high level for network synchronization STD up to 10 ns. For larger network synchronization errors, the ML models’ positioning accuracy can degrade substantially.
· However, if the ML positioning models are trained with 25 or 50 ns network synchronization errors, the models can maintain high level of positioning accuracy for network synchronization errors up to 50 ns.
· In general, we find centralized models can overcome uncorrelated network synchronization errors. In fact, network synchronization errors can be used as a type of data augmentation during training to enhanced trained model performance. This is because the models can learn to correct these uncorrelated synchronization errors from observing multiple inputs from the TRPs simultaneously.

[bookmark: _Toc131788474]Centralized ML positioning models can overcome uncorrelated network synchronization errors. In fact, network synchronization errors can be used as a type of data augmentation during training to enhanced trained model performance.
- Models trained without any network synchronization error can achieve high positioning accuracy for network synchronization error STD up to 10 ns.
- Models trained with network synchronization error STD of 25 ns can achieve high positioning accuracy for network synchronization error STD up to at least 50 ns.

[bookmark: _Ref131499703][bookmark: _Hlk131164680]Table 22 90%tile 2D positioning accuracy using CIR inputs for different network synchronization STD [ns] in the {60%, 6m, 2m} InF-DH scenario for small model (Model I) trained with different network synchronization STD [ns].
	Model details
	Positioning approach
	Model complexity
[# paras]
	Computational complexity
[FLOPs]
	90%tile 2D positioning error [m]
with different network synchronization STD in {60%, 6m, 2m} InF-DH

	
	
	
	
	0 ns
	5 ns
	10 ns
	25 ns
	50 ns

	CIR trained with 0 ns
	Cent. Assist.
	0.73 M
	32 M
	0.423
	0.518
	0.77
	2.553
	13.514

	
	Cent. Direct
	0.73 M
	32 M
	0.432
	0.504
	0.701
	2.394
	12.787

	CIR trained with 25 ns
	Cent. Assist.
	0.73 M
	32 M
	0.371
	0.372
	0.376
	0.444
	0.855

	
	Cent. Direct
	0.73 M
	32 M
	0.373
	0.376
	0.376
	0.433
	0.841

	CIR trained with 50 ns
	Cent. Assist.
	0.73 M
	32 M
	0.410
	0.412
	0.412
	0.436
	0.522

	
	Cent. Direct
	0.73 M
	32 M
	0.419
	0.415
	0.414
	0.439
	0.528



[bookmark: _Ref131499706]Table 23 90%tile 2D positioning accuracy using PDP inputs for different network synchronization STD [ns] in the {60%, 6m, 2m} InF-DH scenario for small model (Model I) trained with different network synchronization STD [ns].
	Model details
	Positioning approach
	Model complexity
[# paras]
	Computational complexity
[FLOPs]
	90%tile 2D positioning error [m]
with different network synchronization STD in {60%, 6m, 2m} InF-DH

	
	
	
	
	0 ns
	5 ns
	10 ns
	25 ns
	50 ns

	PDP trained with 0 ns
	Cent. Assist.
	0.36 M
	9 M
	0.589
	0.67
	0.876
	2.942
	16.501

	
	Cent. Direct
	0.36 M
	9 M
	0.571
	0.666
	0.900
	3.158
	16.318

	PDP trained with 25 ns
	Cent. Assist.
	0.36 M
	9 M
	0.589
	0.67
	0.876
	2.942
	16.501

	
	Cent. Direct
	0.36 M
	9 M
	0.510
	0.516
	0.529
	0.604
	1.068

	PDP trained with 50 ns
	Cent. Assist.
	0.36 M
	9 M
	0.541
	0.548
	0.548
	0.574
	0.675

	
	Cent. Direct
	0.36 M
	9 M
	0.532
	0.532
	0.541
	0.564
	0.675



[bookmark: _Ref131499709]Table 24 90%tile 2D positioning accuracy using DP inputs for different network synchronization STD [ns] in the {60%, 6m, 2m} InF-DH scenario for small model (Model I) trained with different network synchronization STD [ns].
	Model details
	Positioning approach
	Model complexity
[# paras]
	Computational complexity
[FLOPs]
	90%tile 2D positioning error [m]
with different network synchronization STD in {60%, 6m, 2m} InF-DH

	
	
	
	
	0 ns
	5 ns
	10 ns
	25 ns
	50 ns

	DP
trained with 0 ns
	Cent. Assist.
	0.36 M
	9 M
	0.740
	0.763
	0.860
	1.622
	10.301

	
	Cent. Direct
	0.36 M
	9 M
	0.744
	0.774
	0.872
	1.620
	9.954

	DP
trained with 25 ns
	Cent. Assist.
	0.36 M
	9 M
	0.653
	0.667
	0.692
	0.833
	1.637

	
	Cent. Direct
	0.36 M
	9 M
	0.658
	0.664
	0.679
	0.834
	1.659

	DP
trained with 50 ns
	Cent. Assist.
	0.36 M
	9 M
	0.778
	0.782
	0.796
	0.851
	1.023

	
	Cent. Direct
	0.36 M
	9 M
	0.765
	0.779
	0.769
	0.840
	1.046



The impact of network synchronization errors to the semi-distributed ML assisted positioning models is presented in Section 2.1.8 and summarized in Table 25. We observed that the semi-distributed ML models, where each model observes signals from three TRPs, can learn to correct network synchronization errors to some extent:
· The semi-distributed ML models trained with network synchronization error STD of 25 or 50 ns can maintain sub-meter 90%tile positioning errors for network synchronization error STD up to 25 ns. 
· But the 90%tile positioning errors will exceed 1 m for network synchronization error STD up to 50 ns.

[bookmark: _Toc131788475]Network synchronization error remains a challenging issue for semi-distributed ML assisted positioning models.

[bookmark: _Ref131501523]Table 25 90%tile 2D positioning accuracy using semi-distributed ML assisted positioning approach for different network synchronization STD [ns] in the {60%, 6m, 2m} InF-DH scenario for small model (Model I) trained with different network synchronization STD [ns].
	Model details
	Model input type
	Model complexity
[# paras]
	Computational complexity
[FLOPs]
	90%tile 2D positioning error [m]
with different network synchronization STD in {60%, 6m, 2m} InF-DH

	
	
	
	
	0 ns
	5 ns
	10 ns
	25 ns
	50 ns

	trained with 0 ns
	CIR
	0.86 M
	36 M
	0.451
	0.647
	1.096
	4.806
	14.154

	
	PDP
	0.43 M
	11.5 M
	0.680
	0.836
	1.227
	3.850
	10.997

	trained with 25 ns
	CIR
	0.86 M
	36 M
	0.777
	0.792
	0.813
	1.005
	1.962

	
	PDP
	0.43 M
	11.5 M
	0.756
	0.761
	0.794
	0.924
	1.660

	trained with 50 ns
	CIR
	0.86 M
	36 M
	1.168
	1.202
	1.202
	1.299
	1.550

	
	PDP
	0.43 M
	11.5 M
	0.878
	0.878
	0.868
	0.913
	1.151



Given the effectiveness of mixed dataset training demonstrated in Section 1.9, model position accuracy in the presence of network synchronization errors may be improved by training the models with multiple datasets corresponding to various extents of network synchronization errors.

[bookmark: _Toc131788476]Model position accuracy in the presence of network synchronization errors may be improved by training the models with multiple datasets corresponding to various extents of network synchronization errors.

[bookmark: _Toc131525199] Impact of train/test SNR mismatch
It was agreed in RAN1 #111 to investigate SNR mismatch between training and testing.
Agreement
For AI/ML based positioning, company optionally evaluate the impact of at least the following issues related to measurements on the positioning accuracy of the AI/ML model. The simulation assumptions reflecting these issues are up to companies.
· SNR mismatch (i.e., SNR when training data are collected is different from SNR when model inference is performed).
· Time varying changes (e.g., mobility of clutter objects in the environment)
· Channel estimation error
We investigate the performance sensitivity of the ML positioning models trained with datasets with one SNR range but tested with datasets with a different SNR range. Toward this end, we assume three different testing time UE transmit powers for testing the trained ML models: 23, 8, or -7 dBm. Given the geometry of the InF environment and the 3GPP channel model, we have calculated in Section 1.12 the SNR ranges before considering shadowing and fast fading for these UE transmit power to be: 
· Between 21.9 and 52.3 dB for 23 dBm UE power.
· Between 6.9 and 37.3 dB for 8 dBm UE power.
· Between -8.1 and 22.3 dB for -7 dBm UE power.
We trained the smallest centralized models with 40,000 samples at two different training time UE transmit powers: 23 and -7 dBm. Our investigation results are summarized in Table 26, Table 27 and Table 28 for CIR, PDP or DP type inputs, respectively. We observe that:
· For CIR inputs:
· The models exhibit moderate sensitivity to an SNR mismatch of -15 dB. For models trained at 23 dBm UE power, the 90%tile 2D positioning errors jump from below 0.5 m to over 2 m when the UE transmit power is reduced by 15 dB.
· The models exhibit high sensitivity to an SNR mismatch of +15 dB. For models trained at -7 dBm UE power, the 90%tile 2D positioning errors jump from around 0.5 m to around 5 m when the UE transmit power is increased by 15 dB.
· The models exhibit much higher sensitivity to an SNR mismatch of -30 dB than to an SNR mismatch of +30 dB.
· For PDP inputs:
· The models exhibit low sensitivity to an SNR mismatch of -15 dB. For models trained at 23 dBm UE power, the 90%tile 2D positioning errors increase slightly from around 0.5 m to around 0.65 m when the UE transmit power is reduced by 15 dB.
· The models exhibit high sensitivity to an SNR increase of +15 dB. For models trained at -7 dBm UE power, the 90%tile 2D positioning errors jump from around 0.55 m to around 6 m.
· The models exhibit lower sensitivity to an SNR mismatch of -30 dB than to an SNR mismatch of +30 dB.
· For DP inputs:
· The models using DP inputs exhibits much lower sensitivity to SNR mismatches than models using CIR or PDP inputs. Even with an SNR mismatch of 30 dB, the models maintain 90%tile 2D positioning error below 0.9 m.
· Note that the DP samples are computed from CIR/PDP samples that are already contaminated by noises. Hence, for -7 dBm UE transmit power, an individual DP sample from a faraway TRP can contain several erroneous/nonoptimal tap positions. But the models taking the DP inputs from multiple TRPs can correct such errors and arrive at high positioning accuracy.

[bookmark: _Toc131788477]Centralized ML assisted or direct positioning models using PDP inputs exhibits much lower sensitive to train/test SNR drops than models using CIR inputs.
- Models using PDP inputs are still usable with an SNR drop of 15 dB with 90%tile 2D positioning errors below 0.7 m.
- The 90%tile 2D positioning errors of models using CIR inputs jump to >2 m with an SNR drop of 15 dB.
- With an SNR drop of 30 dB, models using CIR or PDP inputs are not usable.
[bookmark: _Toc131788478]Centralized ML assisted or direct positioning models using PDP inputs exhibits much higher sensitive to train/test SNR increases than models using CIR inputs. All models become unusable with SNR increases of at least 15 dB.
[bookmark: _Toc131788479]Centralized ML assisted or direct positioning models using DP inputs are protected from train/test SNR mismatch. Even with an SNR mismatch of 30 dB, the models maintain 90%tile 2D positioning error below 0.9 m.

[bookmark: _Ref131510642]Table 26 90%tile 2D positioning accuracy using CIR inputs for different UE transmit powers in the {60%, 6m, 2m} InF-DH scenario for small model (Model I) trained with different UE transmit powers.
	Model details
	Positioning approach
	Model complexity
[# paras]
	Computational complexity
[FLOPs]
	90%tile 2D positioning error [m]
with different UE transmit powers in 
{60%, 6m, 2m} InF-DH

	
	
	
	
	23 dBm UE
	8 dBm UE
	-7 dBm UE

	CIR trained with 23 dBm UE
	Cent. Assist.
	0.73 M
	32 M
	0.371
	2.253
	52.587

	
	Cent. Direct
	0.73 M
	32 M
	0.373
	2.146
	29.281

	CIR trained with -7 dBm UE
	Cent. Assist.
	0.73 M
	32 M
	7.664
	4.938
	0.513

	
	Cent. Direct
	0.73 M
	32 M
	7.441
	5.188
	0.532



[bookmark: _Ref131510644]Table 27 90%tile 2D positioning accuracy using PDP inputs for different UE transmit powers in the {60%, 6m, 2m} InF-DH scenario for small model (Model I) trained with different UE transmit powers.
	Model details
	Positioning approach
	Model complexity
[# paras]
	Computational complexity
[FLOPs]
	90%tile 2D positioning error [m]
with different UE transmit powers in 
{60%, 6m, 2m} InF-DH

	
	
	
	
	23 dBm UE
	8 dBm UE
	-7 dBm UE

	PDP trained with 23 dBm UE
	Cent. Assist.
	0.73 M
	32 M
	0.520
	0.648
	4.765

	
	Cent. Direct
	0.73 M
	32 M
	0.510
	0.672
	4.514

	PDP trained with -7 dBm UE
	Cent. Assist.
	0.36 M
	9 M
	10.567
	6.485
	0.566

	
	Cent. Direct
	0.36 M
	9 M
	8.396
	5.595
	0.558



[bookmark: _Ref131510647]Table 28 90%tile 2D positioning accuracy using DP inputs for different UE transmit powers in the {60%, 6m, 2m} InF-DH scenario for small model (Model I) trained with different UE transmit powers.
	Model details
	Positioning approach
	Model complexity
[# paras]
	Computational complexity
[FLOPs]
	90%tile 2D positioning error [m]
with different UE transmit powers in 
{60%, 6m, 2m} InF-DH

	
	
	
	
	23 dBm UE
	8 dBm UE
	-7 dBm UE

	DP trained with 23 dBm UE
	Cent. Assist.
	0.73 M
	32 M
	0.653
	0.656
	0.899

	
	Cent. Direct
	0.73 M
	32 M
	0.658
	0.655
	0.867

	DP trained with -7 dBm UE
	Cent. Assist.
	0.36 M
	9 M
	0.748
	0.751
	0.681

	
	Cent. Direct
	0.36 M
	9 M
	0.754
	0.741
	0.679



The semi-distributed model exhibits very high sensitivity to train/test SNR mismatch, particularly when the CIR input type is used. With an SNR mismatch of 15 dB, all models using CIR inputs cannot achieve acceptable positioning accuracy. The models using PDP inputs exhibit better performance than those using CIR inputs. In particular, the model trained with 23 dBm UE power can operate with high performance when the UE power is reduced by 15 dB. However, for all other tested cases, the models still cannot achieve acceptable positioning accuracy. See Section 2.1.9 for further details.

[bookmark: _Toc131788480]Semi-distributed ML assisted positioning models exhibit very high sensitivity to train/test SNR mismatch.

Given the effectiveness of mixed dataset training demonstrated in Section 1.9, model position accuracy in the presence of SNR mismatch may be improved by training the models with multiple datasets corresponding to various extents of SNR mismatch.

[bookmark: _Toc131788481]Model position accuracy in the presence of SNR mismatch may be improved by training the models with multiple datasets corresponding to various extents of SNR mismatch.

[bookmark: _Ref117263196][bookmark: _Toc118718120][bookmark: _Toc131525200] Description of datasets and performance of conventional positioning solutions
We assume all TRPs measure a UE SRS, with  and  spanning a 100 MHz BWP with a carrier frequency of 3.5 GHz. The LoS and NLoS path losses for InF-DH are given by [TR 38.901]:

· The max and min 3D distances between a UE and a BS in the InF scenario are 121 and 6.5 m, respectively. The corresponding max and min path losses are hence 90.1 and 59.7 dB, respectively, before considering shadowing.
· With 23 dBm UE power (the agreed maximum UE TX power, see Table 6-1 of TR 38.857), the range of received powers at a TRP is -67.1 to -36.7 dBm before considering shadowing and fast fading. 
· For a 100 MHz carrier, the thermal noise floor is -89 dBm (assuming NF=5 dB). Hence, the SNR before considering shadowing and fast fading is between 21.9 and 52.3 dB.
· For UE transmit power at 13 or 3 dBm, the corresponding SNRs are reduced by 10 and 20 dB, respectively.
· In summary, the SNRs before considering shadowing and fast fading are
· Between 21.9 and 52.3 dB for 23 dBm UE power.
· Between 6.9 and 37.3 dB for 8 dBm UE power.
· Between -8.1 and 22.3 dB for -7 dBm UE power.
Each TRP is equipped with a (M, N, P, Mg, Ng) = (1, 1, 2, 1, 1) antenna. Our study indicates that for the small hall with 18 TRPs, this gNB antenna array is adequate for UE positioning. Note: The array size is smaller than the agreed ((M, N, P, Mg, Ng) = (4, 4, 2, 1, 1)). The smaller antenna array reduces the size of input to AI/ML model to 1/16, allowing for a lower complexity AI/ML solution (including model training, inference, monitoring, and update).
· For the FR1 scenario with carrier frequency of 3.5 GHz, the received signals are sampled at  MHz. A sampling tap is hence 8.14 ns or equivalently 2.44 m at speed of light.
· The received signals are correlated with the SRS sequence to obtain raw estimates of the frequency domain channel responses. No further filtering is performed.
· The collated frequency responses are converted to the time domain channel impulses using 4096 FFT and only a window of 256 consecutive samples is retained. The input to each AI/ML model is, therefore, a
· NTRP × Nport × Nt =3×2×256 complex array in Section 2.1, and a 
· NTRP × Nport × Nt =18×2×256 complex array in Section 2.2 and Section 2.3.
Other than the parameters explicitly described above, we follow the agreed simulation assumptions for FR1 and use the baseline assumptions wherever applicable (e.g., UE antenna height = 1.5 m, gNB antenna height = 8 m).
Note: For FR1 scenario with a carrier frequency of 3.5 GHz, different environment clutter settings of the InF-DH deployment scenario have very different LoS probabilities as tabulated in Table 29.
[bookmark: _Ref110581322]Table 29. LoS probabilities of different InF-DH environment settings.
	Environment clutter setting
	LoS Probability

	{40%, 2m, 2m}
	0.449

	{50%, 2m, 2m}
	0.352

	{60%, 2m, 2m}
	0.268

	{40%, 6m, 2m}
	0.014

	{50%, 6m, 2m}
	0.025

	[bookmark: _Hlk117081197]{60%, 6m, 2m}
	0.008



To enable the AI/ML experiments in this paper, we generated the following datasets.
· Datasets 1a, 1b, 1c, 1d, 1e, 1f with respective clutter parameters {40%, 2m, 2m}, {50%, 2m, 2m}, {60%, 2m, 2m}, {40%, 6m, 2m}, {50%, 6m, 2m}, and {60%, 6m, 2m}. Each one of these datasets is comprised of two disjoint parts:
· Train sub-dataset: This part contains 96,000 randomly selected UE positions and the corresponding CIRs to all 18 TRPs, and it is used for training and validation.
· Test sub-dataset: This part contains 4,000 randomly selected UE positions and the corresponding CIRs to all 18 TRPs. This part is not used for training/validation – it is used only for final test evaluation.
· Datasets 2a, 2b, 2c, 2d, 2e, 2f with respective clutter parameters of {40%, 2m, 2m}, {50%, 2m, 2m}, {60%, 2m, 2m}, {40%, 6m, 2m}, {50%, 6m, 2m}, and {60%, 6m, 2m}.
· These datasets each contains 4,000 randomly selected UE positions and the corresponding CIRs to all 18 TRPs. 
· These datasets are never used for training/validation -- they are only used for final test evaluation.
· These datasets are generated using different random number generator seeds (w.r.t. Datasets 1x above) for UE location, spatial correlation maps, and channel models. Dataset 2a, 2b, 2c 2d, 2e, 2f can be understood as test datasets with different UE locations, clutter layout, and clutter parameters to Dataset 1x. The purpose of these datasets is to evaluate the generalizability of the ML models.
In Figure 13 (a) and Figure 13 (c), we compare the excess delays of NLoS links to BS#0 (with 2D coordinate [-50, -20] with respect to the center of InF hall) in the first and the second datasets, respectively. Similarly, in Figure 13 (b) and Figure 13 (d), we compare the excess delays of NLoS links to BS#10 (with 2D coordinate [10, 0] with respect to the center of InF hall) in the first and the second datasets, respectively. It can be observed that the two test datasets contain very different propagation and spatial conditions. Here the small hall (L=120m x W=60m) is assumed, and the center of the hall is assigned coordinate [0, 0].
[image: ][image: ]
(a) to BS#0 in the 1st dataset					(b) to BS#10 in the 1st dataset
[image: ][image: ]
(c) to BS#0 in the 2nd dataset					(d) to BS#10 in the 2nd dataset
[bookmark: _Ref110513736]Figure 13 Excess delays to BS#0 or BS#10 in the first test dataset or the second test dataset (‘jet’ color map is shown: darker blue points have smaller excess delays than lighter yellow/red points).
[bookmark: _Toc118718121][bookmark: _Toc131525201] Performance of conventional positioning solutions
Given the LoS probabilities for dataset 2a, 2b, 2c, 2d with clutter parameters of {40%, 2m, 2m}, {50%, 2m, 2m}, {60%, 2m, 2m}, and {60%, 6m, 2m} shown in Table 29, a dummy LoS classifier can achieve an accuracy of . Examining the CDF of the received powers for the LoS and NLoS links, one can devise a baseline LoS classification solution by comparing the received power to a threshold. Using such a baseline classification algorithm, a LoS classification accuracy of around 70% can be achieved for the first three datasets and around 90% for the last test dataset. Applying comparison of the powers of the detected first tap against others, the LoS classification accuracy can be further improved for the first three test datasets. The accuracy results for these LoS classification baselines are provided in Table 30.
[bookmark: _Ref114820293]Table 30 LoS classification accuracy baselines.
	Dataset
	Dummy classifier
	RX power only classifier
	Tap power comparison

	{40%, 2m, 2m}
	0.551
	0.702
	0.809

	{50%, 2m, 2m}
	0.648
	0.717
	0.787

	{60%, 2m, 2m}
	0.732
	0.733
	0.767

	{60%, 6m, 2m}
	0.992
	0.916
	0.703



The positioning error distribution of the conventional solution is shown in Figure 14. It can be observed that the positioning errors of 50% UEs are no more than 0.13 m. However, the conventional solution sometimes delivers positions that may be very off. For instance, at 90%tile, the positioning error is 9.595 m. The UE positioning errors for other agreed reporting percentiles are listed in Table 31. The results in Figure 14 and Table 31 are the baseline performance for the evaluation, which are generated by using legacy methods to produce input (LoS classification and ToA) for UL-TDOA.
[bookmark: _Ref114819624]Table 31 Baseline results for comparison. UE positioning errors obtained using conventional non-ML solutions to produce input (LoS classification and ToA) for UL-TDOA.
	CDF Percentile
	UE horizontal position error [m]

	
	{40%, 2m, 2m}
	{50%, 2m, 2m}
	{60%, 2m, 2m}
	{60%, 6m, 2m}

	50
	0.131
	2.855
	5.643
	6.175

	67
	1.783
	5.646
	7.650
	8.432

	80
	4.814
	9.254
	10.668
	11.315

	90
	9.595
	16.775
	17.541
	15.849



[image: ]
[bookmark: _Ref114834045]Figure 14 Baseline results for comparison. Positioning error distributions using conventional non-ML solutions
[bookmark: _Toc131525202]Evaluation results and discussion for AI/ML models
[bookmark: _Ref131138532][bookmark: _Toc131525203]AI/ML-assisted positioning – Semi-distributed case
In RAN1 #111, two sources provided investigation results for fully distributed ML models at the individual TRP levelError! No bookmark name given.. However, both solutions require quite high model and computational complexity as summarized in the following table:

	
	Model complexity 
[# of parameters]
	Computational complexity
[FLOPs]

	Sources 1
	18 x 3.6 M = 64.8 M
	18 x 129 M = 2.32 G

	Sources 2
	18 x 44 M = 792 M
	18 x 1.450 M = 26.1 G



In this section, we consider semi-distributed ML models to reduce the number of parallel models.
One of the main contributors to high model and computational complexity for the fully distributed approach is the scaling of 18, representing the need to store and execute the models 18 times. Toward reduce the complexity of distributed AI/ML Case 3a, we consider an alternative architecture as illustrated in Figure 15. 
· Each gNB uses a different ML model and process the received CIR samples from its three associated TRPs independently. Given that most gNB BSs are built to support three sectors or more, we believe this revised distributed architecture may be a better mapping for actual deployments.
· Note also the three TRPs connecting to a gNB model are still local and, in fact, adjacent to each other. The distributed models still retain the distributed form of processing local information in parallel and independent of each other.
· With only six models at six gNBs, the model and computational complexity scaling is reduced by a factor of three as compared to the previous fully distributed architecture.

[image: ]
[bookmark: _Ref126595935]Figure 15 AI/ML assisted positioning where UL CIR based unobserved direct path ToA estimation using AI/ML is deployed to all gNBs. During deployment, each gNB uses a different ML model and process the received CIR samples from its three associated TRPs independently and forward its outputs to the centralized node for estimating the position of the target UE.
In this section, we consider distributed ML models to estimate the unobserved direct path ToAs, . An identical model architecture is adopted for all gNBs. However, each gNB is equipped with a different trained model using CIRs received at the TRPs associated with the gNB only, resulting in six different models, each with a different set of parameter values.
[bookmark: _Toc131525204]ML model architectures
For complex-valued inputs, we consider a model architecture using the complex activation functions and complex convolutional and MaxAbsPooling modules described in [9]. To further reduce model and computational complexity, low-cost convolution solutions have been adopted. The model consists of 34 layers. A different model is trained for each of the gNBs. 
For real-valued inputs, we keep the same model architecture except swapping out components designed specifically for complex values with those for real values.
CIR
Each of the models output three complex values. 
· The real parts are taken as the direct path ToA estimates for the three TRPs associated with the gNB. 
Specific details of the model and computational complexity values of the model are summarized in the following table. For the baseline, the models are trained using {60%, 6m, 2m} train dataset, i.e. dataset 1f.
Table 32 Key features of the ML model for unobserved direct path time of arrival estimation.
	ML model input
	Time domain CIR, obtained from SRS estimation 3x2x256 complex array

	ML model output
	3 direct path ToA estimates

	Model complexity: 
	Per model size
	34 layers

	
	Number of parameters
	Model I: 6 x 144 K = 0.86 M
Model II: 6 x 562 K = 3.37 M
Model III: 6 x 1.87 M = 11.2 M

	Computation complexity for model inference: number of FLOPs
	Model I: 6 x 6 M = 36 M
Model II: 6 x 22 M = 132 M
Model III: 6 x 70.8 M = 425 M

	Number of ML models obtained from training
	6 (One ML model per gNB (one gNB covering three TRPs))

	Number of ML models deployed for inference
	6 (One ML model per gNB (one gNB covering three TRPs))

	Function for position estimation of the target UE
	Legacy method: UTDOA



PDP
Each of the models output three real values. 
· The real values are taken as the direct path ToA estimates for the three TRPs associated with the gNB. 
Specific details of the model and computational complexity values of the model are summarized in the following table. For the baseline, the models are trained using {60%, 6m, 2m} train dataset, i.e. dataset 1f.
Table 33 Key features of the ML model for unobserved direct path time of arrival estimation.
	ML model input
	Time domain PDP, obtained from SRS estimation 3x1x256 real array

	ML model output
	3 direct path ToA estimates

	Model complexity: 
	Per model size
	34 layers

	
	Number of parameters
	Model I: 6 x 72 K = 0.43 M
Model II: 6 x 281 K = 1.69 M
Model III: 6 x 0.933 M = 5.6 M

	Computation complexity for model inference: number of FLOPs
	Model I: 6 x 1.92 M = 11.5 M
Model II: 6 x 7.2 M = 43 M
Model III: 6 x 23.3 M = 140 M

	Number of ML models obtained from training
	6 (One ML model per gNB (one gNB covering three TRPs))

	Number of ML models deployed for inference
	6 (One ML model per gNB (one gNB covering three TRPs))

	Function for position estimation of the target UE
	Legacy method: UTDOA



[bookmark: _Toc131525205]ML model performance with different trainset sizes
[image: ][image: ]
Figure 16 (Left) ML model direct path ToA estimation error (expressed in meters) distributions and (Right) UE 2D positioning error distributions for using AI/ML outputs with conventional L1 error minimizing positioning solutions for the {60%, 6m, 2m} test dataset with different training set sizes and different input types for Model I.
[image: ][image: ]
Figure 17 (Left) ML model direct path ToA estimation error (expressed in meters) distributions and (Right) UE 2D positioning error distributions for using AI/ML outputs with conventional L1 error minimizing positioning solutions for the {60%, 6m, 2m} test dataset with different training set sizes and different input types for Model II.
[image: ][image: ]
Figure 18 (Left) ML model direct path ToA estimation error (expressed in meters) distributions and (Right) UE 2D positioning error distributions for using AI/ML outputs with conventional L1 error minimizing positioning solutions for the {60%, 6m, 2m} test dataset with different training set sizes and different input types for Model III.
CIR
For the {60%, 6m, 2m} test dataset, the direct path ToA estimation error distribution of the models with different training set sizes are provided in Figure 19 (a), (b) and (c) for Model I, II and III, respectively. It can be observed that 
· Distributed direct path ToA estimation ML models can achieve direct path ToA estimation errors less than a meter with at least 20,000 training samples or with a large enough model such as the Model III.
· A smaller model appears to benefit from more training samples less than a large model. For instance, Model I reduces the 90%tile ToA error by 60% when the training set size is increased from 10,000 to 80,000 samples. However, Model III reduces the 90%tile ToA error by 80% with the same increase of training samples.
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(a) Model I								(b) Model II
[image: ]
(c) Model III
[bookmark: _Ref117773727]Figure 19 ML model direct path ToA estimation error (expressed in meters) distributions for the {60%, 6m, 2m} test dataset with different training set sizes.
[bookmark: _Ref117774232]Table 34 Direct path ToA estimation errors for {60%, 6m, 2m} test dataset at different percentiles and different training set sizes.
	CDF Percentile
	Direct path ToA errors [m] - Model I 
with different training set sizes

	
	80,000
	40,000
	20,000
	10,000

	50
	0.175
	0.216
	0.288
	0.390

	67
	0.260
	0.321
	0.434
	0.593

	80
	0.358
	0.443
	0.609
	0.853

	90
	0.492
	0.613
	0.876
	1.268



	CDF Percentile
	Direct path ToA errors [m] - Model II 
with different training set sizes

	
	80,000
	40,000
	20,000
	10,000

	50
	0.099
	0.134
	0.195
	0.296

	67
	0.147
	0.202
	0.298
	0.459

	80
	0.203
	0.28
	0.424
	0.667

	90
	0.277
	0.393
	0.610
	1.000



	CDF Percentile
	Direct path ToA errors [m] - Model III 
with different training set sizes

	
	80,000
	40,000
	20,000
	10,000

	50
	0.073
	0.107
	0.166
	0.280

	67
	0.110
	0.162
	0.255
	0.435

	80
	0.152
	0.228
	0.363
	0.642

	90
	0.210
	0.324
	0.533
	0.974



Using the direct path ToA estimates from the distributed ToA estimation models as inputs to the conventional positioning algorithms, we can obtain highly accurate UE positioning estimates as provided in Figure 20 (a), (b) and (c) for Model I, II and III, respectively. It can be observed that
· Distributed direct path ToA estimation ML models together with conventional positioning algorithms can obtain highly accurate UE position estimates in highly NLoS {60%, 6m, 2m} environment.
· Even with only 10,000 training samples, it is possible to achieve 90%tile 2D positioning errors below 1 m.

[image: ][image: ]
(a) Model I								(b) Model II
[image: ]
(c) Model III
[bookmark: _Ref126584597]Figure 20 UE 2D positioning error distributions for using AI/ML outputs with conventional L1 error minimizing positioning solutions on {60%, 6m, 2m} test dataset with different training set sizes.
[bookmark: _Ref117848236]Table 35 UE 2D positioning errors for {60%, 6m, 2m} test dataset at different percentiles and different training set sizes.
	CDF Percentile
	UE 2D positioning errors [m] - Model I 
with different training set sizes

	
	80,000
	40,000
	20,000
	10,000

	50
	0.182
	0.220
	0.307
	0.408

	67
	0.235
	0.292
	0.409
	0.551

	80
	0.291
	0.363
	0.517
	0.715

	90
	0.366
	0.453
	0.665
	0.954



	CDF Percentile
	UE 2D positioning errors [m] - Model II 
with different training set sizes

	
	80,000
	40,000
	20,000
	10,000

	50
	0.103
	0.139
	0.208
	0.318

	67
	0.135
	0.187
	0.281
	0.436

	80
	0.168
	0.239
	0.37
	0.574

	90
	0.215
	0.310
	0.483
	0.795



	CDF Percentile
	UE 2D positioning errors [m] - Model III 
with different training set sizes

	
	80,000
	40,000
	20,000
	10,000

	50
	0.077
	0.117
	0.179
	0.305

	67
	0.102
	0.155
	0.244
	0.427

	80
	0.131
	0.197
	0.317
	0.566

	90
	0.171
	0.258
	0.417
	0.762



PDP
For the {60%, 6m, 2m} test dataset, the direct path ToA estimation error distribution of the models with different training set sizes are provided in Figure 19 (a), (b) and (c) for Model I, II and III, respectively. It can be observed that 
· Distributed direct path ToA estimation ML models can achieve direct path ToA estimation errors less than a meter with at least 40,000 training samples or with a large enough model such as the Model III.
· A smaller model appears to benefit from more training samples less than a large model. For instance, Model I reduces the 90%tile ToA error by 60% when the training set size is increased from 10,000 to 80,000 samples. However, Model III reduces the 90%tile ToA error by 80% with the same increase of training samples.
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(a) Model I								(b) Model II
[image: ]
(c) Model III
Figure 21 ML model direct path ToA estimation error (expressed in meters) distributions for the {60%, 6m, 2m} test dataset with different training set sizes.
Table 36 Direct path ToA estimation errors for {60%, 6m, 2m} test dataset at different percentiles and different training set sizes.
	CDF Percentile
	Direct path ToA errors [m] - Model I 
with different training set sizes

	
	80,000
	40,000
	20,000
	10,000

	50
	0.248
	0.315
	0.411
	0.543

	67
	0.368
	0.472
	0.621
	0.824

	80
	0.502
	0.650
	0.864
	1.158

	90
	0.687
	0.903
	1.218
	1.670



	CDF Percentile
	Direct path ToA errors [m] - Model II 
with different training set sizes

	
	80,000
	40,000
	20,000
	10,000

	50
	0.163
	0.216
	0.300
	0.420

	67
	0.243
	0.323
	0.453
	0.641

	80
	0.332
	0.446
	0.636
	0.913

	90
	0.456
	0.619
	0.910
	1.350



	CDF Percentile
	Direct path ToA errors [m] - Model III 
with different training set sizes

	
	80,000
	40,000
	20,000
	10,000

	50
	0.126
	0.179
	0.255
	0.392

	67
	0.188
	0.268
	0.387
	0.597

	80
	0.259
	0.372
	0.546
	0.856

	90
	0.354
	0.517
	0.780
	1.256



Using the direct path ToA estimates from the distributed ToA estimation models as inputs to the conventional positioning algorithms, we can obtain highly accurate UE positioning estimates as provided in Figure 20 (a), (b) and (c) for Model I, II and III, respectively. It can be observed that
· Distributed direct path ToA estimation ML models together with conventional positioning algorithms can obtain highly accurate UE position estimates in highly NLoS {60%, 6m, 2m} environment.
· Even with only 10,000 training samples, it is possible to achieve 90%tile 2D positioning errors below 1 m with Model III.
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(a) Model I								(b) Model II
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(c) Model III
Figure 22 UE 2D positioning error distributions for using AI/ML outputs with conventional L1 error minimizing positioning solutions on {60%, 6m, 2m} test dataset with different training set sizes.
Table 37 UE 2D positioning errors for {60%, 6m, 2m} test dataset at different percentiles and different training set sizes.
	CDF Percentile
	UE 2D positioning errors [m] - Model I
with different training set sizes

	
	80,000
	40,000
	20,000
	10,000

	50
	0.253
	0.333
	0.427
	0.586

	67
	0.335
	0.435
	0.565
	0.767

	80
	0.420
	0.542
	0.710
	0.956

	90
	0.531
	0.680
	0.902
	1.249



	CDF Percentile
	UE 2D positioning errors [m] - Model II 
with different training set sizes

	
	80,000
	40,000
	20,000
	10,000

	50
	0.168
	0.228
	0.325
	0.456

	67
	0.224
	0.301
	0.425
	0.599

	80
	0.279
	0.376
	0.533
	0.773

	90
	0.351
	0.476
	0.675
	1.004



	CDF Percentile
	UE 2D positioning errors [m] - Model III 
with different training set sizes

	
	80,000
	40,000
	20,000
	10,000

	50
	0.133
	0.189
	0.273
	0.421

	67
	0.173
	0.249
	0.360
	0.564

	80
	0.216
	0.315
	0.460
	0.712

	90
	0.273
	0.403
	0.596
	0.933



[bookmark: _Toc131525206]ML model performance with different time domain down sampling
CIR
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Figure 23 (Left) ML model direct path ToA estimation error (expressed in meters) distributions and (Right) UE 2D positioning error distributions for using AI/ML outputs with conventional L1 error minimizing positioning solutions for the {60%, 6m, 2m} test dataset with different time domain down sampling sizes for Model I (trained with 40,000 samples).

Table 38 Direct path ToA estimation errors for {60%, 6m, 2m} test dataset at different percentiles and different numbers of down sampled taps.
	CDF Percentile
	Direct path ToA errors [m] - Model I (trained with 40,000 samples)

	
	256 taps
	128 taps
	64 taps
	32 taps
	16 taps
	9 taps

	50
	0.216
	0.221
	0.258
	0.344
	0.467
	0.803

	67
	0.321
	0.332
	0.386
	0.519
	0.730
	1.260

	80
	0.443
	0.458
	0.534
	0.734
	1.083
	1.911

	90
	0.613
	0.639
	0.756
	1.072
	1.725
	3.394



Table 39 UE 2D positioning errors for {60%, 6m, 2m} test dataset at different percentiles and different numbers of down sampled taps.
	CDF Percentile
	UE 2D positioning errors [m] - Model I (trained with 40,000 samples)

	
	256 taps
	128 taps
	64 taps
	32 taps
	16 taps
	9 taps

	50
	0.220
	0.227
	0.268
	0.361
	0.526
	0.878

	67
	0.292
	0.295
	0.353
	0.471
	0.716
	1.166

	80
	0.363
	0.376
	0.443
	0.603
	0.917
	1.499

	90
	0.453
	0.478
	0.558
	0.764
	1.208
	1.995
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Figure 24 (Left) ML model direct path ToA estimation error (expressed in meters) distributions and (Right) UE 2D positioning error distributions for using AI/ML outputs with conventional L1 error minimizing positioning solutions for the {60%, 6m, 2m} test dataset with different time domain down sampling sizes for Model I (trained with 40,000 samples).

Table 40 Direct path ToA estimation errors for {60%, 6m, 2m} test dataset at different percentiles and different numbers of down sampled taps.
	CDF Percentile
	Direct path ToA errors [m] - Model I (trained with 40,000 samples)

	
	256 taps
	128 taps
	64 taps
	32 taps
	16 taps
	9 taps

	50
	0.315
	0.320
	0.339
	0.394
	0.464
	0.669

	67
	0.472
	0.480
	0.507
	0.591
	0.707
	1.039

	80
	0.650
	0.665
	0.700
	0.823
	1.008
	1.532

	90
	0.903
	0.920
	0.979
	1.160
	1.475
	2.455



Table 41 UE 2D positioning errors for {60%, 6m, 2m} test dataset at different percentiles and different numbers of down sampled taps.
	CDF Percentile
	UE 2D positioning errors [m] - Model I (trained with 40,000 samples)

	
	256 taps
	128 taps
	64 taps
	32 taps
	16 taps
	9 taps

	50
	0.333
	0.336
	0.352
	0.424
	0.489
	0.689

	67
	0.435
	0.441
	0.463
	0.538
	0.637
	0.904

	80
	0.542
	0.544
	0.586
	0.675
	0.798
	1.151

	90
	0.680
	0.687
	0.732
	0.856
	1.001
	1.452



[bookmark: _Toc131525207]ML model performance with different labelling error
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Figure 25 (Left) ML model direct path ToA estimation error (expressed in meters) distributions and (Right) UE 2D positioning error distributions for using AI/ML outputs with conventional L1 error minimizing positioning solutions for the {60%, 6m, 2m} test dataset with different input types and different labelling errors for Model I (trained with 40,000 samples).
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Figure 26 (Left) ML model direct path ToA estimation error (expressed in meters) distributions and (Right) UE 2D positioning error distributions for using AI/ML outputs with conventional L1 error minimizing positioning solutions for the {60%, 6m, 2m} test dataset with different labelling errors for Model I (trained with 40,000 samples).

Table 42 Direct path ToA estimation errors for {60%, 6m, 2m} test dataset at different percentiles and different labeling error STD.
	CDF Percentile
	Direct path ToA errors [m] - Model I 
trained with 40,000 samples with different labeling error STD

	
	STD = 0 m
	STD = 0.25 m
	STD = 0.5 m
	STD = 1 m

	50
	0.216
	0.253
	0.321
	0.493

	67
	0.321
	0.373
	0.473
	0.724

	80
	0.443
	0.511
	0.637
	0.965

	90
	0.613
	0.702
	0.856
	1.280



Table 43 UE 2D positioning errors for {60%, 6m, 2m} test dataset at different percentiles and different labeling error STD.
	CDF Percentile
	UE 2D positioning errors [m] - Model I 
trained with 40,000 samples with different labeling error STD

	
	STD = 0 m
	STD = 0.25 m
	STD = 0.5 m
	STD = 1 m

	50
	0.220
	0.272
	0.364
	0.592

	67
	0.292
	0.349
	0.470
	0.757

	80
	0.363
	0.431
	0.576
	0.926

	90
	0.453
	0.552
	0.704
	1.116
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Figure 27 (Left) ML model direct path ToA estimation error (expressed in meters) distributions and (Right) UE 2D positioning error distributions for using AI/ML outputs with conventional L1 error minimizing positioning solutions for the {60%, 6m, 2m} test dataset with different labelling errors for Model I (trained with 40,000 samples).

Table 44 Direct path ToA estimation errors for {60%, 6m, 2m} test dataset at different percentiles and different labeling error STD.
	CDF Percentile
	Direct path ToA errors [m] - Model I 
trained with 40,000 samples with different labeling error STD

	
	STD = 0 m
	STD = 0.25 m
	STD = 0.5 m
	STD = 1 m

	50
	0.315
	0.348
	0.401
	0.571

	67
	0.472
	0.514
	0.591
	0.844

	80
	0.650
	0.706
	0.806
	1.136

	90
	0.903
	0.977
	1.100
	1.523



Table 45 UE 2D positioning errors for {60%, 6m, 2m} test dataset at different percentiles and different labeling error STD.
	CDF Percentile
	UE 2D positioning errors [m] - Model I 
trained with 40,000 samples with different labeling error STD

	
	STD = 0 m
	STD = 0.25 m
	STD = 0.5 m
	STD = 1 m

	50
	0.333
	0.368
	0.433
	0.636

	67
	0.435
	0.479
	0.552
	0.812

	80
	0.542
	0.589
	0.693
	0.989

	90
	0.680
	0.734
	0.866
	1.234



[bookmark: _Toc131525208]Generalization wrt spatial seeds and environmental parameters changes
In this section, we investigate and analyze the performance of the ML models trained in an InF-DH scenario with {60%, 6m, 2m} environment parameters (dataset 2f) in a wide range of different degrees of environmental changes.
· We first test the trained models using test dataset 2f, which has the same {60%, 6m, 2m} environment parameters but the realizations are generated with different random seeds for UE location, 3GPP spatial model, and propagation seeds than the first dataset. This is to test whether the trained models can generalize to different environmental arrangements with the same average characteristics.
· We then test the trained models using {40%, 2m, 2m}, {40%, 6m, 2m} and {60%, 2m, 2m} test datasets (datasets 1a, 1d and 1c), which are generated using different environment parameters of respectively. This is to test whether the trained models can generalize to different environments with different arrangements as well as different average characteristics.
Trained models tested on the same clutter parameter but different spatial and propagation seeds
We first test the trained the models using test dataset 2f, which has the same {60%, 6m, 2m} environment parameters but the realizations are generated with different random seeds for UE location, 3GPP spatial model, and propagation seeds than the first dataset. 
It can be observed that the trained models tested with test dataset 2f degrade substantially compared to the same model tested with the first test dataset. For instance, 90%tile of direct path ToA increased from below 1 m to 14 m. Similarly, from the 2D positioning error distributions shown below, 90%tile of 2D UE positioning error increased significantly from below 1 m to 12 m for the trained models tested with the first test dataset versus tested with test dataset from a different environmental arrangement with the same average characteristics. It can be concluded the trained models do not perform well when the radio link realizations are generated with different random seeds.
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[bookmark: _Ref118264100]Table 46 Direct path ToA estimation errors for {60%, 6m, 2m} test dataset at different percentiles and different models trained with 40,000 samples.
	CDF Percentile
	Direct path ToA errors [m] 
for models trained with 40,000 samples

	
	Model I
	Model II
	Model III

	50
	4.926
	4.787
	4.755

	67
	7.429
	7.209
	7.104

	80
	10.334
	10.035
	9.818

	90
	14.385
	14.013
	13.821



[bookmark: _Ref118280559]Table 47 UE 2D positioning errors for {60%, 6m, 2m} test dataset at different percentiles and different models trained with 40,000 samples.
	CDF Percentile
	UE 2D positioning errors [m] 
for models trained with 40,000 samples

	
	Model I
	Model II
	Model III

	50
	5.775
	5.655
	5.563

	67
	7.549
	7.290
	7.251

	80
	9.413
	9.031
	9.072

	90
	11.766
	11.623
	11.621
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Table 48 Direct path ToA estimation errors for {60%, 6m, 2m} test dataset at different percentiles and different models trained with 40,000 samples.
	CDF Percentile
	Direct path ToA errors [m] 
for models trained with 40,000 samples

	
	Model I
	Model II
	Model III

	50
	4.559
	4.438
	4.396

	67
	6.816
	6.668
	6.611

	80
	9.407
	9.184
	9.080

	90
	12.925
	12.451
	12.407



Table 49 UE 2D positioning errors for {60%, 6m, 2m} test dataset at different percentiles and different models trained with 40,000 samples.
	CDF Percentile
	UE 2D positioning errors [m] 
for models trained with 40,000 samples

	
	Model I
	Model II
	Model III

	50
	5.425
	5.293
	5.185

	67
	6.910
	6.854
	6.752

	80
	8.489
	8.550
	8.375

	90
	10.451
	10.437
	10.281



[bookmark: _Ref118298497]Trained models tested on different clutter parameters
In this subsection, we investigate model generalization by testing the trained models with {60%, 6m, 2m}, using {40%, 2m, 2m}, {40%, 6m, 2m} and {60%, 2m, 2m} test datasets, which are generated using different environment parameters of respectively. This is to test whether the trained models can generalize to different environments with different arrangements as well as different average characteristics.
It can be observed that the models generalize well to {40%, 6m, 2m} clutter parameters, while the performance degrades for other clutter parameters. It can be concluded that in the InF-DH environment, clutter height has more impact than the clutter density.
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[bookmark: _Ref117784067]Table 50 Direct path ToA estimation errors tested with test dataset with different clutter parameters.
	CDF Percentile
	Direct path ToA errors [m] 
Model I trained with 40,000 samples from {60%, 6m, 2m}

	
	{40%, 2m, 2m}
	{60%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 6m, 2m}

	50
	3.058
	0.675
	0.223
	0.216

	67
	5.784
	2.433
	0.334
	0.321

	80
	8.634
	5.135
	0.465
	0.442

	90
	11.954
	8.633
	0.666
	0.614



	CDF Percentile
	Direct path ToA errors [m] 
Model II trained with 40,000 samples from {60%, 6m, 2m}

	
	{40%, 2m, 2m}
	{60%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 6m, 2m}

	50
	2.861
	0.505
	0.140
	0.134

	67
	5.451
	2.202
	0.211
	0.202

	80
	8.121
	4.795
	0.298
	0.280

	90
	11.276
	8.125
	0.433
	0.393



	CDF Percentile
	Direct path ToA errors [m] 
Model III trained with 40,000 samples from {60%, 6m, 2m}

	
	{40%, 2m, 2m}
	{60%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 6m, 2m}

	50
	2.732
	0.446
	0.111
	0.107

	67
	5.236
	2.129
	0.171
	0.162

	80
	7.841
	4.642
	0.243
	0.228

	90
	10.998
	7.859
	0.361
	0.324



[bookmark: _Ref118281957]Table 51 UE 2D positioning errors tested with test dataset with different clutter parameters.
	CDF Percentile
	UE 2D positioning errors [m]
Model I trained with 40,000 samples from {60%, 6m, 2m}

	
	{40%, 2m, 2m}
	{60%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 6m, 2m}

	50
	3.846
	0.741
	0.230
	0.220

	67
	5.530
	1.355
	0.306
	0.292

	80
	7.072
	2.375
	0.386
	0.363

	90
	8.720
	4.284
	0.489
	0.451



	CDF Percentile
	UE 2D positioning errors [m]
Model II trained with 40,000 samples from {60%, 6m, 2m}

	
	{40%, 2m, 2m}
	{60%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 6m, 2m}

	50
	3.559
	0.527
	0.148
	0.138

	67
	5.158
	1.030
	0.199
	0.187

	80
	6.660
	2.019
	0.259
	0.240

	90
	8.192
	3.927
	0.343
	0.309



	CDF Percentile
	UE 2D positioning errors [m]
Model III trained with 40,000 samples from {60%, 6m, 2m}

	
	{40%, 2m, 2m}
	{60%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 6m, 2m}

	50
	3.555
	0.471
	0.123
	0.116

	67
	5.016
	1.007
	0.164
	0.155

	80
	6.459
	2.057
	0.211
	0.198

	90
	8.128
	3.761
	0.285
	0.259
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Table 52 Direct path ToA estimation errors tested with test dataset with different clutter parameters.
	CDF Percentile
	Direct path ToA errors [m] 
Model I trained with 40,000 samples from {60%, 6m, 2m}

	
	{40%, 2m, 2m}
	{60%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 6m, 2m}

	50
	2.889
	0.851
	0.324
	0.315

	67
	5.286
	2.366
	0.488
	0.473

	80
	7.789
	4.668
	0.679
	0.650

	90
	10.823
	7.645
	0.963
	0.903



	CDF Percentile
	Direct path ToA errors [m] 
Model II trained with 40,000 samples from {60%, 6m, 2m}

	
	{40%, 2m, 2m}
	{60%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 6m, 2m}

	50
	2.666
	0.653
	0.222
	0.216

	67
	4.967
	2.147
	0.336
	0.324

	80
	7.381
	4.395
	0.467
	0.447

	90
	10.280
	7.327
	0.668
	0.619



	CDF Percentile
	Direct path ToA errors [m] 
Model III trained with 40,000 samples from {60%, 6m, 2m}

	
	{40%, 2m, 2m}
	{60%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 6m, 2m}

	50
	2.589
	0.570
	0.184
	0.179

	67
	4.906
	2.034
	0.279
	0.268

	80
	7.358
	4.301
	0.392
	0.372

	90
	10.210
	7.224
	0.557
	0.517



Table 53 UE 2D positioning errors tested with test dataset with different clutter parameters.
	CDF Percentile
	UE 2D positioning errors [m]
Model I trained with 40,000 samples from {60%, 6m, 2m}

	
	{40%, 2m, 2m}
	{60%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 6m, 2m}

	50
	3.734
	0.959
	0.343
	0.332

	67
	5.248
	1.580
	0.452
	0.431

	80
	6.660
	2.597
	0.577
	0.541

	90
	8.176
	4.134
	0.728
	0.684



	CDF Percentile
	UE 2D positioning errors [m]
Model II trained with 40,000 samples from {60%, 6m, 2m}

	
	{40%, 2m, 2m}
	{60%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 6m, 2m}

	50
	3.474
	0.725
	0.240
	0.230

	67
	4.859
	1.344
	0.316
	0.302

	80
	6.239
	2.376
	0.397
	0.375

	90
	7.764
	4.049
	0.509
	0.477



	CDF Percentile
	UE 2D positioning errors [m]
Model III trained with 40,000 samples from {60%, 6m, 2m}

	
	{40%, 2m, 2m}
	{60%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 6m, 2m}

	50
	3.332
	0.682
	0.201
	0.189

	67
	4.747
	1.275
	0.265
	0.249

	80
	6.199
	2.341
	0.336
	0.316

	90
	7.873
	4.006
	0.435
	0.401



[bookmark: _Toc131525209]Fine-tuning trained models to environmental parameters changes
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[bookmark: _Ref126590597]Figure 28 (Left) ML model direct path ToA estimation error (expressed in meters) distributions and (Right) UE 2D positioning error distributions for using AI/ML outputs with conventional L1 error minimizing positioning solutions for Model I trained with 40,000 samples from {60%, 6m, 2m} and fine-tuned with different number of samples from {40%, 2m, 2m}.

[bookmark: _Ref117784129]Table 54 Direct path ToA estimation errors (in meters) percentiles for Model I trained with 40,000 samples from {60%, 6m, 2m} and fine-tuned with different number of samples from {40%, 2m, 2m}.
	CDF percentile
	Direct path ToA errors [m] – Model I

	
	Trained with samples from {40%, 2m, 2m}
	Originally trained with 40,000 samples from {60%, 6m, 2m}
and fine-tuned with different number of samples from
{40%, 2m, 2m}
	Trained with samples from {60%, 6m, 2m}

	
	40,000
	40,000
	20,000
	10,000
	4,000
	2,000
	1,000
	40,000

	50
	0.203
	0.200
	0.254
	0.338
	0.532
	0.730
	0.993
	3.058

	67
	0.318
	0.308
	0.396
	0.539
	0.872
	1.204
	1.614
	5.784

	80
	0.473
	0.452
	0.582
	0.824
	1.359
	1.863
	2.481
	8.634

	90
	0.716
	0.679
	0.908
	1.330
	2.217
	3.030
	3.922
	11.954



Table 55 UE 2D positioning error percentiles for Model I trained with 40,000 samples from {60%, 6m, 2m} and fine-tuned with different number of samples from {40%, 2m, 2m}.
	CDF percentile
	UE 2D positioning errors [m] – Model I

	
	Trained with samples from {40%, 2m, 2m}
	Originally trained with 40,000 samples from {60%, 6m, 2m}
and fine-tuned with different number of samples from 
{40%, 2m, 2m}
	Trained with samples from {60%, 6m, 2m}

	
	40,000
	40,000
	20,000
	10,000
	4,000
	2,000
	1,000
	40,000

	50
	0.193
	0.194
	0.246
	0.337
	0.528
	0.762
	1.056
	3.846

	67
	0.252
	0.258
	0.326
	0.448
	0.721
	1.042
	1.424
	5.530

	80
	0.322
	0.322
	0.414
	0.588
	0.960
	1.396
	1.842
	7.072

	90
	0.409
	0.420
	0.543
	0.782
	1.285
	1.808
	2.404
	8.720



Furthermore, once these models are fine-tuned to operate for a new environment, they no long perform adequately for the original environment. The following tables summarize our investigation results. The model originally trained with {60%, 6m, 2m} samples is fine-tuned to operate in the {40%, 2m, 2m} environment. We tested the performance the fine-tuned model in the original {60%, 6m, 2m} environment. It can be observed that performance of the model fine-tuned even with small number of samples from the new environment is already substantially degraded. While the performance recovers with more fine-tuning samples, it nonetheless never regains state-of-the-art performance.

Table 56. Positioning error percentiles for Model I trained with 40,000 samples from {60%, 6m, 2m} and fine-tuned with different number of samples from {40%, 2m, 2m} and test on {60%, 6m, 2m} testset.
	CDF percentile
	UE 2D positioning errors [m] – Model I

	
	Trained with samples from {60%, 6m, 2m}
	Originally trained with 40,000 samples from {60%, 6m, 2m}
and fine-tuned with different number of samples from {40%, 2m, 2m}

	
	40,000
	40,000
	20,000
	10,000
	4,000
	2,000
	1,000

	50
	0.220
	0.738
	0.930
	1.214
	1.642
	2.210
	2.526

	67
	0.292
	1.087
	1.348
	1.788
	2.349
	3.057
	3.483

	80
	0.363
	1.531
	1.855
	2.447
	3.183
	4.033
	4.550

	90
	0.451
	2.111
	2.653
	3.465
	4.293
	5.267
	5.863
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Figure 29 (Left) ML model direct path ToA estimation error (expressed in meters) distributions and (Right) UE 2D positioning error distributions for using AI/ML outputs with conventional L1 error minimizing positioning solutions for Model I trained with 40,000 samples from {60%, 6m, 2m} and fine-tuned with different number of samples from {40%, 2m, 2m}.

Table 57 Direct path ToA estimation errors (in meters) percentiles for Model I trained with 40,000 samples from {60%, 6m, 2m} and fine-tuned with different number of samples from {40%, 2m, 2m}.
	CDF percentile
	Direct path ToA errors [m] – Model I

	
	Trained with samples from {40%, 2m, 2m}
	Originally trained with 40,000 samples from {60%, 6m, 2m}
and fine-tuned with different number of samples from
{40%, 2m, 2m}
	Trained with samples from {60%, 6m, 2m}

	
	40,000
	40,000
	20,000
	10,000
	4,000
	2,000
	1,000
	40,000

	50
	0.281
	0.273
	0.347
	0.443
	0.629
	0.827
	1.086
	2.889

	67
	0.453
	0.429
	0.550
	0.706
	1.004
	1.336
	1.736
	5.286

	80
	0.680
	0.631
	0.813
	1.058
	1.526
	2.005
	2.600
	7.789

	90
	1.058
	0.959
	1.246
	1.648
	2.420
	3.136
	4.039
	10.823



Table 58 UE 2D positioning error percentiles for Model I trained with 40,000 samples from {60%, 6m, 2m} and fine-tuned with different number of samples from {40%, 2m, 2m}.
	CDF percentile
	UE 2D positioning errors [m] – Model I

	
	Trained with samples from {40%, 2m, 2m}
	Originally trained with 40,000 samples from {60%, 6m, 2m}
and fine-tuned with different number of samples from 
{40%, 2m, 2m}
	Trained with samples from {60%, 6m, 2m}

	
	40,000
	40,000
	20,000
	10,000
	4,000
	2,000
	1,000
	40,000

	50
	0.261
	0.258
	0.329
	0.425
	0.625
	0.810
	1.120
	3.734

	67
	0.355
	0.342
	0.442
	0.577
	0.830
	1.086
	1.504
	5.248

	80
	0.460
	0.428
	0.566
	0.763
	1.076
	1.437
	1.948
	6.660

	90
	0.596
	0.552
	0.738
	0.989
	1.408
	1.882
	2.486
	8.176



Furthermore, once these models are fine-tuned to operate for a new environment, they no long perform adequately for the original environment. The following tables summarize our investigation results. The model originally trained with {60%, 6m, 2m} samples is fine-tuned to operate in the {40%, 2m, 2m} environment. We tested the performance the fine-tuned model in the original {60%, 6m, 2m} environment. It can be observed that performance of the model fine-tuned even with small number of samples from the new environment is already substantially degraded. While the performance recovers with more fine-tuning samples, it nonetheless never regains state-of-the-art performance.

Table 59. Positioning error percentiles for Model I trained with 40,000 samples from {60%, 6m, 2m} and fine-tuned with different number of samples from {40%, 2m, 2m} and test on {60%, 6m, 2m} testset.
	CDF percentile
	UE 2D positioning errors [m] – Model I

	
	Trained with samples from {60%, 6m, 2m}
	Originally trained with 40,000 samples from {60%, 6m, 2m}
and fine-tuned with different number of samples from {40%, 2m, 2m}

	
	40,000
	40,000
	20,000
	10,000
	4,000
	2,000
	1,000

	50
	0.332
	0.945
	1.129
	1.411
	1.762
	2.211
	2.398

	67
	0.431
	1.322
	1.572
	1.953
	2.409
	2.953
	3.154

	80
	0.541
	1.776
	2.076
	2.558
	3.110
	3.786
	4.032

	90
	0.684
	2.424
	2.813
	3.417
	4.123
	4.962
	5.110



[bookmark: _Toc131525210]Models trained with mixed (environmental parameters) datasets
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Figure 30 (Left) ML model direct path ToA estimation error (expressed in meters) distributions and (Right) UE 2D positioning error distributions for using AI/ML outputs with conventional L1 error minimizing positioning solutions for the model trained with a combination of data from {60%, 6m, 2m} and {40%, 2m, 2m}, and tested with test dataset with different clutter parameters.

CIR
[bookmark: _Ref118287403]Table 60 Direct path ToA estimation errors from the model trained with a combination of data from {60%, 6m, 2m} and {40%, 2m, 2m}, and tested with test dataset with different clutter parameters.
	CDF Percentile
	Direct path ToA errors [m] 
Model I trained with 40,000 samples from {60%, 6m, 2m}

	
	{40%, 2m, 2m}
	{60%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 6m, 2m}

	50
	3.058
	0.675
	0.223
	0.216

	67
	5.784
	2.433
	0.334
	0.321

	80
	8.634
	5.135
	0.465
	0.442

	90
	11.954
	8.633
	0.666
	0.614



	CDF Percentile
	Direct path ToA errors [m] 
Model I trained with 40,000 samples from {40%, 2m, 2m}

	
	{40%, 2m, 2m}
	{60%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 6m, 2m}

	50
	0.203
	0.276
	0.658
	0.717

	67
	0.318
	0.454
	1.210
	1.338

	80
	0.473
	0.713
	2.112
	2.372

	90
	0.716
	1.202
	3.915
	4.384



	CDF Percentile
	Direct path ToA errors [m] - Model I trained with 
40,000 samples from {60%, 6m, 2m} and 40,000 samples from {40%, 2m, 2m}

	
	{40%, 2m, 2m}
	{60%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 6m, 2m}

	50
	0.230
	0.249
	0.269
	0.269

	67
	0.351
	0.383
	0.404
	0.402

	80
	0.500
	0.551
	0.563
	0.558

	90
	0.738
	0.814
	0.796
	0.787



[bookmark: _Ref118287405]Table 61 UE 2D positioning errors for the model trained with a combination of data from {60%, 6m, 2m} and {40%, 2m, 2m}, and tested with test dataset with different clutter parameters.
	CDF Percentile
	UE 2D positioning errors [m] 
Model I trained with 40,000 samples from {60%, 6m, 2m}

	
	{40%, 2m, 2m}
	{60%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 6m, 2m}

	50
	3.846
	0.741
	0.230
	0.220

	67
	5.530
	1.355
	0.306
	0.292

	80
	7.072
	2.375
	0.386
	0.363

	90
	8.720
	4.284
	0.489
	0.451



	CDF Percentile
	UE 2D positioning errors [m] 
Model I trained with 40,000 samples from {40%, 2m, 2m}

	
	{40%, 2m, 2m}
	{60%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 6m, 2m}

	50
	0.193
	0.253
	0.731
	0.820

	67
	0.252
	0.342
	1.045
	1.170

	80
	0.322
	0.440
	1.464
	1.625

	90
	0.409
	0.594
	2.045
	2.317



	CDF Percentile
	UE 2D positioning errors [m] - Model I trained with 
40,000 samples from {60%, 6m, 2m} and 40,000 samples from {40%, 2m, 2m}

	
	{40%, 2m, 2m}
	{60%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 6m, 2m}

	50
	0.221
	0.252
	0.285
	0.281

	67
	0.294
	0.335
	0.372
	0.369

	80
	0.373
	0.425
	0.472
	0.467

	90
	0.473
	0.553
	0.602
	0.594



PDP
Table 62 Direct path ToA estimation errors from the model trained with a combination of data from {60%, 6m, 2m} and {40%, 2m, 2m}, and tested with test dataset with different clutter parameters.
	CDF Percentile
	Direct path ToA errors [m] 
Model I trained with 40,000 samples from {60%, 6m, 2m}

	
	{40%, 2m, 2m}
	{60%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 6m, 2m}

	50
	2.889
	0.851
	0.324
	0.315

	67
	5.286
	2.366
	0.488
	0.473

	80
	7.789
	4.668
	0.679
	0.650

	90
	10.823
	7.645
	0.963
	0.903



	CDF Percentile
	Direct path ToA errors [m] 
Model I trained with 40,000 samples from {40%, 2m, 2m}

	
	{40%, 2m, 2m}
	{60%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 6m, 2m}

	50
	0.281
	0.385
	0.849
	0.916

	67
	0.453
	0.643
	1.455
	1.569

	80
	0.680
	1.007
	2.359
	2.571

	90
	1.058
	1.662
	3.992
	4.314



	CDF Percentile
	Direct path ToA errors [m] - Model I trained with 
40,000 samples from {60%, 6m, 2m} and 40,000 samples from {40%, 2m, 2m}

	
	{40%, 2m, 2m}
	{60%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 6m, 2m}

	50
	0.306
	0.330
	0.360
	0.359

	67
	0.469
	0.507
	0.539
	0.535

	80
	0.670
	0.720
	0.749
	0.744

	90
	0.977
	1.059
	1.068
	1.052



Table 63 UE 2D positioning errors for the model trained with a combination of data from {60%, 6m, 2m} and {40%, 2m, 2m}, and tested with test dataset with different clutter parameters.
	CDF Percentile
	UE 2D positioning errors [m] 
Model I trained with 40,000 samples from {60%, 6m, 2m}

	
	{40%, 2m, 2m}
	{60%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 6m, 2m}

	50
	3.734
	0.959
	0.343
	0.332

	67
	5.248
	1.580
	0.452
	0.431

	80
	6.660
	2.597
	0.577
	0.541

	90
	8.176
	4.134
	0.728
	0.684



	CDF Percentile
	UE 2D positioning errors [m] 
Model I trained with 40,000 samples from {40%, 2m, 2m}

	
	{40%, 2m, 2m}
	{60%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 6m, 2m}

	50
	0.261
	0.369
	1.002
	1.096

	67
	0.355
	0.501
	1.401
	1.535

	80
	0.460
	0.669
	1.908
	2.047

	90
	0.596
	0.891
	2.555
	2.841



	CDF Percentile
	UE 2D positioning errors [m] - Model I trained with 
40,000 samples from {60%, 6m, 2m} and 40,000 samples from {40%, 2m, 2m}

	
	{40%, 2m, 2m}
	{60%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 6m, 2m}

	50
	0.293
	0.332
	0.378
	0.374

	67
	0.387
	0.442
	0.498
	0.481

	80
	0.482
	0.548
	0.633
	0.614

	90
	0.601
	0.701
	0.792
	0.784



[bookmark: _Ref131500483][bookmark: _Toc131525211]Performance of ML models under different network synchronization errors
CIR
Table 64 Direct path ToA estimation errors (in meters) percentiles for Model I trained with 40,000 samples from {60%, 6m, 2m} and various network synchronization errors and tested with various network synchronization STD values (X ns).
	CDF Percentile
	Direct path ToA errors [m]
Model I trained with 40,000 samples with NW STD = 0 ns 

	
	0 ns
	5 ns
	10 ns
	25 ns
	50 ns

	50
	0.216
	0.293
	0.467
	1.564
	4.827

	67
	0.321
	0.446
	0.754
	3.055
	8.580

	80
	0.442
	0.634
	1.161
	5.232
	13.012

	90
	0.614
	0.924
	1.909
	8.522
	18.749



	CDF Percentile
	Direct path ToA errors [m]
Model I trained with 40,000 samples with NW STD = 25 ns 

	
	0 ns
	5 ns
	10 ns
	25 ns
	50 ns

	50
	0.329
	0.331
	0.342
	0.412
	0.776

	67
	0.501
	0.504
	0.522
	0.640
	1.413

	80
	0.710
	0.716
	0.743
	0.945
	2.734

	90
	1.035
	1.059
	1.097
	1.528
	6.231



	CDF Percentile
	Direct path ToA errors [m]
Model I trained with 40,000 samples with NW STD = 50 ns 

	
	0 ns
	5 ns
	10 ns
	25 ns
	50 ns

	50
	0.473
	0.475
	0.476
	0.504
	0.604

	67
	0.748
	0.754
	0.759
	0.805
	0.984

	80
	1.155
	1.171
	1.190
	1.265
	1.628

	90
	2.127
	2.159
	2.215
	2.392
	3.270



Table 65 UE 2D positioning errors percentiles for Model I trained with 40,000 samples from {60%, 6m, 2m} and various network synchronization errors and tested with various network synchronization STD values (X ns).
	CDF Percentile
	UE 2D positioning errors [m]
Model I trained with 40,000 samples with NW STD = 0 ns 

	
	0 ns
	5 ns
	10 ns
	25 ns
	50 ns

	50
	0.220
	0.306
	0.475
	1.540
	5.694

	67
	0.292
	0.403
	0.639
	2.275
	8.184

	80
	0.363
	0.504
	0.831
	3.271
	10.874

	90
	0.451
	0.647
	1.096
	4.806
	14.154



	CDF Percentile
	UE 2D positioning errors [m]
Model I trained with 40,000 samples with NW STD = 25 ns 

	
	0 ns
	5 ns
	10 ns
	25 ns
	50 ns

	50
	0.351
	0.356
	0.365
	0.445
	0.748

	67
	0.466
	0.478
	0.490
	0.593
	1.033

	80
	0.607
	0.609
	0.615
	0.752
	1.392

	90
	0.777
	0.792
	0.813
	1.005
	1.962



	CDF Percentile
	UE 2D positioning errors [m]
Model I trained with 40,000 samples with NW STD = 50 ns 

	
	0 ns
	5 ns
	10 ns
	25 ns
	50 ns

	50
	0.516
	0.515
	0.519
	0.552
	0.640

	67
	0.690
	0.694
	0.700
	0.753
	0.866

	80
	0.887
	0.899
	0.908
	0.981
	1.141

	90
	1.168
	1.202
	1.202
	1.299
	1.550



PDP
Table 66 Direct path ToA estimation errors (in meters) percentiles for Model I trained with 40,000 samples from {60%, 6m, 2m} and various network synchronization errors and tested with various network synchronization STD values (X ns).
	CDF Percentile
	Direct path ToA errors [m]
Model I trained with 40,000 samples with NW STD = 0 ns 

	
	0 ns
	5 ns
	10 ns
	25 ns
	50 ns

	50
	0.315
	0.388
	0.543
	1.405
	3.860

	67
	0.472
	0.582
	0.841
	2.506
	6.970

	80
	0.650
	0.810
	1.222
	4.181
	10.903

	90
	0.903
	1.150
	1.858
	6.872
	16.090



	CDF Percentile
	Direct path ToA errors [m]
Model I trained with 40,000 samples with NW STD = 25 ns 

	
	0 ns
	5 ns
	10 ns
	25 ns
	50 ns

	50
	0.348
	0.354
	0.358
	0.432
	0.726

	67
	0.521
	0.529
	0.539
	0.651
	1.219

	80
	0.719
	0.731
	0.747
	0.926
	2.092

	90
	1.002
	1.022
	1.055
	1.375
	4.347



	CDF Percentile
	Direct path ToA errors [m]
Model I trained with 40,000 samples with NW STD = 50 ns 

	
	0 ns
	5 ns
	10 ns
	25 ns
	50 ns

	50
	0.407
	0.409
	0.410
	0.432
	0.522

	67
	0.609
	0.612
	0.614
	0.650
	0.795

	80
	0.843
	0.851
	0.857
	0.912
	1.157

	90
	1.201
	1.207
	1.218
	1.327
	1.798



Table 67 UE 2D positioning errors percentiles for Model I trained with 40,000 samples from {60%, 6m, 2m} and various network synchronization errors and tested with various network synchronization STD values (X ns).
	CDF Percentile
	UE 2D positioning errors [m]
Model I trained with 40,000 samples with NW STD = 0 ns 

	
	0 ns
	5 ns
	10 ns
	25 ns
	50 ns

	50
	0.333
	0.409
	0.559
	1.432
	4.289

	67
	0.435
	0.525
	0.751
	2.019
	6.167

	80
	0.542
	0.659
	0.956
	2.742
	8.416

	90
	0.680
	0.836
	1.227
	3.850
	10.997



	CDF Percentile
	UE 2D positioning errors [m]
Model I trained with 40,000 samples with NW STD = 25 ns 

	
	0 ns
	5 ns
	10 ns
	25 ns
	50 ns

	50
	0.367
	0.368
	0.376
	0.449
	0.698

	67
	0.474
	0.481
	0.486
	0.592
	0.969

	80
	0.594
	0.600
	0.618
	0.746
	1.269

	90
	0.756
	0.761
	0.794
	0.924
	1.660



	CDF Percentile
	UE 2D positioning errors [m]
Model I trained with 40,000 samples with NW STD = 50 ns 

	
	0 ns
	5 ns
	10 ns
	25 ns
	50 ns

	50
	0.418
	0.424
	0.418
	0.447
	0.541

	67
	0.551
	0.554
	0.545
	0.580
	0.711

	80
	0.691
	0.693
	0.682
	0.724
	0.910

	90
	0.878
	0.878
	0.868
	0.913
	1.151



[bookmark: _Ref131177668][bookmark: _Toc131525212]Performance of ML models under different train/test SNR mismatch
The SNRs before considering shadowing and fast fading are
· Between 21.9 and 52.3 dB for 23 dBm UE power.
· Between 6.9 and 37.3 dB for 8 dBm UE power.
· Between -8.1 and 22.3 dB for -7 dBm UE power.
The semi-distributed model exhibits very high sensitivity to train/test SNR mismatch, particularly when the CIR input type is used. With an SNR mismatch of 15 dB, all models using CIR inputs cannot achieve acceptable positioning accuracy.
The models using PDP inputs exhibit better performance than those using CIR inputs. In particular, the model trained with 23 dBm UE power can operate with high performance when the UE power is reduced by 15 dB. However, for all other tested cases, the models still cannot achieve acceptable positioning accuracy.

[image: ][image: ]
Figure 31 UE 2D positioning error distributions for using (Left) CIR inputs and (Right) PDP inputs UE 2D for the {60%, 6m, 2m} test dataset with different UE Power settings at training and UE power settings at testing for Model I (trained with 40,000 samples).

CIR
[bookmark: _Ref117774892]Table 68 Direct path ToA estimation errors [m] for {60%, 6m, 2m} test dataset at different percentiles.
	CDF Percentile
	Model I trained with 23 dBm UE power

	
	23 dBm UE power
	8 dBm UE power
	-7 dBm UE power

	50
	0.216
	3.089
	21.156

	67
	0.321
	12.043
	34.137

	80
	0.443
	28.838
	49.719

	90
	0.613
	48.762
	66.264



	CDF Percentile
	Model I trained with -7 dBm UE power

	
	23 dBm UE power
	8 dBm UE power
	-7 dBm UE power

	50
	9.413
	6.077
	0.300

	67
	16.071
	10.492
	0.450

	80
	22.340
	15.144
	0.624

	90
	28.932
	20.524
	0.876



[bookmark: _Ref117775161]Table 69 UE 2D positioning errors [m] for {60%, 6m, 2m} test dataset at different percentiles.
	CDF Percentile
	Model I trained with 23 dBm UE power

	
	23 dBm UE power
	8 dBm UE power
	-7 dBm UE power

	50
	0.220
	5.561
	34.129

	67
	0.292
	11.691
	43.303

	80
	0.363
	22.738
	52.353

	90
	0.453
	41.360
	61.750



	CDF Percentile
	Model I trained with -7 dBm UE power

	
	23 dBm UE power
	8 dBm UE power
	-7 dBm UE power

	50
	17.026
	9.288
	0.302

	67
	21.096
	11.968
	0.391

	80
	24.776
	14.605
	0.491

	90
	28.327
	17.865
	0.618



PDP
Table 70 Direct path ToA estimation errors [m] for {60%, 6m, 2m} test dataset at different percentiles.
	CDF Percentile
	Model I trained with 23 dBm UE power

	
	23 dBm UE power
	8 dBm UE power
	-7 dBm UE power

	50
	0.315
	0.395
	2.603

	67
	0.472
	0.609
	6.095

	80
	0.650
	0.870
	17.504

	90
	0.903
	1.290
	43.539



	CDF Percentile
	Model I trained with -7 dBm UE power

	
	23 dBm UE power
	8 dBm UE power
	-7 dBm UE power

	50
	4.087
	3.212
	0.381

	67
	8.115
	6.063
	0.567

	80
	13.551
	9.706
	0.786

	90
	20.781
	15.146
	1.103



Table 71 UE 2D positioning errors [m] for {60%, 6m, 2m} test dataset at different percentiles.
	CDF Percentile
	Model I trained with 23 dBm UE power

	
	23 dBm UE power
	8 dBm UE power
	-7 dBm UE power

	50
	0.333
	0.397
	1.786

	67
	0.435
	0.528
	2.600

	80
	0.542
	0.667
	3.621

	90
	0.680
	0.837
	5.129



	CDF Percentile
	Model I trained with -7 dBm UE power

	
	23 dBm UE power
	8 dBm UE power
	-7 dBm UE power

	50
	6.568
	4.539
	0.393

	67
	8.924
	6.219
	0.516

	80
	12.059
	7.970
	0.652

	90
	15.891
	10.501
	0.810




[bookmark: _Ref131139406][bookmark: _Toc131525213]AI/ML-assisted positioning – Centralized
In this section, we estimate the unobserved direct path ToA using a centralized ML model with UL SRS channel impulse responses collected from all TRPs. The input to the AI/ML model is a three-dimensional complex-valued tensor  when using CIR, or  when using PDP or DP. Since the ML model inference or training requires suitable specific hardware, the model is expected to be performed in a centralized unit with the needed hardware. When the centralized unit is a gNB which is connected to many TRPs (up to 65535 according to TS 38.455), then this deployment belongs to Case 3a (NG-RAN node assisted positioning with gNB-side model). The target outputs of the model are the 18 unobserved direct path ToAs, . The estimated unobserved direct path ToAs are forwarded to the LMF to obtain UE positions using conventional positioning algorithms.
[image: ]
Figure 32 AI/ML assisted positioning where a gNB acts as the centralized node and process all UL CIRs forwarded from all TRPs to product estimates for unobserved direct path ToAs, which are further processed with conventional positioning algorithms to position of the target UE.

[bookmark: _Toc131525214]ML model architectures
For complex-valued inputs, we consider a model architecture using the complex activation functions and complex convolutional and MaxAbsPooling modules described in [9]. To further reduce model and computational complexity, low-cost convolution solutions have been adopted. The model consists of 34 layers. A different model is trained for each of the gNBs. 
For real-valued inputs, we keep the same model architecture except swapping out components designed specifically for complex values with those for real values.
Specific details of the model and computational complexity values of the three models are summarized in the following tables. For the baseline, the models are trained using {60%, 6m, 2m} train dataset.
CIR
Table 72 Key features of the ML models for unobserved direct path time of arrival estimation
	ML model input 
	Time domain CIR, obtained from SRS estimation, 18x2x256 complex array 

	ML model output 
	18 direct path ToA estimates

	Model complexity:   
	Model size 
	18 layers

	
	Number of parameters in the ML model 
	Model I: 0.73 M real parameters
Model II: 2.8 M real parameters
Model III: 11 M real parameters

	Computation complexity for model inference: number of FLOPs 
	Model I: 32 M FLOPs
Model II: 111 M FLOPs
Model III: 410 M FLOPs

	Number of ML models deployed for inference 
	One per deployment, residing in a centralized node

	Function for position estimation of the target UE
	Legacy method: UTDOA


PDP
Table 73 Key features of the ML models for unobserved direct path time of arrival estimation
	ML model input 
	Time domain PDP, obtained from SRS estimation, 18x1x256 real array 

	ML model output 
	18 direct path ToA estimates

	Model complexity:   
	Model size 
	18 layers

	
	Number of parameters in the ML model 
	Model I: 0.36 M real parameters
Model II: 1.4 M real parameters
Model III: 5.6 M real parameters

	Computation complexity for model inference: number of FLOPs 
	Model I: 9 M FLOPs
Model II: 34 M FLOPs
Model III: 132 M FLOPs

	Number of ML models deployed for inference 
	One per deployment, residing in a centralized node

	Function for position estimation of the target UE
	Legacy method: UTDOA



DP
Table 74 Key features of the ML models for unobserved direct path time of arrival estimation
	ML model input 
	Time domain delay profile (DP), obtained from SRS estimation, 18x1x256 real array, consisting of zeros or ones

	ML model output 
	18 direct path ToA estimates

	Model complexity:   
	Model size 
	18 layers

	
	Number of parameters in the ML model 
	Model I: 0.36 M real parameters
Model II: 1.4 M real parameters
Model III: 5.6 M real parameters

	Computation complexity for model inference: number of FLOPs 
	Model I: 9 M FLOPs
Model II: 34 M FLOPs
Model III: 132 M FLOPs

	Number of ML models deployed for inference 
	One per deployment, residing in a centralized node

	Function for position estimation of the target UE
	Legacy method: UTDOA



[bookmark: _Toc131525215]ML model performance with different trainset sizes
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Figure 33 (Left) ML model direct path ToA estimation error (expressed in meters) distributions and (Right) UE 2D positioning error distributions for using AI/ML outputs with conventional L1 error minimizing positioning solutions for the {60%, 6m, 2m} test dataset with different training set sizes and different input types for Model I.
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Figure 34 (Left) ML model direct path ToA estimation error (expressed in meters) distributions and (Right) UE 2D positioning error distributions for using AI/ML outputs with conventional L1 error minimizing positioning solutions for the {60%, 6m, 2m} test dataset with different training set sizes and different input types for Model II.

[image: ] [image: ]
Figure 35 (Left) ML model direct path ToA estimation error (expressed in meters) distributions and (Right) UE 2D positioning error distributions for using AI/ML outputs with conventional L1 error minimizing positioning solutions for the {60%, 6m, 2m} test dataset with different training set sizes and different input types for Model III.
CIR
For the {60%, 6m, 2m} test dataset, the direct path ToA estimation error distribution of the models with different training set sizes are provided in Figure 36 (a), (b) and (c) for Model I, II and III, respectively. It can be observed that 
· Centralized direct path ToA estimation ML models can achieve direct path ToA estimation errors less than a meter even with as few as 10,000 training samples for all Models I, II and III when CIR data is used.
· A smaller model appears to benefit from more training samples less than a large model. For instance, Model I reduces the 90%tile ToA error by 55% when the training set size is increased from 10,000 to 80,000 samples. However, Model III reduces the 90%tile ToA error by 75% with the same increase of training samples.
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(a) Model I								(b) Model II
[image: ]
(c) Model III

[bookmark: _Ref131510425]Figure 36 ML model direct path ToA estimation error (expressed in meters) distributions for the {60%, 6m, 2m} test dataset with different training set sizes.
     
Table 75 Direct path ToA estimation errors of Model I for {60%, 6m, 2m} test dataset at different percentiles.
	CDF Percentile
	Direct path ToA errors [m] - Model I

	
	80,000
	40,000
	20,000
	10,000

	50
	0.087
	0.102
	0.135
	0.181

	67
	0.128
	0.15
	0.200
	0.269

	80
	0.171
	0.201
	0.271
	0.370

	90
	0.224
	0.267
	0.366
	0.504


Table 76 Direct path ToA estimation errors of Model II for {60%, 6m, 2m} test dataset at different percentiles.
	CDF Percentile
	Direct path ToA errors [m] - Model II

	
	80,000
	40,000
	20,000
	10,000

	50
	0.054
	0.069
	0.097
	0.141

	67
	0.079
	0.102
	0.145
	0.213

	80
	0.108
	0.138
	0.199
	0.296

	90
	0.142
	0.185
	0.271
	0.411



Table 77 Direct path ToA estimation errors of Model III for {60%, 6m, 2m} test dataset at different percentiles.
	CDF Percentile
	Direct path ToA errors [m] - Model III

	
	80,000
	40,000
	20,000
	10,000

	50
	0.039
	0.055
	0.08
	0.123

	67
	0.058
	0.083
	0.121
	0.19

	80
	0.080
	0.114
	0.167
	0.265

	90
	0.107
	0.155
	0.231
	0.372



Using the direct path ToA estimates from the centralized ToA estimation models as inputs to the conventional positioning algorithms, we can obtain highly accurate UE positioning estimates as provided in Figure 37 (a), (b) and (c) for Model I, II and III, respectively. It can be observed that
· Centralized direct path ToA estimation ML models together with conventional positioning algorithms can obtain highly accurate UE position estimates in highly NLoS {60%, 6m, 2m} environment.
· Even with only 10,000 training samples, it is possible to achieve 90%tile 2D positioning errors below 1 m.
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(a) Model I								(b) Model II
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(c) Model III
[bookmark: _Ref131511381]Figure 37 UE 2D positioning error distributions for using AI/ML outputs with conventional L1 error minimizing positioning solutions on {60%, 6m, 2m} test dataset with different training set sizes.

Table 78 2D positioning errors of Model I for {60%, 6m, 2m} test dataset at different percentiles

	CDF Percentile
	2D positioning errors [m] - Model I

	
	80,000
	40,000
	20,000
	10,000

	50
	0.158
	0.184
	0.247
	0.329

	67
	0.205
	0.238
	0.319
	0.433

	80
	0.250
	0.295
	0.401
	0.556

	90
	0.306
	0.371
	0.512
	0.720



Table 79 UE 2D positioning errors of Model II for {60%, 6m, 2m} test dataset at different percentiles

	CDF Percentile
	2D positioning ToA errors [m] - Model II

	
	80,000
	40,000
	20,000
	10,000

	50
	0.096
	0.123
	0.179
	0.259

	67
	0.128
	0.165
	0.236
	0.347

	80
	0.159
	0.207
	0.298
	0.449

	90
	0.194
	0.260
	0.378
	0.583



Table 80 UE 2D positioning errors of Model III for {60%, 6m, 2m} test dataset at different percentiles

	CDF Percentile
	2D positioning errors [m] - Model III

	
	80,000
	40,000
	20,000
	10,000

	50
	0.072
	0.100
	0.147
	0.231

	67
	0.095
	0.134
	0.197
	0.312

	80
	0.118
	0.172
	0.253
	0.403

	90
	0.156
	0.223
	0.330
	0.539



	
PDP
For the {60%, 6m, 2m} test dataset, the direct path ToA estimation error distribution of the models with different training set sizes are provided in Figure 38 (a), (b) and (c) for Model I, II and III, respectively. It can be observed that 
· Centralized direct path ToA estimation ML models can achieve direct path ToA estimation errors less than a meter even with as few as 10,000 training samples for all Models I, II and III when PDP data is used.
· A smaller model appears to benefit from more training samples less than a large model. For instance, Model I reduces the 90%tile ToA error by 50% when the training set size is increased from 10,000 to 80,000 samples. However, Model III reduces the 90%tile ToA error by 70% with the same increase of training samples.
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(a) Model I								(b) Model II
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(c) Model III

[bookmark: _Ref131511486]Figure 38 ML model direct path ToA estimation error (expressed in meters) distributions for the {60%, 6m, 2m} test dataset with different training set sizes.

Table 81 Direct path ToA estimation errors of Model I for {60%, 6m, 2m} test dataset at different percentiles.
	CDF Percentile
	Direct path ToA errors [m] - Model I

	
	80,000
	40,000
	20,000
	10,000

	50
	0.121
	0.149
	0.179
	0.233

	67
	0.178
	0.217
	0.262
	0.342

	80
	0.236
	0.288
	0.352
	0.461

	90
	0.310
	0.377
	0.468
	0.618


Table 82 Direct path ToA estimation errors of Model II for {60%, 6m, 2m} test dataset at different percentiles.
	CDF Percentile
	Direct path ToA errors [m] - Model II

	
	80,000
	40,000
	20,000
	10,000

	50
	0.079
	0.098
	0.127
	0.175

	67
	0.115
	0.144
	0.187
	0.260

	80
	0.153
	0.193
	0.253
	0.359

	90
	0.202
	0.255
	0.338
	0.491



Table 83 Direct path ToA estimation errors of Model III for {60%, 6m, 2m} test dataset at different percentiles.
	CDF Percentile
	Direct path ToA errors [m] - Model III

	
	80,000
	40,000
	20,000
	10,000

	50
	0.056
	0.072
	0.105
	0.152

	67
	0.082
	0.106
	0.155
	0.229

	80
	0.110
	0.143
	0.211
	0.314

	90
	0.144
	0.190
	0.282
	0.434



Using the direct path ToA estimates from the centralized ToA estimation models as inputs to the conventional positioning algorithms, we can obtain highly accurate UE positioning estimates as provided in (c) Model III
Figure 39 (a), (b) and (c) for Model I, II and III, respectively. It can be observed that
· Centralized direct path ToA estimation ML models together with conventional positioning algorithms can obtain highly accurate UE position estimates in highly NLoS {60%, 6m, 2m} environment.
· Even with only 10,000 training samples, it is possible to achieve 90%tile 2D positioning errors below 1 m.
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(a) Model I								(b) Model II
[image: ]
[bookmark: _Ref131511789](c) Model III
Figure 39 UE 2D positioning error distributions for using AI/ML outputs with conventional L1 error minimizing positioning solutions on {60%, 6m, 2m} test dataset with different training set sizes.

Table 84 2D positioning errors of Model I for {60%, 6m, 2m} test dataset at different percentiles

	CDF Percentile
	2D positioning errors [m] - Model I

	
	80,000
	40,000
	20,000
	10,000

	50
	0.219
	0.271
	0.326
	0.420

	67
	0.281
	0.344
	0.423
	0.544

	80
	0.347
	0.426
	0.526
	0.688

	90
	0.426
	0.524
	0.658
	0.873



Table 85 UE 2D positioning errors of Model II for {60%, 6m, 2m} test dataset at different percentiles

	CDF Percentile
	2D positioning ToA errors [m] - Model II

	
	80,000
	40,000
	20,000
	10,000

	50
	0.141
	0.180
	0.234
	0.320

	67
	0.184
	0.236
	0.304
	0.428

	80
	0.229
	0.287
	0.381
	0.543

	90
	0.282
	0.360
	0.474
	0.707



Table 86 UE 2D positioning errors of Model III for {60%, 6m, 2m} test dataset at different percentiles

	CDF Percentile
	2D positioning errors [m] - Model III

	
	80,000
	40,000
	20,000
	10,000

	50
	0.104
	0.134
	0.193
	0.282

	67
	0.134
	0.174
	0.252
	0.37

	80
	0.164
	0.216
	0.314
	0.479

	90
	0.202
	0.271
	0.397
	0.629



DP
For the {60%, 6m, 2m} test dataset, the direct path ToA estimation error distribution of the models with different training set sizes are provided in Figure 40 (a), (b) and (c) for Model I, II and III, respectively. It can be observed that 
· Centralized direct path ToA estimation ML models can achieve direct path ToA estimation errors less than a meter even with as few as 10,000 training samples for all Models I, II and III when DP data is used.
· A smaller model appears to benefit from more training samples less than a large model. For instance, Model I reduces the 90%tile ToA error by 40% when the training set size is increased from 10,000 to 80,000 samples. However, Model III reduces the 90%tile ToA error by 60% with the same increase of training samples.
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(a) Model I								(b) Model II
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(c) Model III

[bookmark: _Ref131511889]Figure 40 ML model direct path ToA estimation error (expressed in meters) distributions for the {60%, 6m, 2m} test dataset with different training set sizes.

Table 87 Direct path ToA estimation errors of Model I for {60%, 6m, 2m} test dataset at different percentiles.
	CDF Percentile
	Direct path ToA errors [m] - Model I

	
	80,000
	40,000
	20,000
	10,000

	50
	0.162
	0.184
	0.217
	0.265

	67
	0.236
	0.269
	0.320
	0.390

	80
	0.316
	0.359
	0.430
	0.527

	90
	0.416
	0.469
	0.568
	0.697


Table 88 Direct path ToA estimation errors of Model II for {60%, 6m, 2m} test dataset at different percentiles.
	CDF Percentile
	Direct path ToA errors [m] - Model II

	
	80,000
	40,000
	20,000
	10,000

	50
	0.109
	0.128
	0.158
	0.209

	67
	0.159
	0.189
	0.233
	0.310

	80
	0.212
	0.256
	0.316
	0.421

	90
	0.278
	0.339
	0.419
	0.575



Table 89 Direct path ToA estimation errors of Model III for {60%, 6m, 2m} test dataset at different percentiles.
	CDF Percentile
	Direct path ToA errors [m] - Model III

	
	80,000
	40,000
	20,000
	10,000

	50
	0.083
	0.098
	0.127
	0.179

	67
	0.121
	0.145
	0.189
	0.268

	80
	0.161
	0.198
	0.260
	0.369

	90
	0.210
	0.263
	0.354
	0.503



Using the direct path ToA estimates from the centralized ToA estimation models as inputs to the conventional positioning algorithms, we can obtain highly accurate UE positioning estimates as provided in Figure 41 (a), (b) and (c) for Model I, II and III, respectively. It can be observed that
· Centralized direct path ToA estimation ML models together with conventional positioning algorithms can obtain highly accurate UE position estimates in highly NLoS {60%, 6m, 2m} environment.
· Even with only 10,000 training samples, it is possible to achieve 90%tile 2D positioning errors below 1 m.
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(a) Model I								(b) Model II
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(c) Model III
[bookmark: _Ref131512106]Figure 41 UE 2D positioning error distributions for using AI/ML outputs with conventional L1 error minimizing positioning solutions on {60%, 6m, 2m} test dataset with different training set sizes.

Table 90 2D positioning errors of Model I for {60%, 6m, 2m} test dataset at different percentiles

	CDF Percentile
	2D positioning errors [m] - Model I

	
	80,000
	40,000
	20,000
	10,000

	50
	0.296
	0.337
	0.394
	0.481

	67
	0.379
	0.429
	0.514
	0.629

	80
	0.465
	0.521
	0.640
	0.788

	90
	0.571
	0.653
	0.798
	0.989



Table 91 UE 2D positioning errors of Model II for {60%, 6m, 2m} test dataset at different percentiles

	CDF Percentile
	2D positioning ToA errors [m] - Model II

	
	80,000
	40,000
	20,000
	10,000

	50
	0.200
	0.237
	0.289
	0.379

	67
	0.257
	0.306
	0.377
	0.508

	80
	0.317
	0.384
	0.474
	0.647

	90
	0.390
	0.477
	0.600
	0.834



Table 92 UE 2D positioning errors of Model III for {60%, 6m, 2m} test dataset at different percentiles

	CDF Percentile
	2D positioning errors [m] - Model III

	
	80,000
	40,000
	20,000
	10,000

	50
	0.151
	0.182
	0.236
	0.325

	67
	0.193
	0.236
	0.317
	0.437

	80
	0.239
	0.295
	0.397
	0.556

	90
	0.294
	0.371
	0.502
	0.715




[bookmark: _Toc131525216]ML model performance with different time domain down sampling
In this section, we evaluate the effect of using fewer time-domain taps as input to the centralized direct path ToA estimation ML models. We use only the Nt’ largest taps, setting the remaining (Nt - Nt’) taps to zero. Model I is trained on 40,000 samples from the {60%, 6m, 2m} dataset (dataset 1f), with 23 dBm UE transmit power.
CIR
Using CIR data, the direct path ToA estimation error distribution and the UE 2D positioning errors with different time-domain taps are provided in Figure 42. It can be observed that 
· Using fewer time-domain taps reduces performance but sub-meter accuracy, for both direct path ToA estimation and UE 2D positioning, can be achieved for as few as 9 taps. 
· Using 128 taps instead of all 256 gives only a small performance degradation.
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[bookmark: _Ref131513262]Figure 42 (Left) ML model direct path ToA estimation error (expressed in meters) distributions and (Right) UE 2D positioning error distributions for using AI/ML outputs with conventional L1 error minimizing positioning solutions for the {60%, 6m, 2m} test dataset with different time domain down sampling sizes for Model I (trained with 40,000 samples).

Table 93 Direct path ToA estimation errors for {60%, 6m, 2m} test dataset at different percentiles and different numbers of down sampled taps.
	CDF Percentile
	Direct path ToA errors [m] - Model I (trained with 40,000 samples)

	
	256 taps
	128 taps
	64 taps
	32 taps
	16 taps
	9 taps

	50
	0.102
	0.105
	0.121
	0.155
	0.183
	0.216

	67
	0.15
	0.154
	0.177
	0.226
	0.27
	0.322

	80
	0.201
	0.206
	0.237
	0.301
	0.365
	0.436

	90
	0.267
	0.271
	0.312
	0.397
	0.488
	0.58



Table 94 UE 2D positioning errors for {60%, 6m, 2m} test dataset at different percentiles and different numbers of down sampled taps.
	CDF Percentile
	UE 2D positioning errors [m] - Model I (trained with 40,000 samples)

	
	256 taps
	128 taps
	64 taps
	32 taps
	16 taps
	9 taps

	50
	0.184
	0.189
	0.218
	0.279
	0.335
	0.397

	67
	0.238
	0.244
	0.283
	0.364
	0.44
	0.522

	80
	0.295
	0.3
	0.347
	0.451
	0.549
	0.648

	90
	0.371
	0.372
	0.434
	0.545
	0.678
	0.805




PDP
Using PDP data, the direct path ToA estimation error distribution and the UE 2D positioning errors with different time-domain taps are provided in Figure 43. It can be observed that: 
· Using fewer time-domain taps reduces performance but sub-meter accuracy, for both direct path ToA estimation and UE 2D positioning, can be achieved for as few as 9 taps 
· Using 64 taps instead of all 256 gives only a small performance degradation.
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[bookmark: _Ref131513522]Figure 43 (Left) ML model direct path ToA estimation error (expressed in meters) distributions and (Right) UE 2D positioning error distributions for using AI/ML outputs with conventional L1 error minimizing positioning solutions for the {60%, 6m, 2m} test dataset with different time domain down sampling sizes for Model I (trained with 40,000 samples).

Table 95 Direct path ToA estimation errors for {60%, 6m, 2m} test dataset at different percentiles and different numbers of down sampled taps.
	CDF Percentile
	Direct path ToA errors [m] - Model I (trained with 40,000 samples)

	
	256 taps
	128 taps
	64 taps
	32 taps
	16 taps
	9 taps

	50
	0.149
	0.148
	0.147
	0.171
	0.193
	0.237

	67
	0.217
	0.217
	0.215
	0.251
	0.283
	0.347

	80
	0.288
	0.289
	0.287
	0.332
	0.379
	0.468

	90
	0.377
	0.381
	0.376
	0.436
	0.501
	0.618



Table 96 UE 2D positioning errors for {60%, 6m, 2m} test dataset at different percentiles and different numbers of down sampled taps.
	CDF Percentile
	UE 2D positioning errors [m] - Model I (trained with 40,000 samples)

	
	256 taps
	128 taps
	64 taps
	32 taps
	16 taps
	9 taps

	50
	0.271
	0.272
	0.268
	0.314
	0.35
	0.429

	67
	0.344
	0.346
	0.343
	0.396
	0.455
	0.555

	80
	0.426
	0.425
	0.42
	0.483
	0.566
	0.687

	90
	0.524
	0.534
	0.514
	0.604
	0.698
	0.868



[bookmark: _Ref131421888]DP
Using DP data, the direct path ToA estimation error distribution and the UE 2D positioning errors with different time-domain taps are provided in Figure 44. It can be observed that: 
· Using 32 taps results in best performance while requires a lot less information need to be sent compared to 64 and 128 taps.
Our recommendation is therefore to use 32 taps, which is what we use in the evaluations in this contribution.
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[bookmark: _Ref131513818]Figure 44 (Left) ML model direct path ToA estimation error (expressed in meters) distributions and (Right) UE 2D positioning error distributions for using AI/ML outputs with conventional L1 error minimizing positioning solutions for the {60%, 6m, 2m} test dataset with different time domain down sampling sizes for Model I (trained with 40,000 samples).

Table 97 Direct path ToA estimation errors for {60%, 6m, 2m} test dataset at different percentiles and different numbers of down sampled taps.
	CDF Percentile
	Direct path ToA errors [m] 
Model I trained with 40,000 samples from {60%, 6m, 2m}

	
	128
	64
	32
	16
	9

	50
	0.310
	0.181
	0.184
	0.203
	0.242

	67
	0.454
	0.264
	0.269
	0.298
	0.355

	80
	0.609
	0.354
	0.359
	0.403
	0.479

	90
	0.810
	0.470
	0.469
	0.530
	0.634



Table 98 UE 2D positioning errors for {60%, 6m, 2m} test dataset at different percentiles and different numbers of down sampled taps.
	CDF Percentile
	UE 2D positioning errors [m]
Model I trained with 40,000 samples from {60%, 6m, 2m}

	
	128
	64
	32
	16
	9

	50
	0.559
	0.326
	0.337
	0.370
	0.435

	67
	0.720
	0.420
	0.429
	0.482
	0.572

	80
	0.895
	0.524
	0.521
	0.593
	0.718

	90
	1.138
	0.657
	0.653
	0.743
	0.887





[bookmark: _Toc131525217]ML model performance with different labelling error
In this section, the effect of labelling error is evaluated. Model I is trained using 40,000 samples from the {60%, 6m, 2m} training dataset, to which noise drawn from a truncated Gaussian distribution is added to the ground truth UE position used to generate label, i.e. direct path ToA. The models are evaluated using test data without label error.
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Figure 45 ML model direct path ToA estimation error (expressed in meters) distributions and (Right) UE 2D positioning error distributions for using AI/ML outputs with conventional L1 error minimizing positioning solutions for the {60%, 6m, 2m} test dataset with different input types and different labelling errors for Model I (trained with 40,000 samples).
CIR
For centralized AI/ML-assisted positioning using CIR data, the direct path ToA estimation error distribution and the UE 2D positioning errors with different labeling errors are provided in Figure 46. It can be observed that: 
· Centralized direct path ToA estimation ML models can achieve direct path ToA estimation errors less than a meter even with labelling error STD of 1 m when CIR data is used.
· Sub-meter 2D positioning accuracy at 90%-tile is obtained for labelling error STD of up to 0.5 m.
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[bookmark: _Ref131514591]Figure 46 (Left) ML model direct path ToA estimation error (expressed in meters) distributions and (Right) UE 2D positioning error distributions for using AI/ML outputs with conventional L1 error minimizing positioning solutions for the {60%, 6m, 2m} test dataset with different labelling errors for Model I (trained with 40,000 samples).

Table 99 Direct path ToA estimation errors for {60%, 6m, 2m} test dataset at different percentiles and different labeling error STD.
	CDF Percentile
	Direct path ToA errors [m] - Model I 
trained with 40,000 samples with different labeling error STD

	
	STD = 0 m
	STD = 0.25 m
	STD = 0.5 m
	STD = 1 m

	50
	0.102
	0.135
	0.210
	0.378

	67
	0.150
	0.197
	0.305
	0.548

	80
	0.201
	0.260
	0.403
	0.725

	90
	0.267
	0.338
	0.523
	0.943



Table 100 UE 2D positioning errors for {60%, 6m, 2m} test dataset at different percentiles and different labeling error STD.
	CDF Percentile
	UE 2D positioning errors [m] - Model I 
trained with 40,000 samples with different labeling error STD

	
	STD = 0 m
	STD = 0.25 m
	STD = 0.5 m
	STD = 1 m

	50
	0.184
	0.241
	0.371
	0.658

	67
	0.238
	0.307
	0.474
	0.842

	80
	0.295
	0.377
	0.590
	1.030

	90
	0.371
	0.462
	0.702
	1.253



PDP
For centralized AI/ML-assisted positioning using PDP data, the direct path ToA estimation error distribution and the UE 2D positioning errors with different labeling errors are provided in Figure 47. It can be observed that: 
· Centralized direct path ToA estimation ML models can achieve direct path ToA estimation errors less than a meter even with labelling error STD of 1 m when PDP data is used.
· Sub-meter 2D positioning accuracy at 90%-tile is obtained for labelling error STD of up to 0.5 m.
· The performance is degrading less for models using PDP data than for CIR.
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[bookmark: _Ref131514741]Figure 47 (Left) ML model direct path ToA estimation error (expressed in meters) distributions and (Right) UE 2D positioning error distributions for using AI/ML outputs with conventional L1 error minimizing positioning solutions for the {60%, 6m, 2m} test dataset with different labelling errors for Model I (trained with 40,000 samples).

Table 101 Direct path ToA estimation errors for {60%, 6m, 2m} test dataset at different percentiles and different labeling error STD.
	CDF Percentile
	Direct path ToA errors [m] - Model I 
trained with 40,000 samples with different labeling error STD

	
	STD = 0 m
	STD = 0.25 m
	STD = 0.5 m
	STD = 1 m

	50
	0.149
	0.160
	0.206
	0.341

	67
	0.217
	0.234
	0.298
	0.500

	80
	0.288
	0.312
	0.394
	0.666

	90
	0.377
	0.410
	0.513
	0.863



Table 102 UE 2D positioning errors for {60%, 6m, 2m} test dataset at different percentiles and different labeling error STD.
	CDF Percentile
	UE 2D positioning errors [m] - Model I 
trained with 40,000 samples with different labeling error STD

	
	STD = 0 m
	STD = 0.25 m
	STD = 0.5 m
	STD = 1 m

	50
	0.271
	0.292
	0.366
	0.607

	67
	0.344
	0.376
	0.467
	0.773

	80
	0.426
	0.461
	0.569
	0.937

	90
	0.524
	0.563
	0.690
	1.142



DP
For centralized AI/ML-assisted positioning using PD data, the direct path ToA estimation error distribution and the UE 2D positioning errors with different labeling errors are provided in Figure 48. It can be observed that: 
· Centralized direct path ToA estimation ML models can achieve direct path ToA estimation errors less than a meter even with labelling error STD of 1 m when DP data is used.
· Sub-meter 2D positioning accuracy at 90%-tile is obtained for labelling error STD of up to 0.5 m.
· The performance is degrading less for models using 32-tap DP data than for CIR.
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[bookmark: _Ref131514759]Figure 48 (Left) ML model direct path ToA estimation error (expressed in meters) distributions and (Right) UE 2D positioning error distributions for using AI/ML outputs with conventional L1 error minimizing positioning solutions for the {60%, 6m, 2m} test dataset with different labelling errors for Model I (trained with 40,000 samples).

Table 103 Direct path ToA estimation errors for {60%, 6m, 2m} test dataset at different percentiles and different labeling error STD.
	CDF Percentile
	Direct path ToA errors [m] - Model I 
trained with 40,000 samples with different labeling error STD

	
	STD = 0 m
	STD = 0.25 m
	STD = 0.5 m
	STD = 1 m

	50
	0.184
	0.201
	0.239
	0.367

	67
	0.269
	0.293
	0.350
	0.534

	80
	0.359
	0.391
	0.464
	0.710

	90
	0.469
	0.516
	0.604
	0.924



Table 104 UE 2D positioning errors for {60%, 6m, 2m} test dataset at different percentiles and different labeling error STD.
	CDF Percentile
	UE 2D positioning errors [m] - Model I 
trained with 40,000 samples with different labeling error STD

	
	STD = 0 m
	STD = 0.25 m
	STD = 0.5 m
	STD = 1 m

	50
	0.337
	0.362
	0.433
	0.653

	67
	0.429
	0.465
	0.558
	0.823

	80
	0.521
	0.575
	0.671
	1.015

	90
	0.653
	0.717
	0.824
	1.220




[bookmark: _Toc131525218]Generalization wrt spatial seeds and environmental parameters changes
In this section, we investigate and analyze the performance of the ML models trained in an InF-DH scenario with {60%, 6m, 2m} environment parameters (dataset 2f) in a wide range of different degrees of environmental changes.
· We first test the trained models using test dataset 2f, which has the same {60%, 6m, 2m} environment parameters but the realizations are generated with different random seeds for UE location, 3GPP spatial model, and propagation seeds than the first dataset. This is to test whether the trained models can generalize to different environmental arrangements with the same average characteristics.
· We then test the trained models using {40%, 2m, 2m}, {40%, 6m, 2m} and {60%, 2m, 2m} test datasets (datasets 1a, 1d and 1c), which are generated using different environment parameters of respectively. This is to test whether the trained models can generalize to different environments with different arrangements as well as different average characteristics.
Trained models tested on the same clutter parameter but different spatial and propagation seeds
We first test the trained the models using test dataset 2f, which has the same {60%, 6m, 2m} environment parameters but the realizations are generated with different random seeds for UE location, 3GPP spatial model, and propagation seeds than the first dataset. 
It can be observed that the trained models tested with test dataset 2f degrade substantially compared to the same model tested with the first test dataset. For instance, 90%tile of direct path ToA increased from below 1 m to 14 m. Similarly, from the 2D positioning error distributions shown below, 90%tile of 2D UE positioning error increased significantly from below 1 m to above 13 m for the trained models tested with the first test dataset versus tested with test dataset from a different environmental arrangement with the same average characteristics. It can be concluded the trained models do not perform well when the radio link realizations are generated with different random seeds.
CIR
Table 105 Direct path ToA estimation errors for {60%, 6m, 2m} test dataset (new_seed) at different percentiles and different models trained with 40,000 samples.
	CDF Percentile
	Direct path ToA errors [m] 
for models trained with 40,000 samples

	
	Model I
	Model II
	Model III

	50
	3.651
	3.618
	3.413

	67
	5.363
	5.245
	4.943

	80
	7.103
	6.992
	6.487

	90
	9.280
	9.227
	8.401



Table 106 UE 2D positioning errors for {60%, 6m, 2m} test dataset (new_seed)  at different percentiles and different models trained with 40,000 samples.
	CDF Percentile
	UE 2D positioning errors [m] 
for models trained with 40,000 samples

	
	Model I
	Model II
	Model III

	50
	7.564
	7.611
	6.975

	67
	9.829
	10.071
	8.930

	80
	12.369
	12.479
	11.039

	90
	15.103
	15.075
	13.498



PDP
Table 107 Direct path ToA estimation errors for {60%, 6m, 2m} test dataset (new_seed) at different percentiles and different models trained with 40,000 samples.
	CDF Percentile
	Direct path ToA errors [m] 
for models trained with 40,000 samples

	
	Model I
	Model II
	Model III

	50
	4.100
	3.854
	3.804

	67
	5.971
	5.588
	5.556

	80
	7.886
	7.469
	7.378

	90
	10.365
	9.803
	9.606



Table 108 UE 2D positioning errors for {60%, 6m, 2m} test dataset (new_seed) at different percentiles and different models trained with 40,000 samples.
	CDF Percentile
	UE 2D positioning errors [m] 
for models trained with 40,000 samples

	
	Model I
	Model II
	Model III

	50
	8.662
	8.035
	8.152

	67
	11.387
	10.544
	10.569

	80
	14.162
	13.448
	13.050

	90
	17.329
	16.667
	15.777
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Table 109 Direct path ToA estimation errors for {60%, 6m, 2m} test dataset (new_seed) at different percentiles and different models trained with 40,000 samples.
	CDF Percentile
	Direct path ToA errors [m] 
for models trained with 40,000 samples

	
	Model I
	Model II
	Model III

	50
	4.420
	4.398
	4.282

	67
	6.428
	6.379
	6.195

	80
	8.500
	8.554
	8.180

	90
	11.122
	11.306
	10.685



Table 110 UE 2D positioning errors for {60%, 6m, 2m} test dataset (new_seed) at different percentiles and different models trained with 40,000 samples.
	CDF Percentile
	UE 2D positioning errors [m] 
for models trained with 40,000 samples

	
	Model I
	Model II
	Model III

	50
	9.256
	9.442
	9.277

	67
	11.851
	12.563
	12.083

	80
	14.870
	15.652
	14.970

	90
	18.729
	19.149
	18.479



Trained models tested on different clutter parameters
In this subsection, we investigate model generalization by testing the trained models with {60%, 6m, 2m}, using {40%, 2m, 2m}, {40%, 6m, 2m} and {60%, 2m, 2m} test datasets, which are generated using different environment parameters of respectively. This is to test whether the trained models can generalize to different environments with different arrangements as well as different average characteristics.
It can be observed that the models generalize well to {40%, 6m, 2m} clutter parameters, while the performance degrades for other clutter parameters. It can be concluded that in the InF-DH environment, clutter height has more impact than the clutter density.

CIR
Table 111 Direct path ToA estimation errors tested with test dataset with different clutter parameters.
	CDF Percentile
	Direct path ToA errors [m] 
Model I trained with 40,000 samples from {60%, 6m, 2m}

	
	{40%, 2m, 2m}
	{60%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 6m, 2m}

	50
	1.262
	0.461
	0.110
	0.102

	67
	2.126
	0.768
	0.161
	0.150

	80
	3.181
	1.191
	0.217
	0.201

	90
	4.685
	1.876
	0.292
	0.267



	CDF Percentile
	Direct path ToA errors [m] 
Model II trained with 40,000 samples from {60%, 6m, 2m}

	
	{40%, 2m, 2m}
	{60%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 6m, 2m}

	50
	1.105
	0.339
	0.074
	0.069

	67
	1.878
	0.576
	0.111
	0.102

	80
	2.930
	0.938
	0.151
	0.138

	90
	4.348
	1.563
	0.204
	0.185



	CDF Percentile
	Direct path ToA errors [m] 
Model III trained with 40,000 samples from {60%, 6m, 2m}

	
	{40%, 2m, 2m}
	{60%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 6m, 2m}

	50
	0.970
	0.278
	0.059
	0.055

	67
	1.695
	0.488
	0.088
	0.083

	80
	2.641
	0.809
	0.122
	0.114

	90
	3.899
	1.386
	0.168
	0.155



Table 112 UE 2D positioning errors tested with test dataset with different clutter parameters.
	CDF Percentile
	UE 2D positioning errors [m]
Model I trained with 40,000 samples from {60%, 6m, 2m}

	
	{40%, 2m, 2m}
	{60%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 6m, 2m}

	50
	2.398
	0.874
	0.197
	0.184

	67
	3.581
	1.317
	0.258
	0.238

	80
	5.064
	1.936
	0.322
	0.295

	90
	6.913
	2.935
	0.412
	0.371



	CDF Percentile
	UE 2D positioning errors [m]
Model II trained with 40,000 samples from {60%, 6m, 2m}

	
	{40%, 2m, 2m}
	{60%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 6m, 2m}

	50
	2.044
	0.631
	0.133
	0.123

	67
	3.256
	0.989
	0.178
	0.165

	80
	4.622
	1.512
	0.225
	0.207

	90
	6.424
	2.466
	0.294
	0.260



	CDF Percentile
	UE 2D positioning errors [m]
Model III trained with 40,000 samples from {60%, 6m, 2m}

	
	{40%, 2m, 2m}
	{60%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 6m, 2m}

	50
	1.847
	0.520
	0.107
	0.100

	67
	2.854
	0.854
	0.145
	0.134

	80
	4.052
	1.348
	0.183
	0.172

	90
	5.592
	2.145
	0.240
	0.223
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Table 113 Direct path ToA estimation errors tested with test dataset with different clutter parameters.
	CDF Percentile
	Direct path ToA errors [m] 
Model I trained with 40,000 samples from {60%, 6m, 2m}

	
	{40%, 2m, 2m}
	{60%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 6m, 2m}

	50
	1.090
	0.429
	0.155
	0.149

	67
	1.825
	0.678
	0.226
	0.217

	80
	2.867
	1.020
	0.301
	0.288

	90
	4.400
	1.596
	0.396
	0.377



	CDF Percentile
	Direct path ToA errors [m] 
Model II trained with 40,000 samples from {60%, 6m, 2m}

	
	{40%, 2m, 2m}
	{60%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 6m, 2m}

	50
	0.878
	0.290
	0.102
	0.098

	67
	1.531
	0.464
	0.151
	0.144

	80
	2.472
	0.717
	0.202
	0.193

	90
	3.908
	1.164
	0.268
	0.255



	CDF Percentile
	Direct path ToA errors [m] 
Model III trained with 40,000 samples from {60%, 6m, 2m}

	
	{40%, 2m, 2m}
	{60%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 6m, 2m}

	50
	0.749
	0.223
	0.076
	0.072

	67
	1.367
	0.368
	0.111
	0.106

	80
	2.230
	0.582
	0.151
	0.143

	90
	3.731
	0.989
	0.200
	0.190



Table 114 UE 2D positioning errors tested with test dataset with different clutter parameters.
	CDF Percentile
	UE 2D positioning errors [m]
Model I trained with 40,000 samples from {60%, 6m, 2m}

	
	{40%, 2m, 2m}
	{60%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 6m, 2m}

	50
	1.990
	0.786
	0.282
	0.271

	67
	3.191
	1.171
	0.360
	0.344

	80
	4.706
	1.672
	0.441
	0.426

	90
	6.904
	2.453
	0.549
	0.524



	CDF Percentile
	UE 2D positioning errors [m]
Model II trained with 40,000 samples from {60%, 6m, 2m}

	
	{40%, 2m, 2m}
	{60%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 6m, 2m}

	50
	1.629
	0.538
	0.188
	0.180

	67
	2.633
	0.788
	0.245
	0.236

	80
	4.027
	1.154
	0.304
	0.287

	90
	5.847
	1.852
	0.378
	0.360



	CDF Percentile
	UE 2D positioning errors [m]
Model III trained with 40,000 samples from {60%, 6m, 2m}

	
	{40%, 2m, 2m}
	{60%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 6m, 2m}

	50
	1.446
	0.410
	0.141
	0.134

	67
	2.344
	0.626
	0.182
	0.174

	80
	3.716
	0.942
	0.228
	0.216

	90
	5.654
	1.558
	0.287
	0.271



DP
Table 115 Direct path ToA estimation errors tested with test dataset with different clutter parameters.
	CDF Percentile
	Direct path ToA errors [m] 
Model I trained with 40,000 samples from {60%, 6m, 2m}

	
	{40%, 2m, 2m}
	{60%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 6m, 2m}

	50
	1.703
	0.557
	0.196
	0.184

	67
	3.044
	0.907
	0.285
	0.269

	80
	4.933
	1.410
	0.380
	0.359

	90
	7.627
	2.356
	0.502
	0.469



	CDF Percentile
	Direct path ToA errors [m] 
Model II trained with 40,000 samples from {60%, 6m, 2m}

	
	{40%, 2m, 2m}
	{60%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 6m, 2m}

	50
	1.374
	0.368
	0.131
	0.128

	67
	2.610
	0.602
	0.193
	0.189

	80
	4.264
	0.975
	0.263
	0.256

	90
	6.726
	1.717
	0.352
	0.339



	CDF Percentile
	Direct path ToA errors [m] 
Model III trained with 40,000 samples from {60%, 6m, 2m}

	
	{40%, 2m, 2m}
	{60%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 6m, 2m}

	50
	1.406
	0.313
	0.101
	0.098

	67
	2.644
	0.534
	0.150
	0.145

	80
	4.375
	0.912
	0.203
	0.198

	90
	6.863
	1.698
	0.273
	0.263



Table 116 UE 2D positioning errors tested with test dataset with different clutter parameters.
	CDF Percentile
	UE 2D positioning errors [m]
Model I trained with 40,000 samples from {60%, 6m, 2m}

	
	{40%, 2m, 2m}
	{60%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 6m, 2m}

	50
	3.217
	1.031
	0.354
	0.337

	67
	5.385
	1.544
	0.456
	0.429

	80
	8.195
	2.238
	0.562
	0.521

	90
	11.940
	3.867
	0.705
	0.653



	CDF Percentile
	UE 2D positioning errors [m]
Model II trained with 40,000 samples from {60%, 6m, 2m}

	
	{40%, 2m, 2m}
	{60%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 6m, 2m}

	50
	2.785
	0.667
	0.242
	0.237

	67
	4.682
	1.032
	0.312
	0.306

	80
	7.083
	1.610
	0.396
	0.384

	90
	10.721
	2.806
	0.498
	0.477



	CDF Percentile
	UE 2D positioning errors [m]
Model III trained with 40,000 samples from {60%, 6m, 2m}

	
	{40%, 2m, 2m}
	{60%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 6m, 2m}

	50
	2.702
	0.559
	0.187
	0.182

	67
	4.626
	0.919
	0.242
	0.236

	80
	7.212
	1.487
	0.307
	0.295

	90
	10.460
	2.678
	0.384
	0.371



[bookmark: _Toc131525219]Fine-tuning trained models to environmental parameters changes
To address the performance losses of applying a model trained with the {60%, 6m, 2m} environment dataset (dataset 1f) to different environments, a fast fine-tuning approach is investigated in this section. That is, we apply the same training process to Model I (originally trained with 40,000 samples from {60%, 6m, 2m}) with varying number of samples from a train dataset with same clutter parameters ({40%, 2m, 2m}, i.e., dataset 1a). With a small fast fine-tuning train dataset size, the burden on data collection and training is reduced. A UE transmit power of 23 dBm is used.
We observe that the fine-tuning has a positive effect on the performance on data sets with different clutter height than the original training data set. However, in order to get a UE position estimation error below 1m, the required amount of training data is 20,000 samples for CIR and PDP data. For 32-tap DP data, sub-meter performance is never achieved. Therefore, the benefit of having to collect fewer samples is lost. Moreover, we note that fine-tuning gives better performance than training solely with 40,000 samples from {40%, 2m, 2m}. 
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Figure 49 (Left) ML model direct path ToA estimation error (expressed in meters) distributions and (Right) UE 2D positioning error distributions for using AI/ML outputs with conventional L1 error minimizing positioning solutions for Model I trained with 40,000 samples from {60%, 6m, 2m} and fine-tuned with different number of samples from {40%, 2m, 2m}.

Table 117 Direct path ToA estimation errors (in meters) percentiles for Model I trained with 40,000 samples from {60%, 6m, 2m} and fine-tuned with different number of samples from {40%, 2m, 2m}.
	CDF percentile
	Direct path ToA errors [m] – Model I

	
	Trained with samples from {40%, 2m, 2m}
	Originally trained with 40,000 samples from {60%, 6m, 2m}
and fine-tuned with different number of samples from
{40%, 2m, 2m}
	Trained with samples from {60%, 6m, 2m}

	
	40,000
	40,000
	20,000
	10,000
	4,000
	2,000
	1,000
	40,000

	50
	0.175
	0.156
	0.195
	0.253
	0.376
	0.484
	0.609
	1.262

	67
	0.258
	0.233
	0.293
	0.386
	0.584
	0.747
	0.954
	2.126

	80
	0.355
	0.319
	0.409
	0.546
	0.841
	1.081
	1.379
	3.181

	90
	0.483
	0.434
	0.565
	0.773
	1.214
	1.534
	1.947
	4.685



Table 118 UE 2D positioning error percentiles for Model I trained with 40,000 samples from {60%, 6m, 2m} and fine-tuned with different number of samples from {40%, 2m, 2m}.
	CDF percentile
	UE 2D positioning errors [m] – Model I

	
	Trained with samples from {40%, 2m, 2m}
	Originally trained with 40,000 samples from {60%, 6m, 2m}
and fine-tuned with different number of samples from 
{40%, 2m, 2m}
	Trained with samples from {60%, 6m, 2m}

	
	40,000
	40,000
	20,000
	10,000
	4,000
	2,000
	1,000
	40,000

	50
	0.317
	0.284
	0.363
	0.471
	0.7
	0.899
	1.141
	2.398

	67
	0.418
	0.38
	0.485
	0.646
	0.982
	1.265
	1.645
	3.581

	80
	0.533
	0.486
	0.626
	0.854
	1.337
	1.674
	2.174
	5.064

	90
	0.697
	0.621
	0.818
	1.141
	1.806
	2.284
	2.885
	6.913



Furthermore, once these models are fine-tuned to operate for a new environment, they no long perform adequately for the original environment. The following tables summarize our investigation results. The model originally trained with {60%, 6m, 2m} samples is fine-tuned to operate in the {40%, 2m, 2m} environment. We tested the performance the fine-tuned model in the original {60%, 6m, 2m} environment. It can be observed that performance of the model fine-tuned even with small number of samples from the new environment is already substantially degraded. While the performance recovers with more fine-tuning samples, it nonetheless never regains state-of-the-art performance.

Table 119 Positioning error percentiles for Model I trained with 40,000 samples from {60%, 6m, 2m} and fine-tuned with different number of samples from {40%, 2m, 2m} and test on {60%, 6m, 2m} testset.
	CDF percentile
	UE 2D positioning errors [m] – Model I

	
	Trained with samples from {60%, 6m, 2m}
	Originally trained with 40,000 samples from {60%, 6m, 2m}
and fine-tuned with different number of samples from {40%, 2m, 2m}

	
	40,000
	40,000
	20,000
	10,000
	4,000
	2,000
	1,000

	50
	0.184
	0.598
	0.682
	0.813
	1.084
	1.184
	1.375

	67
	0.238
	0.796
	0.914
	1.093
	1.442
	1.633
	1.887

	80
	0.295
	1.026
	1.187
	1.43
	1.874
	2.144
	2.488

	90
	0.371
	1.358
	1.549
	1.865
	2.473
	2.911
	3.258
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Figure 50 (Left) ML model direct path ToA estimation error (expressed in meters) distributions and (Right) UE 2D positioning error distributions for using AI/ML outputs with conventional L1 error minimizing positioning solutions for Model I trained with 40,000 samples from {60%, 6m, 2m} and fine-tuned with different number of samples from {40%, 2m, 2m}.
Table 120 Direct path ToA estimation errors (in meters) percentiles for Model I trained with 40,000 samples from {60%, 6m, 2m} and fine-tuned with different number of samples from {40%, 2m, 2m}.
	CDF percentile
	Direct path ToA errors [m] – Model I

	
	Trained with samples from {40%, 2m, 2m}
	Originally trained with 40,000 samples from {60%, 6m, 2m}
and fine-tuned with different number of samples from
{40%, 2m, 2m}
	Trained with samples from {60%, 6m, 2m}

	
	40,000
	40,000
	20,000
	10,000
	4,000
	2,000
	1,000
	40,000

	50
	0.228
	0.213
	0.248
	0.308
	0.414
	0.518
	0.628
	1.090

	67
	0.334
	0.31
	0.369
	0.461
	0.638
	0.798
	0.978
	1.825

	80
	0.450
	0.418
	0.504
	0.639
	0.902
	1.138
	1.388
	2.867

	90
	0.607
	0.557
	0.681
	0.88
	1.262
	1.611
	1.948
	4.400



Table 121 UE 2D positioning error percentiles for Model I trained with 40,000 samples from {60%, 6m, 2m} and fine-tuned with different number of samples from {40%, 2m, 2m}.
	CDF percentile
	UE 2D positioning errors [m] – Model I

	
	Trained with samples from {40%, 2m, 2m}
	Originally trained with 40,000 samples from {60%, 6m, 2m}
and fine-tuned with different number of samples from 
{40%, 2m, 2m}
	Trained with samples from {60%, 6m, 2m}

	
	40,000
	40,000
	20,000
	10,000
	4,000
	2,000
	1,000
	40,000

	50
	0.409
	0.381
	0.452
	0.563
	0.77
	0.96
	1.193
	1.990

	67
	0.530
	0.506
	0.607
	0.761
	1.063
	1.355
	1.646
	3.191

	80
	0.688
	0.628
	0.766
	0.989
	1.405
	1.79
	2.157
	4.706

	90
	0.854
	0.782
	0.983
	1.269
	1.879
	2.378
	2.843
	6.904



Furthermore, once these models are fine-tuned to operate for a new environment, they no long perform adequately for the original environment. The following tables summarize our investigation results. The model originally trained with {60%, 6m, 2m} samples is fine-tuned to operate in the {40%, 2m, 2m} environment. We tested the performance the fine-tuned model in the original {60%, 6m, 2m} environment. It can be observed that performance of the model fine-tuned even with small number of samples from the new environment is already substantially degraded. While the performance recovers with more fine-tuning samples, it nonetheless never regains state-of-the-art performance.
Table 122 Positioning error percentiles for Model I trained with 40,000 samples from {60%, 6m, 2m} and fine-tuned with different number of samples from {40%, 2m, 2m} and test on {60%, 6m, 2m} testset.
	CDF percentile
	UE 2D positioning errors [m] – Model I

	
	Trained with samples from {60%, 6m, 2m}
	Originally trained with 40,000 samples from {60%, 6m, 2m}
and fine-tuned with different number of samples from {40%, 2m, 2m}

	
	40,000
	40,000
	20,000
	10,000
	4,000
	2,000
	1,000

	50
	0.271
	0.657
	0.716
	0.854
	1.022
	1.216
	1.293

	67
	0.344
	0.854
	0.94
	1.134
	1.378
	1.634
	1.734

	80
	0.426
	1.078
	1.178
	1.424
	1.784
	2.162
	2.252

	90
	0.524
	1.383
	1.515
	1.803
	2.352
	2.917
	2.911
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Figure 51 (Left) ML model direct path ToA estimation error (expressed in meters) distributions and (Right) UE 2D positioning error distributions for using AI/ML outputs with conventional L1 error minimizing positioning solutions for Model I trained with 40,000 samples from {60%, 6m, 2m} and fine-tuned with different number of samples from {40%, 2m, 2m}.
Table 123 Direct path ToA estimation errors (in meters) percentiles for Model I trained with 40,000 samples from {60%, 6m, 2m} and fine-tuned with different number of samples from {40%, 2m, 2m}.
	CDF percentile
	Direct path ToA errors [m] – Model I

	
	Trained with samples from {40%, 2m, 2m}
	Originally trained with 40,000 samples from {60%, 6m, 2m}
and fine-tuned with different number of samples from
{40%, 2m, 2m}
	Trained with samples from {60%, 6m, 2m}

	
	40,000
	40,000
	20,000
	10,000
	4,000
	2,000
	1,000
	40,000

	50
	0.284
	0.266
	0.323
	0.391
	0.52
	0.657
	0.835
	1.703

	67
	0.415
	0.393
	0.48
	0.581
	0.807
	1.02
	1.292
	3.044

	80
	0.561
	0.531
	0.652
	0.801
	1.152
	1.46
	1.847
	4.933

	90
	0.752
	0.713
	0.884
	1.115
	1.661
	2.088
	2.626
	7.627



Table 124 UE 2D positioning error percentiles for Model I trained with 40,000 samples from {60%, 6m, 2m} and fine-tuned with different number of samples from {40%, 2m, 2m}.
	CDF percentile
	UE 2D positioning errors [m] – Model I

	
	Trained with samples from {40%, 2m, 2m}
	Originally trained with 40,000 samples from {60%, 6m, 2m}
and fine-tuned with different number of samples from 
{40%, 2m, 2m}
	Trained with samples from {60%, 6m, 2m}

	
	40,000
	40,000
	20,000
	10,000
	4,000
	2,000
	1,000
	40,000

	50
	0.519
	0.481
	0.594
	0.706
	0.957
	1.247
	1.543
	3.217

	67
	0.674
	0.627
	0.773
	0.954
	1.352
	1.752
	2.177
	5.385

	80
	0.840
	0.797
	1.004
	1.226
	1.826
	2.3
	2.938
	8.195

	90
	1.071
	1.025
	1.281
	1.614
	2.455
	3.164
	3.972
	11.940



Furthermore, once these models are fine-tuned to operate for a new environment, they no long perform adequately for the original environment. The following tables summarize our investigation results. The model originally trained with {60%, 6m, 2m} samples is fine-tuned to operate in the {40%, 2m, 2m} environment. We tested the performance the fine-tuned model in the original {60%, 6m, 2m} environment. It can be observed that performance of the model fine-tuned even with small number of samples from the new environment is already substantially degraded. While the performance recovers with more fine-tuning samples, it nonetheless never regains state-of-the-art performance.

Table 125 Positioning error percentiles for Model I trained with 40,000 samples from {60%, 6m, 2m} and fine-tuned with different number of samples from {40%, 2m, 2m} and test on {60%, 6m, 2m} testset.
	CDF percentile
	UE 2D positioning errors [m] – Model I

	
	Trained with samples from {60%, 6m, 2m}
	Originally trained with 40,000 samples from {60%, 6m, 2m}
and fine-tuned with different number of samples from {40%, 2m, 2m}

	
	40,000
	40,000
	20,000
	10,000
	4,000
	2,000
	1,000

	50
	0.337
	0.827
	0.937
	1.033
	1.259
	1.426
	1.648

	67
	0.429
	1.109
	1.233
	1.382
	1.719
	1.986
	2.226

	80
	0.521
	1.41
	1.591
	1.834
	2.29
	2.59
	2.949

	90
	0.653
	1.88
	2.143
	2.43
	3.264
	3.58
	4.047




[bookmark: _Toc131525220]Models trained with mixed (environmental parameters) datasets
To address the performance losses of applying a model trained with the {60%, 6m, 2m} environment dataset (dataset 1f) to different environments, another approach is to train the model with a mix of realizations from more than one environmental dataset. In this section, we investigate the performance of Model I when trained with an even mix of the {60%, 6m, 2m} and {40%, 2m, 2m} datasets, i.e., datasets 1f and 1a. We then test the trained models on four different environmental datasets (datasets 1a, 1d, 1c and 1f). A UE transmit power of 23 dBm is used.
For comparison purpose, we include the results of models trained with data from a single environment. Training with the mixed data set gives performance improvements for {40%, 2m, 2m} and {60%, 2m, 2m} environments, at the cost of a slight degradation for {40%, 6m, 2m} and {60%, 6m, 2m} environments, compared to training only on {60%, 6m, 2m}. We also note that when training with a mixed data set, the performance becomes better than training only with 40,000 samples from {40%, 2m, 2m}.
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Figure 52 (Left) ML model direct path ToA estimation error (expressed in meters) distributions and (Right) UE 2D positioning error distributions for using AI/ML outputs with conventional L1 error minimizing positioning solutions for the model trained with a combination of data from {60%, 6m, 2m} and {40%, 2m, 2m}, and tested with test dataset with different clutter parameters.
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Table 126 Direct path ToA estimation errors from the model trained with a combination of data from {60%, 6m, 2m} and {40%, 2m, 2m}, and tested with test dataset with different clutter parameters.
	CDF Percentile
	Direct path ToA errors [m] 
Model I trained with 40,000 samples from {60%, 6m, 2m}

	
	{40%, 2m, 2m}
	{60%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 6m, 2m}

	50
	1.262
	0.461
	0.110
	0.102

	67
	2.126
	0.768
	0.161
	0.150

	80
	3.181
	1.191
	0.217
	0.201

	90
	4.685
	1.876
	0.292
	0.267



	CDF Percentile
	Direct path ToA errors [m] 
Model I trained with 40,000 samples from {40%, 2m, 2m}

	
	{40%, 2m, 2m}
	{60%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 6m, 2m}

	50
	0.175
	0.200
	0.346
	0.371

	67
	0.258
	0.294
	0.523
	0.561

	80
	0.355
	0.402
	0.728
	0.784

	90
	0.483
	0.547
	1.014
	1.090



	CDF Percentile
	Direct path ToA errors [m] - Model I trained with 
40,000 samples from {60%, 6m, 2m} and 40,000 samples from {40%, 2m, 2m}

	
	{40%, 2m, 2m}
	{60%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 6m, 2m}

	50
	0.167
	0.151
	0.122
	0.118

	67
	0.246
	0.222
	0.177
	0.173

	80
	0.333
	0.300
	0.237
	0.231

	90
	0.449
	0.398
	0.313
	0.304



Table 127 UE 2D positioning errors for the model trained with a combination of data from {60%, 6m, 2m} and {40%, 2m, 2m}, and tested with test dataset with different clutter parameters.
	CDF Percentile
	UE 2D positioning errors [m] 
Model I trained with 40,000 samples from {60%, 6m, 2m}

	
	{40%, 2m, 2m}
	{60%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 6m, 2m}

	50
	2.398
	0.874
	0.197
	0.184

	67
	3.581
	1.317
	0.258
	0.238

	80
	5.064
	1.936
	0.322
	0.295

	90
	6.913
	2.935
	0.412
	0.371



	CDF Percentile
	UE 2D positioning errors [m] 
Model I trained with 40,000 samples from {40%, 2m, 2m}

	
	{40%, 2m, 2m}
	{60%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 6m, 2m}

	50
	0.317
	0.366
	0.647
	0.691

	67
	0.418
	0.479
	0.862
	0.931

	80
	0.533
	0.612
	1.131
	1.202

	90
	0.697
	0.800
	1.477
	1.591



	CDF Percentile
	UE 2D positioning errors [m] - Model I trained with 
40,000 samples from {60%, 6m, 2m} and 40,000 samples from {40%, 2m, 2m}

	
	{40%, 2m, 2m}
	{60%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 6m, 2m}

	50
	0.305
	0.277
	0.215
	0.212

	67
	0.399
	0.362
	0.278
	0.274

	80
	0.498
	0.446
	0.350
	0.339

	90
	0.641
	0.564
	0.428
	0.415



PDP
Table 128 Direct path ToA estimation errors from the model trained with a combination of data from {60%, 6m, 2m} and {40%, 2m, 2m}, and tested with test dataset with different clutter parameters.
	CDF Percentile
	Direct path ToA errors [m] 
Model I trained with 40,000 samples from {60%, 6m, 2m}

	
	{40%, 2m, 2m}
	{60%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 6m, 2m}

	50
	1.090
	0.429
	0.155
	0.149

	67
	1.825
	0.678
	0.226
	0.217

	80
	2.867
	1.020
	0.301
	0.288

	90
	4.400
	1.596
	0.396
	0.377



	CDF Percentile
	Direct path ToA errors [m] 
Model I trained with 40,000 samples from {40%, 2m, 2m}

	
	{40%, 2m, 2m}
	{60%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 6m, 2m}

	50
	0.228
	0.250
	0.364
	0.385

	67
	0.334
	0.364
	0.534
	0.564

	80
	0.450
	0.489
	0.722
	0.765

	90
	0.607
	0.649
	0.974
	1.038



	CDF Percentile
	Direct path ToA errors [m] - Model I trained with 
40,000 samples from {60%, 6m, 2m} and 40,000 samples from {40%, 2m, 2m}

	
	{40%, 2m, 2m}
	{60%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 6m, 2m}

	50
	0.219
	0.203
	0.169
	0.166

	67
	0.325
	0.295
	0.247
	0.242

	80
	0.436
	0.392
	0.329
	0.323

	90
	0.576
	0.516
	0.433
	0.426



Table 129 UE 2D positioning errors for the model trained with a combination of data from {60%, 6m, 2m} and {40%, 2m, 2m}, and tested with test dataset with different clutter parameters.
	CDF Percentile
	UE 2D positioning errors [m] 
Model I trained with 40,000 samples from {60%, 6m, 2m}

	
	{40%, 2m, 2m}
	{60%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 6m, 2m}

	50
	1.990
	0.786
	0.282
	0.271

	67
	3.191
	1.171
	0.360
	0.344

	80
	4.706
	1.672
	0.441
	0.426

	90
	6.904
	2.453
	0.549
	0.524



	CDF Percentile
	UE 2D positioning errors [m] 
Model I trained with 40,000 samples from {40%, 2m, 2m}

	
	{40%, 2m, 2m}
	{60%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 6m, 2m}

	50
	0.409
	0.448
	0.652
	0.689

	67
	0.530
	0.589
	0.867
	0.920

	80
	0.688
	0.727
	1.094
	1.166

	90
	0.854
	0.900
	1.408
	1.518



	CDF Percentile
	UE 2D positioning errors [m] - Model I trained with 
40,000 samples from {60%, 6m, 2m} and 40,000 samples from {40%, 2m, 2m}

	
	{40%, 2m, 2m}
	{60%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 6m, 2m}

	50
	0.404
	0.369
	0.307
	0.301

	67
	0.517
	0.472
	0.396
	0.387

	80
	0.648
	0.573
	0.482
	0.473

	90
	0.816
	0.707
	0.592
	0.586




DP
Table 130 Direct path ToA estimation errors from the model trained with a combination of data from {60%, 6m, 2m} and {40%, 2m, 2m}, and tested with test dataset with different clutter parameters.
	CDF Percentile
	Direct path ToA errors [m] 
Model I trained with 40,000 samples from {60%, 6m, 2m}

	
	{40%, 2m, 2m}
	{60%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 6m, 2m}

	50
	1.703
	0.557
	0.196
	0.184

	67
	3.044
	0.907
	0.285
	0.269

	80
	4.933
	1.410
	0.380
	0.359

	90
	7.627
	2.356
	0.502
	0.469



	CDF Percentile
	Direct path ToA errors [m] 
Model I trained with 40,000 samples from {40%, 2m, 2m}

	
	{40%, 2m, 2m}
	{60%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 6m, 2m}

	50
	0.284
	0.304
	0.454
	0.473

	67
	0.415
	0.444
	0.676
	0.712

	80
	0.561
	0.600
	0.938
	0.990

	90
	0.752
	0.807
	1.302
	1.383



	CDF Percentile
	Direct path ToA errors [m] - Model I trained with 
40,000 samples from {60%, 6m, 2m} and 40,000 samples from {40%, 2m, 2m}

	
	{40%, 2m, 2m}
	{60%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 6m, 2m}

	50
	0.273
	0.254
	0.211
	0.208

	67
	0.409
	0.370
	0.307
	0.303

	80
	0.553
	0.494
	0.408
	0.403

	90
	0.744
	0.656
	0.536
	0.530



Table 131 UE 2D positioning errors for the model trained with a combination of data from {60%, 6m, 2m} and {40%, 2m, 2m}, and tested with test dataset with different clutter parameters.
	CDF Percentile
	UE 2D positioning errors [m] 
Model I trained with 40,000 samples from {60%, 6m, 2m}

	
	{40%, 2m, 2m}
	{60%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 6m, 2m}

	50
	3.217
	1.031
	0.354
	0.337

	67
	5.385
	1.544
	0.456
	0.429

	80
	8.195
	2.238
	0.562
	0.521

	90
	11.940
	3.867
	0.705
	0.653



	CDF Percentile
	UE 2D positioning errors [m] 
Model I trained with 40,000 samples from {40%, 2m, 2m}

	
	{40%, 2m, 2m}
	{60%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 6m, 2m}

	50
	0.519
	0.555
	0.827
	0.876

	67
	0.674
	0.726
	1.124
	1.178

	80
	0.840
	0.918
	1.430
	1.506

	90
	1.071
	1.168
	1.888
	2.047



	CDF Percentile
	UE 2D positioning errors [m] - Model I trained with 
40,000 samples from {60%, 6m, 2m} and 40,000 samples from {40%, 2m, 2m}

	
	{40%, 2m, 2m}
	{60%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 6m, 2m}

	50
	0.500
	0.459
	0.378
	0.378

	67
	0.659
	0.596
	0.486
	0.481

	80
	0.828
	0.727
	0.600
	0.591

	90
	1.052
	0.919
	0.762
	0.750



[bookmark: _Toc131525221]Performance of ML models under different network synchronization errors
In this section, we investigate and analyze the performance of the ML models against network synchronization errors. We use Model I trained with 40,000 samples without network synchronization errors and trained with network synchronization errors with standard deviation (STD) 25 ns and 50 ns. Then, we test the models against test dataset 1f with random network synchronization errors at various STD values. As agreed in a previous RAN1 meeting, the random network synchronization errors are generated according to a truncated Gaussian distribution with a (pre-truncation) STD (aka, ) and truncation at ±2×STD (aka,  ). It can be observed that:
· In all evaluated models, the UE position estimation accuracy degrades gradually as the network synchronization error increases. However, the decrease is smaller when training with higher network synchronization error. 
· The UE position estimation errors for the model trained without network synchronization errors is more susceptible to network synchronization error, where the 90%-tile UE position estimation error goes from below 0.5 m to over 12 m (for CIR and PDP data) m when testing on data with increasing network synchronization error from STD = 0 ns to STD = 50 ns.
· However, the UE position estimation error for the model trained with network synchronization errors of STD = 50 ns is more robust to network synchronization error, where the 90%-tile UE position estimation error increases only slightly when increasing network synchronization error from STD = 0 ns to STD = 50 ns.
· The model trained with network synchronization errors of STD = 25 ns performs better than the one trained with network synchronization errors of STD = 50 ns up to network synchronization error of STD = 25 ns, while the latter shows advantage for network synchronization errors of STD = 50 ns.
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Figure 53 (Left) ML model direct path ToA estimation error (expressed in meters) distributions and (Right) UE 2D positioning error distributions for using AI/ML outputs with conventional L1 error minimizing positioning solutions for Model I trained with 40,000 samples from {60%, 6m, 2m} and with different NW sync. error settings at training and different NW sync. error settings at testing.
Table 132 Direct path ToA estimation errors (in meters) percentiles for Model I trained with 40,000 samples from {60%, 6m, 2m} and various network synchronization errors and tested with various network synchronization STD values (X ns).
	CDF Percentile
	Direct path ToA errors [m]
Model I trained with 40,000 samples with NW STD = 0 ns 

	
	0 ns
	5 ns
	10 ns
	25 ns
	50 ns

	50
	0.118
	0.141
	0.189
	0.479
	2.225

	67
	0.172
	0.207
	0.282
	0.754
	3.843

	80
	0.230
	0.280
	0.386
	1.113
	5.977

	90
	0.305
	0.373
	0.527
	1.719
	9.090



	CDF Percentile
	Direct path ToA errors [m]
Model I trained with 40,000 samples with NW STD = 25 ns 

	
	0 ns
	5 ns
	10 ns
	25 ns
	50 ns

	50
	0.102
	0.104
	0.106
	0.122
	0.199

	67
	0.150
	0.151
	0.155
	0.180
	0.298

	80
	0.201
	0.202
	0.209
	0.242
	0.414

	90
	0.267
	0.268
	0.276
	0.319
	0.580



	CDF Percentile
	Direct path ToA errors [m]
Model I trained with 40,000 samples with NW STD = 50 ns 

	
	0 ns
	5 ns
	10 ns
	25 ns
	50 ns

	50
	0.114
	0.113
	0.115
	0.121
	0.144

	67
	0.167
	0.167
	0.168
	0.177
	0.213

	80
	0.225
	0.224
	0.225
	0.237
	0.286

	90
	0.297
	0.297
	0.298
	0.317
	0.379



Table 133 UE 2D positioning errors percentiles for Model I trained with 40,000 samples from {60%, 6m, 2m} and various network synchronization errors and tested with various network synchronization STD values (X ns).
	CDF Percentile
	UE 2D positioning errors [m]
Model I trained with 40,000 samples with NW STD = 0 ns 

	
	0 ns
	5 ns
	10 ns
	25 ns
	50 ns

	50
	0.210
	0.257
	0.341
	0.855
	4.151

	67
	0.275
	0.333
	0.453
	1.226
	6.581

	80
	0.343
	0.418
	0.579
	1.722
	9.710

	90
	0.423
	0.518
	0.77
	2.553
	13.514



	CDF Percentile
	UE 2D positioning errors [m]
Model I trained with 40,000 samples with NW STD = 25 ns 

	
	0 ns
	5 ns
	10 ns
	25 ns
	50 ns

	50
	0.184
	0.186
	0.192
	0.222
	0.356

	67
	0.238
	0.239
	0.250
	0.291
	0.478

	80
	0.295
	0.299
	0.308
	0.361
	0.617

	90
	0.371
	0.372
	0.376
	0.444
	0.855



	CDF Percentile
	UE 2D positioning errors [m]
Model I trained with 40,000 samples with NW STD = 50 ns 

	
	0 ns
	5 ns
	10 ns
	25 ns
	50 ns

	50
	0.204
	0.203
	0.205
	0.218
	0.265

	67
	0.267
	0.263
	0.266
	0.283
	0.339

	80
	0.329
	0.330
	0.333
	0.353
	0.423

	90
	0.410
	0.412
	0.412
	0.436
	0.522
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Figure 54 (Left) ML model direct path ToA estimation error (expressed in meters) distributions and (Right) UE 2D positioning error distributions for using AI/ML outputs with conventional L1 error minimizing positioning solutions for Model I trained with 40,000 samples from {60%, 6m, 2m} and with different NW sync. error settings at training and different NW sync. error settings at testing.

Table 134 Direct path ToA estimation errors (in meters) percentiles for Model I trained with 40,000 samples from {60%, 6m, 2m} and various network synchronization errors and tested with various network synchronization STD values (X ns).
	CDF Percentile
	Direct path ToA errors [m]
Model I trained with 40,000 samples with NW STD = 0 ns 

	
	0 ns
	5 ns
	10 ns
	25 ns
	50 ns

	50
	0.164
	0.184
	0.229
	0.563
	2.761

	67
	0.239
	0.269
	0.34
	0.884
	4.909

	80
	0.32
	0.361
	0.461
	1.32
	7.719

	90
	0.421
	0.478
	0.624
	2.08
	11.618



	CDF Percentile
	Direct path ToA errors [m]
Model I trained with 40,000 samples with NW STD = 25 ns 

	
	0 ns
	5 ns
	10 ns
	25 ns
	50 ns

	50
	0.149
	0.15
	0.151
	0.174
	0.27

	67
	0.216
	0.219
	0.222
	0.255
	0.4

	80
	0.288
	0.289
	0.295
	0.342
	0.553

	90
	0.377
	0.379
	0.389
	0.455
	0.755



	CDF Percentile
	Direct path ToA errors [m]
Model I trained with 40,000 samples with NW STD = 50 ns 

	
	0 ns
	5 ns
	10 ns
	25 ns
	50 ns

	50
	0.153
	0.153
	0.154
	0.161
	0.186

	67
	0.224
	0.224
	0.225
	0.236
	0.272

	80
	0.3
	0.3
	0.302
	0.315
	0.364

	90
	0.395
	0.394
	0.395
	0.415
	0.48



Table 135 UE 2D positioning errors percentiles for Model I trained with 40,000 samples from {60%, 6m, 2m} and various network synchronization errors and tested with various network synchronization STD values (X ns).
	CDF Percentile
	UE 2D positioning errors [m]
Model I trained with 40,000 samples with NW STD = 0 ns 

	
	0 ns
	5 ns
	10 ns
	25 ns
	50 ns

	50
	0.299
	0.336
	0.415
	1.005
	4.986

	67
	0.385
	0.435
	0.543
	1.405
	8.181

	80
	0.475
	0.537
	0.692
	2.013
	11.893

	90
	0.589
	0.67
	0.876
	2.942
	16.501



	CDF Percentile
	UE 2D positioning errors [m]
Model I trained with 40,000 samples with NW STD = 25 ns 

	
	0 ns
	5 ns
	10 ns
	25 ns
	50 ns

	50
	0.299
	0.336
	0.415
	1.005
	4.986

	67
	0.385
	0.435
	0.543
	1.405
	8.181

	80
	0.475
	0.537
	0.692
	2.013
	11.893

	90
	0.589
	0.67
	0.876
	2.942
	16.501



	CDF Percentile
	UE 2D positioning errors [m]
Model I trained with 40,000 samples with NW STD = 50 ns 

	
	0 ns
	5 ns
	10 ns
	25 ns
	50 ns

	50
	0.282
	0.284
	0.284
	0.296
	0.342

	67
	0.361
	0.36
	0.366
	0.381
	0.444

	80
	0.449
	0.447
	0.447
	0.467
	0.551

	90
	0.541
	0.548
	0.548
	0.574
	0.675
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Figure 55 (Left) ML model direct path ToA estimation error (expressed in meters) distributions and (Right) UE 2D positioning error distributions for using AI/ML outputs with conventional L1 error minimizing positioning solutions for Model I trained with 40,000 samples from {60%, 6m, 2m} and with different NW sync. error settings at training and different NW sync. error settings at testing.

Table 136 Direct path ToA estimation errors (in meters) percentiles for Model I trained with 40,000 samples from {60%, 6m, 2m} and various network synchronization errors and tested with various network synchronization STD values (X ns).
	CDF Percentile
	Direct path ToA errors [m]
Model I trained with 40,000 samples with NW STD = 0 ns 

	
	0 ns
	5 ns
	10 ns
	25 ns
	50 ns

	50
	0.205
	0.215
	0.235
	0.38
	1.287

	67
	0.3
	0.315
	0.342
	0.567
	2.242

	80
	0.405
	0.421
	0.458
	0.789
	3.725

	90
	0.535
	0.554
	0.613
	1.099
	6.395



	CDF Percentile
	Direct path ToA errors [m]
Model I trained with 40,000 samples with NW STD = 25 ns 

	
	0 ns
	5 ns
	10 ns
	25 ns
	50 ns

	50
	0.184
	0.186
	0.191
	0.226
	0.375

	67
	0.269
	0.273
	0.279
	0.332
	0.556

	80
	0.359
	0.366
	0.375
	0.441
	0.771

	90
	0.469
	0.483
	0.495
	0.588
	1.094



	CDF Percentile
	Direct path ToA errors [m]
Model I trained with 40,000 samples with NW STD = 50 ns 

	
	0 ns
	5 ns
	10 ns
	25 ns
	50 ns

	50
	0.219
	0.22
	0.22
	0.231
	0.277

	67
	0.319
	0.319
	0.322
	0.338
	0.407

	80
	0.426
	0.429
	0.431
	0.451
	0.54

	90
	0.557
	0.562
	0.568
	0.597
	0.718



Table 137 UE 2D positioning errors percentiles for Model I trained with 40,000 samples from {60%, 6m, 2m} and various network synchronization errors and tested with various network synchronization STD values (X ns).
	CDF Percentile
	UE 2D positioning errors [m]
Model I trained with 40,000 samples with NW STD = 0 ns 

	
	0 ns
	5 ns
	10 ns
	25 ns
	50 ns

	50
	0.373
	0.395
	0.418
	0.707
	2.399

	67
	0.490
	0.502
	0.552
	0.916
	3.864

	80
	0.597
	0.623
	0.691
	1.198
	6.192

	90
	0.740
	0.763
	0.860
	1.622
	10.301



	CDF Percentile
	UE 2D positioning errors [m]
Model I trained with 40,000 samples with NW STD = 25 ns 

	
	0 ns
	5 ns
	10 ns
	25 ns
	50 ns

	50
	0.337
	0.342
	0.35
	0.413
	0.671

	67
	0.429
	0.442
	0.451
	0.53
	0.904

	80
	0.521
	0.546
	0.559
	0.657
	1.162

	90
	0.653
	0.667
	0.692
	0.833
	1.637



	CDF Percentile
	UE 2D positioning errors [m]
Model I trained with 40,000 samples with NW STD = 50 ns 

	
	0 ns
	5 ns
	10 ns
	25 ns
	50 ns

	50
	0.393
	0.397
	0.402
	0.419
	0.506

	67
	0.514
	0.51
	0.527
	0.545
	0.654

	80
	0.63
	0.633
	0.643
	0.686
	0.815

	90
	0.778
	0.782
	0.796
	0.851
	1.023




[bookmark: _Toc131525222]Performance of ML models under different train/test SNR mismatch
The SNRs before considering shadowing and fast fading are
· Between 21.9 and 52.3 dB for 23 dBm UE power.
· Between 6.9 and 37.3 dB for 8 dBm UE power.
· Between -8.1 and 22.3 dB for -7 dBm UE power.
The centralized model exhibits very high sensitivity to train/test SNR mismatch, particularly when the CIR input type is used. With an SNR mismatch of 15 dB, all models using CIR inputs cannot achieve acceptable positioning accuracy.
The models using PDP inputs exhibit better performance than those using CIR inputs. In particular, the model trained with 23 dBm UE power can operate with high performance when the UE power is reduced by 15 dB. However, for all other tested cases, the models still cannot achieve acceptable positioning accuracy.
The models using 32-tap DP data as input are remarkable robust to SNR mismatch. Only a small position estimation accuracy is lost.
CIR
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Figure 56 (Left) ML model direct path ToA estimation error (expressed in meters) distributions and (Right) UE 2D positioning error distributions for using AI/ML outputs with conventional L1 error minimizing positioning solutions for Model I trained with 40,000 samples from {60%, 6m, 2m} and with different UE Power settings at training and UE power settings at testing.
Table 138 Direct path ToA estimation errors [m] for {60%, 6m, 2m} test dataset at different percentiles.
	CDF Percentile
	Model I trained with 23 dBm UE power

	
	23 dBm UE power
	8 dBm UE power
	-7 dBm UE power

	50
	0.102
	0.493
	7.641

	67
	0.150
	0.743
	11.627

	80
	0.201
	1.044
	16.871

	90
	0.267
	1.473
	24.453



	CDF Percentile
	Model I trained with -7 dBm UE power

	
	23 dBm UE power
	8 dBm UE power
	-7 dBm UE power

	50
	1.191
	0.843
	0.146

	67
	2.033
	1.353
	0.214

	80
	3.237
	2.074
	0.284

	90
	5.044
	3.196
	0.370



Table 139 UE 2D positioning errors [m] for {60%, 6m, 2m} test dataset at different percentiles.
	CDF Percentile
	Model I trained with 23 dBm UE power

	
	23 dBm UE power
	8 dBm UE power
	-7 dBm UE power

	50
	0.184
	0.896
	17.81

	67
	0.238
	1.232
	28.901

	80
	0.295
	1.674
	38.837

	90
	0.371
	2.253
	52.587



	CDF Percentile
	Model I trained with -7 dBm UE power

	
	23 dBm UE power
	8 dBm UE power
	-7 dBm UE power

	50
	2.088
	1.452
	0.268

	67
	3.370
	2.191
	0.338

	80
	5.071
	3.252
	0.415

	90
	7.664
	4.938
	0.513



PDP
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Figure 57 (Left) ML model direct path ToA estimation error (expressed in meters) distributions and (Right) UE 2D positioning error distributions for using AI/ML outputs with conventional L1 error minimizing positioning solutions for Model I trained with 40,000 samples from {60%, 6m, 2m} and with different UE Power settings at training and UE power settings at testing .
Table 140 Direct path ToA estimation errors [m] for {60%, 6m, 2m} test dataset at different percentiles.
	CDF Percentile
	Model I trained with 23 dBm UE power

	
	23 dBm UE power
	8 dBm UE power
	-7 dBm UE power

	50
	0.149
	0.181
	0.978

	67
	0.216
	0.267
	1.512

	80
	0.288
	0.357
	2.174

	90
	0.377
	0.474
	3.187



	CDF Percentile
	Model I trained with -7 dBm UE power

	
	23 dBm UE power
	8 dBm UE power
	-7 dBm UE power

	50
	1.504
	1.054
	0.16

	67
	2.658
	1.772
	0.232

	80
	4.355
	2.811
	0.308

	90
	7.322
	4.522
	0.407



Table 141 UE 2D positioning errors [m] for {60%, 6m, 2m} test dataset at different percentiles.
	CDF Percentile
	Model I trained with 23 dBm UE power

	
	23 dBm UE power
	8 dBm UE power
	-7 dBm UE power

	50
	0.270
	0.328
	1.795

	67
	0.344
	0.423
	2.547

	80
	0.424
	0.523
	3.428

	90
	0.520
	0.648
	4.765



	CDF Percentile
	Model I trained with -7 dBm UE power

	
	23 dBm UE power
	8 dBm UE power
	-7 dBm UE power

	50
	2.718
	1.895
	0.29

	67
	4.284
	2.866
	0.373

	80
	6.442
	4.247
	0.463

	90
	10.567
	6.485
	0.566




DP
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Figure 58 (Left) ML model direct path ToA estimation error (expressed in meters) distributions and (Right) UE 2D positioning error distributions for using AI/ML outputs with conventional L1 error minimizing positioning solutions for Model I trained with 40,000 samples from {60%, 6m, 2m} and with different UE Power settings at training and UE power settings at testing .
Table 138 Direct path ToA estimation errors [m] for {60%, 6m, 2m} test dataset at different percentiles.
	CDF Percentile
	Model I trained with 23 dBm UE power

	
	23 dBm UE power
	8 dBm UE power
	-7 dBm UE power

	50
	0.184
	0.189
	0.236

	67
	0.269
	0.274
	0.346

	80
	0.359
	0.363
	0.467

	90
	0.469
	0.476
	0.630



	CDF Percentile
	Model I trained with -7 dBm UE power

	
	23 dBm UE power
	8 dBm UE power
	-7 dBm UE power

	50
	0.203
	0.204
	0.196

	67
	0.296
	0.296
	0.287

	80
	0.398
	0.397
	0.382

	90
	0.529
	0.528
	0.499



Table 139 UE 2D positioning errors [m] for {60%, 6m, 2m} test dataset at different percentiles.
	CDF Percentile
	Model I trained with 23 dBm UE power

	
	23 dBm UE power
	8 dBm UE power
	-7 dBm UE power

	50
	0.337
	0.341
	0.422

	67
	0.429
	0.434
	0.553

	80
	0.521
	0.532
	0.698

	90
	0.653
	0.656
	0.899



	CDF Percentile
	Model I trained with -7 dBm UE power

	
	23 dBm UE power
	8 dBm UE power
	-7 dBm UE power

	50
	0.362
	0.365
	0.355

	67
	0.477
	0.472
	0.457

	80
	0.591
	0.589
	0.561

	90
	0.748
	0.751
	0.681






[bookmark: _Ref131139421][bookmark: _Toc131525223]Direct AI/ML positioning
In this section, we estimate UE positions directly using trained AI/ML models from UL SRS channel impulse responses. The input to the AI/ML model is a three-dimensional complex-valued tensor  when using CIR, or  when using PDP or DP. Since the ML model inference or training requires suitable specific hardware, the model is expected to be performed in a centralized unit with the needed hardware. In this case, the centralized unit is expected to be LMF.
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Figure 59 Direct AI/ML positioning at a centralized node processing all UL CIRs forwarded from all TRPs to produce estimates of the target UE position.

[bookmark: _Toc131525224]ML model architectures
We consider three model architectures for each input type. Each of the models consists of 18 layers with different internal widths. 
Specific details of the model and computational complexity values of the three models are summarized in the following tables. For the baseline, the models are trained using {60%, 6m, 2m} train dataset.
CIR
Table 140 Key features of the ML model I, II, III for direct UE positioning
	ML model input 
	Time domain CIR, obtained from SRS estimation,  
18x2x256 complex array 

	ML model output 
	UE position estimate

	Model complexity: 
	Model size 
	18 layers

	
	Number of parameters in the ML model 
	Model I: 0.73 M real parameters
Model II: 2.8 M real parameters
Model III: 11 M real parameters

	Computation complexity for model inference (number of FLOPs)
	Model I: 32 M FLOPs
Model II: 110 M FLOPs
Model III: 410 M FLOPs

	Number of ML models deployed for inference 
	One per deployment, residing in LMF



PDP
Table 141 Key features of the ML model I, II, III for direct UE positioning
	ML model input 
	Time domain PDP, obtained from SRS estimation, 18x1x256 real array 

	ML model output 
	UE position estimate

	Model complexity: 
	Model size 
	18 layers

	
	Number of parameters in the ML model 
	Model I: 0.36 M real parameters
Model II: 1.4 M real parameters
Model III: 5.6 M real parameters

	Computation complexity for model inference (number of FLOPs)
	Model I: 9 M FLOPs
Model II: 34 M FLOPs
Model III: 132 M FLOPs

	Number of ML models deployed for inference 
	One per deployment, residing in LMF



DP
Table 142 Key features of the ML model I, II, III for direct UE positioning
	ML model input 
	Time domain delay profile (DP), obtained from SRS estimation, 18x1x256 real array, consisting of zeros or ones

	ML model output 
	UE position estimate

	Model complexity: 
	Model size 
	18 layers

	
	Number of parameters in the ML model 
	Model I: 0.36 M real parameters
Model II: 1.4 M real parameters
Model III: 5.6 M real parameters

	Computation complexity for model inference (number of FLOPs)
	Model I: 9 M FLOPs
Model II: 34 M FLOPs
Model III: 132 M FLOPs

	Number of ML models deployed for inference 
	One per deployment, residing in LMF



[bookmark: _Toc131525225]ML model performance with different trainset sizes
CIR
For the {60%, 6m, 2m} test dataset (dataset 1f) with 23 dBm UE transmit power, the UE 2D positioning errors at different percentiles are provided for Model I, II and III in Table 143 and the error distributions in Figure 60, using CIR data. It can be observed that: 
· Direct positioning ML models can achieve UE position estimation errors less than a meter even with as few as 10,000 training samples for all Models I, II and III when CIR data is used.
· A smaller model appears to benefit from more training samples less than a large model. For instance, Model I reduces the 90%-tile UE position estimation error by 58% when the training set size is increased from 10,000 to 80,000 samples. However, Model III reduces the 90%-tile UE position estimation error by 72% with the same increase of training samples.
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(a) Model I							(b) Model II 
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(c) Model III
[bookmark: _Ref131421422]Figure 60 Direct UE 2D positioning estimation error distributions of Model I, II and III for {60%, 6m, 2m} test dataset, with 23 dBm UE transmit power, CIR data.

[bookmark: _Ref131421353]Table 143 UE 2D positioning errors for {60%, 6m, 2m} test dataset, with 23 dBm UE transmit power, at different percentiles and different training set sizes, CIR data.
	CDF Percentile
	UE 2D positioning errors [m] - Model I 
with different training set sizes

	
	80,000
	40,000
	20,000
	10,000

	50
	0.152
	0.186
	0.245
	0.324

	67
	0.196
	0.240
	0.319
	0.429

	80
	0.244
	0.296
	0.396
	0.543

	90
	0.300
	0.373
	0.498
	0.718



	CDF Percentile
	UE 2D positioning errors [m] - Model II 
with different training set sizes

	
	80,000
	40,000
	20,000
	10,000

	50
	0.099
	0.129
	0.177
	0.265

	67
	0.128
	0.170
	0.238
	0.359

	80
	0.157
	0.211
	0.301
	0.460

	90
	0.199
	0.268
	0.385
	0.597



	CDF Percentile
	UE 2D positioning errors [m] - Model III 
with different training set sizes

	
	80,000
	40,000
	20,000
	10,000

	50
	0.074
	0.106
	0.160
	0.239

	67
	0.098
	0.142
	0.212
	0.325

	80
	0.124
	0.178
	0.275
	0.427

	90
	0.155
	0.233
	0.354
	0.556





PDP
For the {60%, 6m, 2m} test dataset (dataset 1f) with 23 dBm UE transmit power, the UE 2D positioning errors at different percentiles are provided for Model I, II and III in Table 144 and the error distributions in Figure 61, using PDP data. It can be observed that: 
· Direct positioning ML models can achieve UE position estimation errors less than a meter even with as few as 10,000 training samples for both Models I, II and III when PDP data is used.
· A smaller model appears to benefit from more training samples less than a large model. For instance, Model I reduces the 90%-tile UE position estimation error by 51% when the training set size is increased from 10,000 to 80,000 samples. However, Model III reduces the 90%-tile UE position estimation error by 67% with the same increase of training samples.
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(a) Model I							(b) Model II 
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(c) Model III
[bookmark: _Ref131421893]Figure 61 Direct UE 2D positioning estimation error distributions of Model I, II and III for {60%, 6m, 2m} test dataset, with 23 dBm UE transmit power, PDP data.

[bookmark: _Ref131421858]Table 144 UE 2D positioning errors for {60%, 6m, 2m} test dataset, with 23 dBm UE transmit power, at different percentiles and different training set sizes, PDP data.
	CDF Percentile
	UE 2D positioning errors [m] - Model I 
with different training set sizes

	
	80,000
	40,000
	20,000
	10,000

	50
	0.222
	0.265
	0.329
	0.418

	67
	0.286
	0.338
	0.431
	0.547

	80
	0.352
	0.415
	0.528
	0.688

	90
	0.426
	0.510
	0.656
	0.863



	CDF Percentile
	UE 2D positioning errors [m] - Model II 
with different training set sizes

	
	80,000
	40,000
	20,000
	10,000

	50
	0.141
	0.179
	0.234
	0.327

	67
	0.181
	0.230
	0.307
	0.433

	80
	0.222
	0.286
	0.390
	0.560

	90
	0.269
	0.349
	0.496
	0.735



	CDF Percentile
	UE 2D positioning errors [m] - Model III 
with different training set sizes

	
	80,000
	40,000
	20,000
	10,000

	50
	0.107
	0.141
	0.194
	0.290

	67
	0.138
	0.182
	0.256
	0.398

	80
	0.172
	0.226
	0.328
	0.510

	90
	0.214
	0.288
	0.425
	0.653




DP
For the {60%, 6m, 2m} test dataset (dataset 1f) with 23 dBm UE transmit power, the UE 2D positioning errors at different percentiles are provided for Model I, II and III in Table 145 and the error distributions in Figure 62, using 32-taps DP data. It can be observed that: 
· Direct positioning ML models can achieve UE position estimation errors less than a meter even with as few as 10,000 training samples for both Models II and III when DP data is used. When Model I is used, the training requires 20,000 training samples to achieve sub-meter accuracy.
· A smaller model appears to benefit from more training samples less than a large model. For instance, Model I reduces the 90%-tile UE position estimation error by 45% when the training set size is increased from 10,000 to 80,000 samples. However, Model III reduces the 90%-tile UE position estimation error by 61% with the same increase of training samples.
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(a) Model I							(b) Model II 
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(c) Model III
[bookmark: _Ref131422046]Figure 62 Direct UE 2D positioning estimation error distributions of Model I, II and III for {60%, 6m, 2m} test dataset, with 23 dBm UE transmit power, 32-tap DP data.

[bookmark: _Ref131422090]Table 145 UE 2D positioning errors for {60%, 6m, 2m} test dataset, with 23 dBm UE transmit power, at different percentiles and different training set sizes, 32-tap DP data.
	CDF Percentile
	UE 2D positioning errors [m] - Model I 
with different training set sizes

	
	80,000
	40,000
	20,000
	10,000

	50
	0.290
	0.332
	0.398
	0.493

	67
	0.374
	0.430
	0.514
	0.638

	80
	0.460
	0.531
	0.633
	0.805

	90
	0.558
	0.658
	0.789
	1.014



	CDF Percentile
	UE 2D positioning errors [m] - Model II 
with different training set sizes

	
	80,000
	40,000
	20,000
	10,000

	50
	0.204
	0.237
	0.294
	0.390

	67
	0.264
	0.305
	0.387
	0.514

	80
	0.320
	0.379
	0.476
	0.651

	90
	0.391
	0.465
	0.600
	0.823



	CDF Percentile
	UE 2D positioning errors [m] - Model III 
with different training set sizes

	
	80,000
	40,000
	20,000
	10,000

	50
	0.152
	0.187
	0.244
	0.342

	67
	0.196
	0.248
	0.325
	0.452

	80
	0.242
	0.307
	0.411
	0.586

	90
	0.298
	0.379
	0.522
	0.758




[bookmark: _Toc131525226]ML model performance with different time domain down sampling
In this section, we evaluate the effect of using fewer time-domain taps for direct AI/ML positioning. We use only the Nt’ largest taps, setting the remaining (Nt - Nt’) taps to zero. Model I is trained on 40,000 samples from the {60%, 6m, 2m} dataset (dataset 1f), with 23 dBm UE transmit power.
CIR
For direct AI/ML positioning using CIR data, the UE 2D positioning errors at different percentiles are provided for Model I in Table 146 and the error distributions in Figure 63. It can be observed that: 
· Using fewer time-domain taps reduces performance but sub-meter accuracy can be achieved for as few as 9 taps. 
· Using 128 taps instead of all 256 gives only a small performance degradation.
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[bookmark: _Ref131423026]Figure 63 UE 2D positioning error distributions for using AI/ML outputs with conventional L1 error minimizing positioning solutions for the {60%, 6m, 2m} test dataset with different time domain down sampling sizes for Model I (trained with 40,000 samples), using CIR data.


[bookmark: _Ref131422992]Table 146 UE 2D positioning errors trained with different numbers of time domain samples, CIR data.
	CDF Percentile
	UE 2D positioning errors [m]
Model I trained with 40,000 samples from {60%, 6m, 2m}

	
	256
	128
	64
	32
	16
	9

	50
	0.186
	0.188
	0.215
	0.276
	0.343
	0.402

	67
	0.240
	0.247
	0.280
	0.360
	0.441
	0.527

	80
	0.296
	0.305
	0.348
	0.438
	0.548
	0.657

	90
	0.373
	0.382
	0.425
	0.540
	0.678
	0.824



PDP
For direct AI/ML positioning using PDP data, the UE 2D positioning errors at different percentiles are provided for Model I in Table 147 and the error distributions in Figure 64. It can be observed that: 
· Using fewer time-domain taps reduces performance but sub-meter accuracy can be achieved for as few as 9 taps. 
· Using 64 taps instead of all 256 gives only a small performance degradation.
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[bookmark: _Ref131423358]Figure 64 UE 2D positioning error distributions for using AI/ML outputs with conventional L1 error minimizing positioning solutions for the {60%, 6m, 2m} test dataset with different time domain down sampling sizes for Model I (trained with 40,000 samples), using PDP data.

[bookmark: _Ref131423372]Table 147 UE 2D positioning errors trained with different numbers of time domain samples, PDP data.
	CDF Percentile
	UE 2D positioning errors [m]
Model I trained with 40,000 samples from {60%, 6m, 2m}

	
	256
	128
	64
	32
	16
	9

	50
	0.265
	0.271
	0.268
	0.306
	0.349
	0.418

	67
	0.338
	0.347
	0.337
	0.393
	0.446
	0.539

	80
	0.415
	0.427
	0.413
	0.480
	0.553
	0.668

	90
	0.510
	0.522
	0.522
	0.580
	0.689
	0.824



[bookmark: _Ref131421906]DP
For direct AI/ML positioning using DP data, the UE 2D positioning errors at different percentiles are provided for Model I in Table 148 and the error distributions in Figure 65. It can be observed that: 
· Using 64 taps results in best performance. 
· Using 32 taps results in almost the same performance as for 64 tap but requires a lot less information need to be sent.
Our recommendation is therefore to use 32 taps, which is what we use in the evaluations in this contribution.
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[bookmark: _Ref131423501]Figure 65 UE 2D positioning error distributions for using AI/ML outputs with conventional L1 error minimizing positioning solutions for the {60%, 6m, 2m} test dataset with different time domain down sampling sizes for Model I (trained with 40,000 samples), using DP data.

[bookmark: _Ref131423491]Table 148 UE 2D positioning errors trained with different numbers of time domain samples, DP data.
	CDF Percentile
	UE 2D positioning errors [m]
Model I trained with 40,000 samples from {60%, 6m, 2m}

	
	128
	64
	32
	16
	9

	50
	0.585
	0.324
	0.332
	0.362
	0.431

	67
	0.760
	0.421
	0.430
	0.470
	0.558

	80
	0.943
	0.514
	0.531
	0.567
	0.695

	90
	1.186
	0.639
	0.658
	0.696
	0.862



[bookmark: _Toc131525227]ML model performance with different labelling error
In this section, the effect of labelling error is evaluated. Model I is trained using 40,000 samples from the {60%, 6m, 2m} training dataset, to which noise drawn from a truncated Gaussian distribution is added to the label, i.e., UE position. The models are evaluated using test data without label error.

CIR
For direct AI/ML positioning using CIR data, the UE 2D positioning errors at different percentiles are provided for Model I in Table 149 and the error distributions in Figure 66. It can be observed that: 
· Sub-meter accuracy at 90%-tile is obtained for labelling error STD of up to 0.5 m.
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[bookmark: _Ref131426119]Figure 66 UE 2D positioning error distributions for using AI/ML outputs with conventional L1 error minimizing positioning solutions for the {60%, 6m, 2m} test dataset with different input types and different labelling errors for Model I (trained with 40,000 samples), using CIR data.
[bookmark: _Ref131426135]Table 149 UE 2D positioning errors trained with different labelling error STD, CIR data.
	CDF Percentile
	UE 2D positioning errors [m]
Model I trained with 40,000 samples from {60%, 6m, 2m}

	
	0 m
	0.25 m
	0.5 m
	1 m

	50
	0.186
	0.245
	0.379
	0.678

	67
	0.240
	0.318
	0.479
	0.862

	80
	0.296
	0.387
	0.582
	1.045

	90
	0.373
	0.478
	0.709
	1.262



PDP
For direct AI/ML positioning using PDP data, the UE 2D positioning errors at different percentiles are provided for Model I in Table 150 and the error distributions in Figure 67. It can be observed that: 
· Sub-meter accuracy at 90%-tile is obtained for labelling error STD of up to 0.5 m.
· The performance is degrading less for models using PDP data than for CIR.
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[bookmark: _Ref131426860]Figure 67 UE 2D positioning error distributions for using AI/ML outputs with conventional L1 error minimizing positioning solutions for the {60%, 6m, 2m} test dataset with different input types and different labelling errors for Model I (trained with 40,000 samples), using PDP data.
[bookmark: _Ref131426851]Table 150 UE 2D positioning errors trained with different labelling error STD, using PDP data.
	CDF Percentile
	UE 2D positioning errors [m]
Model I trained with 40,000 samples from {60%, 6m, 2m}

	
	0 m
	0.25 m
	0.5 m
	1 m

	50
	0.265
	0.298
	0.381
	0.605

	67
	0.338
	0.380
	0.479
	0.775

	80
	0.415
	0.466
	0.585
	0.941

	90
	0.510
	0.566
	0.708
	1.141



DP
For direct AI/ML positioning using DP data, the UE 2D positioning errors at different percentiles are provided for Model I in Table 151 and the error distributions in Figure 68. It can be observed that: 
· Sub-meter accuracy at 90%-tile is obtained for labelling error STD of up to 0.5 m.
· The performance is degrading less for models using 32-tap DP data than for CIR.
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[bookmark: _Ref131426929]Figure 68 UE 2D positioning error distributions for using AI/ML outputs with conventional L1 error minimizing positioning solutions for the {60%, 6m, 2m} test dataset with different input types and different labelling errors for Model I (trained with 40,000 samples), using 32-tap DP data.
[bookmark: _Ref131426946]Table 151 UE 2D positioning errors trained with different labelling error STD, 32-tap DP data
	CDF Percentile
	UE 2D positioning errors [m]
Model I trained with 40,000 samples from {60%, 6m, 2m}

	
	0 m
	0.25 m
	0.5 m
	1 m

	50
	0.332
	0.361
	0.429
	0.653

	67
	0.430
	0.463
	0.541
	0.826

	80
	0.531
	0.565
	0.663
	1.014

	90
	0.658
	0.694
	0.803
	1.216



[bookmark: _Toc131525228]Generalization wrt spatial seeds and environmental parameters changes
Trained models tested on the same clutter parameter but different spatial and propagation seeds
We first test the trained the models using test dataset 1f, which has the same {60%, 6m, 2m} environment parameters but the realizations are generated with different random seeds for UE location, 3GPP spatial model, and propagation seeds than the first dataset. The UE 2D positioning errors at different percentiles are provided in Table 152, Table 153, and Table 154.
It can be observed that the trained models tested with test dataset 2f degrade substantially compared to the same model tested with the first test dataset. For instance, from the 2D positioning error distributions shown below, the 90%tile of 2D UE positioning error increased significantly from below 1 m to around 15 m for the trained models tested with the first test dataset versus tested with test dataset from a different environmental arrangement with the same average characteristics. It can be concluded the trained models do not perform well when the radio link realizations are generated with different random seeds.

CIR
[bookmark: _Ref131515881]Table 152 UE 2D positioning errors for {60%, 6m, 2m} test dataset at different percentiles and different models trained with 40,000 samples, CIR data.
	CDF Percentile
	UE 2D positioning errors [m] 
for models trained with 40,000 samples

	
	Model I
	Model II
	Model III

	50
	7.658
	7.735
	7.582

	67
	9.900
	9.904
	9.354

	80
	12.418
	12.092
	11.406

	90
	15.946
	14.623
	14.176



PDP
[bookmark: _Ref131515889]Table 153 UE 2D positioning errors for {60%, 6m, 2m} test dataset at different percentiles and different models trained with 40,000 samples, PDP data.
	CDF Percentile
	UE 2D positioning errors [m] 
for models trained with 40,000 samples

	
	Model I
	Model II
	Model III

	50
	8.200
	8.536
	8.283

	67
	10.492
	11.133
	10.731

	80
	12.949
	13.672
	13.484

	90
	15.919
	16.519
	16.836



DP
[bookmark: _Ref131515895]Table 154 UE 2D positioning errors for {60%, 6m, 2m} test dataset at different percentiles and different models trained with 40,000 samples, 32-tap DP data.
	CDF Percentile
	UE 2D positioning errors [m] 
for models trained with 40,000 samples

	
	Model I
	Model II
	Model III

	50
	8.876
	9.493
	8.796

	67
	11.910
	12.462
	11.559

	80
	14.917
	15.859
	14.398

	90
	19.324
	19.893
	17.879




Trained models tested on different clutter parameters
In this subsection, we investigate model generalization by testing the trained models with {60%, 6m, 2m}, using {40%, 2m, 2m}, {40%, 6m, 2m} and {60%, 2m, 2m} test datasets, which are generated using different environment parameters of respectively. This is to test whether the trained models can generalize to different environments with different arrangements as well as different average characteristics. The UE 2D positioning errors at different percentiles are provided in Table 155, Table 156, and Table 157.
It can be observed that the models generalize well to {40%, 6m, 2m} clutter parameters, while the performance degrades for other clutter parameters. It can be concluded that in the InF-DH environment, clutter height has more impact than the clutter density.
CIR
[bookmark: _Ref131516319]Table 155 UE 2D positioning errors tested with test dataset with different clutter parameters, CIR data.
	CDF Percentile
	UE 2D positioning errors [m]
Model I trained with 40,000 samples from {60%, 6m, 2m}

	
	{40%, 2m, 2m}
	{60%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 6m, 2m}

	50
	2.492
	0.892
	0.197
	0.186

	67
	3.757
	1.412
	0.256
	0.240

	80
	5.263
	2.056
	0.322
	0.296

	90
	7.354
	3.275
	0.419
	0.373



	CDF Percentile
	UE 2D positioning errors [m]
Model II trained with 40,000 samples from {60%, 6m, 2m}

	
	{40%, 2m, 2m}
	{60%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 6m, 2m}

	50
	1.991
	0.615
	0.136
	0.129

	67
	3.218
	0.996
	0.182
	0.170

	80
	4.550
	1.533
	0.230
	0.211

	90
	6.218
	2.522
	0.293
	0.268



	CDF Percentile
	UE 2D positioning errors [m]
Model III trained with 40,000 samples from {60%, 6m, 2m}

	
	{40%, 2m, 2m}
	{60%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 6m, 2m}

	50
	1.731
	0.502
	0.112
	0.106

	67
	2.708
	0.79
	0.151
	0.142

	80
	3.973
	1.257
	0.193
	0.178

	90
	5.702
	2.029
	0.255
	0.233



PDP
[bookmark: _Ref131516329]Table 156 UE 2D positioning errors tested with test dataset with different clutter parameters, PDP data.
	CDF Percentile
	UE 2D positioning errors [m]
Model I trained with 40,000 samples from {60%, 6m, 2m}

	
	{40%, 2m, 2m}
	{60%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 6m, 2m}

	50
	2.104
	0.766
	0.277
	0.265

	67
	3.045
	1.107
	0.362
	0.338

	80
	4.432
	1.627
	0.442
	0.415

	90
	6.542
	2.463
	0.544
	0.510



	CDF Percentile
	UE 2D positioning errors [m]
Model II trained with 40,000 samples from {60%, 6m, 2m}

	
	{40%, 2m, 2m}
	{60%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 6m, 2m}

	50
	1.645
	0.548
	0.186
	0.179

	67
	2.635
	0.813
	0.241
	0.230

	80
	3.974
	1.205
	0.302
	0.286

	90
	5.829
	1.924
	0.372
	0.349



	CDF Percentile
	UE 2D positioning errors [m]
Model III trained with 40,000 samples from {60%, 6m, 2m}

	
	{40%, 2m, 2m}
	{60%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 6m, 2m}

	50
	1.281
	0.399
	0.146
	0.141

	67
	2.184
	0.594
	0.189
	0.182

	80
	3.435
	0.881
	0.234
	0.226

	90
	5.276
	1.465
	0.299
	0.288



DP
[bookmark: _Ref131516133]Table 157 UE 2D positioning errors tested with test dataset with different clutter parameters, 32-taps DP data.
	CDF Percentile
	UE 2D positioning errors [m]
Model I trained with 40,000 samples from {60%, 6m, 2m}

	
	{40%, 2m, 2m}
	{60%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 6m, 2m}

	50
	3.213
	1.012
	0.346
	0.332

	67
	5.310
	1.569
	0.444
	0.430

	80
	7.865
	2.351
	0.557
	0.531

	90
	11.554
	3.889
	0.693
	0.658



	CDF Percentile
	UE 2D positioning errors [m]
Model II trained with 40,000 samples from {60%, 6m, 2m}

	
	{40%, 2m, 2m}
	{60%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 6m, 2m}

	50
	2.665
	0.689
	0.246
	0.237

	67
	4.589
	1.084
	0.317
	0.305

	80
	7.170
	1.713
	0.393
	0.379

	90
	10.551
	2.953
	0.488
	0.465



	CDF Percentile
	UE 2D positioning errors [m]
Model III trained with 40,000 samples from {60%, 6m, 2m}

	
	{40%, 2m, 2m}
	{60%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 6m, 2m}

	50
	1.731
	0.502
	0.112
	0.187

	67
	2.708
	0.791
	0.151
	0.248

	80
	3.973
	1.257
	0.193
	0.307

	90
	5.702
	2.029
	0.255
	0.379



[bookmark: _Toc131525229]Fine-tuning trained models to environmental parameters changes
To address the performance losses of applying a model trained with the {60%, 6m, 2m} environment dataset (dataset 1f) to different environments, a fast fine-tuning approach is investigated in this section. That is, we apply the same training process to Model I (trained with 40,000 samples from {60%, 6m, 2m}) with varying number of samples from a train dataset with same clutter parameters ({40%, 2m, 2m}, i.e., dataset 1a). With a small fast fine-tuning train dataset size, the burden on data collection and training is reduced. A UE transmit power of 23 dBm is used.
The results are displayed in Table 158 and Figure 69 for CIR data, Table 160 and Figure 70 for PDP data,  and Table 162 and Figure 71 for 32-tap DP data. We observe that the fine-tuning has a positive effect on the performance on data sets with different clutter height than the original training data set. However, in order to get a UE position estimation error below 1m, the required amount of training data is 20,000 samples for CIR and PDP data. For 32-tap DP data, sub-meter performance is never achieved. Therefore, the benefit of having to collect fewer samples is lost. Moreover, we note that fine-tuning gives better performance than training solely with 40,000 samples from {40%, 2m, 2m}. 
Furthermore, once these models are fine-tuned to operate for a new environment, they no long perform adequately for the original environment. Table 159, Table 161 and Table 163 summarize our investigation results for CIR data, PDP data, and 32-taps DP data, respectively. The models originally trained with {60%, 6m, 2m} samples are fine-tuned to operate in the {40%, 2m, 2m} environment. We tested the performance the fine-tuned model in the original {60%, 6m, 2m} environment. It can be observed that performance of the models fine-tuned even with small number of samples from the new environment is already substantially degraded. While the performance recovers with more fine-tuning samples, it nonetheless never regains state-of-the-art performance.

CIR
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[bookmark: _Ref131427887]Figure 69 UE 2D positioning error distributions for Model I trained with 40,000 samples from {60%, 6m, 2m} and fine-tuned with different number of samples from {40%, 2m, 2m}, CIR data.
[bookmark: _Ref131427868]Table 158 UE 2D positioning error percentiles for Model I trained with 40,000 samples from {60%, 6m, 2m} and fine-tuned with different number of samples from {40%, 2m, 2m}, CIR data.
	CDF percentile
	UE 2D positioning errors [m] – Model I

	
	Trained with samples from {40%, 2m, 2m}
	Originally trained with 40,000 samples from {60%, 6m, 2m}
and fine-tuned with different number of samples from 
{40%, 2m, 2m}
	Trained with samples from {60%, 6m, 2m}

	
	40,000
	40,000
	20,000
	10,000
	4,000
	2,000
	1,000
	40,000

	50
	0.313
	0.296
	0.372
	0.488
	0.700
	0.918
	1.222
	2.492

	67
	0.416
	0.388
	0.501
	0.678
	0.996
	1.300
	1.691
	3.757

	80
	0.535
	0.485
	0.655
	0.884
	1.345
	1.762
	2.217
	5.263

	90
	0.674
	0.621
	0.841
	1.177
	1.801
	2.329
	3.030
	7.354



[bookmark: _Ref131604775]Table 159 UE 2D positioning error percentiles for Model I trained with 40,000 samples from {60%, 6m, 2m} and fine-tuned with different number of samples from {40%, 2m, 2m} and test on {60%, 6m, 2m} test dataset, CIR data.
	CDF percentile
	UE 2D positioning errors [m] – Model I

	
	Trained with samples from {60%, 6m, 2m}
	Originally trained with 40,000 samples from {60%, 6m, 2m}
and fine-tuned with different number of samples from {40%, 2m, 2m}

	
	40,000
	40,000
	20,000
	10,000
	4,000
	2,000
	1,000

	50
	0.186
	0.612
	0.712
	0.836
	1.070
	1.301
	1.402

	67
	0.240
	0.801
	0.957
	1.123
	1.459
	1.797
	1.909

	80
	0.296
	1.029
	1.223
	1.479
	1.969
	2.447
	2.497

	90
	0.373
	1.351
	1.668
	1.993
	2.632
	3.453
	3.352



PDP
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[bookmark: _Ref131427889]Figure 70 UE 2D positioning error distributions for Model I trained with 40,000 samples from {60%, 6m, 2m} and fine-tuned with different number of samples from {40%, 2m, 2m}, PDP data.
[bookmark: _Ref131427870]Table 160 UE 2D positioning error percentiles for Model I trained with 40,000 samples from {60%, 6m, 2m} and fine-tuned with different number of samples from {40%, 2m, 2m}, PDP data.
	CDF percentile
	UE 2D positioning errors [m] – Model I

	
	Trained with samples from {40%, 2m, 2m}
	Originally trained with 40,000 samples from {60%, 6m, 2m}
and fine-tuned with different number of samples from 
{40%, 2m, 2m}
	Trained with samples from {60%, 6m, 2m}

	
	40,000
	40,000
	20,000
	10,000
	4,000
	2,000
	1,000
	40,000

	50
	0.399
	0.379
	0.467
	0.575
	0.795
	1.027
	1.202
	2.104

	67
	0.528
	0.499
	0.611
	0.768
	1.085
	1.388
	1.672
	3.045

	80
	0.655
	0.621
	0.767
	0.987
	1.411
	1.826
	2.180
	4.432

	90
	0.810
	0.791
	0.991
	1.267
	1.876
	2.418
	2.880
	6.542



[bookmark: _Ref131604785]Table 161 UE 2D positioning error percentiles for Model I trained with 40,000 samples from {60%, 6m, 2m} and fine-tuned with different number of samples from {40%, 2m, 2m} and test on {60%, 6m, 2m} test dataset, PDP data.
	CDF percentile
	UE 2D positioning errors [m] – Model I

	
	Trained with samples from {60%, 6m, 2m}
	Originally trained with 40,000 samples from {60%, 6m, 2m}
and fine-tuned with different number of samples from {40%, 2m, 2m}

	
	40,000
	40,000
	20,000
	10,000
	4,000
	2,000
	1,000

	50
	0.265
	0.658
	0.756
	0.814
	1.101
	1.222
	1.364

	67
	0.338
	0.853
	0.987
	1.087
	1.466
	1.641
	1.801

	80
	0.415
	1.083
	1.239
	1.394
	1.896
	2.121
	2.288

	90
	0.510
	1.379
	1.591
	1.795
	2.455
	2.794
	3.013




DP
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[bookmark: _Ref131427891]Figure 71 UE 2D positioning error distributions for Model I trained with 40,000 samples from {60%, 6m, 2m} and fine-tuned with different number of samples from {40%, 2m, 2m}, 32-taps DP data.
[bookmark: _Ref131427873]Table 162 UE 2D positioning error percentiles for Model I trained with 40,000 samples from {60%, 6m, 2m} and fine-tuned with different number of samples from {40%, 2m, 2m}, 32-taps DP data.
	CDF percentile
	UE 2D positioning errors [m] – Model I

	
	Trained with samples from {40%, 2m, 2m}
	Originally trained with 40,000 samples from {60%, 6m, 2m}
and fine-tuned with different number of samples from 
{40%, 2m, 2m}
	Trained with samples from {60%, 6m, 2m}

	
	40,000
	40,000
	20,000
	10,000
	4,000
	2,000
	1,000
	40,000

	50
	0.510
	0.477
	0.589
	0.730
	0.969
	1.239
	1.579
	3.213

	67
	0.659
	0.625
	0.776
	0.965
	1.345
	1.751
	2.219
	5.310

	80
	0.827
	0.793
	0.987
	1.250
	1.783
	2.382
	2.911
	7.865

	90
	1.033
	1.036
	1.294
	1.618
	2.441
	3.230
	3.902
	11.554



[bookmark: _Ref131604789]Table 163 UE 2D positioning error percentiles for Model I trained with 40,000 samples from {60%, 6m, 2m} and fine-tuned with different number of samples from {40%, 2m, 2m} and test on {60%, 6m, 2m} test dataset, 32-taps DP data.
	CDF percentile
	UE 2D positioning errors [m] – Model I

	
	Trained with samples from {60%, 6m, 2m}
	Originally trained with 40,000 samples from {60%, 6m, 2m}
and fine-tuned with different number of samples from {40%, 2m, 2m}

	
	40,000
	40,000
	20,000
	10,000
	4,000
	2,000
	1,000

	50
	0.332
	0.825
	0.938
	1.050
	1.329
	1.510
	1.667

	67
	0.430
	1.114
	1.261
	1.401
	1.807
	2.093
	2.254

	80
	0.531
	1.456
	1.642
	1.848
	2.400
	2.746
	2.953

	90
	0.658
	1.957
	2.242
	2.436
	3.346
	3.715
	3.967



[bookmark: _Toc131525230]Models trained with mixed (environmental parameters) datasets
To address the performance losses of applying a model trained with the {60%, 6m, 2m} environment dataset (dataset 1f) to different environments, another approach is to train the model with a mix of realizations from more than one environmental dataset. In this section, we investigate the performance of Model I when trained with an even mix of the {60%, 6m, 2m} and {40%, 2m, 2m} datasets, i.e., datasets 1f and 1a. We then test the trained models on four different environmental datasets (datasets 1a, 1d, 1c and 1f). A UE transmit power of 23 dBm is used.
The results are displayed in Table 164 and Figure 72 for CIR data, Figure 73 and Table 165 for PDP data, and Table 166 and Figure 74, for 32-tap DP data. We have also added models trained with data from a single environment for comparison. Training with the mixed data set gives performance improvements for data sets {40%, 2m, 2m} and {60%, 2m, 2m}, at the cost of a slight degradation for data sets {40%, 6m, 2m} and {60%, 6m, 2m}, compared to training only on {60%, 6m, 2m}. We also note that when training with a mixed data set, the performance becomes better than training only with 40,000 samples from {40%, 2m, 2m}. 

CIR
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(a) Trained with {60%, 6m, 2m}				(b) Trained with {40%, 2m, 2m}
[image: ]
(c) Trained with mix of {60%, 6m, 2m} and {40%, 2m, 2m}
[bookmark: _Ref131428325]Figure 72 Direct UE 2D positioning estimation error distributions for models trained with (a) data from {60%, 6m, 2m}; (b) data from {40%, 2m, 2m}; and (c) a combination of data from {60%, 6m, 2m} and {40%, 2m, 2m}, and tested with datasets with different clutter parameters, using CIR data.


[bookmark: _Ref131428306]Table 164 UE 2D positioning errors for the model trained with a combination of data from {60%, 6m, 2m} and {40%, 2m, 2m}, and tested with test dataset with different clutter parameters, using CIR data.
	CDF Percentile
	UE 2D positioning errors [m] 
Model I trained with 40,000 samples from {60%, 6m, 2m}

	
	{40%, 2m, 2m}
	{60%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 6m, 2m}

	50
	2.492
	0.892
	0.197
	0.186

	67
	3.757
	1.412
	0.256
	0.240

	80
	5.263
	2.056
	0.322
	0.296

	90
	7.354
	3.275
	0.419
	0.373



	CDF Percentile
	UE 2D positioning errors [m] 
Model I trained with 40,000 samples from {40%, 2m, 2m}

	
	{40%, 2m, 2m}
	{60%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 6m, 2m}

	50
	0.313
	0.364
	0.635
	0.679

	67
	0.416
	0.485
	0.857
	0.909

	80
	0.535
	0.610
	1.093
	1.182

	90
	0.674
	0.770
	1.461
	1.595



	CDF Percentile
	UE 2D positioning errors [m] - Model I trained with 
40,000 samples from {60%, 6m, 2m} and 40,000 samples from {40%, 2m, 2m}

	
	{40%, 2m, 2m}
	{60%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 6m, 2m}

	50
	0.289
	0.267
	0.216
	0.211

	67
	0.377
	0.349
	0.278
	0.270

	80
	0.479
	0.433
	0.340
	0.332

	90
	0.616
	0.552
	0.421
	0.410



PDP
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(a) Trained with {60%, 6m, 2m}				(b) Trained with {40%, 2m, 2m}
[image: ]
(c) Trained with mix of {60%, 6m, 2m} and {40%, 2m, 2m}
[bookmark: _Ref131428327]Figure 73 Direct UE 2D positioning estimation error distributions for models trained with (a) data from {60%, 6m, 2m}; (b) data from {40%, 2m, 2m}; and (c) a combination of data from {60%, 6m, 2m} and {40%, 2m, 2m}, and tested with datasets with different clutter parameters, using PDP data.

[bookmark: _Ref131428308]Table 165 UE 2D positioning errors for the model trained with a combination of data from {60%, 6m, 2m} and {40%, 2m, 2m}, and tested with test dataset with different clutter parameters, using PDP data.
	CDF Percentile
	UE 2D positioning errors [m] 
Model I trained with 40,000 samples from {60%, 6m, 2m}

	
	{40%, 2m, 2m}
	{60%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 6m, 2m}

	50
	2.104
	0.766
	0.277
	0.265

	67
	3.045
	1.107
	0.362
	0.338

	80
	4.432
	1.627
	0.442
	0.415

	90
	6.542
	2.463
	0.544
	0.510



	CDF Percentile
	UE 2D positioning errors [m] 
Model I trained with 40,000 samples from {40%, 2m, 2m}

	
	{40%, 2m, 2m}
	{60%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 6m, 2m}

	50
	0.399
	0.436
	0.675
	0.717

	67
	0.528
	0.656
	0.892
	0.941

	80
	0.655
	0.704
	1.121
	1.185

	90
	0.810
	0.883
	1.413
	1.521



	CDF Percentile
	UE 2D positioning errors [m] - Model I trained with 
40,000 samples from {60%, 6m, 2m} and 40,000 samples from {40%, 2m, 2m}

	
	{40%, 2m, 2m}
	{60%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 6m, 2m}

	50
	0.392
	0.368
	0.311
	0.305

	67
	0.510
	0.471
	0.390
	0.386

	80
	0.636
	0.567
	0.478
	0.470

	90
	0.807
	0.701
	0.587
	0.579



DP
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(a) Trained with {60%, 6m, 2m}				(b) Trained with {40%, 2m, 2m}
[image: ]
(c) Trained with mix of {60%, 6m, 2m} and {40%, 2m, 2m}
[bookmark: _Ref131428330]Figure 74 Direct UE 2D positioning estimation error distributions for models trained with (a) data from {60%, 6m, 2m}; (b) data from {40%, 2m, 2m}; and (c) a combination of data from {60%, 6m, 2m} and {40%, 2m, 2m}, and tested with datasets with different clutter parameters, using DP data with 32 taps.


[bookmark: _Ref131428310]Table 166 UE 2D positioning errors for the model trained with a combination of data from {60%, 6m, 2m} and {40%, 2m, 2m}, and tested with test dataset with different clutter parameters, using DP data with 32 taps.
	CDF Percentile
	UE 2D positioning errors [m] 
Model I trained with 40,000 samples from {60%, 6m, 2m}

	
	{40%, 2m, 2m}
	{60%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 6m, 2m}

	50
	3.213
	1.012
	0.346
	0.332

	67
	5.310
	1.569
	0.444
	0.430

	80
	7.865
	2.351
	0.557
	0.531

	90
	11.554
	3.889
	0.693
	0.658



	CDF Percentile
	UE 2D positioning errors [m] 
Model I trained with 40,000 samples from {40%, 2m, 2m}

	
	{40%, 2m, 2m}
	{60%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 6m, 2m}

	50
	0.510
	0.546
	0.827
	0.881

	67
	0.659
	0.728
	1.142
	1.190

	80
	0.827
	0.882
	1.449
	1.530

	90
	1.033
	1.116
	1.860
	1.977



	CDF Percentile
	UE 2D positioning errors [m] - Model I trained with 
40,000 samples from {60%, 6m, 2m} and 40,000 samples from {40%, 2m, 2m}

	
	{40%, 2m, 2m}
	{60%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 6m, 2m}

	50
	0.497
	0.459
	0.381
	0.379

	67
	0.651
	0.593
	0.490
	0.486

	80
	0.810
	0.733
	0.602
	0.591

	90
	1.024
	0.909
	0.736
	0.720




[bookmark: _Toc131525231]Performance of ML models under different network synchronization errors
In this section, we investigate and analyze the performance of the ML models against network synchronization errors. We use both Model I trained with 40,000 samples without network synchronization errors and trained with network synchronization errors with standard deviation (STD) 25 ns and 50 ns. Then, we test these models against test dataset 1f with random network synchronization errors at various STD values. As agreed in a previous RAN1 meeting, the random network synchronization errors are generated according to a truncated Gaussian distribution with a (pre-truncation) STD (aka, ) and truncation at ±2×STD (aka,  ). 
The direct UE 2D positioning errors are provided in Table 167 and Figure 75 for CIR data, Table 168 and Figure 76 for PDP data, and Table 169 and Figure 77 for 32-tap DP data. It can be observed that:
· In all evaluated models, the UE position estimation accuracy degrades gradually as the network synchronization error increases. However, the decrease is smaller when training with higher network synchronization error. 
· The UE position estimation errors for the model trained without network synchronization errors is more susceptible to network synchronization error, where the 90%-tile UE position estimation error goes from below 0.5 m to over 12 m (for CIR and PDP data) m when testing on data with increasing network synchronization error from STD = 0 ns to STD = 50 ns.
· However, the UE position estimation error for the model trained with network synchronization errors of STD = 50 ns is more robust to network synchronization error, where the 90%-tile UE position estimation error increases only slightly when increasing network synchronization error from STD = 0 ns to STD = 50 ns.
· The model trained with network synchronization errors of STD = 25 ns performs better than the one trained with network synchronization errors of STD = 50 ns up to network synchronization error of STD = 25 ns, while the latter shows advantage for network synchronization errors of STD = 50 ns.
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(a) Trained with perfect NW sync				(b) Trained with NW STD 25 ns
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(c) Trained with NW STD 50 ns
[bookmark: _Ref131428699]Figure 75 Direct UE 2D positioning estimation error distributions for models trained with (a) perfect network sync; (b) network sync error with std 25 ns; and (c) network sync error with std 50 ns, and tested with datasets with various network sync errors, using CIR data.

[bookmark: _Ref131428728]Table 167 UE 2D positioning errors percentiles for Model I trained with 40,000 samples from {60%, 6m, 2m} and various network synchronization errors and tested with various network synchronization STD values (X ns), using CIR data.
	CDF Percentile
	UE 2D positioning errors [m]
Model I trained with 40,000 samples with NW STD = 0 ns 

	
	0 ns
	5 ns
	10 ns
	25 ns
	50 ns

	50
	0.219
	0.256
	0.340
	0.784
	3.865

	67
	0.281
	0.330
	0.449
	1.133
	6.176

	80
	0.347
	0.412
	0.563
	1.572
	8.979

	90
	0.432
	0.504
	0.701
	2.394
	12.787



	CDF Percentile
	UE 2D positioning errors [m]
Model I trained with 40,000 samples with NW STD = 25 ns 

	
	0 ns
	5 ns
	10 ns
	25 ns
	50 ns

	50
	0.186
	0.191
	0.190
	0.225
	0.351

	67
	0.240
	0.245
	0.245
	0.287
	0.470

	80
	0.296
	0.300
	0.300
	0.354
	0.620

	90
	0.373
	0.376
	0.376
	0.433
	0.841



	CDF Percentile
	UE 2D positioning errors [m]
Model I trained with 40,000 samples with NW STD = 50 ns 

	
	0 ns
	5 ns
	10 ns
	25 ns
	50 ns

	50
	0.208
	0.209
	0.211
	0.225
	0.269

	67
	0.272
	0.270
	0.273
	0.292
	0.342

	80
	0.334
	0.339
	0.336
	0.361
	0.423

	90
	0.419
	0.415
	0.414
	0.439
	0.528
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(a) Trained with perfect NW sync				(b) Trained with NW STD 25 ns
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(c) Trained with NW STD 50 ns
[bookmark: _Ref131428701]Figure 76 Direct UE 2D positioning estimation error distributions for models trained with (a) perfect network sync; (b) network sync error with std 25 ns; and (c) network sync error with std 50 ns, and tested with datasets with various network sync errors, using PDP data.

[bookmark: _Ref131428731]Table 168 UE 2D positioning errors percentiles for Model I trained with 40,000 samples from {60%, 6m, 2m} and various network synchronization errors and tested with various network synchronization STD values (X ns), using PDP data.
	CDF Percentile
	UE 2D positioning errors [m]
Model I trained with 40,000 samples with NW STD = 0 ns 

	
	0 ns
	5 ns
	10 ns
	25 ns
	50 ns

	50
	0.300
	0.330
	0.425
	1.010
	4.975

	67
	0.386
	0.434
	0.555
	1.468
	7.993

	80
	0.472
	0.536
	0.699
	2.067
	11.796

	90
	0.571
	0.666
	0.900
	3.158
	16.318



	CDF Percentile
	UE 2D positioning errors [m]
Model I trained with 40,000 samples with NW STD = 25 ns 

	
	0 ns
	5 ns
	10 ns
	25 ns
	50 ns

	50
	0.265
	0.267
	0.273
	0.315
	0.488

	67
	0.338
	0.343
	0.346
	0.401
	0.641

	80
	0.415
	0.414
	0.426
	0.494
	0.811

	90
	0.510
	0.516
	0.529
	0.604
	1.068



	CDF Percentile
	UE 2D positioning errors [m]
Model I trained with 40,000 samples with NW STD = 50 ns 

	
	0 ns
	5 ns
	10 ns
	25 ns
	50 ns

	50
	0.280
	0.282
	0.285
	0.294
	0.341

	67
	0.357
	0.357
	0.361
	0.376
	0.442

	80
	0.429
	0.431
	0.440
	0.462
	0.548

	90
	0.532
	0.532
	0.541
	0.564
	0.675
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(a) Trained with perfect NW sync				(b) Trained with NW STD 25 ns
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(c) Trained with NW STD 50 ns
[bookmark: _Ref131428702]Figure 77 Direct UE 2D positioning estimation error distributions for models trained with (a) perfect network sync; (b) network sync error with std 25 ns; and (c) network sync error with std 50 ns, and tested with datasets with various network sync errors, using 32-tap DP data.

[bookmark: _Ref131428733]Table 169 UE 2D positioning errors percentiles for Model I trained with 40,000 samples from {60%, 6m, 2m} and various network synchronization errors and tested with various network synchronization STD values (X ns) , using 32-tap DP data.
	CDF Percentile
	UE 2D positioning errors [m]
Model I trained with 40,000 samples with NW STD = 0 ns 

	
	0 ns
	5 ns
	10 ns
	25 ns
	50 ns

	50
	0.384
	0.397
	0.438
	0.705
	2.482

	67
	0.490
	0.505
	0.563
	0.923
	3.934

	80
	0.598
	0.625
	0.701
	1.192
	6.214

	90
	0.744
	0.774
	0.872
	1.620
	9.954



	CDF Percentile
	UE 2D positioning errors [m]
Model I trained with 40,000 samples with NW STD = 25 ns 

	
	0 ns
	5 ns
	10 ns
	25 ns
	50 ns

	50
	0.332
	0.343
	0.349
	0.409
	0.691

	67
	0.430
	0.443
	0.452
	0.532
	0.920

	80
	0.531
	0.543
	0.557
	0.663
	1.198

	90
	0.658
	0.664
	0.679
	0.834
	1.659



	CDF Percentile
	UE 2D positioning errors [m]
Model I trained with 40,000 samples with NW STD = 50 ns 

	
	0 ns
	5 ns
	10 ns
	25 ns
	50 ns

	50
	0.387
	0.388
	0.396
	0.421
	0.516

	67
	0.503
	0.502
	0.597
	0.549
	0.670

	80
	0.617
	0.616
	0.630
	0.681
	0.838

	90
	0.765
	0.779
	0.769
	0.840
	1.046




[bookmark: _Toc131525232]Performance of ML models under different train/test SNR mismatch
The SNRs before considering shadowing and fast fading are
· Between 21.9 and 52.3 dB for 23 dBm UE power.
· Between 6.9 and 37.3 dB for 8 dBm UE power.
· Between -8.1 and 22.3 dB for -7 dBm UE power.
The direct AI/ML model exhibits very high sensitivity to train/test SNR mismatch, particularly when the CIR input type is used, see Table 170 and Figure 78. With an SNR mismatch of 15 dB, all models using CIR inputs cannot achieve acceptable positioning accuracy.
The models using PDP inputs exhibit better performance than those using CIR inputs, see Table 171 and Figure 79. In particular, the model trained with 23 dBm UE power can operate with high performance when the UE power is reduced by 15 dB. However, for all other tested cases, the models still cannot achieve acceptable positioning accuracy.
The models using 32-tap DP data as input are remarkable robust to SNR mismatch, see Table 172 and Figure 80. Only a small position estimation accuracy is lost.
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[bookmark: _Ref131429542]Figure 78 UE 2D positioning error distributions for the {60%, 6m, 2m} test dataset with different UE Power settings at training and UE power settings at testing for Model I (trained with 40,000 samples), using CIR data.

[bookmark: _Ref131429523]Table 170 UE 2D positioning errors [m] for {60%, 6m, 2m} test dataset with different UE output powers, at different percentiles, using CIR data.
	CDF Percentile
	Model I trained with 23 dBm UE power

	
	23 dBm UE power
	8 dBm UE power
	-7 dBm UE power

	50
	0.186
	0.875
	13.386

	67
	0.240
	1.215
	17.309

	80
	0.296
	1.605
	22.015

	90
	0.373
	2.146
	29.281



	CDF Percentile
	Model I trained with -7 dBm UE power

	
	23 dBm UE power
	8 dBm UE power
	-7 dBm UE power

	50
		2.216
	1.662
	0.276

	67
	3.460
	2.480
	0.349

	80
	5.047
	3.504
	0.433

	90
	7.441
	5.188
	0.532
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[bookmark: _Ref131429562]Figure 79 UE 2D positioning error distributions for the {60%, 6m, 2m} test dataset with different UE Power settings at training and UE power settings at testing for Model I (trained with 40,000 samples), using PDP data.

[bookmark: _Ref131429589]Table 171 UE 2D positioning errors [m] for {60%, 6m, 2m} test dataset with different UE output powers, at different percentiles, using PDP data.
	CDF Percentile
	Model I trained with 23 dBm UE power

	
	23 dBm UE power
	8 dBm UE power
	-7 dBm UE power

	50
	0.265
	0.335
	1.705

	67
	0.338
	0.435
	2.386

	80
	0.415
	0.543
	3.250

	90
	0.510
	0.672
	4.514



	CDF Percentile
	Model I trained with -7 dBm UE power

	
	23 dBm UE power
	8 dBm UE power
	-7 dBm UE power

	50
	2.557
	1.784
	0.290

	67
	3.759
	2.604
	0.370

	80
	5.515
	3.697
	0.457

	90
	8.396
	5.595
	0.558
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[bookmark: _Ref131429638]Figure 80 UE 2D positioning error distributions for the {60%, 6m, 2m} test dataset with different UE Power settings at training and UE power settings at testing for Model I (trained with 40,000 samples), using 32-tap DP data.

[bookmark: _Ref131429616]Table 172 UE 2D positioning errors [m] for {60%, 6m, 2m} test dataset with different UE output powers, at different percentiles, using 32-tap DP data.
	CDF Percentile
	Model I trained with 23 dBm UE power

	
	23 dBm UE power
	8 dBm UE power
	-7 dBm UE power

	50
	0.332
	0.332
	0.416

	67
	0.430
	0.432
	0.547

	80
	0.531
	0.531
	0.683

	90
	0.658
	0.655
	0.867



	CDF Percentile
	Model I trained with -7 dBm UE power

	
	23 dBm UE power
	8 dBm UE power
	-7 dBm UE power

	50
	0.372
	0.371
	0.353

	67
	0.483
	0.484
	0.462

	80
	0.603
	0.604
	0.558

	90
	0.754
	0.741
	0.679








[bookmark: _Toc131525233][bookmark: _Ref118642550][bookmark: _Toc118718162]Model Monitoring
[bookmark: _Toc131525234]Intrinsic model monitoring for AI/ML assisted approaches (Case 3a)
As another candidate solution, the AI/ML assisted approach for Case 3a in Section 2.1 – Section 2.2 can be monitored without collecting new test samples. For these AI/ML assisted approaches, the LMF takes the estimated time of arrivals into conventional triangulation-based error minimization framework to search and determine the UE position. It can be expected that the minimization outcome will have smaller residual losses when the AI/ML models are operating in the correct environment and are generating correct time of arrivals than when the models are applied to an environment different than the one used to train the models. In Figure 81, we provide the residual losses from conventional triangulation-based error minimization positioning algorithms. The AI/ML models for supplying the ToAs are trained with a dataset for the {60%, 6m, 2m} parameter.
· When the trained model is operating in the same environment of {60%, 6m, 2m}, the residual losses shown in blue line are below 0.77 with a probability of 99%.
· When the trained model is operating in the substantially different environment of {40%, 2m, 2m} where the model performs badly, the residual losses shown in orange line are above 0.77 with a probability of 99%.
· When the trained model is operating in a moderately different environment of {40%, 6m, 2m}, where the test environment has drifted from the training set environment, but the model is still performing well, the distribution of the residual losses shown in green remain quite similar to those for the {60%, 6m, 2m} environment (blue line).
From this analysis, it can be concluded that the residual losses from the conventional positioning algorithms can be used as a reliable metric to detect model/environment mismatch. For the example shown here, one could determine a threshold for flagging model refinement/re-training, for example, threshold =1 considering both blue and green curves. If the positioning residual losses are above this threshold, there is a high chance that the environment has drifted too far from the training environment and the model will need to be replaced or adjusted. 
In essence, the conventional triangulation-based in LMF provides a fairly accurate ground truth label  for  during deployment. Thus model monitoring metrics can be formulated to compare  with model output  in a statistical manner. In Figure 81, residual loss is a type a norm distance metric for model monitoring. Other types of model monitoring metrics can be formulated as well, e.g., Kolmogorov–Smirnov test.
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[bookmark: _Ref131539736]Figure 81: Residual losses from conventional triangulation-based error minimization positioning algorithms. The ML model is trained in the {60%, 6m, 2m} environment and tested in three environments: {60%, 6m, 2m}, {40%, 6m, 2m} and {40%, 2m, 2m}.

Based on the investigation above, the intrinsic model monitoring for AI/ML assisted approaches is a valuable model monitoring method. The complexity, latency, and power consumption are negligible since the computation is already part of the conventional triangulation method. While the evaluations results above are for network-side deployment (i.e., Case 3a), we expect the same principle applies to UE-side deployment, i.e., Case 1 with AI/ML assisted, Case 2a. 
Thus we have the following observations on the model monitoring KPIs for AI/ML assisted positioning approaches.  Similar to the self-model monitoring method, the model monitoring latency (i.e., from the start of model drift to the time of drift detected) is yet to be investigated.
[bookmark: _Toc131788482]For AI/ML assisted positioning approaches (e.g., Case 3a), model monitoring metrics can be accurately and reliably provided by the conventional positioning methods (e.g., residual loss). 
[bookmark: _Toc131788483]For AI/ML assisted positioning approaches, model monitoring leveraging conventional positioning method incurs negligible cost in terms of: signaling overhead, complexity, latency, and power consumption for obtaining a model monitoring sample.

[bookmark: _Toc131788491]Capture in TR 38.843 that: For AI/ML assisted positioning, model monitoring metrics can be reliably provided by the conventional positioning methods.

In literature, the important model monitoring metrics include: false alarm rate (FAR), missed detection rate (MDR), and detection delay.
For the simplistic case evaluated in Figure 81, they can be estimated as follows. Assume the threshold for declare the model has drifted or not is: residual loss =1. This corresponds to CDF=99.5% for the ‘no drift’ cases ({60%, 6m, 2m} and {40%, 2m, 2m}), and CDF=3% for the ‘drift’ case ({40%, 6m, 2m}).
The model monitoring algorithm can monitor  positioning requests to decide ‘drift’ or not. If for all  positioning requests, the residual loss is less than 1m, then ‘no drift’ is declared; otherwise, ‘drift’ is declared. In this case,
· FAR = , the probability that the environment has not significantly changed (stayed at blue or green curve), but ‘drift’ is declared.
· MDR = , the probability that the environment has changed significantly (i.e., changed to orange curve), but ‘no drift’ is declared.
The detection delay is the time to observe  positioning occasions. Plugging in  shows that this simple method can achieve FAR=1% and MDR=0.09%. 
[bookmark: _Toc131525235]Self-model monitoring for direct AI/ML positioning (Case 3b)
The four different AI/ML positioning approaches also exhibit different sensitivity to environmental changes.
· We found the models estimating observable first path delays for the LoS links to be insensitive to different random seeds for UE location, 3GPP spatial model, and propagation seeds. In fact, the quality of observable first path delays for the LoS links remain accurate even when the models are deployed to completely different InF environments. These models behave almost like conventional signal processing algorithms in terms of their robustness to various environmental changes.
· The caveat is, for environments without enough LoS links, accurate UE positioning cannot be obtained using the outputs from this type of model, since the conventional positioning methods need to have at least 3 LoS links to produce accurate horizontal position estimation.
· The models estimating unobservable direct path delays for all links and the models estimating the UE positions directly are rather sensitive to different random seeds for UE location, 3GPP spatial model, and propagation seeds. This is because these models are in essence performing fingerprinting either locally or regionally/globally. When the operating environment changes, mitigation solutions are needed.
Since the fingerprinting type AI/ML models are sensitive to operating environment changes, it is necessary to monitor the model performance over time and ensure the models are operating within performance requirements. In general, model performance monitoring requires periodically obtaining additional new test samples with both the required model inputs and the correct UE positions. 
However, when models are trained with data augmentation, self-model monitoring may be possible without collecting new test samples nor ground truth UE positions. One model-based self-monitoring method is described below.
· Model training with data augmentation
· Given ground truth samples 
· Train the model with a mixture of 
· Unmodified samples 
· Data augmentation modified samples  
· Self-model monitoring at operation
· Given positioning request data 
· Obtain a first target estimate  using unmodified data 
· Obtain a second target estimate  using data augmentation modified data  
· Check the difference between the two target estimates, . 
We investigate the effectiveness of this self-monitoring approach using the smallest model (0.73 M parameters) for the centralized direct positioning approach trained with {60%, 6m, 2m} dataset samples. The CDF of the test results are summarized in Figure 82. It can be observed that:
· When the model is operating in environments similar to that it was trained for (such as the {60%, 6m, 2m} and {40%, 6m, 2m} environments), the two UE position estimates do not differ by more than 1 m, i.e.,  m.
· When the model is operating in environments which it was not trained for and hence is under-performing, the two UE position estimates differ by more than 1 m with substantially high probabilities. For instance, in the {60%, 2m, 2m} and {40%, 2m, 2m} environments, the two UE position estimates differ by more than 1 m with 20% and 33% probabilities, respectively.
· While observing one UE position estimate difference of below 1 m is not reliable enough to ensure model is still operating in the intended environment, checking the  distribution in a small window of 10s-20s model inferences can achieve monitoring accuracy >99%. 
· Observing 14 UE position estimate differences of below 1 m is enough to ensure an environment change from {60%, 6m, 2m} to {60%, 2m, 2m} is identified with a probability > 95%.
· Observing 21 UE position estimate differences of below 1 m is enough to ensure an environment change from {60%, 6m, 2m} to {60%, 2m, 2m} is identified with a probability > 99%.
· Observing 8 UE position estimate differences of below 1 m is enough to ensure an environment change from {60%, 6m, 2m} to {40%, 2m, 2m} is identified with a probability > 96%.
· Observing 12 UE position estimate differences of below 1 m is enough to ensure an environment change from {60%, 6m, 2m} to {40%, 2m, 2m} is identified with a probability > 99%.

Note that the need of observing multiple instances is no different than any other model monitoring methods, since poor performance at a single instance cannot tell whether the model has truly degraded, or it’s a random anomaly.
This investigation demonstrates that the distribution of  can be used to generate model monitoring metrics. A variety of commonly used metrics for ML model monitoring can be considered, such as Kolmogorov–Smirnov (KS) test, Kullback–Leibler (KL) divergence, Population Stability Index (PSI). 

[bookmark: _Toc131788484]For a direct positioning ML model, self-model monitoring can be performed if the model was trained with data augmentation techniques. Otherwise, model monitoring generally requires collecting new ground truth samples during model operation.
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[bookmark: _Ref126938774]Figure 82. 2D position estimate difference using unmodified or modified positioning request data at production in different operating environments for a small centralized direct positioning model trained with {60%, 6m, 2m} dataset samples.

The self-model monitoring approach for models trained with data augmentation described in this section can also be applied to the AI/ML assisted positioning approaches. Instead of checking the differences between UE position estimates, the L1 or L2 differences between vectors of direct path ToA estimates can be checked to identify environment changes.
Considering that data augmentation is widely used in model training, the self-model monitoring approach described above is a useful technique. Since the model monitoring can be performed together with model inference without any additional assistance (e.g., ground truth label  for ) from other nodes during operation, it has the advantage of no requirement of obtaining ground truth label during operation, no signaling overhead, and low latency for the model monitoring function.
Thus, we have the following observation and proposal. It is noted that the latency from the start of model drift to the time of drift detected is yet to be investigated. 

[bookmark: _Toc131788485]For both direct and AI/ML assisted positioning methods, self-model monitoring method does not require ground truth label and has no signaling overhead. The complexity, power consumption, and latency for obtaining one model monitoring sample are equal to one round of model inference. 

[bookmark: _Toc131788492]Capture in TR 38.843 that: For both direct and AI/ML assisted positioning methods, self-model monitoring is a candidate solution for model monitoring.
[bookmark: _Toc131525236][bookmark: _Ref131674746]
The curves Figure 82 can be used to devise a monitoring method and calculate false alarm rate (FAR), missed detection rate (MDR), and detection delay as well.
Take the threshold of 2D position estimate difference = 1m. At this point, CDF=99.96% for {60%, 6m, 2m} and {40%, 6m, 2m}, CDF=80% for {60%, 2m, 2m}, and CDF= 67% for {40%, 2m, 2m}. 
The model monitoring protocol can be:
· Declare ‘no drift’ from {60%, 6m, 2m} to {60%, 2m, 2m} if the last  positioning instances have .
· Declare ‘no drift’ from {60%, 6m, 2m} to {40%, 2m, 2m} if the last  position instances have .
· Otherwise, declare ‘drift’ and the model trained for {60%, 6m, 2m} is no longer appropriate.
In this case, take ,
· FAR =  = 0.8%
· Missed detection rate of drift from {60%, 6m, 2m} to {60%, 2m, 2m}=  = 0.9%
· Missed detection rate of drift from {60%, 6m, 2m} to {40%, 2m, 2m}=  = 0.02%
The detection delay is the time to observe  positioning occasions.
Thus, compared with the intrinsic model monitoring method for AI/ML assisted positioning, the self-model monitoring method requires longer observation time. On the other hand, it has the advantage of being self-contained, and requiring no external assistance or information exchange. Thus there no delay to make a request and receive a response for the monitoring information. Thus self-model monitoring may have comparable or even lower detection delay in comparison.
Model monitoring based on statistics of datasets
In this section, the method uses descriptive statistics to monitor whether the model is still appropriate at different deployments or different operational phases in a deployment. The central idea is to make use of statistical measures of datasets via efficient statistical calculation to detect possible model drift.  

Firstly, form a grid of anchoring points, each with coordinates  as the following,
[image: ]

Each  represents a location point in the service area. The set of  points is uniformly distributed in the service area (i.e., square grid points). The dimension of the whole area is defined by  and . 
To calculate the moment of v for a zone (or a grid square) associated with , the variance is calculated using all v associated with the zone of . Here v is the model input (e.g., a vector of RSRP), which corresponds to the model output which is an estimated UE location within the zone of . After all variance values are calculated for the set of , they form a variance matrix.
Then the variance matrix can be used as inputs for calculating the statistical distance between two distributions, as shown in the equation below. The input of the equation are two variance matrices, where  is the variance matrix calculated using the reference dataset (e.g., training dataset), and  is the variance matrix calculated using the operational dataset (i.e., data at model deployment). As denoted by , a matrix element-wise division is done between  and . After that, a Frobenius-norm calculation as denoted by  is applied to obtain the distance.
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In Figure 83, cumulative error density functions and their corresponding data set distances are presented for a few of operational datasets. Each of them could be regarded typical dataset collected at different sites, such as different hall of indoor factory, or different factories. 
Among the curves in the figure, a cluster of data sets with their distances around 0.62 to 0.63 (light blue colours) indicate a slight model drift as compared to the reference data set (dark blue colour) case. Another cluster of data sets with their distances being around 1.9 (red colours) have a severe model drift in performance. 
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[bookmark: _Ref131781929]Figure 83 Initial simulations: CDFs of positioning errors at different data set distances defined in this section
In such an example of statistical inspections on datasets, the threshold can be set between 0.6 and 1.9 for detecting the possible substantial model drift. The concrete threshold value depends on all potential deployment scenarios. The preliminary evaluation results demonstrate the effectiveness of the method to obtain the model monitoring metrics. 
To better illustrate the model drift relationship with the data set distance, a relative entropy (Kullback-Leibler divergence) could be used as a metric to stands for the model drift severity. A relative entropy over the distributions of positioning errors with operational dataset and with the reference one is used to indicate the performance gap. Therefore, Figure 84 presents the results, where the performance metric (y-axis in Figure 84, positioning error distribution) is a KL divergence between distributions of positioning errors of reference and an operational data set with a same AI model.
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[bookmark: _Ref131621178]Figure 84 Comparisons: Model drift in performance vs operational data-set distance to reference data set
It is observed that the larger distance (x-axis in Figure 84) of an operational dataset has with regards to the reference one, the larger the gap of performances in terms of positioning error. 

[bookmark: _Toc131788486]Initial evaluation results indicate that model monitoring can be effectively performed based on statistical metrics of the datasets.

[bookmark: _Toc131788493]Further investigate the model monitoring method based on statistical metrics of the datasets.

Autoencoder assisted model monitoring
As discussed in 3.3, dataset inspection provides a valid means to detect the possible model drift. This section focuses on a similar method but employing an autoencoder like structure to remove the need of labelled data set even for the training dataset. Thus this method is suitable for AI/ML model obtained via semi-supervised training.
This method is an autoencoder assisted data inspection. In addition to the AI/ML model for generating UE position, a preparatory decoder is also trained at the training phase of a encoder, where the encoder is the AI/ML model for positioning function.
Instead of measuring the distance between the operational dataset to the reference dataset (usually training dataset), here, a measurement on the distance between the operational dataset and its outputs at the pretrained autoencoder (i.e., output of the decoder) is used as the model monitoring metric. Here the autoencoder refers to the combination of encoder and decoder.
Namely, If the model is working well for the deployed environment, then a distance metric at time t between the encoder input  and decoder output  is expected to be small. The distance metric at model deployment should be comparable to that at training phase. 
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[bookmark: _Ref131676229]Figure 85 Initial simulations: CDFs of positioning errors at different distances between inputs and outputs of the assisted autoencoder
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[bookmark: _Ref131676232]Figure 86 Comparisons: Model drift in performance vs operational dataset distance to output dataset at the assisted autoencoder
In Figure 85 and Figure 86, it is also observed the larger distance (x-axis in Figure 86) of an operational dataset has with regards to its output dataset of the assisting autoencoder, the larger the gap of performances (y-axis in Figure 86, positioning error distribution). 
  
[bookmark: _Toc131788487]Initial investigations on auto-encoder assisted model monitoring demonstrates that the scheme is effective.

[bookmark: _Toc131788494]Model drift monitoring without a labelled dataset should be further investigated.

[bookmark: _Toc131525241]Conclusion
Based on the extensive evaluation and analysis, we made the following observations: 
Observation 1	For a given train dataset size, data augmentation techniques and more training epochs can improve trained model performance.
Observation 2	Using semi-distributed or centralized ML assisted positioning or centralized ML direct positioning approaches with CIR inputs in a highly non-LoS environment such as the {60%, 6m, 2m} InF-DH scenario, - sub-meter 90%tile 2D error is achievable with a small train dataset; - 90%tile 2D error < 0.5 m can be achieved with a medium-size train dataset and large enough ML models; - 90%tile 2D error approaching or below 0.25 m requires large train datasets as well as large enough ML models.
Observation 3	Positioning accuracy significantly better than the average training sample distance can be achieved using distributed or centralized ML assisted positioning or centralized ML direct positioning approaches with CIR inputs in a highly non-LoS environment such as the {60%, 6m, 2m} InF-DH scenario.
Observation 4	For a given number of TRPs and number of time domain taps, a PDP sample requires 1/(2*Nport) the number of bits for a CIR sample.
Observation 5	For a given model architecture, model complexity can be reduced by half and computational complexity can be reduced by two thirds when switching the inputs from complex dual-port CIR to PDP.
Observation 6	Using centralized ML assisted positioning or centralized ML direct positioning approaches with PDP inputs in a highly non-LoS environment such as the {60%, 6m, 2m} InF-DH scenario, - sub-meter 90%tile 2D error is achievable with a small train dataset; - 90%tile 2D error < 0.5 m can be achieved with a medium-size train dataset and large enough ML models; - 90%tile 2D error approaching or below 0.25 m requires large train datasets as well as large enough ML models. For the semi-distributed ML assisted positioning approach with PDP inputs, one class large datasets are generally needed than those for centralized ML positioning approaches.
Observation 7	Positioning accuracy significantly better than the average training sample distance can be achieved using centralized ML assisted positioning or centralized ML direct positioning approaches with PDP inputs in a highly non-LoS environment such as the {60%, 6m, 2m} InF-DH scenario. For the semi-distributed ML assisted positioning approach with PDP inputs, large models are needed to achieve positioning accuracy significantly better than the average training sample distance.
Observation 8	For a highly non-LoS environment such as the {60%, 6m, 2m} InF-DH scenario and assuming the same time domain resolution (i.e., the same sampling rate and the same number of taps), - For the same number of training samples, models using CIR inputs achieve better positioning accuracy than those using PDP inputs. - For the same storage sizes of the training datasets, models using PDP inputs can achieve better positioning accuracy than those using CIR inputs. It is, however, noted that doubling or quadrupling collection of ground truth UE positions may not be a favourable trade-off against recording the rich CIR information with fewer UE position drops.
Observation 9	One way to reduce the number of active (nonzero) time domain taps while keeping as much radio environment information is to down-select from the Nt taps only the Nt’ taps with stronger power than the rest of the taps. For the CIR, such tap down-selection is determined by average the power over RX ports.
Observation 10	A generic representation of sub-sampled CIR or PDP is to store each sample in two pieces of information: (1) a length-Nt bitmap representing the location of the nonzero taps; and (2) the values of the nonzero taps.
Observation 11	Retaining a smaller number of strongest CIR or PDP taps can be an effective approach to reduce training dataset sizes. - Zeroing out half of the 256 taps result in negligible positioning accuracy losses. - Approaching or better than 1 m UE positioning accuracy can be achieved by retaining only 9 strongest CIR or PDP taps with the centralized models. - Approaching or better than 0.5 m UE positioning accuracy can be achieved by retaining 64 strongest CIR taps with the centralized models.
Observation 12	For a highly non-LoS environment such as the {60%, 6m, 2m} InF-DH scenario and considering the possibility of reducing training dataset storage sizes with down sampling, models using CIR or PDP inputs can achieve similar positioning accuracy at similar storage sizes of the training datasets.
Observation 13	For a highly non-LoS environment such as the {60%, 6m, 2m} InF-DH scenario, centralized models using either CIR or PDP inputs achieve similar positioning accuracy for small number of retained taps (e.g., 9, 16 or 32 taps).
Observation 14	For a given number of time domain taps, a dataset of DP samples only require a fraction of storage spaces for datasets of CIR or PDP samples.
Observation 15	Using centralized ML assisted positioning or centralized ML direct positioning approaches with 32-tap DP inputs in a highly non-LoS environment such as the {60%, 6m, 2m} InF-DH scenario, - sub-meter 90%tile 2D error is achievable with a small train dataset and medium-size or large ML models; - 90%tile 2D error < 0.5 m can be achieved with a medium-size train dataset and large ML models or a large train dataset and medium-size ML models; - 90%tile 2D error approaching or below 0.30 m requires very large train datasets and large ML models.
Observation 16	Positioning accuracy better than the average training sample distance can be achieved using centralized ML assisted positioning or centralized ML direct positioning approaches with 32-tap DP inputs in a highly non-LoS environment such as the {60%, 6m, 2m} InF-DH scenario.
Observation 17	Delay profile input type is highly effective for centralized direct positioning or assisted positioning models. Models using 32-tap DP inputs can achieve positioning accuracy comparable to that achieved by models using CIR or PDP inputs but with a fraction of the training dataset storage sizes.
Observation 18	Different ML positioning approaches can exhibit different levels of sensitivity to labeling errors. Semi-distributed ML assisted positioning approaches exhibit lower sensitivity to labeling errors than centralized ML positioning approaches.
Observation 19	Different model inputs can affect the sensitivity of the ML models to labeling errors. For the centralized ML assisted positioning or direct positioning approaches, higher sensitivity to labeling errors is observed with CIR inputs than with PDP or DP inputs.
Observation 20	Fine-tuning is a viable technique to adapt models originally trained for a first environment to operate in a second, substantially different, environment. However, fine-tuning does not appear to provide much saving in the number of samples to reach state-of-the-art positioning accuracy when compared to training the models from scratch.
Observation 21	Once the models are fine-tuned to operate for a substantially different, new, environment, they no long perform adequately for the original environment. That is, if operation at state-of-the-art performance in multiple environments is needed, multiple sets of model weights need to be stored.
Observation 22	Even with small model sizes, models trained with mixed datasets can operate at state-of-the-art performance in multiple substantially different environments with no need of explicit environment identification and model switching.
Observation 23	For the alternative approach of keeping multiple models for multiple operating environments, reliability of environment identification becomes the critical point of failure.
Observation 24	To operate at state-of-the-art performance in multiple substantially different environments, mixed dataset training is superior to either training multiple models from scratch or storing multiple fine-tuned models with explicit environment identification and model switching.
Observation 25	Centralized ML positioning models can overcome uncorrelated network synchronization errors. In fact, network synchronization errors can be used as a type of data augmentation during training to enhanced trained model performance. - Models trained without any network synchronization error can achieve high positioning accuracy for network synchronization error STD up to 10 ns. - Models trained with network synchronization error STD of 25 ns can achieve high positioning accuracy for network synchronization error STD up to at least 50 ns.
Observation 26	Network synchronization error remains a challenging issue for semi-distributed ML assisted positioning models.
Observation 27	Model position accuracy in the presence of network synchronization errors may be improved by training the models with multiple datasets corresponding to various extents of network synchronization errors.
Observation 28	Centralized ML assisted or direct positioning models using PDP inputs exhibits much lower sensitive to train/test SNR drops than models using CIR inputs. - Models using PDP inputs are still usable with an SNR drop of 15 dB with 90%tile 2D positioning errors below 0.7 m. - The 90%tile 2D positioning errors of models using CIR inputs jump to >2 m with an SNR drop of 15 dB. - With an SNR drop of 30 dB, models using CIR or PDP inputs are not usable.
Observation 29	Centralized ML assisted or direct positioning models using PDP inputs exhibits much higher sensitive to train/test SNR increases than models using CIR inputs. All models become unusable with SNR increases of at least 15 dB.
Observation 30	Centralized ML assisted or direct positioning models using DP inputs are protected from train/test SNR mismatch. Even with an SNR mismatch of 30 dB, the models maintain 90%tile 2D positioning error below 0.9 m.
Observation 31	Semi-distributed ML assisted positioning models exhibit very high sensitivity to train/test SNR mismatch.
Observation 32	Model position accuracy in the presence of SNR mismatch may be improved by training the models with multiple datasets corresponding to various extents of SNR mismatch.
Observation 33	For AI/ML assisted positioning approaches (e.g., Case 3a), model monitoring metrics can be accurately and reliably provided by the conventional positioning methods (e.g., residual loss).
Observation 34	For AI/ML assisted positioning approaches, model monitoring leveraging conventional positioning method incurs negligible cost in terms of: signaling overhead, complexity, latency, and power consumption for obtaining a model monitoring sample.
Observation 35	For a direct positioning ML model, self-model monitoring can be performed if the model was trained with data augmentation techniques. Otherwise, model monitoring generally requires collecting new ground truth samples during model operation.
Observation 36	For both direct and AI/ML assisted positioning methods, self-model monitoring method does not require ground truth label and has no signaling overhead. The complexity, power consumption, and latency for obtaining one model monitoring sample are equal to one round of model inference.
Observation 37	Initial evaluation results indicate that model monitoring can be effectively performed based on statistical metrics of the datasets.
Observation 38	Initial investigations on auto-encoder assisted model monitoring demonstrates that the scheme is effective.


Based on the discussion in the previous sections we propose the following:
Proposal 1	For 3GPP AI/ML for PHY SI discussion, companies shall report nominal computational complexity values based on HLO representations (and not accelerator-optimized computational complexity values). Otherwise, the reported computation complexity value cannot be included for a fair cross-company comparison.
Proposal 2	To further 3GPP discussion and preparation of observations/conclusions for the technical report, three model size classes are defined for the positioning use case as follows: - Small models: < 1 M model parameters - Medium-size models: 1 – 8 M model parameters - Large models: > 8 M model parameters
Proposal 3	To further 3GPP discussion and preparation of observations/conclusions for the technical report, four train dataset size classes are defined as follows: - Small datasets: density ~1.39 UE/m2 - Medium-size datasets: density ~2.79 UE/m2 - Large datasets: density ~5.56 UE/m2  - Very large datasets: >6.94 UE/m2
Proposal 4	Capture in TR 38.843 that: For AI/ML assisted positioning, model monitoring metrics can be reliably provided by the conventional positioning methods.
Proposal 5	Capture in TR 38.843 that: For both direct and AI/ML assisted positioning methods, self-model monitoring is a candidate solution for model monitoring.
Proposal 6	Further investigate the model monitoring method based on statistical metrics of the datasets.
Proposal 7	Model drift monitoring without a labelled dataset should be further investigated.
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