3GPP TSG RAN WG1 Meeting #112bis-e	R1- 2302318
eMeeting, April 17th – 26th, 2023
Agenda Item:	9.2.1
Source:	FUTUREWEI
Title:	Discussion on common AI/ML characteristics and operations
Document for:	Discussion

[bookmark: _Ref124589705][bookmark: _Ref129681862]Introduction
In RAN1 meeting #112, the following agreements have been reached on the general aspects of AI/ML. The following agreement and working assumptions were extracted from the Chair’s note [1].
Agreement
To facilitate the discussion, consider at least the following Cases for model delivery/transfer to UE, training location, and model delivery/transfer format combinations for UE-side models and UE-part of two-sided models. 
	Case
	Model delivery/transfer
	Model storage location
	Training location

	y
	model delivery (if needed) over-the-top
	Outside 3gpp Network
	UE-side / NW-side / neutral site

	z1
	model transfer in proprietary format
	3GPP Network
	UE-side / neutral site

	z2
	model transfer in proprietary format
	3GPP Network
	NW-side

	z3
	model transfer in open format
	3GPP Network
	UE-side / neutral site

	z4
	model transfer in open format of a known model structure at UE
	3GPP Network
	NW-side

	z5
	model transfer in open format of an unknown model structure at UE
	3GPP Network
	NW-side



Note: The Case definition is only for the purpose of facilitating discussion and does not imply applicability, feasibility, entity mapping, architecture, signalling nor any prioritization.
Note: The Case definition is NOT intended to introduce sub-levels of Level z.
Note: Other cases may be included further upon interest from companies.
FFS: Z4 and Z5 boundary 

Agreement
For UE-side models and UE-part of two-sided models:
· For AI/ML functionality identification
· Reuse legacy 3GPP framework of Features as a starting point for discussion.
· UE indicates supported functionalities/functionality for a given sub-use-case.
· UE capability reporting is taken as starting point.
· For AI/ML model identification 
· Models are identified by model ID at the Network. UE indicates supported AI/ML models.
· In functionality-based LCM
· Network indicates activation/deactivation/fallback/switching of AI/ML functionality via 3GPP signaling (e.g., RRC, MAC-CE, DCI). 
· Models may not be identified at the Network, and UE may perform model-level LCM.
· Study whether and how much awareness/interaction NW should have about model-level LCM
· In model-ID-based LCM, models are identified at the Network, and Network/UE may activate/deactivate/select/switch individual AI/ML models via model ID. 
FFS: Relationship between functionality identification and model identification
FFS: Performance monitoring and RAN4 impact 
FFS: detailed understanding on model 

Agreement
AI/ML-enabled Feature refers to a Feature where AI/ML may be used. 

Agreement
For functionality identification, there may be either one or more than one Functionalities defined within an AI/ML-enabled feature.

Agreement
For 3GPP AI/ML for PHY SI discussion, when companies report model complexity, the complexity shall be reported in terms of “number of real-value model parameters” and “number of real-value operations” regardless of underlying model arithmetic.

[bookmark: _Ref129681832]In this contribution, we continue the discussions of the topics and present our views on the following topics.
· General Framework
· Life Cycle Management
· [bookmark: _Hlk110330641]Potential Specification Impact
General framework
[bookmark: _Hlk118016053]During meeting #112, the discussion of general framework was picked up after being skipped for several meetings. Most companies proposed to start with the RAN3 functional framework and refine it to meet RAN1 needs. The FL suggested the following two diagrams as the starting point for discussion [4]. Figure 1 was proposed by [5], and Figure 2 was proposed by [6] .
Model Storage
Model Inference
model transfer/delivery
Model Management (monitor, select, activate, deactivate, switch, fallback) 
output
model inference control
inference data
Data Collection
training data
monitoring data
Model Training 
model deployment/update
model training control

Figure 1. Framework diagram proposed by [5]

[image: Diagram

Description automatically generated]
Figure 2. Framework diagram proposed by [6]

In our view, a unified functional framework should capture high-level and logical functional blocks and it does not need to bind exactly with the physical entities. This should be the proper approach to adopt as one function can be realized at various physical entities or vice versa depending on vendor implementation. The framework shown in Figure 2 is too detailed and too closely related to physical entities; for example, there are three functional blocks for data collection for different purposes. 
Based on this understanding, we propose to adopt the following revised framework diagram of Figure 1. Note the Model Storage box was removed from Figure 1 as we don’t think it is an important function specific to AI/ML. 


Model Inference
Model Management (monitor, select, activate, deactivate, switch, fallback) 
output
model inference control
inference data
Data Collection
training data
monitoring data
Model Training 
model training control

Figure 3. Proposed framework diagram 

Proposal 1: Take the functional framework shown in Figure 3 as the starting point for RAN1 functional framework discussion. On top of the functional framework defined by RAN3, this revised framework diagram adds a functional block for model management.
Life Cycle Management

Data Collection
In meeting #111 and #112, data collection has been discussed but it was not a focus of the meetings. There were no agreements or conclusions came out of the discussions as well. 
In meeting 110bis-e, the group concluded that data collection may be performed for different purposes in LCM, e.g., model training, model inference, model monitoring, model selection, model update, etc. while each may be done with different requirements and potential specification impact. In addition, studying data collection from two directions has been proposed. One direction is that the network side collects data and assistance information from the UE side; while the other direction is that UE side collects data and assistance information from the network side. For either direction, the data and assistance information are transmitted over the air interface.
To enable the collection of data and assistance information, the two sides of the communications need to inform the other side of its capabilities. For example, if the UE side is to collect data from the network side, the following aspects need to be considered.
1) How to indicate the UE’s storage capacity to the network side, in a way that is consistent with its AI/ML feasibility and capability? 
2) How to reduce the size of data needs to be transmitted over the air interface?
[bookmark: _Hlk118403706]For question 1), one way to indicate this to the network side may be to categorize them into a few groups. For example, for Category x, the storage space is between m and n MB. Existing UE Capability report can be enhanced to server this purpose, but the details are to be further studied.
For question 2), some approaches can be used to, for example, quantize or compress the data to be transmitted. In some case, the other side needs to know necessary information of the compression if the other side needs to recover the original data.
Note these considerations also apply to the direction of the network side collecting data from the UE side. But due to the limited formfactors, computational power and power consumption (UE are battery-powered), the concerns are more on the UE side.
Proposal 2: When studying data collection from two directions, study the method of indicating the capabilities of one side to the other side, in a way that reflect its storage capacity. In addition, study the mechanisms of reducing the size of data needs to be transmitted over the air interface considering the balance between performance and the overhead.

Model ID, Functionality ID and Model Registration

Background of the Discussion
On RAN1 side, going back to meeting #111, the group has agreed to study two types of LCM procedures, functionality-based procedure, and model-ID-based procedure. Two working assumptions of the terms “Model identification” and “Functionality identification” have also been made. However, both terms were defined as processes or methods. The “ID” itself has not been defined; in other words, they have been defined for their usage (a process/method), but not about what they are. The agreements and working assumptions are listed below.
Agreement
For UE-part/UE-side models, study the following mechanisms for LCM procedures:
· For functionality-based LCM procedure: indication of activation/deactivation/switching/fallback based on individual AI/ML functionality
· Note: UE may have one AI/ML model for the functionality, or UE may have multiple AI/ML models for the functionality.
· FFS: Whether or how to indicate Funtionality
For model-ID-based LCM procedure, indication of model selection/activation/deactivation/switching/fallback based on individual model IDs

Working Assumption 
	Terminology
	Description

	Model identification
	A process/method of identifying an AI/ML model for the common understanding between the NW and the UE
Note: The process/method of model identification may or may not be applicable.
Note: Information regarding the AI/ML model may be shared during model identification.



	Terminology
	Description

	Functionality identification
	A process/method of identifying an AI/ML functionality for the common understanding between the NW and the UE
Note: Information regarding the AI/ML functionality may be shared during functionality identification.
FFS: granularity of functionality


Note: whether and how to indicate Functionality will be discussed separately. 

During meeting #112, Model ID and Functionality ID were two heavily discussed topics. The group reached the following agreements on these two topics.
Agreement
For UE-side models and UE-part of two-sided models:
· For AI/ML functionality identification
· Reuse legacy 3GPP framework of Features as a starting point for discussion.
· UE indicates supported functionalities/functionality for a given sub-use-case.
· UE capability reporting is taken as starting point.
· For AI/ML model identification 
· Models are identified by model ID at the Network. UE indicates supported AI/ML models.
· In functionality-based LCM
· Network indicates activation/deactivation/fallback/switching of AI/ML functionality via 3GPP signaling (e.g., RRC, MAC-CE, DCI). 
· Models may not be identified at the Network, and UE may perform model-level LCM.
· Study whether and how much awareness/interaction NW should have about model-level LCM
· In model-ID-based LCM, models are identified at the Network, and Network/UE may activate/deactivate/select/switch individual AI/ML models via model ID. 
FFS: Relationship between functionality identification and model identification
FFS: Performance monitoring and RAN4 impact 
FFS: detailed understanding on model 

Agreement
AI/ML-enabled Feature refers to a Feature where AI/ML may be used. 
Agreement
For functionality identification, there may be either one or more than one Functionalities defined within an AI/ML-enabled feature.

On the RAN2 side, the following were agreed about model ID.
· RAN2 assumes that a model is identified by a model ID. Its usage is FFS.
· RAN2 assumes that from Management or Control point of view mainly some meta info about a model may need to be known, details FFS.
· RAN2 assumes that Model ID is unique “globally”, e.g., in order to manage test certification each retrained version need to be identified.
After RAN1 meeting #112, a few topics related to model identification and functionality identification were discussed. In this section, we will further explain our views on Model ID, Functionality ID and Model Registration.

Model Identification
The following are the topics that have been discussed and debated recently on model identification.
· The definition of Model ID
· Should model ID refer to “model structure + model parameters” or only the “structures”?
· Should the structure of model ID be hierarchical or non-hierarchical?
· The concept of logical model and how it would be different from physical model?
· Model meta information
· Model applicable conditions
Here we present our views on these issues below.
The Definition of Model ID
Our view is that a model ID is a unique index/number that differentiates one model from other models within a network, in a way just like a phone number. 
“Globally Unique” is a desirable feature to have for model ID but it may be difficult to obtain and may also have some disadvantages. For example, some companies proposed to use UUID, which is 128-bit long with multiple variants. For model identification purpose, 128 bits may be too long as it brings extra overhead for model LCM. Therefore, local ID should also be supported. For the use of local ID, the network boundary within which model ID is unique can be flexible. For example, it could be one carrier’s nation-wide network, a metropolitan network, or even smaller networks for smaller operators. Within the same network, a model ID can unambiguously identify an AI/ML model for the common understanding between the NW and the UE, achieving the goal of model identification.
Proposal 3: A model ID is a unique index that differentiates one model from other models within a network. The model IDs may or may not be globally unique.

Structure+Parameters vs Structure-Only
People have different opinions on whether model ID should refer to structure+parameters of the model (Case A) or only the structure of the model (Case B). For Case A, one example could be that two models having identical structures and different parameters are identified as two different models and, of course, have two different model IDs. For Case B, the above example could become that the two models with the same structure are assigned the same model ID; to differentiate the two models, something else is needed, for example, a Parameter ID. 
We believe there are pros and cons of each approach. 
· For the “structure+parameters” approach (Case A), the advantage is that it is simple and clear. Using model ID alone we can fully identify a model. On the negative side, we will need to use more IDs to identify every structure+parameters combination.
· For the “Structure-Only” approach (Case B), on the positive side, the advantage is we may probably use a lot fewer model IDs. On the negative side, if a model can have multiple different sets of parameters, then we will need a second-level indication to point to the right model + parameter coefficients (e.g., using a parameter ID). In addition, when exchanging messages between any two entities, Model ID alone does not convey all necessary information; for example, we may also need to exchange the parameter ID to point to the right set of meta information. 
Proposal 4: Study the following two model identification approaches, as well as their pros and cons. 
· Model ID identifies the model structure as well as the parameters associated with it.
· Model ID identifies only the model structure; model parameters are indicated via other methods.

Hierarchical or Non-Hierarchical
In the examples above, the example of Case B actually introduced the concept of hierarchical model ID; the model is actually identified by a Model ID plus a Parameter ID. Although a hierarchical structure may bring some benefits for identifying a model (e.g., carrying more information through multiple fields in the ID itself), it may not be possible in reality. For example, if UUID is adopted as the globally unique model ID, the multi-field structure is not available. 
Observation 1: A hierarchical structure is not necessary as any information other than Model ID itself can be provided and recorded in meta information associated with the model.

Meta information
Model ID alone does not tell us everything about the model; a model needs to be associated with some supplemental information, which is called meta information in both RAN1 and RAN2. Meta information about the model can be provided during model registration (to be defined later) and/or model identification processes. The examples of meta information could be applicable sub-use-case(s) and conditions, supported features/functionalities, version number, parameter information etc. Meta information can be stored within any entity that it is needed.
One of the important functions of meta information is to keep the model ID simple; by keeping all other information in meta information, model ID can be a simple, structure-less, index number. As we expect model ID will be used and exchanged among different entities more frequently than other information about the model, this will save on signaling overhead.
Proposal 5: Each model ID should be associated with a list of meta information that describes the functionalities, associated features, and other characteristics etc. of the model. 

IDs for two-sided Models
During the discussion after meeting #112, an issue with IDs for two-sided models was raised. The basic question was, in the case of two-sided model, when one side of the model is updated and assigned a new ID, should the other side be updated with the same new ID too (in this case model on the other side has not changed)? 
A further related question was, if the model on the other side is still compatible with the updated model, should both sides use the same new ID, or the other side can keep its old ID?
In our view, for two-sided models, whenever an update happens on either one of the sides, the changes need to be made known to the other side before operation of the updated models; that is, all information associated with the model in use needs to be synced. Following this principle, we think what the other side should to do is to update its meta information to reflect the changes of the model and also change to the same new ID. Note here we assume the other side stores the meta information of models on both sides. 
Observation 2: When one side of the two-sided model gets a new ID after model update, the other side should also update its model ID to the new one, even if the model on the other side is still compatible with the updated model; otherwise, there will be a need to maintain mapping of model IDs between the updated model on one side and the old model on the other side. Maintaining the mapping implies more work and is error-prone. It would also imply that we allow a two-sided model to have two IDs. Note in this case there needs to be another bookkeeping to remember which ID is for which side, for two-sided model.

The Concept of Logical Model
The concept of Logical Model emerged during the discussion after meeting #112. However, there are no common understandings on what a logical model is. For some people, it could mean an aggregate name to reflect that multiple versions of binary model (hardware implementation) can exist for a given source code model (i.e., multiple physical models exist due to hardware implementation differences). For other people, it could mean that an UE-side has several different models that are registered/identified as a single model (i.e., multiple model operations at the UE-side are transparent to the NW). Note that, up to meeting #112, the models we referred to were all physical models.
The following are some of the views on the difference between physical model and logical model, as well as their relationship.
· A physical model is a model that tangibly exists, e.g., in the form of binary model file or source code.
· A logical model is a model that is identified and used in signaling.
· A logical model may be implemented by one or multiple physical models, e.g. multiple versions of binary models (hardware implementation) for a given source code model, multiple physical models transparent to NW that are identified as a single logical model
· The physical and logical models are not mutually exclusive. There may be one physical mode under one logical model, in which case the model is both physical and logical.
However, we wonder whether there is any benefit of introducing the term Logical Model, comparing to the confusions it brought to the discussion. Some think it may be useful for the scenarios where a device (UE or gNB) has various physical model implementations transparent to the other side. Examples include different versions of a model, variations across device types that may remain transparent to the other side for the signaling/awareness purposes, etc. The proponents think it may be useful in reducing the number of identified models.
Observation 3: It is not necessary to introduce the concept of logical model as it does not provide the solution to reducing the number of identified models or other points raised by proponents. All the needs or benefits raised by the proponents can be addressed by a model ID and its associated meta information. For example, in the case a model has different versions or different variations across device types, the differences can be easily indicated by putting version numbers/platform information in the meta information.

Model applicable conditions
It is the general understanding that an applicable condition refers to a condition under which a functionality/model is intended to operate. Examples of the conditions could be whether the model was designed for micro cell or macro cell, or the requirements of resources for running the model. 
Observation 4: Applicable conditions can be included in meta information.

Model ID and UE capability
Regarding the relationship between model ID and UE capability, we think they can be defined independently but used in a cooperative way to achieve the goals of model identification and registration. Whenever necessary, the supported AI/ML models at the UE side can be made known to the network side by the UE sending UE capability reports carrying the IDs of supported models. The UE capability reports can also be used for other purposes, such as update (e.g., after changes have been made to the model) or revoke of a model (e.g., when a model is no longer supported by the UE). 
More on UE capability is discussed in Section 3.5.
Proposal 6: Model ID and UE capability may not have direct relationship or dependency. Model IDs may be carried in UE capability reports to inform the network about models that the UE supports.

Functionality Identification
During meeting #112, the group agreed that for AI/ML functionality identification, reuse legacy 3GPP framework of Features as a starting point for discussion. 3GPP TR 38.822 [3] provides the list of UE features for NR (also specified in 3GPP TS 38.306 [7]). It is our understanding that AI/ML related features will be part of the list in the future. Therefore, functionality identification is a process that identifies which of the feature(s) in the feature list an AI/ML model supports.
[image: Table

Description automatically generated]
Figure 4. Partial feature list for Mobility Enhancement in [4]

Take the feature list for Mobility Enhancement from [3] for example (as shown in Figure 4), the feature of Mobility Enhancement has a index of 21. This feature has multiple Feature Groups and its first feature group has an index of 21-1a, which, in turn, contains multiple components. In the original table, each feature group has other information too but is not shown here due to the limit of the page width. 
We envision that for the AI/ML related features, such a feature list (or a similar one) is also necessary. That implies all the features and their related information need to be defined offline (e.g., in 3GPP) and clearly listed in the table before a model can identify its functionality using this table. 
Note due to the fast pace of the development in the field of AI/ML, to be future-proof, there may be a need to define some placeholders for TBD features and/or user-defined feature so that new features can be added between standard releases and be considered standard compatible at some point. 
Based on the above understanding, we think a functional ID is a unique index/number that differentiates one AI/ML-related feature/function from other AI/ML-related features/functions within a network.
Proposal 7: An AI/ML functionality ID is a unique index/number that differentiates one AI/ML-related functionality of model from other AI/ML-related functionalities of models within a network.

However, even with the definition, there are still many aspects related to functionality ID that are not clear to us and, based on our observations, would take the group huge effort to sort it out (if possible). Some of our concern are listed here.
· Although the group decided to use legacy 3GPP framework of Features as a starting point for the study of functionality identification, there is not a well-defined “3GPP framework of Features”. 
· There is not clear understanding of the relationship between model Functionality and the Feature (assumed it will be defined later). For example, should one Functionality ID link to only one UE Feature, or it can be supported by multiple UE Features? 
· It would be hard to define Functionality without the definitions of each Feature if Functionalities will be based on Features.
Based on this thinking, we would suggest the group focusing on model identification first and defer the study of functionality identification.
Proposal 8: RAN1 focuses on model identification in the SI phase and defer the study of functionality identification details till Rel-19 work item phase.

Model Registration
With the above discussions, it is easy to define model registration.
Model registration is a process wherein UEs/vendors make a newly developed model known to the network by registering it. The model is assigned a network-wide unique model ID as a result of the registration. 
Once a model is registered with the network, it can be uniquely identified and referenced throughout the network by its model ID. It can also be referenced by its functionality ID, or the combination of both, but the uniqueness is not guaranteed if only functionality ID is used.
Note a complete registration process should also include the process of filling in all meta information of the model. This process can be done after the registration and the meta information may include information such as the functionality ID of the model, applicable conditions and so on.
Proposal 9: Model registration is a process wherein UEs/vendors make a newly developed model known to the network by registering it. The model may be assigned a globally or locally unique model ID as a result of the registration. The registration process may also populate meta information of the model, including the functionality of the model, applicable conditions and so on.

Two-sided model training
In meeting #111, discussions on two-sided model training were closed after first round of email discussion, without any agreements and conclusions. In meeting #112, some proposals on prioritization of different types of two-sided model training were received but not discussed.
In this contribution, we would like to continue the discussion on two-sided model training.
In meeting 110bis-e, the discussions on different types of two-sided model training have not reached agreement. Based on the collaborations between the two sides involved in the training, there are three different types.
· Type 1: Joint training of the two-sided model at a single side/entity, e.g., UE-sided or Network-sided. 
· Type 2: Joint training of the two-sided model at network side and UE side, respectively. 
· Type 3: Separate training at network side and UE side, where the UE-side part and the network-side part are trained by UE side and network side, respectively.
With Type 1, the two-sided model is trained with some agreed-upon/identified dataset, then one of the two models is delivered to the other side for inference. In our view, it is less complicated than the other two types as it involves fewer information exchanges even though the size may be big, depending on the model design. The drawback of this approach is that model details are not protected from one side to the other side. In addition, there is a need to transfer/deliver the trained model from one side to the other side, which involves extra overhead, in particular, if the control-plane-based model transfer/delivery approach is used.
With Type 2, the two sides need to be trained using the same dataset as they need to share the forward propagation and backward propagation information along with gradient information during the entire training process. Type 2 is the most complicated one considering signaling and dataset/model delivery between the two sides. Depending on the complexity of the models and the design of the training procedure, this could mean lots of overhead. The benefit could be that one side does not need to share the proprietary model information to the other side but only the intermediate training information. 
With Type 3, each side trains its own model in a sequential way. The models are still trained with the same datasets; one side trains it first then transmits the dataset and interim results together with other assistance information, if any, to the other side for training. The benefit is one side does not need to know the model of the other side; for example, the NW can just share the training data with different UEs for training. The expectation is, by so doing, the NW can adapt to different UEs with the training using the same dataset. This way, the UE side model can be designed and optimized in a device-specific manner. However, since potentially there may be large amount of vendors and UE capability combinations (assuming different UE capabilities may need different AI/ML model architectures), we are not sure whether this approach will work well in a large scale.
As we can see from the analysis above, each type of training has its pros and cons and implies different level of overhead and spec impact. It would be too early to make a decision without further evaluation and study.
Proposal 10: For the three types of two-sided model training, study and compare their performance, signaling overhead and potential standard impacts.

Also, in meeting 110bis-e, the following proposal didn’t reach consensus.
· Training of two-sided models may be performed in the network or at proprietary server(s).
· UE-side part of the two-sided model trained in the network may be delivered to UEs.
· NW-side and UE-side parts of the two-sided model trained at proprietary server(s) may be delivered to the network and UEs, respectively.
Companies have different opinions on many aspects. For example,
· Whether this is to preclude other types of two-sided training.
· Whether training at the proprietary server should be the default solution.
· Whether this topic should be discussed in CSI related use cases (e.g., 9.2.2.2)
Our view is that this is just one specific case of Type 1 of the three two-sided training types so it should not preclude other two-sided training types. Even if training at proprietary server(s) is desirable for some situations, we should not assume this is the ONLY type to be supported.  In addition, we believe that the training of two-sided models to be performed in the network should be the baseline/default solution from use case study perspective. It is therefore important that the network provides the capability of doing the two-sided training.
Proposal 11: For Type 1 two-sided training, when the joint training is done at the network side, make the perform-at-network the baseline solution.

[bookmark: _Ref131678738]UE capability
In meeting #112, the group reached an agreement that for AI/ML functionality identification for UE-side models and UE-part of two-sided models, UE indicates supported functionalities/functionality to the NW for a given sub-use-case. The UE capability reporting is taken as starting point for the study of this aspect.
Going back to meeting 110bis-e, many companies proposed items to be studied under UE capability. In the FL’s summary [2], there are three proposals related to UE capability, as listed below. 
Proposal 3-57: Study framework for defining and reporting UE capability for model inference.
Proposal 3-58: Study whether and how the following LCM-related procedures should be captured into UE capability.
· Data collection, pre-/post-processing
· Dataset delivery
· Model training
· Model switching
· Model monitoring
· Model update
Proposal 3-59: Study UE capability for concurrency of multiple AI/ML model inferences and concurrency of AI/ML model and non-AI/ML algorithm, including mechanisms for UE to report compute resource status and latency.
If we look into the capabilities companies proposed, we can see these capabilities belong to two categories. 
· The first category relates to the physical/hard aspects of a UE, for example, size of the storage space and computational power. 
· The second category relates to the functional/soft aspects of the UE (i.e., what functions can a UE perform), for example, data collection, model training etc. 
For physical capabilities, we can use the same/similar criteria as the agreed-upon measurement of complexity of an AI/ML model. For example, 
· Computational power: FLOPs
· Computational complexity for pre- and post-processing
· Model complexity: e.g., the number of parameters and/or size (e.g. Mbyte)
· Storage space
· Training/inference latency
Note status of some of the resources will vary over time as the situation changes. For example, the storage space will expand or shrink based on the usage.
For functional capabilities, a UE simply checks whatever functions it can perform, such as, data collection, model training/inference etc. 
Proposal 12: When studying UE AI/ML related capabilities, separate physical capabilities from functional capabilities.
Proposal 13: For UE physical capabilities, consider categorizing them that reflects their ability in handling various AI/ML complexities, including pre- and post-processing. 
Potential Specification Impact Assessment
Interoperability and testability aspects
In meeting #111 and #112, there were not much discussion on the interoperability and testability aspects. However, we think this is an important topic.
In meeting #110bis-e, the interoperability and testability have been discussed and summarized as below [2] (see FL recommendation 3-73d).
· Companies are encouraged to bring discussion on interoperability and testability aspects, including, but not limited to, the following:
· Discussion on testing model generalization performance
· Discussion on two-sided AI/ML model interoperability and testing
· Discussion on how to support NW-UE interoperability
· Discussion on how to handle multiple models (e.g., model switching, model selection)
· Discussion on how to handle model update (e.g., offline and online model update)
· Whether and how to test LCM
This discussion can also serve as an input for later RAN4 study.
We believe interoperability is a requirement by default, in particular, when we talk about two-sided models. Although some companies claimed that two-sided models have no interoperability issues, we think it is necessary to capture it with more realistic assumptions. That is, what are the assumptions for the AI/ML based approach? For example, when discussing model switching, how many models do we assume the network side and UE side may have? 
Proposal 14: Study common assumptions, topics, and guidelines for the discussion of interoperability.
Note: this may be use case dependent. 
[bookmark: _Hlk99709641]Conclusions
In this contribution, we continue to present our views on general framework, life cycle management and potential specification impact. Based on the discussions in the previous sections, our proposals are as follows.  
Proposal 1: Take the functional framework shown in Figure 3 as the starting point for RAN1 functional framework discussion. On top of the functional framework defined by RAN3, this revised framework diagram adds a functional block for model management.
Model Inference
Model Management (monitor, select, activate, deactivate, switch, fallback) 
output
model inference control
inference data
Data Collection
training data
monitoring data
Model Training 
model training control

Figure 3. Proposed framework diagram
Proposal 2: When studying data collection from two directions, study the method of indicating the capabilities of one side to the other side, in a way that reflect its storage capacity. In addition, study the mechanisms of reducing the size of data needs to be transmitted over the air interface considering the balance between performance and the overhead.
Proposal 3: A model ID is a unique index that differentiates one model from other models within a network. The model IDs may or may not be globally unique.
Proposal 4: Study the following two model identification approaches, as well as their pros and cons. 
· Model ID identifies the model structure as well as the parameters associated with it.
· Model ID identifies only the model structure; model parameters are indicated via other methods.
Observation 1: A hierarchical structure is not necessary as any information other than Model ID itself can be provided and recorded in meta information associated with the model.
Proposal 5: Each model ID should be associated with a list of meta information that describes the functionalities, associated features, and other characteristics etc. of the model. 
Observation 2: When one side of the two-sided model gets a new ID after model update, the other side should also update its model ID to the new one, even if the model on the other side is still compatible with the updated model; otherwise, there will be a need to maintain mapping of model IDs between the updated model on one side and the old model on the other side. Maintaining the mapping implies more work and is error-prone. It would also imply that we allow a two-sided model to have two IDs. Note in this case there needs to be another bookkeeping to remember which ID is for which side, for two-sided model.
Observation 3: It is not necessary to introduce the concept of logical model as it does not provide the solution to reducing the number of identified models or other points raised by proponents. All the needs or benefits raised by the proponents can be addressed by a model ID and its associated meta information. For example, in the case a model has different versions or different variations across device types, the differences can be easily indicated by putting version numbers/platform information in the meta information
Observation 4: Applicable conditions can be included in meta information.
Proposal 6: Model ID and UE capability may not have direct relationship or dependency. Model IDs may be carried in UE capability reports to inform the network about models that the UE supports.
Proposal 7: An AI/ML functionality ID is a unique index/number that differentiates one AI/ML-related functionality of model from other AI/ML-related functionalities of models within a network.
Proposal 8: RAN1 focuses on model identification in the SI phase and defer the study of functionality identification details till Rel-19 work item phase.
Proposal 9: Model registration is a process wherein UEs/vendors make a newly developed model known to the network by registering it. The model may be assigned a globally or locally unique model ID as a result of the registration. The registration process may also populate meta information of the model, including the functionality of the model, applicable conditions and so on.
Proposal 10: For the three types of two-sided model training, study and compare their performance, signaling overhead and potential standard impacts.
Proposal 11: For Type 1 two-sided training, when the joint training is done at the network side, make the perform-at-network the baseline solution.
Proposal 12: When studying UE AI/ML related capabilities, separate physical capabilities from functional capabilities.
Proposal 13: For UE physical capabilities, consider categorizing them that reflects their ability in handling various AI/ML complexities, including pre- and post-processing. 
Proposal 14: Study common assumptions, topics, and guidelines for the discussion of interoperability.
Note: this may be use case dependent. 
[bookmark: _Ref124589665][bookmark: _Ref71620620][bookmark: _Ref124671424]References
[bookmark: _Ref131175494]R1-2302063, Session notes for 9.2 (Study on AI/ML for NR air interface), RAN1 Meeting #112
[bookmark: _Ref117955274]R1-2210661, Summary of General Aspects of AI/ML Framework, Feature Lead, RAN1#110bis-e.
[bookmark: _Ref131665910]3GPP TR 38.822, NR User Equipment (UE) feature list (Release 16).
R1-2301865, Summary#3 of General Aspects of AI/ML Framework, Feature Lead, RAN1 Meeting #112
[bookmark: _Ref131619611]R1-2301403, General Aspects of AI/ML Framework, Qualcomm Incorporated, contribution to RAN1 meeting #112
[bookmark: _Ref131619691]R1-2300670, Discussion on general aspects of AI/ML framework, CATT, contribution to RAN1 meeting #112
[bookmark: _Ref131665799]3GPP TS 38.306, User Equipment (UE) radio access capabilities (Release 17)
image1.png

image2.png

