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Introduction
This document summarizes the discussions during RAN1#112 for the agenda item 9.2.4.1, Evaluation on AI/ML for positioning accuracy enhancement.

This discussion corresponds to the objectives related to the positioning use case described in RP-213599 (SID) below.
	RP-213599 (SID):
Study the 3GPP framework for AI/ML for air-interface corresponding to each target use case regarding aspects such as performance, complexity, and potential specification impact.

Use cases to focus on: 
· Initial set of use cases includes: 
· CSI feedback enhancement, e.g., overhead reduction, improved accuracy, prediction [RAN1]
· Beam management, e.g., beam prediction in time, and/or spatial domain for overhead and latency reduction, beam selection accuracy improvement [RAN1]
· Positioning accuracy enhancements for different scenarios including, e.g., those with heavy NLOS conditions [RAN1] 
· Finalize representative sub use cases for each use case for characterization and baseline performance evaluations by RAN#98
· The AI/ML approaches for the selected sub use cases need to be diverse enough to support various requirements on the gNB-UE collaboration levels

Note: the selection of use cases for this study solely targets the formulation of a framework to apply AI/ML to the air-interface for these and other use cases. The selection itself does not intend to provide any indication of the prospects of any future normative project. 

AI/ML model, terminology and description to identify common and specific characteristics for framework investigations:
· Characterize the defining stages of AI/ML related algorithms and associated complexity:
· Model generation, e.g., model training (including input/output, pre-/post-process, online/offline as applicable), model validation, model testing, as applicable 
· Inference operation, e.g., input/output, pre-/post-process, as applicable
· Identify various levels of collaboration between UE and gNB pertinent to the selected use cases, e.g., 
· No collaboration: implementation-based only AI/ML algorithms without information exchange [for comparison purposes]
· Various levels of UE/gNB collaboration targeting at separate or joint ML operation. 
· Characterize lifecycle management of AI/ML model: e.g.,  model training, model deployment , model inference, model monitoring, model updating
· Dataset(s) for training, validation, testing, and inference 
· Identify common notation and terminology for AI/ML related functions, procedures and interfaces
· Note: Consider the work done for FS_NR_ENDC_data_collect when appropriate

For the use cases under consideration:

1. Evaluate performance benefits of AI/ML based algorithms for the agreed use cases in the final representative set:
· Methodology based on statistical models (from TR 38.901 and TR 38.857 [positioning]), for link and system level simulations. 
· Extensions of 3GPP evaluation methodology for better suitability to AI/ML based techniques should be considered as needed.
· Whether field data are optionally needed to further assess the performance and robustness in real-world environments should be discussed as part of the study. 
· Need for common assumptions in dataset construction for training, validation and test for the selected use cases. 
· Consider adequate model training strategy, collaboration levels and associated implications
· Consider agreed-upon base AI model(s) for calibration
· AI model description and training methodology used for evaluation should be reported for information and cross-checking purposes
· KPIs: Determine the common KPIs and corresponding requirements for the AI/ML operations. Determine the use-case specific KPIs and benchmarks of the selected use-cases.
· Performance, inference latency and computational complexity of AI/ML based algorithms should be compared to that of a state-of-the-art baseline
· Overhead, power consumption (including computational), memory storage, and hardware requirements (including for given processing delays) associated with enabling respective AI/ML scheme, as well as generalization capability should be considered.
…

Note 1: specific AI/ML models are not expected to be specified and are left to implementation. User data privacy needs to be preserved.
Note 2: The study on AI/ML for air interface is based on the current RAN architecture and new interfaces shall not be introduced.



Evaluation methodology 
Training dataset size / UE density
In RAN1#111, the following agreement was made to investigate user density/size of the training dataset:
Agreement
Study how AI/ML positioning accuracy is affected by: user density/size of the training dataset.
Note: details of user density/size of training dataset to be reported in the evaluation.

Selected input from companies’ contribution are copied below, with evaluation results shown in section 6.4 and 7.4.
	· Nokia (R1-2300608)
Observation-2: The availability of good quality data with sufficient diversity of positioning ground truth labels and samples with accurate information for model training, testing/validation, and monitoring is one of the key challenges in AI/ML-based positioning.
Observation-3: It is important to note that training dataset size as an indication of user area density is valid only for uniform distribution of UEs within the simulation setting.
Proposal-2: For evaluation of AI/ML based positioning, consider additional UE distribution options such as sparse or clustered deployment of UEs to better represent real-world scenarios.
Observation-4: For the UE-based positioning method with UE-based AI/ML model training and inference, currently, it is unclear as to how to ensure that the provided training data is utilized in a manner than ensures optimal model performance.
Observation-5: The dataset size is not a relevant parameter to indicate the quality of the model training.
Proposal-3: For evaluation of AI/M-based positioning, consider Inter-point distance (IPD) metric-based criteria for collection of label data to improve model training/testing/validation.
[image: ]
Figure 8 - Positioning accuracy vs. IPD for 18, 9, and 6 TRPs cases.
Observation-14: With the same training dataset size but with different spatial distribution, the positioning accuracy degradation can reach 55%.
Proposal-8: RAN1 to agree on the importance of studying/evaluating the data diversity in general, and inter-point distance (IPD) in particular.

	· Ericsson (R1-2300141)
Table 5 Proposed dataset size classes.
	Train dataset size class
	User density [UE/m2]
	Number of samples over
60 m × 120 m
	Number of samples over
40 m × 100 m
	Number of sources reported in RAN1 #111 for direct positioning

	Small datasets
	~1.39
	~10,000
	~5,556
	[~3]

	Medium-size datasets
	~2.79
	~20,000
	~11,111
	[~5]

	Large datasets
	~5.56
	~40,000
	~22,222
	[~3]

	Very large datasets
	>6.94
	>50,000
	>27,778
	[~7]


Proposal 4	To further 3GPP discussion and preparation of observations/conclusions for the technical report, four train dataset size classes are defined as follows:
- Small datasets: density ~1.39 UE/m2
- Medium-size datasets: density ~2.79 UE/m2
- Large datasets: density ~5.56 UE/m2 
- Very large datasets: >6.94 UE/m2



1st round discussion
Checking companies’ input, an important issue to discuss is the evaluation area where the UEs are dropped.
For evaluation methodology, the following was agreed.
	UE horizontal drop procedure
	Uniformly distributed over the horizontal evaluation area for obtaining the CDF values for positioning accuracy, The evaluation area should be selected from
- (baseline) the whole hall area, and the CDF values for positioning accuracy is obtained from whole hall area.
- (optional) the convex hull of the horizontal BS deployment, and the CDF values for positioning accuracy is obtained from the convex hull.



Specifically, for the agreed baseline hall size of 120x60 m, the baseline (whole hall area) evaluation area is: Aw=120 m × 60 m = 7,200 m2.
[image: ]
The optional (the convex hull) evaluation area is: Ac=100 m × 40 m = 4,000 m2, which is only 55.5% of the baseline evaluation area Aw.
[image: ]
According to the contributions submitted to RAN1#112, most companies used the baseline UE distribution of 120x60 m in their simulation, while some used the smaller area of 100x40 m for convex hull.
· (Baseline) Whole hall area of 120x60 m: CAICT, CATT, Ericsson, InterDigital, MediaTek, Nokia, NVIDIA, Qualcomm, ZTE.
· (Optional) Convex hull of 100x40 m: Apple, China Telecom, OPPO
· Unclear: CMCC, Huawei, Samsung, Xiaomi, vivo 

Additionally, MediaTek evaluated the large hall size of 300x150 m for InF-SH, which has a much larger UE distribution area, hence larger training dataset is needed when UE density is the same. Clearly the various UE distribution area used by companies significantly affects user density for a given training dataset size.
For investigation of this issue, the following agreement was made in RAN1#111. Considering the various UE distribution area, user density and training dataset are not equivalent. User density is a much better common metric, while training dataset size was agreed in the templates. To remedy this problem, companies should clearly mark their assumption of evaluation area in the reporting table, especially if the UE distribution area is not the baseline of 120x60 m. Then user density can be easily calculated and compared across companies.
Agreement
Study how AI/ML positioning accuracy is affected by: user density/size of the training dataset.
Note: details of user density/size of training dataset to be reported in the evaluation.

Thus, it is proposed that companies clearly mark it as shown below in the templates for evaluation results.
Proposal 2.2-1
For both direct AI/ML positioning and AI/ML assisted positioning, companies include the evaluation area in their reporting template, assuming the same evaluation area is used for training dataset and test dataset.
Note: 
· Default evaluation area = 120x60 m.
· if different evaluation areas are used for training dataset and test dataset, they are marked out separately under “Train” and “Test” instead. 
Table X. Evaluation results for AI/ML model deployed on [UE or network]-side, [with or without] model generalization, [short model description], UE distribution area = [e.g., 120x60 m, 100x40 m]
	Model input
	Model output
	Label
	Clutter param
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	
	
	
	
	
	
	
	
	



Table X. Evaluation results for AI/ML model deployed on [UE or network]-side, [short model description], UE distribution area = [e.g., 120x60 m, 100x40 m] 
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	
	
	
	
	
	
	
	
	
	




	
	Company

	Support
	CATT, NOK

	Not support
	



	Company
	Comments

	Hw/HiSi
	Ok

	Fujitsu
	120*60 can be default, only distribution area other than default needs to be reported.

	NOK
	We support the proposal. However, accordingly with our Proposal 2, companies should complement the evaluations using different UE distribution (not only uniform distribution) rather that only “distribution area”. For example, sparse or clustered deployment to better represent real-world scenarios.
[Moderator] Only “Uniformly distributed” is agreed as evaluation assumption. Other distribution (e.g., sparse or clustered) need further agreement. Also: interested companies can submit evaluation results for other distribution.  

	Qualcomm
	We are fine with the proposal.

	Mediatek
	Support, for generalization of different hall size, we can set hall size in Settings
	Settings (e.g., drops, clutter param, mix)

	Train
	Test

	120*60
	300*150


And we also proposal to further evaluate performance of AI/ML positioning for non-uniform UE distribution.
[Moderator] Edited proposal to reflect.



KPI
In the following, the remaining issues on KPI are discussed.
Model complexity and computational complexity
	· Ericsson (R1-2300141)
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Figure 4: Model complexity vs computational complexity for direct positioning models as reported in RAN1 #111 except for three updated Ericsson’s reported values from this contribution.
Proposal 1	For 3GPP AI/ML for PHY SI discussion, companies shall report nominal computational complexity values (and not accelerator-optimized computational complexity values). Otherwise, the reported computation complexity value cannot be included for a fair cross-company comparison.
Proposal 2	To further 3GPP discussion and preparation of observations/conclusions for the technical report, three model size classes are defined for the positioning use case as follows:
- Small models: < 1 M model parameters
- Medium-size models: 1 – 8 M model parameters
- Large models: > 8 M model parameters

Proposal 3	For 3GPP AI/ML for PHY SI discussion, companies shall report model complexity in terms of “number of real-valued model parameters” regardless of underlying model arithmetic.

	· Lenovo (R1-2301203)
Proposal 3: In addition to FLOP counts, the AI/ML positioning evaluation should also consider the type of data being used as input, training type, e.g., offline vs online, complexity type, e.g., worst-case/average-case.



1st round discussion
For reporting of computational complexity values, the following conclusions have been made.
	Conclusion (RAN1#110bis)
This RAN1 study considers ML TOP/FLOP/MACs as KPIs for computational complexity for inference. However, there may be a disconnection between actual complexity and the complexity evaluated using these KPIs due to the platform- dependency and implementation (hardware and software) optimization solutions, which are out of the scope of 3GPP.

Conclusion (RAN1#111)
Companies describe how their computational complexity values are obtained. 
· It is out of 3GPP scope to consider computational complexity values that have platform-dependency and/or use implementation (hardware and software) optimization solutions.



It is anticipated that RAN1 need to capture model complexity and computational complexity values from participating companies in TR 38.843. To have fair comparison, it is necessary that all companies report complexity calculated in the same way. Considering RAN1 conclusions above, it is reasonable that all companies report the nominal computational complexity values, i.e., not optimized for hardware platform like GPU or TPU.
Regarding the model complexity, it is useful to clarify model complexity in terms of “number of real-valued model parameters” regardless of whether the model is based on real value arithmetic or complex value arithmetic. This allows easy comparison between companies.

Proposal 3.1.1-1
For AI/ML-based positioning, companies shall report nominal computational complexity values (i.e., not accelerator-optimized computational complexity values). Otherwise, the reported computation complexity value cannot be included in TR 38.843.

	[bookmark: _Hlk103708880]
	Company

	Support
	

	Not support
	



	[bookmark: _Hlk103701956]Company
	Comments

	HW/HiSi
	We should first agree on the definition of “nominal computational complexity values”. 
It seems better to make this generic guidance on complexity in 9.2.1.

	Fujitsu
	A little bit confused, we agreed to use FLOPs as the computational complexity other than FLOPS, the former one should be related to the model only and will not be affected by the platform, if only CPU used for model training or inference it will be very slow but the computational complexity will not be changed.

	CATT
	We think this issue is a common issue, which should be aligned with other use cases. Maybe it’s better to be discussed in 9.2.1.

	OPPO
	We also think it’s better to be discussed in 9.2.1.

	NOK
	Agree with OPPO and HW, discuss based on general aspects (9.2.1) will guide on this topic.

	Mediatek
	Not sure if there is difference of computational complexity values between CPU and GPU. We can follow the discussion in 9.2.1.




Proposal 3.1.1-2
For AI/ML-based positioning, companies shall report model complexity in terms of “number of real-valued model parameters” regardless of underlying model arithmetic.

	
	Company

	Support
	

	Not support
	



	Company
	Comments

	Hw/HiSi
	Probably better to be handled in 9.2.1?

	Fujitsu
	Also bit confused, the AI/ML model only recognize real-value so complex values must be split/transformed to real-value first and then fed into the model, so the number of model parameters can only be real-valued.

	CATT
	Same comments as Proposal 3.1.1-1.

	OPPO
	Fine with the proposal, but maybe it’s better to be discussed in 9.2.1.

	Qualcomm
	We are fine with the proposal.

	Moderator
	The following agreement was made under AI 9.2.4.1. The intention is to update/clarify this agreement. The issue is, some companies (Ericsson) used complex arithmetic to build the model, thus the model parameters (weights, biases) are complex number. To be fair, the number of complex parameters should be converted to real parameters by multiplying by 2.
Agreement (RAN1#110)
For evaluation of AI/ML based positioning, the model complexity is reported via the metric of “number of model parameters”. 

One way is to rephrase the proposal as below.
Proposal 3.1.1-2a
The agreement made in RAN1#110 AI 9.2.4.1 is updated to the following:
For evaluation of AI/ML based positioning, the model complexity is reported via the metric of “number of real-valued model parameters”. 




Proposal 3.1.1-3
Based on model complexity range, categorize the AI/ML models in three model size classes for the positioning use case:
- Small models: < 1 M model parameters
- Medium-size models: 1 – 8 M model parameters
- Large models: > 8 M model parameters

	
	Company

	Support
	

	Not support
	



	Company
	Comments

	Hw/HiSi
	Too early to make a categorization. We need maybe first more simulations and observe the model complexity that has been reported.

	CATT
	We don’t see the meaning for categorizing the AI model size.

	Qualcomm
	The motivation and intuition of this proposal is not clear. It is better to cast more light on the need to agree on such categorization. It is also not clear how the boundaries of brackets have been selected.



Intermediate performance metric of assisted AI/ML positioning 
For assisted AI/ML positioning, further input are provided by companies as shown below.
	· Qualcomm (R1-2301408)
Proposal 10: For AI/ML-based soft information reporting approaches, the 90th percentile of the top-K error in ToA is reported as an intermediate KPI. FFS: the value of K to be reported.

	· Nokia (R1-2300608)
Observation-9: to evaluate the prediction of LOS/NLOS links could not remain only in the accuracy calculation. Other metrics as the false positive probability (FPP) and false negative probability (FNP), could indicate valuable information to the assisted legacy methodology in AI/ML assisted positioning.
Observation-10: the F1-score KPI measurement could evaluate the sensitivity of LOS prediction for AI/ML-assisted positioning.
Proposal-6: RAN1 to consider accuracy and F1-score as KPIs to measure the quality/sensitivity of LOS prediction for AI/ML assisted positioning.
Observation-11: the impact of training a model in an imbalanced dataset (high NLOS rates) and fine-tuning it in a balanced dataset provides high accuracy; however, the f1-score (quality LOS indication) is sensitive to fine-tuning generalization.
Proposal-7: RAN1 to consider F1-score as KPI metric for LOS/NLOS classification (AI/ML assisted positioning) for unbalanced dataset scenarios to evaluate LOS indication quality.
Proposal-11: For multi-TRP scenarios (i.e., one model for N TRPs), RAN1 is to consider F1-score as KPI metric for AI/ML assisted positioning to measure the LOS prediction quality.
[bookmark: _Ref127116086]Table 10 - LOS/NLOS performance evaluation in both scenarios. Scenario 01 with clutter density of 40%, and Scenario 2 with clutter density of 60%.
	
	Classification accuracy
	F1score
	False positive probability
	False negative probability

	Scenario 01 (hard selection)
	87.9% 
	0.8499
	0.059
	0.061

	Scenario 02 (hard Selection)
	99.4%
	0.659
	0.0017
	0.004


Observation-19: the F1-score, accuracy, false positive probability, and false negative probability are intermediate monitoring metrics for LOS/NLOS classification in AI/ML assisted positioning.

	· Fujitsu (R1-2300748)
Proposal 3 For the intermediate output without explicit connections to the UE locations, it is suggested to have dynamic model monitoring metrics management framework to study the applicability of different available metrics under certain conditions or configurations.

	· LG (R1-2300534)
Proposal #2: At least for LOS/NLOS classification of AI/ML assisted positioning, consider also to utilize a soft value of the ML output as a LOS classification accuracy.



1st round discussion
Nokia pointed out that it’s useful to include F1-score as an intermediate KPI when the model output include the LOS/NLOS classification of AI/ML assisted positioning. For hard-value LOS/NLOS indicator, the F1-score can be calculated directly using the formula. For soft-value LOS/NLOS indicator, the hard value can be obtained from the soft value (i.e., 0 or 1 depending on if the soft value is greater than 0.5 or not), then the F1-score can be calculated. 
Proposal 3.2.1-1
For AI/ML assisted positioning, if LOS/NLOS indicator is a model output, then F1-score is reported as an intermediate KPI, where:


	
	Company

	Support
	NOK

	Not support
	



	Company
	Comments

	HW/HiSi
	Not sure at this stage. Would be great to hear more views from others.

	Fujitsu
	We are OK to incorporate this common KPI which can be used for evaluating all sorts of AI/ML models, but the precision/recall may be more suitable for the True/False classification such as if the patient has been diagnosed as ill or healthy. If one threshold such as 0.5 to be set for the LOS/NLOS indicator, it will be a bit inaccurate, we cannot see there is a big difference for the value with 0.49 and 0.51. 

	NOK
	As commented in the contribution, using F1-score is a very good complement to accuracy rate, specially on imbalanced scenarios (Clutter density 60%).

	Qualcomm
	We think the proposal needs also to consider the case when the model output is a soft-timing/angle information.
E.g., 
For AI/ML assisted positioning, if soft-information of timing/angle is a model output, then the top-K error in timing/angle is reported as an intermediate KPI

	Mediatek
	In Nokia R1-2300608 table 4, f1_score of 0 fine tune data is 0.0004 but in table 6 it is 0.66, it is unclear to us how to calculate the f1_score.




Model Input and output
Regarding input and output of the ML model, representative proposals submitted in companies’ contributions are copied below.
Model Input 

	· Samsung (R1-2301259)
Proposal 1: RAN1 shall study the generalization ability for imperfect input/output data and how to model the imperfections.
Proposal 2: the formation of the input data (e.g., the normalization of CIR) should be studied for AI/ML for positioning.
[image: ]
Fig.6 CDF of positioning errors with normalized or non-normalized CIR 
Observation 6: the normalized CIR may degrade the inference performance. 

	· vivo (R1-2300448)

Observation 2:	Different inputs of AI/ML model will affect the positioning performance for AI/ML based positioning. Time domain channel CIR as the input of AI/ML model obtains the best positioning accuracy.
Proposal 1:	Capture in the TR that time domain CIR as the model input for direct AI/ML positioning obtains the best performance compared to other model inputs.
Proposal 2:	Support time domain CIR as the model input at least for direct AI/ML positioning.

	· Nokia (R1-2300608)

Observation-6: The UE/TRP can report only the timing and RSRP values, and the signaling of CIRs from the UE to the network is not supported.
Observation-7: If CIR is agreed as a baseline model input, that would imply that only UE-based direct or AI/ML assisted positioning methods are considered. However, in such scenario, there might be challenges related to acquiring labeled training data from other UEs or from the network.
Proposal-4: RAN1 to consider existing measurements as defined in TS 38.215, such as RSRP (DL PRS RSRP and UL SRS RSRP) or RSRPP (i.e., DL PRS RSRPP and UL SRS RSRPP) as a baseline model input for evaluation of direct and AI/ML assisted positioning.
Observation-8: For CIR as model input, one key aspect that needs to be taken into account relates to the additional signaling overhead required for collecting CIR-based labeled datasets.
Proposal-5: RAN1 to consider overhead for CIR reporting as part of data collection, monitoring, and model inference – for LMF/network-based positioning where the UE would need to report this information frequently to the network.
Observation-15: to efficiently exploit both the channel tap gains and phases, an ML model using CIR as input is expected to be more complex than a model using PDP. In other words, to outperform a PDP-based model, the CIR-based model is expected to be larger and require more computational resources.
Proposal-9: RAN1 to evaluate the gains of CIR over PDP in terms of generalization (model fine-tuning/update) and trade-off between performance and computational complexity.

	· ZTE (R1-2300175)
Observation 7: Due to the enriched channel observations from multi-port PRS, positioning performance is improved under a given number of data samples for model training, which can relief the efforts to collect training data in reality.
Proposal 4: Study and identify the benefit of AI/ML based positioning when the model input includes channel observations from multi-port PRS.

	· Google (R1-2300401)
Proposal 1: For CIR/PDP based model input, study the impact from the following Rx schemes 
· Rx Scheme 1: The CIR/PDP is measured from the Rx port with the strongest RSRP
· Rx Scheme 2: The CIR/PDP is averaged over all the Rx ports
Proposal 2: For CIR/PDP based model input, study at least the following options for CIR/PDP quantization:
· Option 1: The CIR/PDP is quantized based on several DFT bases
· Option 2: The CIR/PDP is quantized based on several DCT bases
Proposal 3: Study to use L1-SINR from each cell in addition to the CIR/PDP as the input to reflect the potential channel estimation accuracy for the CIR/PDP.

	· CEWiT (R1-2301690)
Proposal-1: For the evaluation on AI/ML-based Direct positioning results, support both CIR and PDP as the model inputs.



Model output
	· Qualcomm (R1-2301408)

[bookmark: _Ref118477681]Table 11 Evaluation results for the {60%, 6m, 2m} clutter setting, with the AI/ML model deployed on UE-side, without model generalization, using a single-TRP construction with the same model for all TRPs
	Method
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	
	Training
	Test
	Training
	test
	Model complexity
	Computational complexity
	AI/ML

	Hard decision
	CER (1,2, 64)
	Single value of ToA
	0%
	{60%, 6m, 2m},
Drop A
	{60%, 6m, 2m},
Drop A
	18000

(1000 UEs * 18 TRPS)
	18000

(1000 UEs * 18 TRPS)
	22K params
	206K FLOPs per TRP
3.7M FLOPs for 18 TRPs
	25.0

	Soft information
	CER (1,2, 64)
	Distribution of ToA
	0%
	{60%, 6m, 2m},
Drop A
	{60%, 6m, 2m},
Drop A
	18000

(1000 UEs * 18 TRPS)
	18000

(1000 UEs * 18 TRPS)
	22K params
	206K FLOPs per TRP

3.7M FLOPs for 18 TRPs
	5.1


[bookmark: _Ref118477740]
Table 12 Evaluation results for the {40%, 4m, 2m} clutter setting, with the AI/ML model deployed on UE-side, without model generalization, using a single-TRP construction with the same model for all TRPs
	Method
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	
	Training
	Test
	Training
	Test
	Model complexity
	Computational complexity
	AI/ML

	Hard decision
	CER (1,2, 64)
	Single value of ToA
	0%
	{40%, 4m, 2m}, 
Drop A
	{40%, 4m, 2m}, 
Drop A
	18000

(1000 UEs * 18 TRPS)
	18000

(1000 UEs * 18 TRPS)
	22K params
	206K FLOPs per TRP
3.7M FLOPs for 18 TRPs
	14.8

	Soft information
	CER (1, 2, 64)
	Distribution of ToA
	0%
	{40%, 4m, 2m}, 
Drop A
	{40%, 4m, 2m}, 
Drop A
	18000

(1000 UEs * 18 TRPS)
	18000

(1000 UEs * 18 TRPS)
	22K params
	206K FLOPs per TRP
3.7M FLOPs for 18 TRPs
	0.5






1st round discussion
Regarding reporting overhead and specification impact, the model input and output need to be discussed for different cases:
· Case 1: UE-based positioning with UE-side model, direct AI/ML or AI/ML assisted positioning
· Case 2a: UE-assisted/LMF-based positioning with UE-side model, AI/ML assisted positioning
· Case 2b: UE-assisted/LMF-based positioning with LMF-side model, direct AI/ML positioning
· Case 3a: NG-RAN node assisted positioning with gNB-side model, AI/ML assisted positioning
· Case 3b: NG-RAN node assisted positioning with LMF-side model, direct AI/ML positioning

For model inference:
· For Case 1: both model input and output do not need to be reported to another entity, thus are up to UE implementation. The only exception is UE location as model output of direct AI/ML positioning, but UE location can be sent via existing LPP signaling when requested, thus no concern of specification impact.
· For Case 2a and 3a (AI/ML assisted positioning): 
· Model input does not need to be specified. Model input for AI/ML assisted positioning is up to implementation. There is no need to have any restrictions on model input, including info type (e.g., CIR, PDP) and size of model input.
· Model output need to be specified for signaling to LMF.
· For Case 2b and 3b (LMF-side model, direct AI/ML positioning):
· Model input needs to be specified, since the model input needs to be sent to LMF.
· Model output is UE location, and no concern of specification impact.

Regarding data collection for model training and model monitoring: 
Many issues are open for model training and model monitoring, including where/how data collection is carried out, and what data to collect. Thus the signalling and specification impact are unclear at the moment. FL suggests that the discussion on model input and model output can focus on model inference for now.

The following agreement was made in RAN1#111.
Agreement
For reporting the model input dimension NTRP * Nport * Nt of CIR and PDP, Nt refers to Nt consecutive time domain samples.
· If N’t (N’t < Nt) samples with the strongest power are selected as model input, with remaining (Nt ‒ N’t) time domain samples set to zero, then companies report value N’t in addition to Nt. It is also assumed that timing info for the N’t samples need to be provided as model input.
Agreement
At least for model inference of AI/ML assisted positioning, evaluate and report the AI/ML model output, including (a) the type of information (e.g., ToA, RSTD, AoD, AoA, LOS/NLOS indicator) to use as model output, (b) soft information vs hard information, (c) whether the model output can reuse existing measurement report (e.g., NRPPa, LPP). 

To continue the investigation, the following is proposed based on companies’ input.
Proposal 4.3-1
For direct AI/ML positioning with LMF-side model, study the model input at least for model inference, considering the tradeoff among model performance, model complexity and computational complexity, signaling overhead, and potential specification impact.
· The type of information to use as model input, e.g., time-domain CIR, PDP
· The dimension of model input in terms of NTRP, Nt, and Nt’.


	
	Company

	Support
	

	Not support
	



	Company
	Comments

	Hw/HiSi
	There is a typo in the text before the agreements “The following agreement was made in RAN1#1121.”
We don’t think that signaling and spec impact needs to be considered in this agenda item. This should be done in 9.2.4.2 based on the evaluations that we are carrying out here.
We think what could be studied is model input size and its possible relationship to model performance and complexity. If then the model input is signaled or kept within the same entity depends on the function allocation that is better suited in 9.2.4.2-
For the model input size we have presented simulation results in R1-2300112 where it is shown that sub-meter level accuracy can be maintained even when going down to 4 TRPs and 64 samples for CIR and even down-to 32 samples for PDP. Would it be possible to observe/capture these results here, as they are based on the agreements that have achieved during RAN1#111?
The proposal could be updated as follows:
For direct AI/ML positioning with LMF-side model, study the model input size at least for model inference, considering the tradeoff among model performance, model complexity and computational complexity. , signaling overhead, and potential specification impact.
· The type of information to use as model input, e.g., time-domain CIR, PDP
· The dimension of model input in terms of NTRP, Nt, and Nt’.
[Moderator] First bullet is not about ‘size’ though.

	Fujitsu
	Basically OK for this proposal, though some wording may need to be checked as HW pointed out above.

	CATT
	Generally OK. Also fine with HW’s updates.

	OPPO
	Fine with the intentions. However, could moderator elaborate what’s the additional information of this proposal compared to previous agreements in Agenda item 9.2.4.1 and 9.2.4.2
[Moderator] The intention is to investigate the best tradeoff for model input. Previous agreement 9.2.4.1 only asked companies to report what input was used in their evaluation.

	NOK
	Ok with the direction.

	Qualcomm
	We have a few concerns about this proposal. The proposal needs to be tailored to the intended cases. 
· First, the direct AI/ML positioning with LMF-sided models and time-CIR/PDP input can be easily realized with Case3b reporting. Case3b incurs much smaller radio resources when compared to Case2b. 
· Second, we also think the evaluation should first target understanding the benefits/overhead of reporting CIR/PDP to LMF versus reporting existing measurements that are obtained using AI/ML assisted positioning approach. In other words, we need first to understand the performance gains of the following:
· Case3a (existing/enhanced measurements) vs Case3b (CIR/PDP both optimized and unoptimized) 
· Case2a (existing/enhanced measurements) vs Case2b (CIR/PDP both optimized and unoptimized)
[Moderator] This proposal will help to understand the comparison between the Cases.

	Mediatek
	Fine with the proposal

	Moderator
	Update the proposal according to Huawei input.
Proposal 4.3-1a
For direct AI/ML positioning with LMF-side model, study the model input at least for model inference, considering the tradeoff among model performance, model complexity and computational complexity, signaling overhead, and potential specification impact.
· The type of information to use as model input, e.g., time-domain CIR, PDP
· The dimension of model input in terms of NTRP, Nt, and Nt’.




Regarding the issue of multi-port PRS, several companies (e.g., vivo, ZTE) have evaluated the benefit of defining multi-port PRS. ZTE pointed out that multi-port PRS reduces the efforts to collect training data. On the other hand, up till now, only single-port PRS is specified in 3GPP. It needs to be discussed whether AI/ML justifies the introduction of multi-port PRS, while conventional positioning methods do not need it thus far.

Question 4.3-2
For AI/ML positioning using DL PRS, does the introduction of AI/ML justify the introduction of multi-port PRS? Please share your view and why.
· Yes
· No


	View
	Company

	Yes
	

	No
	



	Company
	Comments

	HW/HiSi
	We think at the moment, this question about justification cannot be answered. All we can do for now is an evaluation of the multi-port PRS.
Before we can justify multi-port PRS, we need for example
· agree on signaling of measurements and labels for Cases 1-3B 
· evaluate how many samples are needed in certain conditions to achieve the desired prediction accuracy. For that kind of study we already have agreements in place. We suggest that we move on with this and capture observations firstly. In these kind of observation, for the given cases, multi-port PRS performance might also be shown.

We suggest to postpone the question about justification of multi-port PRS until the above aspects have progressed

	Fujitsu
	We think this multi-port PRS evaluation can be left for companies who are interested in it, if more companies show the interests on this, maybe it will be the time for an overall discussion here.

	CATT
	Share the same view with HW.

	OPPO
	We prefer to defer the conclusion to wait for evaluation from more companies since is only limited companies provided simulation results. 

	Qualcomm
	The concept of multi-port PRS is not clear. Is it multi-port PRS at TX or RX side? Our understanding is that it is a network implementation to map multiple PRS resources to a given TRP point (e.g., mapping can happen in a way that mimics a multi-port PRS transmission at TX side). We appreciate it if more details and assumptions are provided on how the multi-port PRS has been simulated and evaluated.



Other
Deployment Scenarios and evaluation methodology
	· Qualcomm (R1-2301408)
Categorization of generalization and robustness for studying AI/ML positioning enhancement:
· Type 1: Heterogeneous inter-site (or heterogeneous inter-zone): Performance of AI/ML model on unseen deployment type (e.g., Umi vs. InF scenarios)
· Type 2: Homogeneous inter-site (or homogeneous inter-zone): Performance of AI/ML model on unseen deployment of the same type (e.g., trained on drop 1 and tested on drop 2 of the same scenario) 
· Type 3: Time varying changes: Performance of AI/ML model on unseen time variations within the same site (or zone) (e.g., moving objects, small environment variations over time in a factory, floor, warehouse, etc.)
· Type 4: Cross-configuration: Performance of AI/ML models across TX/RX configurations (e.g., training and testing can have different beam or transmit powers/SNR mismatch, synchronization/timing errors, etc.).
Proposal 1: For studying the impact of time varying changes (e.g., mobility of clutter objects and blockers in the environment), the following modelling approaches can be considered:
· Option1: Modeling approach listed in Appendix 1
· Option2: Blocker Model A or Blocker Model B in TR 38.901 (Section 7.6.4 [2]).

Proposal 4: consider the following observations on LCM approaches (i.e., model switching, mixed training dataset, and model finetuning) for AI/ML positioning:
· Model switching offers the best positioning accuracy followed by mixed training dataset and model finetuning
· Model finetuning with small dataset size can only be feasible for enhancing positioning accuracy for small unseen changes


	· Lenovo (R1-2301203)
Proposal 1: The evaluation methodology should be designed under a common generalizability framework, including additional considerations such as different UE mobility options, Tx/Rx beam configurations and DL-PRS configurations.
Proposal 2: The positioning AI/ML model evaluation methodology should support scenarios evaluating a model's robustness and adaptability, e.g., including how often an AI/ML evaluation model is updated based on a particular evaluation criterion. FFS any other relevant criteria.



Model switching
	· Qualcomm (R1-2301408)

Observation 3: Site-specific AI/ML positioning models achieve excellent performance within their intended coverage area (i.e., the trained site). 
Observation 4: Model switching can help scaling the excellent performance of site-specific AI/ML positioning models across different sites. 
Proposal 2: Evaluate the model switching as a solution to enhance performance of site-specific AI/ML positioning models across different sites. 
Proposal 3: To evaluate AI/ML positioning enhancement with model switching, consider multiple sites (e.g., N sites) that have different drop values, clutter settings, and/or deployment scenario. Then conduct evaluation for the two following cases:
· No model switching case: Train a single model with L datasets from L sites among the N sites (where L<N), and test on all N sites using the trained model. 
· Model switching case: Train M models (M>1) with datasets from the N sites, and test on all N sites while switching between the M trained models and picking the right model that fits the testing site. 

Proposal 8: Study the specification impacts for enabling model switching of direct AI/ML positioning models to enable generalization across different drops (i.e., inter-site generalization).
Proposal 9: Prioritize model switching as a solution to enable generalization of direct AI/ML positioning across different drops (i.e., inter-site generalization).


[bookmark: _Ref118298364]Table 10 Evaluation results for AI/ML model deployed on UE-side, with model switching for generalization (Type 2 - different drops), CNN
	Model input
	Model output
	Label
	Model switching (number of models)

	Setting ({60%, 6m, 2m})
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	
	Train
	Test
	Training 
	Test 
	Model complexity [parameters]
	Computational complexity [FLOPs]
	AI/ML

	CIR (18,4,400)
	2D 
	0%
	2
	two drops 
	two drops 
	15k
	2k
	1.5M 
	1.54G
	2.75

	CIR (18,4,400)
	2D
	0%
	1
	one drop
	two drops
	15k 
	2k
	1.5M 
	1.54G
	9.45




	· Nokia (R1-2300608)

Observation-1: Model switching scales the upper bound performance and it was represented in all previous evaluations when the ML testing is performed on the same dataset used for ML training. Thus, RAN1 has no necessity to evaluate model switching scenarios.

	· Ericsson (R1-2300141)

	Observation 6	Even with small model sizes, models trained with mixed datasets can operate at state-of-the-art performance in multiple substantially different environments with no need of explicit environment identification and model switching.
Observation 7	For the alternative approach of keeping multiple models for multiple operating environments, reliability of environment identification becomes the critical point of failure.
Observation 8	To operate at state-of-the-art performance in multiple substantially different environments, mixed dataset training is superior to either training multiple models from scratch or storing multiple fine-tuned models with explicit environment identification and model switching.



1st round discussion
For model switching, QC propose to “Prioritize model switching as a solution to enable generalization of direct AI/ML positioning across different drops”. On the other hand, Nokia pointed out that evaluation of model switching is not necessary since evaluation results are already available when ML testing is performed on the same dataset used for ML training. Ericsson pointed out that model switching has the additional step of environment identification, and the reliability of environment identification and model switching becomes the critical point of failure. 
Companies are invited to share your view whether model switching should be evaluated as a solution to enhance performance of site-specific AI/ML positioning models across different sites. 

Question 5.3-1
Should RAN1 evaluate model switching as a solution to enable generalization across different deployment environments? Please provide your reasoning.
· Yes
· No

	View
	Company

	Yes
	

	No
	CATT, NOK



	Company
	Comments

	HW/HiSi
	No
With model switching, the model is simply changed to a new model that has been trained for the new scenario conditions. This is not related to e.g. generalization performance.
However, that does not mean that we automatically would oppose to a functionality of model switching. The performance of a model could be monitored and the decision might be to switch to another model. But this is a separate discussion and not part of this evaluation in our view.

	Fujitsu
	We think model switching is one follow-up action after the model monitoring, e.g., from model A to model B. It will be natural to say that we evaluate the performance of both model A and B, respectively, but it is weird to say we evaluate the performance of model switching because it is an instant action which cannot be evaluated.

What is more, model switching cannot guarantee the generalization performance since the entities will make decisions of switching based on all kinds of elements such as the monitoring results, additional information among entities and maybe the model capabilities, but it cannot be assured that the decision made will be 100% correct or effective.

	CATT
	Model switching is a procedure issue which can be discussed under 9.2.4.2, which cannot be evaluated.

	OPPO
	We think environment identification is the key issue for model switching, proper monitoring metric is needed for model switching.

	NOK
	As commented in our observation, training and testing an AI/ML model on the same dataset (scenario) represents the upper bound performance in all cases.  Thus, for evaluation purposes, we do not get advantage to evaluate model switching because it was already done.

	Qualcomm
	We think the TR needs to capture an observation that model switching when done properly and timely ensures the scalability of site-specific models and solutions. The TR should not exclude obvious options such as model switching for enabling the scalability of AI/ML positioning. We find the other approaches are considerable options, but the TR needs to acknowledge the approaches that have been evaluated. 
Back to the point on whether model switching is a generalization solution or not. The other two approaches, i.e., mixed dataset training and model fine-tuning, are much likely similar to model switching in terms of considering samples from the testing case/scenario. 

	Mediatek
	For companies who are interested in it can provide more evaluation results. RAN1 can start by selecting different models in different environments to demonstrate the benefits of using multiple models, but how to evaluate model switching can be discussed further.



Performed evaluation of direct AI/ML positioning
In this meeting, a large amount of evaluation work has been performed by companies for direct AI/ML positioning. These valuable results are very important to help RAN1 to make progress.
Selected results submitted by companies are copied below.
Evaluation without generalization considerations (same setting for training and testing)

	· ZTE (R1-2300175)
Table.1 Direct AI/ML positioning based on PDP, 1.0 m grid width for data generation, deployed on UE/network side, Model backbone (CNN [5])
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Training
	Test
	Training
	test
	Model complexity
	Computation complexity
	AI/ML

	PDP 

= {1, 18, 256, 8}
	2- D UE position
(1x2)
	2-D UE position
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	7200
	800
	9.50 M
	158.47 M
	1.93

	PDP

= {1, 18, 256, 16}
	2-D UE position
(1x2)
	2-D UE position
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	7200
	800
	9.50 M
	158.47 M
	1.40

	PDP 

= {1, 18, 256, 32}
	2-D UE position
(1x2)
	2-D UE position
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	7200
	800
	9.50 M
	158.47 M
	1.75

	PDP

= {1, 18, 256, 64}
	2-D UE position
(1x2)
	2-D UE position
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	7200
	800
	9.50 M
	158.47 M
	0.83

	PDP 

= {1, 18, 256, 128}
	2-D UE position
(1x2)
	2-D UE position
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	7200
	800
	9.50 M
	158.47 M
	0.71

	PDP

= {1, 18, 256, 256}
	2-D UE position
(1x2)
	2-D UE position
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	7200
	800
	9.50 M
	158.47 M
	0.69



Table.3 Direct AI/ML positioning based on PDP, 0.5 m grid width for data generation, deployed on UE/network side, Model backbone (CNN)
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Training
	Test
	Training
	test
	Model complexity
	Computation complexity
	AI/ML

	PDP 

= {1, 18, 256, 64}
	2-D UE position
(1x2)
	2-D UE position
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	28800
	1800
	9.50 M
	158.47 M
	0.508

	CIR 

= {1, 18, 256, 64}
	2-D UE position
(1x2)
	2-D UE position
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	28800
	1800
	9.50M
	158.66 M
	0.421

	PDP 

= {1, 18, 256, 128}
	2-D UE position
(1x2)
	2-D UE position
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	28800
	1800
	9.50 M
	158.47 M
	0.446

	CIR 

= {1, 18, 256, 128}
	2-D UE position
(1x2)
	2-D UE position
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	28800
	1800
	9.50M
	158.66 M
	0.278



Observation 5: The positioning performance of CIR based model input is better than PDP based model input, which shows that path phase information is beneficial for AI/ML model training.
Proposal 3:  Study and identify the benefit of path phase information in AI/ML based positioning.
[image: ]
Figure. 2 CDFs of positioning errors for multi-port AI/ML positioning
Observation 6: When the model input includes channel observation from multi-port PRS, better positioning performance can be observed when compared to single port PRS.

	· Apple (R1-2301341)
Table 4: Direct AI/ML Positioning: Evaluation results for AI/ML model deployed on UE/network-side, without model generalization, with a CNN
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
[18 x 256 x 2]
	UE coordinates
[1x2]
	100% labeled
	Drop 1
	Drop 1
	47500
	2500
	2.43
	5.12
	1.01m




	· CAICT (R1-2300845)
Observation 1: The horizontal positioning accuracy of direct AI/ML positioning could be 0.046m at CDF=90% when all samples in training dataset have ground truth label without model generalization.
Observation 2: The horizontal positioning accuracy of direct AI/ML positioning could be 0.493m at CDF=90% when partial samples (1000 samples out of 150000 samples) in training dataset have ground truth label.

	· xiaomi (R1-2300571)
Table 1 Evaluation results for direct AI-based positioning with model deployed on UE or NW side, without model generalization, ResNet
	Model input
	Model output
	Label
	Clutter param
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Training
	test
	Training
	test
	Model complexity
	Computational complexity
	AI/ML

	18*256*1 CIR
	2*1 UE coordinates
	2*1 UE coordinates
	{0.6，6，2}
	{0.6，6，2}
	70000
	10000
	21,277,442
	5.76GFlops
	0.4462

	18*256*1 CIR
	2*1 UE coordinates
	2*1 UE coordinates
	{0.4，2，2}
	{0.4，2，2}
	70000
	10000
	21,277,442
	5.76GFlops
	0.7566




	· China Telecom (R1-2300719)
Table 3. Evaluation results for AI/ML model deployed on network-side, without model generalization
	Model input
	Model output
	Label
	Settings (clutter parameter)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	TOA
	Predicted UE position
	True UE position
	[0.6,6m,2m]
	[0.6,6m,2m]
	78400 samples
	1600
samples
	75.7k
	75.1k
	0.69

	DL-TDOA
	Predicted UE position
	True UE position
	[0.6,6m,2m]
	[0.6,6m,2m]
	78400 samples
	1600 samples
	75.7k
	75.1k
	0.73

	CIR
	Predicted UE position
	True UE position
	[0.6,6m,2m]
	[0.6,6m,2m]
	78400 samples
	1600 samples
	145.9M
	2.8M
	0.54

	RSRP+TOA
	Predicted UE position
	True UE position
	[0.6,6m,2m]
	[0.6,6m,2m]
	78400 samples
	1600
samples
	184.2k
	182.8k
	0.43

	RSRP+DL-TDOA
	Predicted UE position
	True UE position
	[0.6,6m,2m]
	[0.6,6m,2m]
	78400 samples
	1600 samples
	184.2k
	182.8k
	0.38




	· CATT (R1-2300675)
Observation 1: For directly estimating UE’s positioning with perfect network synchronization, the horizontal accuracy is 0.58m@90%.

	· MediaTek (R1-2301591)
Observation 19:	The evaluation results shown that the positioning performance of 2 transmit antenna ports (by different polarization) is better than the existing 1 antenna port in the spec.
Proposal 7	: At least support PDP as model input for direct AI/ML positioning, and further study CIR to check whether the phase part in CIR is useful.
Proposal 8	: Study and evaluate the performance of direct AI/ML positioning with multiple transmit/receive antenna port pairs (for example, 2 ports with different polarization).



Evaluation of generalization aspects (different setting for training and testing)
Different drops

	· Qualcomm (R1-2301408)

Table 2 Horizontal positioning error (meters) of RFFP with Type 2 generalizations
	Train
	Test
	50%
	67%
	80%
	90%tile

	Drop A
	Drop A
	1.41
	1.79
	2.19
	2.77

	Drop A
	Drop B
	5.98
	7.81
	9.88
	12.33

	Classical - Drop A
	14.65
	>20
	>20
	>20

	Classical - Drop B
	13.88
	>20
	>20
	>20



[image: ]
[bookmark: _Ref111123211]Figure 6 CDF of horizontal positioning errors of direct AI/ML positioning (solid plots: Baseline performance; dashed plots: Type 2 generalizations).

	· vivo (R1-2300448)
[image: ]
Observation 6:	Positioning performance of direct AI/ML positioning degrades when the model trained with dataset of one drop is tested with dataset of other drops.

	· Apple (R1-2301341)
Table 5: Direct AI/ML Positioning: Evaluation results for AI/ML model deployed on UE/network-side, model generalization, with a CNN
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
[18 x 256 x 2]
	UE coordinates
[1x2]
	100% labeled
	Drop 1
	Drop 2
	47500
	2500
	2.43
	5.12
	4.167m

	CIR
[18 x 256 x 2]
	UE coordinates
[1x2]
	100% labeled
	{60%,6,2}
	{40%,2,2}
	47500
	2500
	2.43
	5.12
	4.1935m

	CIR
[18 x 256 x 2]
	UE coordinates
[1x2]
	100% labeled
	Ideal n/w synch
	Non-ideal network sync
	47500
	2500
	2.43
	5.12
	10.88m

	CIR
[18 x 256 x 2]
	UE coordinates
[1x2]
	100% labeled
	InF-DH
	InF-SH
	47500
	2500
	2.43
	5.12
	4.237m


· 

	· ZTE (R1-2300175)
Various simulation drops:
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
 
= {1, 18, 256, 256}
	2-D UE position
(1x2)
	2-D UE position
	
1st Drop
	
N/A
	
1st Drop
	28800
	N/A
	1800
	984.96K
	44.28 M
	0.26

	CIR 

= {1, 18, 256, 256}
	2-D UE position
(1x2)
	2-D UE position
	
1st Drop
	
N/A
	
2nd Drop
	28800
	N/A
	1800
	984.96K
	44.28 M
	20.42

	CIR 

= {1, 18, 256, 256}
	2-D UE position
(1x2)
	2-D UE position
	
1st Drop
	
2nd Drop
	
2nd Drop
	28800
	5000
	1800
	984.96K
	44.28 M
	2.72

	CIR 

= {1, 18, 256, 256}
	2-D UE position
(1x2)
	2-D UE position
	
1st Drop
	
2nd Drop
	
2nd Drop
	28800
	10000
	1800
	984.96K
	44.28 M
	2.33

	CIR 

= {1, 18, 256, 256}
	2-D UE position
(1x2)
	2-D UE position
	Mixed datasets from 1st Drop and 2nd Drop
	N/A
	1st Drop
	28800 + 28800
	N/A
	1800
	984.96K
	44.28 M
	0.31





	· OPPO (R1-2300284)
Observation 4: For the InF-DH scenario, if the training and testing data sets for AI model training and testing are generated from different drops, there will be large performance degradation for AI-based positioning.

	· MediaTek (R1-2301591)
Observation 20:	Performance of direct AI/ML positioning degrades when the model trained with dataset of one drop is tested with dataset of other drops since there is no correlation between multipath realization of different drops.
Observation 21:	Training the AI model with mixed dataset can be an effective way to improve the performance of direct AI positioning when the model is deployed at different drops.



Different clutter parameters
	· vivo (R1-2300448)
[image: ]
Figure 15	CDF of positioning accuracy of clutter parameters {0.6, 6, 2} and {0.4, 4, 2}

	· xiaomi (R1-2300571)
Table 3 Evaluation results for direct AI-based positioning with model deployed on UE or NW side, without model generalization (different clutter parameter), ResNet
	Model input
	Model output
	Label
	Clutter param
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Training
	test
	Training
	test
	Model complexity
	Computational complexity
	AI/ML

	18*256*1
CIR
	2*1 UE coordinates
	2*1 UE coordinates
	{0.6，6，2}
	{0.4，2，2}
	70000
	10000
	21,277,442
	5.76GFlops
	7.0914

	18*256*1 CIR
	2*1 UE coordinates
	2*1 UE coordinates
	{0.4，2，2}
	{0.6，6，2}
	70000
	10000
	21,277,442
	5.76GFlops
	1.5328




	· ZTE (R1-2300175)
Various clutter settings:
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
 
= {1, 18, 256, 256}
	2-D UE position
(1x2)
	2-D UE position
	{60%, 6m, 2m}

	N/A
	{60%, 6m, 2m}

	28800
	N/A
	1800
	984.96K
	44.28 M
	0.26

	CIR 

= {1, 18, 256, 256}
	2-D UE position
(1x2)
	2-D UE position
	{60%, 6m, 2m}
	N/A
	{40%, 4m, 2m}

	28800
	N/A
	1800
	984.96K
	44.28 M
	19.31

	CIR 

= {1, 18, 256, 256}
	2-D UE position
(1x2)
	2-D UE position
	{60%, 6m, 2m}
1st Drop
	{{40%, 4m, 2m}

	{40%, 4m, 2m}

	28800
	5000
	1800
	984.96K
	44.28 M
	3.81

	CIR 

= {1, 18, 256, 256}
	2-D UE position
(1x2)
	2-D UE position
	{60%, 6m, 2m}

	{40%, 4m, 2m}

	{40%, 4m, 2m}

	28800
	10000
	1800
	984.96K
	44.28 M
	3.18

	CIR 

= {1, 18, 256, 256}
	2-D UE position
(1x2)
	2-D UE position
	Mixed datasets from
{60%, 6m, 2m} and {40%, 4m, 2m}
	N/A
	{40%, 4m, 2m}

	28800 + 28800
	N/A
	1800
	984.96K
	44.28 M
	0.48




	· OPPO (R1-2300284)
Observation 5: For the InF-DH scenario, if the training and testing data sets for AI model training and testing are generated with different clutter settings, there will be large performance degradation for AI-based positioning.

	· CATT (R1-2300675)
Observation 3: For generalization performance with different assumptions on direct AI/ML positioning, the positioning accuracy is seriously degraded.



Network synchronization error
	· Qualcomm (R1-2301408)
[image: Chart, line chart

Description automatically generated]
[bookmark: _Ref101883668]Figure 9 CDF of horizontal positioning error for RFFP scheme under different TRPs’ synchronization assumptions (blue plot: TRPs are synchronized; magenta plot: TRPs have random synchronization error within [-10, 10] nanoseconds).

	· xiaomi (R1-2300571)
Table 9 Evaluation results for direct AI-based positioning with model deployed on UE or NW side, without model generalization (AI/ML model is trained by data set with ideal network synchronization and tested by data set with 100ns network synchronization error), ResNet
	Model input
	Model output
	Label
	Clutter param & network synchronization error
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Training
	test
	Training
	test
	Model complexity
	Computational complexity
	AI/ML

	18*256*1 CIR
	2*1 UE coordinates
	2*1 UE coordinates
	{0.6，6，2}
0ns error
	{0.6，6，2}
100ns error
	70000
	10000
	21,277,442
	5.76GFlops
	12.4486

	18*256*1 CIR
	2*1 UE coordinates
	2*1 UE coordinates
	{0.4，2，2}
0 ns error
	{0.4，2，2} 
100ns error
	70000
	10000
	21,277,442
	5.76GFlops
	14.5779




	· ZTE (R1-2300175)
Various network synchronization errors:
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
 
= {1, 18, 256, 256}
	2-D UE position
(1x2)
	2-D UE position
	Ideal network sync
	N/A
	Ideal network sync
	28800
	N/A
	1800
	984.96K
	44.28 M
	0.26

	CIR 

= {1, 18, 256, 256}
	2-D UE position
(1x2)
	2-D UE position
	Ideal network sync
	N/A
	Network sync error
= 50 ns
	28800
	N/A
	1800
	984.96K
	44.28 M
	10.32

	CIR 

= {1, 18, 256, 256}
	2-D UE position
(1x2)
	2-D UE position
	Network sync error
= 50 ns
	N/A
	Network sync error
= 50 ns
	28800
	N/A
	1800
	984.96K
	44.28 M
	0.34




	· OPPO (R1-2300284),
Observation 7: For the InF-DH scenario, if the training data set of AI model is generated without NW synchronization error, the AI model performance for the case with NW synchronization error will suffer larger performance loss
•	In this case, the AI/ML assisted positioning scheme “Indirect: Normalized CIR for all TRPs” achieves similar performance as the traditional non-AI based scheme.

	· CATT (R1-2300675)
Observation 2: For directly estimating UE’s positioning with perfect network synchronization error, the horizontal accuracy is 0.84m@90%.

	· vivo (R1-2300448)
Table 21	Evaluation results for AI/ML model deployed on UE or Network side, with model generalization, ViT
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
	Pos.
	0
	0ns
	0ns
	25k
	1k
	1.65M
	22.30M
	0.99

	CIR
	Pos.
	0
	0ns
	2ns
	25k
	1k
	1.65M
	22.30M
	1.64

	CIR
	Pos.
	0
	0ns
	10ns
	25k
	1k
	1.65M
	22.30M
	4.56

	CIR
	Pos.
	0
	0ns
	50ns
	25k
	1k
	1.65M
	22.30M
	10.18


Table 22	Evaluation results for AI/ML model deployed on UE or Network side, with model generalization, ViT
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
	Pos.
	0
	0ns
	10ns
	25k
	1k
	1.65M
	22.30M
	4.56

	CIR
	Pos.
	0
	Mix 0ns+10ns
	10ns
	25k+2k
	1k
	1.65M
	22.30M
	1.16

	CIR
	Pos.
	0
	0ns
	50ns
	25k
	1k
	1.65M
	22.30M
	10.18

	CIR
	Pos.
	0
	Mix 0ns+50ns
	50ns
	25k+2k
	1k
	1.65M
	22.30M
	1.52






UE/gNB RX and TX timing error
	· Qualcomm (R1-2301408)

Observation 9: RFFP can be made robust to network and UE timing errors (e.g., UE clock drift, network synchronization, etc.), by taking timing impairments into the training dataset.
[image: Chart, line chart

Description automatically generated]
[bookmark: _Ref101880951]Figure 8 CDF of horizontal positioning error for RFFP scheme under different UE clock drift conditions (green plot: RFFP performance in ideal settings when no clock drift present; blue plot: training accounts for UE clock drift and testing includes UE clock drift within [-150,150] nanoseconds).


	· ZTE (R1-2300175)
Various UE RX timing errors:
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
 
= {1, 18, 256, 256}
	2-D UE position
(1x2)
	2-D UE position
	Without UE Rx timing error
	N/A
	Without UE Rx timing error
	28800
	N/A
	1800
	984.96K
	44.28 M
	0.26

	CIR 

= {1, 18, 256, 256}
	2-D UE position
(1x2)
	2-D UE position
	Without UE Rx timing error
	N/A
	UE Rx timing error = 10 ns
	28800
	N/A
	1800
	984.96K
	44.28 M
	0.89

	CIR 

= {1, 18, 256, 256}
	2-D UE position
(1x2)
	2-D UE position
	UE Rx timing error = 10 ns
	N/A
	UE Rx timing error = 10 ns
	28800
	N/A
	1800
	984.96K
	44.28 M
	0.27

	CIR 

= {1, 18, 256, 256}
	2-D UE position
(1x2)
	2-D UE position
	UE Rx timing error = 20 ns
	N/A
	UE Rx timing error = 20 ns
	28800
	N/A
	1800
	984.96K
	44.28 M
	0.34




	· MediaTek (R1-2301591)
Observation 26:	Direct AI/ML model trained with large timing error dataset can be generalized to dataset with small timing error.
Observation 27:	The positioning performance of direct AI/ML can be improved by mixing dataset with different timing errors at the cost of the training complexity.


Different InF scenarios
	· MediaTek (R1-2301591)
Table 25. Evaluation results for AI/ML model deployed on UE or network-side with generalization, CNN
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	AI/ML
InF-SH
	AI/ML
InF-HH

	CIR [18,2,256]
	UE pos [x,y]
	0%
	InF-DH({60%, 6m, 2m}),small hall
	InF-SH/HH, large hall
	InF-SH/HH, large hall
	0
	0
	3600
	464.24K
	0.266G
	>100
	>100

	
	
	
	
	
	
	
	1200
	
	
	
	9.806
	14.073

	
	
	
	
	
	
	
	3600
	
	
	
	5.391
	5.972

	
	
	
	
	
	
	
	7200
	
	
	
	3.815
	5.104

	PDP [18,2,256]
	UE pos [x,y]
	0%
	InF-DH({60%, 6m, 2m})
	InF-SH/HH, large hall
	InF-SH/HH, large hall
	0
	0
	3600
	463.95K
	0.264G
	>100
	.>100

	
	
	
	
	
	
	
	1200
	
	
	
	8.964
	21.755

	
	
	
	
	
	
	
	3600
	
	
	
	5.186
	14.537

	
	
	
	
	
	
	
	7200
	
	
	
	4.162
	9.581


Observation 31:	Performance of direct AI/ML positioning degrades when the model trained with dataset of InF-DH is tested with dataset of InF-SH/HH with different hall size, and fine-tuning can improve the performance.

	· vivo (R1-2300448)
[image: ]
Figure 16	CDF of positioning accuracy when training dataset and test dataset are not matched



SNR mismatch
	· Samsung (R1-2301259)
	Case 
	Training 
	Interference
	Pos error (m) @90%

	1
	-10db SNR level
	-10db SNR level
	9.21

	2
	-10db SNR level
	10db SNR level
	7.52

	3
	10db SNR level
	-10db SNR level
	49.41

	4
	10db SNR level
	10db SNR level
	3.47


[image: ]
Fig.7 CDF of positioning errors with different SNR level

[image: ]
Fig.8 CDF of positioning errors with different SNR level (2)

Observation 2: the mis-alignment of the SNR may not always degrade the performance, e.g., low SNR model may have better pos accuracy by having high SNR inference input than same low SNR inference input. 
Proposal 3: the impact of SNR to the AI/ML model training/inference should be studied more comprehensively. 

	· Qualcomm (R1-2301408)
Observation 10: Training direct AI/ML model on higher SNR achieves higher positioning accuracy
Observation 11: If training and testing have mismatched SNR (e.g., due to change in transmit power), the positioning accuracy of direct AI/ML positioning can show slight to moderate degradation.
Observation 12: If training and testing have mismatched SNR (e.g., due to change in transmit power), training direct AI/ML model on a higher SNR regime can achieve better generalization to unseen SNR settings than training on a smaller SNR regime.
[bookmark: _Ref127449378]Table 6 Evaluation results for AI/ML model deployed on UE-side, with different TX power settings, CNN
	Model input
	Model output
	Label
	Setting ({60%, 6, 2})
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Train
	Test
	Train
	Test 
	Model complexity
	Computational complexity
	AI/ML

	CIR (18,4,400)
	2D
	0%
	Drop 1 (TX power 12 dBm)
	Drop 1 (TX power 12 dBm)
	15k
	2k
	1.5M
	1.54G FLOPs
	2.6

	CIR (18,4,400)
	2D
	0%
	Drop 1 (TX power 12 dBm)
	Drop 1 (TX power 18 dBm)
	15k
	2k
	1.5M
	1.54G FLOPs
	3.12

	CIR (18,4,400)
	2D
	0%
	Drop 1 (TX power 12 dBm)
	[bookmark: _Int_FdwTTGpU]Drop 1 (TX power 21 dBm)
	15k
	2k
	1.5M
	1.54G FLOPs
	3.64

	CIR (18,4,400)
	2D
	0%
	Drop 1 (TX power 12 dBm)
	Drop 1 (TX power 24 dBm)
	15k
	2k
	1.5M
	1.54G FLOPs
	3.89

	CIR (18,4,400)
	2D
	0%
	Drop 1 (TX power 18 dBm)
	Drop 1 (TX power 12 dBm)
	15k
	2k
	1.5M
	1.54G FLOPs
	2.91

	CIR (18,4,400)
	2D
	0%
	Drop 1 (TX power 18 dBm)
	Drop 1 (TX power 18 dBm)
	15k
	2k
	1.5M
	1.54G FLOPs
	2.39

	CIR (18,4,400)
	2D
	0%
	Drop 1 (TX power 18 dBm)
	Drop 1 (TX power 21 dBm)
	15k
	2k
	1.5M
	1.54G FLOPs
	2.45

	CIR (18,4,400)
	2D
	0%
	Drop 1 (TX power 18 dBm)
	Drop 1 (TX power 24 dBm)
	15k
	2k
	1.5M
	1.54G FLOPs
	2.56






Time varying changes
	· Qualcomm (R1-2301408)

Observation 7: RFFP shows good robustness to subtle and moderate unseen reflections and multipath components that are different from training.
[bookmark: _Ref115427598]Table 4 Evaluation results for AI/ML model deployed on UE-side, with Type 3-time varying changes, CNN
	Model input
	Model output
	Label
	Setting ({60%, 6, 2})
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Train
	Test
	Train
	Test 
	Model complexity
	Computational complexity
	AI/ML

	CIR (18,4,400)
	2D
	0%
	Drop 1 (odd clusters)
	Drop 1 (odd clusters)
	15k
	2k
	1.5M
	1.54G FLOPs
	2.74

	CIR (18,4,400)
	2D
	0%
	Drop 1 (odd clusters)
	Drop 1 (odd except clusters 3&5)
	15k
	2k
	1.5M
	1.54G FLOPs
	3.16

	CIR (18,4,400)
	[bookmark: _Int_FZFqTzm9]2D
	0%
	Drop 1 (odd clusters)
	Drop 1 (odd with clusters 2&4)
	15k
	2k
	1.5M
	1.54G FLOPs
	2.88

	CIR (18,4,400)
	2D
	0%
	Drop 1 (odd clusters)
	Drop 1 (odd with removal & addition of two random clusters)
	15k
	2k
	1.5M
	1.54G FLOPs
	3.46



Observation 8: RFFP method can show improved robustness to slight environment changes such as time-varying blocking when trained on mixture of such changes.
[bookmark: _Ref111138292]Table 5 Horizontal positioning error (meter) for RFFP robustness with Type 3 ‘time varying changes’ (ML model trained on mixture of channel realizations)
	Train
	Test
	50%tile
	67%tile
	80%tile
	90%tile

	Mixed clusters
	Odd clusters
	1.33
	1.59
	2.19
	2.80

	Mixed clusters
	Odd except clusters 1&3
	2.41
	3.07
	3.81
	4.87

	Mixed clusters
	Odd except clusters 1&5
	2.21
	2.97
	3.72
	4.64

	Mixed clusters
	Odd except clusters 5&7
	1.45
	1.84
	2.42
	3.15

	Mixed clusters
	Odd with clusters 2&4
	1.39
	1.63
	2.25
	2.89

	Mixed clusters
	Odd with clusters 6&8
	1.34
	1.60
	2.23
	2.87

	Mixed clusters
	Remove up to two random odd clusters and add up to two random even ones 
	1.50
	1.822
	2.46
	3.17




	· MediaTek (R1-2301591)
Table 26. Evaluation results for AI/ML model deployed on UE or network-side with generalization, CNN
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR [18,2,256]
	UE pos [x,y]
	0%
	without time varying
	with time varying
	with time varying
	0
	0
	3600
	464.24K
	0.266G
	>100

	
	
	
	
	
	
	
	1200
	
	
	
	11.206

	
	
	
	
	
	
	
	3600
	
	
	
	6.712

	
	
	
	
	
	
	
	7200
	
	
	
	5.076

	PDP [18,2,256]
	UE pos [x,y]
	0%
	without time varying
	with time varying
	with time varying
	0
	0
	3600
	463.95K
	0.264G
	>100

	
	
	
	
	
	
	
	1200
	
	
	
	9.950

	
	
	
	
	
	
	
	3600
	
	
	
	6.146

	
	
	
	
	
	
	
	7200
	
	
	
	4.796



Observation 32:	Performance of direct AI/ML positioning degrades when there is time varying change between the training data and test data, and fine-tuning can improve the performance.
Proposal 10	: Further study modeling of dynamically varying environment on 3GPP InF deployment to investigate the model robustness to time varying changes.



Channel estimation error
	· MediaTek (R1-2301591)\
Observation 28:	The direct AI Model trained by dataset with large channel estimation error can be generalized to dataset with small channel estimation error.
Observation 29:	The positioning performance can be improved by mixing dataset with different channel estimation errors at the cost of the training complexity.
Proposal 9	: For AI/ML positioning, support better training dataset construction (e.g., mix dataset with different clutter parameters, different timing errors, and different channel estimation errors) for AI/ML model generalization.

	· vivo (R1-2300448)
Table 20	Evaluation results for AI/ML model deployed on UE or Network side, ViT
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
	Pos.
	0
	Without interference
	0 interfering TRP (Without interference)
	25k
	1k
	1.65M
	22.30M
	0.99

	CIR
	Pos.
	0
	
	1 interfering TRP
	25k
	1k
	1.65M
	22.30M
	8.35

	CIR
	Pos.
	0
	
	4 interfering TRPs
	25k
	1k
	1.65M
	22.30M
	10.22

	CIR
	Pos.
	0
	
	8 interfering TRPs
	25k
	1k
	1.65M
	22.30M
	13.14



Observation 16:	The interference from TPRs can dramatically impair the positioning performance of AI/ML model.



Model LCM evaluations
Evaluation of model fine-tuning
	· vivo (R1-2300448)
Table 44	Evaluation of model fine-tuning for different cases
	Cases
	Training
	Fine-tuning
	Testing
	Positioning accuracy @90%

	Direct AI/ML positioning
	{0.6, 6, 2} 
	{0.4, 2, 2} 
	{0.4, 2, 2} 
	4.40 

	
	{0.4, 2, 2} 
	{0.6, 6, 2} 
	{0.6, 6, 2} 
	3.23 

	
	Drop1
	Drop2
	Drop2
	3.97

	
	InF-DH
	InF-HH
	InF-HH
	8.78

	
	Sync 0ns
	50ns
	50ns
	2.39

	
	Sync 0ns
	10ns
	10ns
	1.28

	
	Sync 0ns
	2ns
	2ns
	1.11

	AI/ML assisted positioning
	{0.6, 6, 2} 
	{0.4, 2, 2} 
	{0.4, 2, 2} 
	0.63

	
	Drop1
	Drop2
	Drop2
	5.50

	
	InF-DH
	InF-HH
	InF-HH
	0.17

	
	InF-DH
	InF-SH
	InF-SH
	0.17

	
	Sync 0ns
	50ns
	50ns
	3.40

	
	Sync 0ns
	10ns
	10ns
	1.78

	
	Sync 0ns
	2ns
	2ns
	1.30



Observation 30:	Model fine-tuning is suitable for the following tasks:
•	The source domain and the target domain are greatly similar, such as with different synchronization error.
•	The target domain is easy to fit, such as TOA estimation of LOS path.

Table 45	Fine-tuning data sample efficiency for different cases
	Cases
	Range of sample size
	Data efficiency (@90% per 100 additional samples)
	Positioning accuracy with sample size N1 for sample range N1~N2(@90%)

	Train: {0.6, 6, 2}
Fine-tuning: {0.4, 2, 2}
Testing: {0.4, 2, 2}
	0-500
	0.69
	8.67 (0 samples)

	
	500-1000
	0.16
	5.22 (500 samples)

	
	1000-2000
	0.09
	4.40 (1000 samples)

	
	2000-3000
	0.03
	3.50 (2000 samples)

	Train: {0.4, 2, 2}
Fine-tuning: {0.6, 6, 2}
Testing: {0.6, 6, 2}
	0-500
	0.17
	4.77

	
	500-1000
	0.13
	3.89 

	
	1000-2000
	0.06
	3.23

	
	2000-3000
	0.01
	2.56

	Train: Drop1
Fine-tuning: Drop2
Testing: Drop2
	0-500
	0.26
	6.00

	
	500-1000
	0.14
	4.69 

	
	1000-2000
	0.06
	3.97 

	
	2000-3000
	0.04
	3.37 

	Train: DH
Fine-tuning: HH
Testing: HH
	0-500
	14.98
	>>10

	
	500-1000
	0.34
	10.50 

	
	1000-2000
	0.29
	8.78 

	
	2000-3000
	0.12
	5.84 

	Train: Sync. Error 0ns
Fine-tuning: 50ns
Testing: 50ns
	0-500
	1.39
	10.18

	
	500-1000
	0.16
	3.22 

	
	1000-2000
	0.06
	2.39 

	
	2000-3000
	0.02
	1.73 

	Train: Sync. Error 0ns
Fine-tuning: 10ns
Testing: 10ns
	0-500
	0.62
	4.56

	
	500-1000
	0.03
	1.44 

	
	1000-2000
	0.02
	1.28 

	
	2000-3000
	0.01
	1.06 

	Train: Sync. Error 0ns
Fine-tuning: 2ns
Testing: 2ns
	0-500
	0.10
	1.64

	
	500-1000
	0.001
	1.11 

	
	1000-2000
	0.01
	1.11 

	
	2000-3000
	0.005
	0.95 


[image: ]
Figure 51	The curve of positioning error reduction with increasing number of sample size (data efficiency)

	· Huawei (R1-2300112)
Dimension 2: Pre-trained model with model updating
· [bookmark: _Ref127215180]Table 14. Evaluation results for AI/ML model deployed on network-side, ResNet
	Model input(NTRP * Nport * Nt)
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	Test
	Model complexity
	Computation complexity
	AI/ML

	CIR
18*4*256
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 2
	{60%, 6m, 2m}, Drop 2
	25000
	1000
	5000
	52.42K
	25.81M
	2.86

	CIR
18*4*256
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{40%, 2m, 2m}, Drop 1
	{40%, 2m, 2m}, Drop 1
	25000
	1000
	5000
	52.42K
	25.81M
	3.1

	CIR
18*4*256
	UE coordinates
	UE coordinates
	Without network synchronization error
	With network synchronization error @50ns
	With network synchronization error @50ns
	25000
	5000
	5000
	52.42K
	25.81M
	8.47

	CIR
18*4*256
	UE coordinates
	UE coordinates
	Without UE timing error
	With UE timing error@20ns
	With UE timing error@20ns
	25000
	5000
	5000
	52.42K
	25.81M
	1.13


Proposal 1: Model updating should be supported to improve the performance under the presence of UE timing errors and for the occurrence of the unlearned channel characteristics, including unseen drops and clutter settings.

Observation 23: For direct AI/ML positioning, when the model input is CIR, over different dataset sizes for fine-tuning, the positioning accuracy increases when the size of fine-tuning dataset increases. At least 5000 samples are needed for fine-tuning to maintain sub-meter level accuracy.
Observation 24: For direct AI/ML positioning, when the model input is PDP, over different dataset sizes for fine-tuning, the positioning accuracy increases when the size of fine-tuning dataset increases. At least 5000 samples are needed for fine-tuning to maintain meter level accuracy.


	· Samsung (R1-2301259)

[image: ][image: ]
Fig.5 – Test and fine-tune performance on DH662 and DH422 on model trained from SH

[image: ][image: ]
Fig.6 – Test and fine-tune performance on DH662 and SH on model trained from DH422
Observation 4:  When the training dataset is from DH662 small hall size, and the testing/inference dataset generated from different scenario (InF-SH), or different clutter parameter (DH422), or different deployment (large hall size), the performance of all three genralzation cases are degraded severely. 
Observation 5:  When the training dataset is from DH662 small hall size, and 1k training data update and the testing/inference dataset generated from different scenario (InF-SH), or different clutter parameter (DH422), or different deployment (large hall size), the performance of all three generalizations cases are recovered significantly. The larger FH size, the better performance could be achieved.
Proposal 5: RAN1 study the update/fine-tuning the model with limited number of data set or targeting generalization case.

	· Qualcomm (R1-2301408)

Observation 13: Model fine-tuning with small dataset can only offer slight to moderate enhancement to positioning performance of direct AI/ML positioning when tested with different drops (i.e., inter-site generalization).
[bookmark: _Ref115427518]Table 8 Evaluation results for AI/ML model deployed on UE-side, with model finetuning generalization (Type 2 - different drops), CNN
	Model input
	Model output
	Label
	Settings ({60%, 6m, 2m})
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	train
	finetune
	Test
	Train 
	Finetune
	Test
	Model complexity [parameters]
	Computational complexity FLOPs
	AI/ML

	CIR (18,4,400)
	2D 
	0%
	drop A
	--
	drop B
	15k
	0
	2K
	1.5M 
	1.54G 
	12.33

	CIR (18,4,400)
	2D
	0%
	drop A
	drop B
	drop B
	15k
	100
	2K
	1.5M 
	1.54G 
	10.47

	CIR (18,4,400)
	2D
	0%
	drop A
	drop B
	drop B
	15k
	240
	2K
	1.5M 
	1.54G 
	6.92

	CIR (18,4,400)
	2D
	0%
	drop A
	drop B
	drop B
	15k
	500
	2K
	1.5M 
	1.54G 
	6.07




	· CMCC (R1-2300994)
Table IV. Evaluation results for AI/ML model deployed on UE side, CNN
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	Test
	Model comp-lexity
	Computa-tion comp-lexity
	AI/ML

	CIR
size:18*1*256
	UE coordinates
	ideal UE coordinates
	{60%, 6m, 2m}, Drop1
	{60%, 6m, 2m}, Drop 2
	{60%, 6m, 2m}, Drop 2
	25000

	500
	2500

	3.71M
	7.42M
	4.14

	
	
	
	
	
	
	
	1000
	
	
	
	3.35

	
	
	
	
	
	
	
	2000
	
	
	
	2.74

	
	
	
	
	
	
	
	3000
	
	
	
	1.95




	· xiaomi (R1-2300571)
Table 7 Evaluation results for direct AI-based  positioning with model deployed on UE or NW side, with model generalization (with fine-tuning), ResNet
	Model input
	Model output
	Label
	Clutter parameter 
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	AI/ML

	18*256*1 CIR
	2*1 UE coordinates
	2*1 UE coordinates
	{0.6，6，2}
	{0.4，2，2}
	{0.4，2，2}
	70000
	5000
	10000
	21,277,442
	5.76GFlops
	1.4315

	18*256*1 CIR
	2*1 UE coordinates
	2*1 UE coordinates
	{0.4，2，2}
	{0.6，6，2}
	{0.6，6，2}
	70000
	5000
	10000
	21,277,442
	5.76GFlops
	0.7185



Table 13 Evaluation results for direct AI-based positioning with model deployed on UE or NW side, with model generalization (with fine-tuning), ResNet
	Model input
	Model output
	Label
	Clutter param & network synchronization error
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	AI/ML

	18*256*1 CIR
	2*1 UE coordinates
	2*1 UE coordinates
	{0.6，6，2} , 0ns error 
	{0.6，6，2} , 100 ns error
	{0.6，6，2} , 100 ns error
	70000
	5000
	10000
	21,277,442
	5.76GFlops
	4.7145

	18*256*1 CIR
	2*1 UE coordinates
	2*1 UE coordinates
	{0.4，2，2} 0ns error
	{0.4，2，2}
100 ns error
	{0.4，2，2}
100 ns error
	70000
	5000
	10000
	21,277,442
	5.76GFlops
	8.0254




	· NVIDIA (R1-2301182)
[image: A picture containing chart

Description automatically generated]
Figure 6: Positioning accuracy of AI/ML based method under different drops.
[image: Diagram

Description automatically generated with low confidence]
Figure 8: Positioning accuracy of AI/ML based method under different drops.
Observation 8: Compared to finetuning for different drops, finetuning for different clutter parameter sets provides less positioning accuracy improvement with the same finetuning samples. This shows that finetuning is more effective when the first scenario (for which the AI/ML model is originally trained) and the second scenario (that finetuning targets) are more similar.

	· CATT (R1-2300675)
Observation 7: When AI/ML model is trained with the dataset of clutter parameter {60%, 6m, 2m} and fine-tuned with a small dataset of clutter parameter {40%, 2m, 2m}, the horizontal positioning accuracy is improved obviously compared with AI/ML model without fine-tuning. If the fine-tuning dataset size is larger, the improvement of horizontal positioning accuracy is greater.

	· MediaTek (R1-2301591)
Observation 22:	Fine-tuning the model with samples from a drop can achieve positioning accuracy improvement when the pre-trained model is transferred to a new drop for direct AI/ML positioning.
Observation 30:	Fine-tuning a model with samples of new parameter setting (e.g., drop, clutter setting, channel estimation error, timing error, scenario) can achieve positioning accuracy improvement when the pre-trained model is transferred to a new parameter setting for direct AI/ML positioning (the more fine-tuning data the better performance), but performance degrades for pre-trained parameter setting.



Evaluation of training with mixed dataset
	· xiaomi (R1-2300571)
Table 5 Evaluation results for direct AI-based positioning with model deployed on UE or NW side, with model generalization (different clutter parameter), ResNet
	Model input
	Model output
	Label
	Clutter param
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Training
	test
	Training
	test
	Model complexity
	Computational complexity
	AI/ML

	18*256*1
CIR
	2*1 UE coordinates
	2*1 UE coordinates
	Mix of
{0.6，6，2}
{0.4，2，2}
	{0.6，6，2}
	35000+35000
	10000
	21,277,442
	5.76GFlops
	0.5419

	18*256*1 CIR
	2*1 UE coordinates
	2*1 UE coordinates
	Mix of
{0.6，6，2}
{0.4，2，2}
	{0.4，2，2}
	35000+35000
	10000
	21,277,442
	5.76GFlops
	0.7684




	· Ericsson (R1-2300141)
Table 8. 90%tile UE 2D positioning errors for small Model I trained with 40,000 samples from {60%, 6m, 2m} and/or {40%, 2m, 2m} and tested on four different environments.
	Positioning approach
	Model complexity [# of parameters]
	Training
dataset
	90%tile UE 2D positioning errors [m] – small Model I
on different test sets

	
	
	
	{40%, 2m, 2m}
	{60%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 6m, 2m}

	Dist. Assisted
	0.86 M
	{60%, 6m, 2m}
	8.998
	4.435
	0.543
	0.489

	
	
	{40%, 2m, 2m}
	0.439
	0.642
	2.096
	2.295

	
	
	{40%, 2m, 2m} {60%, 6m, 2m}
	0.514
	0.564
	0.626
	0.594

	Cent. Assisted
	0.73 M
	{60%, 6m, 2m}
	8.377
	3.587
	0.451
	0.409

	
	
	{40%, 2m, 2m}
	0.741
	0.821
	1.562
	1.727

	
	
	{40%, 2m, 2m} {60%, 6m, 2m}
	0.697
	0.604
	0.470
	0.459

	Cent. Direct
	0.73 M
	{60%, 6m, 2m}
	8.168
	3.355
	0.478
	0.443

	
	
	{40%, 2m, 2m}
	0.749
	0.848
	1.574
	1.733

	
	
	{40%, 2m, 2m} {60%, 6m, 2m}
	0.699
	0.604
	0.488
	0.479




	· CMCC (R1-2300994)
Observation 3: If the mixed training dataset comprises the samples of the drop as the test dataset, the positioning accuracy can be improved obviously.

	· OPPO (R1-2300284)
Observation 6: For the InF-DH scenario, by training AI model based on the mixed data set with different clutter settings, the performance of AI model inference for the data set with one of these clutter settings can be improved.

	· CATT (R1-2300675)
Observation 4: When AI/ML model is mix-trained with the dataset of clutter parameter {60%, 6m, 2m} and a small dataset of clutter parameter {40%, 2m, 2m}, the horizontal positioning accuracy is improved from 2.64m to 1.77m compared with AI/ML model generalization performance without mix-training.
Observation 5: When AI/ML model is mix-trained with the dataset of ideal synchronization and a small dataset of network synchronization error 50ns, the horizontal positioning accuracy is improved from 12.6m to 3.04m compared with AI/ML model generalization performance without mix-training.
Observation 6: When AI/ML model is mix-trained with the dataset of InF-DH {60%, 6m, 2m} and a small dataset of InF-SH {20%, 10m, 2m}, the horizontal positioning accuracy is improved from 6.48m to 1.81m compared with AI/ML model generalization performance without mix-training.

	· MediaTek (R1-2301591)
Observation 23:	Performance of direct AI/ML positioning degrades when the model trained with clutter setting ({60%,6m,2m}) is tested with dataset of another clutter setting ({40%,2m,2m}).
Observation 24:	Training the AI model with mixed dataset can be an effective way to improve the performance of direct AI positioning when the model is deployed at different clutter settings.



Impact of user density/size of the training dataset
	· Qualcomm (R1-2301408)

Observation 5: RFFP can demonstrate different performance metrics depending on the UE area density considered for training. It is important to study how UE area density can affect performance as this helps companies decide on data collection strategies and signalling requirements depending on the case of interest.
[image: Chart

Description automatically generated]
[bookmark: _Ref101884490]Figure 5 CDF of horizontal positioning error for RFFP under different UE area densities (blue plot: sparse UE area density; black: dense UE area density).


	· Ericsson (R1-2300141)
Table 4 90%tile 2D positioning accuracy for different model size classes in the {60%, 6m, 2m} InF-DH scenario.
	Model class
	Positioning approach
	Model complexity
[# parameters]
	Computational complexity
[FLOPs]
	90%tile 2D positioning error [m]
with different train set sizes in 
{60%, 6m, 2m} InF-DH

	
	
	
	
	80,000
	40,000
	20,000
	10,000

	Small models
	Dist. Assist.
	0.86 M
	36 M
	0.379
	0.489
	0.656
	0.977

	
	Cent. Assist.
	0.73 M
	32 M
	0.335
	0.409
	0.568
	0.790

	
	Cent. Direct
	0.73 M
	32 M
	0.366
	0.443
	0.596
	0.830

	Medium-size models
	Dist. Assist.
	3.37 M
	132 M
	0.219
	0.312
	0.491
	0.802

	
	Cent. Assist.
	2.85 M
	110 M
	0.222
	0.294
	0.413
	0.641

	
	Cent. Direct
	2.85 M
	110 M
	0.250
	0.338
	0.484
	0.763

	Large models
	Dist. Assist.
	11.2 M
	425 M
	0.167
	0.264
	0.443
	0.761

	
	Cent. Assist.
	11.26 M
	410 M
	0.166
	0.263
	0.374
	0.597

	
	Cent. Direct
	11.26 M
	410 M
	0.203
	0.299
	0.470
	0.743




	· Huawei (R1-2300112)
Dimension 1: Different training dataset sizes.
[bookmark: _Ref127212081]Table 12. Evaluation results for AI/ML model deployed on network-side, ResNet, CIR, different sizes of training dataset
	Model input(NTRP * Nport * Nt)
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	CIR
4*4*128
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1
	25000
	5000
	15.43K
	3.34M
	0.85

	CIR
4*4*128
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1
	15000
	5000
	15.43K
	3.34M
	1.14

	CIR
4*4*128
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1
	10000
	5000
	15.43K
	3.34M
	1.3

	CIR
4*4*128
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1
	5000
	5000
	15.43K
	3.34M
	2.75


[bookmark: _Ref127215136]Table 13. Evaluation results for AI/ML model deployed on network-side, ResNet, PDP, different sizes of training dataset
	Model input(NTRP * Nport * Nt)
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	PDP
4*4*128
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1
	25000
	5000
	13.08K
	2.14M
	0.81

	PDP
4*4*128
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1
	15000
	5000
	13.08K
	2.14M
	0.99

	PDP
4*4*128
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1
	10000
	5000
	13.08K
	2.14M
	1.11

	PDP
4*4*128
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1
	5000
	5000
	13.08K
	2.14M
	1.83



Observation 18: For direct AI/ML positioning, when the model input is PDP or CIR, over different dataset sizes for training, the performance of AI/ML-based fingerprint positioning decreases when the training dataset becomes smaller. In general, less complex models converge faster and need less labels to achieve a given accuracy, e.g.,
* 4 TRPs with length-128 PDP-based fingerprinting can provide sub-meter accuracy with training 15,000 samples, whereas the more complex CIR based model requires up to 25,000 samples for the same input dimensions.


	· InterDigital (R1-2301101)

Table 1 Summary of evaluation results of size of training dataset for direct AIML positioning
	Model Input

	Model output
	(Percentage of training data set without) Label
	Settings (drops, clutter param, network synchronization error)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	RSRP
	UE position
	0% (default)
	{60%, 6m, 2m} , drop A, T1= 0 ns
	{60%, 6m, 2m} , drop A’ (unseen), T1= 0 ns
	16000
	4000
	332 k
	11.37 M FLOPs
	3.35

	RSRP
	UE position
	0% (default)
	{60%, 6m, 2m} , drop A, T1= 0 ns
	{60%, 6m, 2m} , drop A’ (unseen), T1= 0 ns
	8000
	4000
	332 k
	11.37 M FLOPs
	4.25

	RSRP
	UE position
	0% (default)
	{60%, 6m, 2m} , drop A, T1= 0 ns
	{60%, 6m, 2m} , drop A’ (unseen), T1= 0 ns
	4000
	4000
	332 k
	11.37 M FLOPs
	5.00

	RSRP + RSTD
	UE position
	0% (default)
	{60%, 6m, 2m} , drop A, T1= 0 ns
	{60%, 6m, 2m} , drop A’ (unseen), T1= 0 ns
	16000
	4000
	334 k
	11.41 M FLOPs
	1.69

	RSRP+RSTD
	UE position
	0% (default)
	{60%, 6m, 2m} , drop A, T1= 0 ns
	{60%, 6m, 2m} , drop A’ (unseen), T1= 0 ns
	8000
	4000
	332 k
	11.41 M FLOPs
	1.98

	RSRP+RSTD
	UE position
	0% (default)
	{60%, 6m, 2m} , drop A, T1= 0 ns
	{60%, 6m, 2m} , drop A’ (unseen), T1= 0 ns
	4000
	4000
	332 k
	11.41 M FLOPs
	2.46




	· China Telecom (R1-2300719)
Table 4. Positioning Accuracy with different training dataset size
	Dataset size
	50%
	67%
	80%
	90%

	Traditional method
	11.89
	13.62
	14.78
	16.36

	80000
	0.27
	0.36
	0.43
	0.54

	40000
	0.36
	0.47
	0.57
	0.70

	20000
	0.46
	0.61
	0.75
	0.90

	10000
	0.52
	0.67
	0.81
	0.98

	5000
	0.69
	0.88
	1.10
	1.31




	· CMCC (R1-2300994)
2.3.1	Impact of training dataset size and model input type
Table II. Evaluation results for AI/ML model deployed on UE side, CNN
	[bookmark: _Hlk119318593]Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	CIR
size：18*1*256
	UE coordinates

	ideal UE coordinates

	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1 
	25000
	2500
	3.71M
	7.42M
	0.38

	
	
	
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1 
	5000
	2500
	
	
	1.32

	
	
	
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1 
	2500
	2500
	
	
	2.36

	CIR
(size:18*1*256)+
RSRP
(size:18*1)

	UE coordinates

	ideal UE coordinates

	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1 
	25000
	2500
	3.71M
	7.42M
	0.33

	
	
	
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1 
	5000
	2500
	
	
	0.90

	
	
	
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1 
	2500
	2500
	
	
	1.27




	· xiaomi (R1-2300571)
[image: ]
Figure 3 Relationship between size of training data set and positioning accuracy for direct AI-based positioning

	· NVIDIA (R1-2301182)
[image: Chart

Description automatically generated]
Figure 9: Positioning accuracy of AI/ML based method under different user densities.

	· MediaTek (R1-2301591)
Table 27. Evaluation results for AI/ML model deployed on UE or network-side without generalization, CNN
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
UE density 
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	
	Model complexity
	Computation complexity
	AI/ML

	CIR [18,2,256]
	UE pos [x,y]
	0%
	InF-DH{60%,6m,2m}
	InF-DH{60%,6m,2m}
	5UEs/
	464.24K
	0.266G
	0.940

	
	
	
	
	
	2.5UEs/
	
	
	1.273

	
	
	
	
	
	1.25UEs/
	
	
	1.839

	
	
	
	
	
	0.625UEs/
	
	
	3.250

	PDP [18,2,256]
	UE pos [x,y]
	0%
	
	
	5UEs/
	463.95K
	0.264G
	0.821

	
	
	
	
	
	2.5UEs/
	
	
	1.357

	
	
	
	
	
	1.25UEs/
	
	
	2.039

	
	
	
	
	
	0.625UEs/
	
	
	2.758


Observation 33:	Performance of direct AI positioning decreases as the UE density decreases.
Table 28. Evaluation results for AI/ML model deployed on UE or network-side without generalization, CNN
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	PDP [18,2,256]
	UE pos [x,y]
	0%
	InF-DH{60%,6m,2m}
	Left
InF-DH
	3600
(left)
+14400
(right)=18000
	3600
	463.95K
	0.264G
	1.518

	
	
	
	
	Right
InF-DH
	
	3600
	
	
	1.021


Proposal 11	: Further evaluate performance of AI/ML positioning for non-uniform UE distribution.

	· Nokia (R1-2300608)
Table 8 - Horizontal positioning accuracy at CDF=90% for the evaluation related to dataset density based on IPD.
	Case 
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	
	Train
	Test
	Train
	test
	AI/ML

	1
	ToA
	2d horizontal position (x, y)
	2d horizontal position (x, y)
	Inf DH (40%)
	Inf DH (40%)
	20%
Randomly located
	80%
	2.73


	2
	ToA
	2d horizontal position (x, y)
	2d horizontal position (x, y)
	Inf DH (40%)
	Inf DH (40%)
	20%
Same size as case 1 but re-arranged (Mostly located on the left side)
	80%
	4.24








Evaluation of input size reduction
	· Huawei (R1-2300112)
Dimension 1: Different numbers of CIRs used as model input.
[bookmark: _Ref127199823]Table 7. Evaluation results for AI/ML model deployed on network-side, ResNet, CIR, different number of TRPs
	Model input(NTRP * Nport * Nt)
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	CIR
18*4*256
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1
	25000
	5000
	34 K
	25.81M
	0.62

	CIR
4*4*256
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1
	25000
	5000
	15.43K
	6.52M
	0.97

	CIR
2*4*256
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1
	25000
	5000
	7.18K
	3.26M
	2.4

	CIR
1*4*256
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1
	25000
	5000
	7.11K
	1.63M
	5.16


Observation 12: For direct AI/ML positioning, when the AI/ML model input is CIR (one CIR per TRP) and different numbers of TRPs are evaluated,
* The positioning accuracy decreases slightly when the number of TRPs is reduced from 18 to 4. But to maintain sub-meter level accuracy, the number of TRPs should be at least 4.
* Model and computational complexity decrease significantly with a smaller number of TRPs. The model complexity is reduced by more than 50% and computational complexity about 75% when reducing the number of TRPs from 18 to 4.
Dimension 2: Different numbers of CIR samples used as model input.
[bookmark: _Ref127199917]Table 8. Evaluation results for AI/ML model deployed on network-side, ResNet, 18 TRPs, different CIR lengths
	Model input(NTRP * Nport * Nt)
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	CIR
18*4*256
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1
	25000
	5000
	52.42K
	25.81M
	0.62

	CIR
18*4*128
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1
	25000
	5000
	34 K
	12.91M
	0.5

	CIR
18*4*64
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1
	25000
	5000
	34 K
	6.52M
	0.64

	CIR
18*4*32
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1
	25000
	5000
	34 K
	3.36M
	0.71


[bookmark: _Ref127199925]Table 9. Evaluation results for AI/ML model deployed on network-side, ResNet, 4 TRPs, different CIR lengths
	Model input(NTRP * Nport * Nt)
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	CIR
4*4*256
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1
	25000
	5000
	15.43K
	6.52M
	0.97

	CIR
4*4*128
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1
	25000
	5000
	15.43K
	3.34M
	0.85

	CIR
4*4*64
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1
	25000
	5000
	15.43K
	1.68M
	0.85

	CIR
4*4*32
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1
	25000
	5000
	15.43K
	925K
	1.19


Observation 14: For direct AI/ML positioning, when the model input is CIR, compared to the initial assumptions of 18 TRPs and 256 samples per CIR as model input, the signaling payload could be reduced to 1/18 when going down to 4 TRPs and 64 samples per CIR, while still maintaining sub-meter level accuracy.

Dimension 3: Different number of PDPs used as model input
[bookmark: _Ref127199949]Table 10. Evaluation results for AI/ML model deployed on network-side, ResNet, PDP, different number of TRPs
	Model input(NTRP * Nport * Nt)
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	PDP
18*4*256
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1
	25000
	5000
	50.07K
	14.97M
	0.56

	PDP
18*4*256
	UE coordinates
	UE coordinates
	{40%, 2m, 2m}, Drop 1
	{40%, 2m, 2m}, Drop 1
	25000
	5000
	50.07K
	14.97M
	0.65

	PDP
4*4*256
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1
	25000
	5000
	13.08K
	4.11M
	0.84

	PDP
2*4*256
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1
	25000
	5000
	4.82K
	2.05M
	2.8

	PDP
1*4*256
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1
	25000
	5000
	4.76K
	1.03K
	5.79


[bookmark: _Ref127210818]Table 11. Evaluation results for AI/ML model deployed on network-side, ResNet, 4 TRPs, different PDP lengths 
	Model input(NTRP * Nport * Nt)
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	PDP
4*4*256
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1
	25000
	5000
	13.08K
	4.11M
	0.84

	PDP
4*4*128
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1
	25000
	5000
	13.08K
	2.14M
	0.81

	PDP
4*4*64
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1
	25000
	5000
	13.08K
	1.08M
	0.95

	PDP
4*4*32
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1
	25000
	5000
	13.08K
	623K
	0.92



Observation 17: For direct AI/ML positioning, when the model input is PDP, compared to the initial assumptions of 18 TRPs and 256 samples per PDP as model input, the signaling payload could be reduced to 1/36 when going down to 4 TRPs and 32 samples per PDP, while still maintaining sub-meter level accuracy.


	· xiaomi (R1-2300571)
Table 15 Evaluation results for reduced input dimension for direct AI-based positioning and AI-based ToA predication, model deployed on UE or NW side, without model generalization, ResNet
	Model input
	Model output
	Label
	Clutter param
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Training
	test
	Training
	test
	Model complexity
	Computational complexity
	AI/ML

	18*24*2 CIR 
	2*1 UE coordinates
	2*1 UE coordinates
	{0.6，6，2}
	{0.6，6，2}

	70000
	10000
	21,277,442
	539.94MFlops
	0.8219

	18*24*2 CIR 
	18*1 UE TOA
	18*1 UE TOA
	{0.6，6，2}
	{0.6，6，2}
	70000
	10000
	21,285,650
	539.95MFlops
	0.8993




	· MediaTek (R1-2301591)
Table 29. Evaluation results for AI/ML model deployed on UE or network-side without generalization, CNN
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Nt
	N’t
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	CIR [18,2,256]
	UE pos [x,y]
	0%
	256
	25
	32400
	3600
	464.24K
	0.266G
	0.940

	
	
	
	
	20
	
	
	
	
	0.915

	
	
	
	
	15
	
	
	
	
	1.017

	
	
	
	64
	25
	
	
	243.058K
	0.066G
	0.984

	
	
	
	
	20
	
	
	
	
	0.851

	
	
	
	
	15
	
	
	
	
	1.097

	PDP [18,2,256]
	UE pos [x,y]
	0%
	256
	25
	32400
	3600
	463.95K
	0.264G
	0.821

	
	
	
	
	20
	
	
	
	
	1.089

	
	
	
	
	15
	
	
	
	
	1.133

	
	
	
	64
	25
	
	
	242.770K
	0.066G
	0.942

	
	
	
	
	20
	
	
	
	
	0.965

	
	
	
	
	15
	
	
	
	
	1.057


Observation 34:	By selecting appropriate Nt and N’t, the computational complexity, model complexity and signalling overhead can be reduced without significant performance loss.
Proposal 12	: Study the trade-off between performance and complexity by choosing the appropriate Nt and N’t for AI/ML positioning evaluation.


	· Nokia (R1-2300608)
[image: Chart, line chart
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Figure 10 - Horizontal 2D error -90% CDF with CIR as an input parameter of the AI/ML model using the dataset for testing. The CIR is truncated in the first N samples. The dataset used in this evaluation is the Inf-DH with 40% of clutter density.
Proposal-10: In case CIR or PDP will be prioritized as input parameters, RAN1 should evaluate the trade-off between complexity and performance among the available Nt input samples.



Evaluation of noisy ground truth labels
	· OPPO (R1-2300284)
Observation 10: For the InF-DH scenario, if the label for the training data set of AI model is obtained by traditional NR DL-TDOA scheme, the AI model inference performance for the case will suffer larger performance loss
•	Compared to the traditional NR DL-TDOA scheme, the AI model doesn’t show obvious performance gain in this case.

	· vivo (R1-2300448)
Table 23	Evaluation results for AI/ML model deployed on UE or Network side, with model generalization, ViT
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
	Pos.
	0
	Std = 0
	0
	25k
	1k
	1.65M
	22.30M
	0.99

	CIR
	Pos.
	0
	Std = 0.5
	0
	25k
	1k
	1.65M
	22.30M
	1.51

	CIR
	Pos.
	0
	Std = 1
	0
	25k
	1k
	1.65M
	22.30M
	2.17

	CIR
	Pos.
	0
	Std = 2
	0
	25k
	1k
	1.65M
	22.30M
	3.55


Observation 19:	The positioning accuracy gradually degrades with the increase of labeling error, but is still acceptable until standard deviation   is 1 m (2.17m@90%). The maximum acceptable labeling errors (standard deviation) in the horizontal direction should be less than 1m to achieve 2m@90% positioning accuracy.
Observation 20:	AI/ML based positioning is robust to label noise to some extent.
Proposal 7:	According to the requirement of positioning accuracy, the maximum acceptable labeling error should be identified firstly before data collection



Semi-supervised learning
	· ZTE (R1-2300175)
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Training
	Test
	Training
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR 

= {1, 18, 256, 128}
	2-D UE position
(1x2)
	2-D UE position
	InF-DH
{60%, 6m, 2m}
	InF-DH
{60%, 6m, 2m}
	2000 labeled
	1000
	9.50M
	158.66 M
	3.94

	CIR 

= {1, 18, 256, 128}
	2-D UE position
(1x2)
	2-D UE position
	InF-DH
{60%, 6m, 2m}
	InF-DH
{60%, 6m, 2m}
	2000 labeled
100 K unlabeled
	1000
	9.50M
	158.66 M
	1.72

	CIR 

= {1, 18, 256, 128}
	2-D UE position
(1x2)
	2-D UE position
	InF-DH
{60%, 6m, 2m}
	InF-DH
{60%, 6m, 2m}
	4000 labeled
	1000
	9.50M
	158.66 M
	1.67

	CIR 

= {1, 18, 256, 128}
	2-D UE position
(1x2)
	2-D UE position
	InF-DH
{60%, 6m, 2m}
	InF-DH
{60%, 6m, 2m}
	4000 labeled
100 K unlabeled
	1000
	9.50M
	158.66 M
	0.83

	CIR 

= {1, 18, 256, 128}
	2-D UE position
(1x2)
	2-D UE position
	InF-DH
{60%, 6m, 2m}
	InF-DH
{60%, 6m, 2m}
	8000 labeled
	1000
	9.50M
	158.66 M
	0.70

	CIR 

= {1, 18, 256, 128}
	2-D UE position
(1x2)
	2-D UE position
	InF-DH
{60%, 6m, 2m}
	InF-DH
{60%, 6m, 2m}
	8000 labeled
100 K unlabeled
	1000
	9.50M
	158.66 M
	0.51

	CIR 

= {1, 18, 256, 128}
	2-D UE position
(1x2)
	2-D UE position
	InF-DH
{60%, 6m, 2m}
	InF-DH
{60%, 6m, 2m}
	16000 labeled
	1000
	9.50M
	158.66 M
	0.38

	CIR 

= {1, 18, 256, 128}
	2-D UE position
(1x2)
	2-D UE position
	InF-DH
{60%, 6m, 2m}
	InF-DH
{60%, 6m, 2m}
	16000 labeled
100 K unlabeled
	1000
	9.50M
	158.66 M
	0.37




	· MediaTek (R1-2301591)
Table 30. Evaluation results for AI/ML model deployed on UE or network-side without generalization, CNN
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR [18,2,256]
	UE pos [x,y]
	0%
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	32400
	3600
	464.24K
	0.266G
	0.987

	
	
	0%
	
	
	7200 labelled
	7200
	
	
	2.018

	
	
	80%
	
	
	7200 labelled + 21600 unlabelled
	7200
	
	
	1.722

	PDP [18,2,256]
	UE pos [x,y]
	0%
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	32400
	3600
	463.95K
	0.264G
	0.874

	
	
	0%
	
	
	7200 labelled
	7200
	
	
	2.213

	
	
	80%
	
	
	7200 labelled + 21600 unlabelled
	7200
	
	
	2.070




	· vivo (R1-2300448)
[image: ]
Figure 53	 Positioning accuracy comparison of semi-supervised learning and supervised learning with different numbers of labeled samples
Observation 31:	 Semi-supervised learning can achieve a more accurate position estimation as compared to supervised learning with less amount of labeled data.
Proposal 13:	Capture in the TR the benefits of semi-supervised learning for AI/ML based positioning in terms of less data collection for training and more positioning accuracy.

	· Ericsson (R1-2300141)

Table 117. Evaluation results for semi-supervised learning vs supervised learning. The AI/ML model is deployed on network-side. The model is trained in InF-DH {60%,6m, 2m}, and tested with the same drop. No network synchronization errors or UE/gNB timing errors.
	Model input
	Model output
	Label
	Clutter param
	Dataset size
	AI/ML complexity
	Horiz. pos. accuracy, 90% (m), respectively

	
	
	
	
	Training/ validation
	test
	Model complexity
	AI/ML

	18 RSRP values for a target UE
	Horizontal position of the target UE
	1% ~2.5% data with ideal label, 99% ~97% data without labels
	{60%,6m, 2m}, same drop for training and testing

	100, 200, 400 data points with ideal label, 16000 data-points without label.
	4,000 of 18 RSRP values
	2 M parameters
	9.0 for 100 labelled datapoints
6.3 for 200 labelled datapoints
4.6 for 400 labelled datapoints
(semi-supervised learning)

	18 RSRP values for a target UE
	Horizontal position of the target UE
	Ideal
	{60%,6m, 2m}, same drop for training and testing

	100, 200, 400 of 18 RSRP values
	4,000 of 18 RSRP values  
	0.165 M parameters

	13.8 for 100 labelled datapoints
10.4 for 200 labelled datapoints
6.8 for 400 labelled datapoints
(Supervised learning)






1st round discussion
As shown above, companies have submitted a large amount of evaluation results on the various generalization aspects, LCM issues, etc. 
For generalization aspects, very similar observations are made by participating companies. Therefore, observations can be drawn based on the wealth of simulation results. Considering that direct AI/ML positioning is sensitive to environment change and implementation imperfections that were unseen during training, methods are needed to ensure proper operation of the AI/ML model, including fine-tuning and training with mixed dataset. 

Observation 6.8-1 
Observation: Evaluation of generalization aspects show that the positioning accuracy of direct AI/ML positioning deteriorates when the AI/ML model is trained with dataset of one setting, while tested with dataset of a different setting. 
· The generalization aspects include:
· Deployment environment: 
· Different drops 
· Different clutter parameters 
· Different InF scenarios
· SINR mismatch
· Time varying changes
· Implementation imperfections: 
· Network synchronization error 
· UE/gNB RX and TX timing error 
· Channel estimation error
· Companies have provided evaluation results which show that the positioning accuracy on the test dataset can be improved by better training dataset construction and/or model fine-tuning.
· Better training dataset construction: The training dataset is composed of data from multiple settings, which include data from the same setting as the test dataset. 
· Model fine-tuning: the model is re-trained with a dataset from the same setting as the test dataset.

	
	Company

	Support
	Fujitsu, CATT, OPPO, NOK

	Not support
	



	Company
	Comments

	HW/HiSi
	Support

	NOK
	In general, we agree with the following complementary information highlighted in red.
· Better training dataset construction: The training dataset is composed of data from multiple simulation settings (deployment environment), which include data from the same setting as the test dataset. 
· Model fine-tuning: the model or part of a previous trained model is re-trained l with a dataset from the same setting as the test dataset.


	Qualcomm
	For the second bullet point on solutions to improve performance, please add model switching as a third solution.

	MediaTek
	According to our evaluation of the implementation imperfections (e.g., timing error, channel estimation error), the positioning accuracy of direct AI/ML positioning depends more on the baseline setting of the training dataset(R1-2301591). For example, if the model is trained without timing error and tested with timing error, the performance will decrease. However, if the model is trained with a larger timing error and tested with a smaller timing error, the positioning accuracy of direct AI/ML positioning will not decrease. So “the positioning accuracy of direct AI/ML positioning deteriorates when the AI/ML model is trained with dataset of one setting, while tested with dataset of a different setting” is applicable to the deployment environment but not to the implementation imperfections.



Proposal 6.8-2 
For direct AI/ML positioning, training data collection need to ensure that data from various settings are collected for the training dataset, which include data for the target deployment environments and data for the expected implementation imperfections.

	
	Company

	Support
	Fujitsu, Mediatek

	Not support
	



	Company
	Comments

	Hw/HiSi
	Seems fine

	OPPO
	Generally fine. But the motivation of the proposal is not clear. Observation 6.8-1 is enough to describe the construction of training dataset including the methods of mixed dataset or fine-tuning.

	Qualcomm
	Generally ok



Proposal 6.8-3 
For direct AI/ML positioning, support model fine-tuning to adapt a deployed AI/ML model to new or changing deployment scenario.

	
	Company

	Support
	Fujitsu, Mediatek

	Not support
	



	Company
	Comments

	HW/HiSi
	Support

	OPPO
	 There is still on-going discussion in AI 9.2.1 on the feasibility of model updating at UE sided. Thus, it is safer to emphasize NW-side model. There are to other aspect should be clarified:
· “Support” is quite vague. We guess the intentions is to study its spec impact
· The performance of fine-tuning depends on some prerequisites, e.g. the new training date should have the matched distribution. If the data from a small group of UEs within a small area, the performance can not be ensured.  
Suggest following wording changes marked in yellow:
For direct AI/ML positioning, support to study the potential spec impact of model fine-tuning to adapt a deployed network side AI/ML model to new or changing deployment scenario if the distribution of the new training data is matched to the new or changing deployment scenario.

	Qualcomm
	So far, we have not seen model fine-tuning (with reasonably small dataset size) as a proper solution to adapt the direct AI/ML positioning to new deployment scenario. We prefer to change the wording on the proposal. The model finetuning with reasonable small dataset can work to adapt for mild to moderate changes but not significant or new ones.



Regarding labelling error, OPPO evaluation results indicate that if the label (i.e., UE position) for the training data set is obtained by traditional NR DL-TDOA scheme, then AI/ML loses the performance advantage compared to the traditional method. Evaluations by vivo indicate that the labelling error need to be smaller than the targeted positioning accuracy, for example, “The maximum acceptable labeling errors (standard deviation) in the horizontal direction should be less than 1m to achieve 2m@90% positioning accuracy.” As suggested by vivo, given the requirement of positioning accuracy, it is useful to identity the maximum acceptable labeling error before data collection. 
Proposal 6.8-4 
For direct AI/ML positioning, study the impact of labelling error to positioning accuracy, to understand the maximum acceptable labeling error in training data collection.  

	
	Company

	Support
	Fujitsu, Mediatek

	Not support
	



	Company
	Comments

	HW/HiSi
	Can be postponed in our view.
For PRUs we think the impact of the labelling error is very small, since the position and labels can be obtained with very high accuracy. In that case this study is not needed. For UEs it might be different. But we still have not agreed in 9.2.4.2 which entities can be used to generate labels. It is better to decide this firstly. If only PRUs will be supported, then it might not be needed to study the impact of the labelling error, but instead to put more effort on other aspects (for example the number of training samples).
Studying the impact of a labelling error seems also to require to agree on how to model the labeling error which can result in long discussion that might not be needed in the first place if we only would use PRUs.

	Fujitsu
	We support to evaluate on this point, but first of all how to simulate the label error should be discussed first, e.g., it is useless to use the results of conventional method as labels, and in the real network, what will be the label error distribution is not clear yet, we may obtain labels from UE, PRU, GNSS, LIDAR, WIFI and so on with different error distributions, even the PRU (may be updated from normal UE) may give labels with errors, so how to realize it via simulation coding need further study.

	OPPO
	Fine with the proposal.

	Qualcomm
	It is not clear what would be the intention or conclusion to drawn based on this proposal moving forward. We are ok with studying the impact of the quality of label but reaching a conclusion on the maximum tolerable labeling error can depend on many factors and can be different for different real scenarios. We are not sure whether deciding on a maximum acceptable labeling error using TR 38.901 datasets can yield a meaningful conclusion to be scaled to field-based datasets.  




Observation 6.8-5 
Observation: Preliminary evaluation results indicate that semi-supervised learning can improve positioning accuracy when compared to supervised learning with the same amount of labeled data.

	
	Company

	Support
	Mediatek

	Not support
	



	Company
	Comments

	HW/HiSi
	We think it is a bit early for this observation, and if this observation is proposed, also other observations for which companies have submitted results should be proposed. For example on the achievable positioning accuracy dependent on the input type (CIR or PDP) and input dimensions of the AI model as in R1-230012.
Instead of going into semi-supervised learning already now and capturing it separately, we would prefer if it would be compared with other methods when the number of labels provided from PRUs is assumed to be limited, e.g. data augmentation.

	Qualcomm
	We think the improvement that semi-supervised learning offers on the top of supervised learning starts to diminish as more labeled data is included. It is better to capture this limitation in the observation.



Performed Evaluation of AI/ML-assisted positioning
In this meeting, a large amount of evaluation work has been performed by companies for AI/ML-assisted positioning. These valuable results are crucial to help RAN1 to make progress.
Representative results submitted by companies are copied below.
Evaluation of single-TRP construction with same model for N TRP
Evaluation without generalization considerations (same setting for training and testing)

	· Qualcomm (R1-2301408)

Proposal 11: For AI/ML-assisted positioning, the single-TRP approach is adopted for evaluation as a baseline.
Observation 19: ML-based soft information reporting method provides a significant improvement in positioning accuracy over the classical scheme. The 90th percentile of the horizontal positioning error reduces from >20 m for the classical scheme to 5.10 m. 

	· Huawei (R1-2300112)
[bookmark: _Ref118371437]Table 17. Evaluation results for AI/ML model deployed on network-side, CNN
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity 
(Single-TRP, same model for N TRPs)
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	PDP 1*4*256
	LOS probability
	Ideal LOS/NLOS identification (LOS probability=0% or 100%) 
	{40%, 2m, 2m}
	{40%, 2m, 2m}
	18000
	9000
	582
	192K
	0.353




	· vivo (R1-2300448)
Table 5	Evaluation results for AI/ML model deployed on UE or Network side
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR w. BS info.
	TOA
	0
	Drop1
	Drop1
	25k*18
	1k*18
	11.92M*1
	23.79M*1
	0.83

	CIR w/o. BS info.
	TOA
	0
	Drop1
	Drop1
	25k*18
	1k*18
	11.92M*1
	23.79M *1
	2.57



Table 9	Evaluation results of LOS/NLOS identification accuracy for AI/ML model deployed on UE or Network side, without model generalization, full-connection network
	Model input
	Model output
	Label
	Clutter param
	Dataset size & type
	AI/ML complexity
	Accuracy of LOS/NLOS identification

	
	
	
	
	Training
	test
	Model complexity
	Computational complexity
	AI/ML

	CIR
	LOS/NLOS
	0
	{0.4, 2, 2}
	25k 
	1k
	3.62M*18
	7.24M*18
	>99%

	R17 [9]
	{0.4, 2, 2}
	/
	93%


Observation 5:	 AI/ML based LOS/NLOS identification for positioning has the following advantages:
-	More accurate LOS/NLOS identification along with a confidence metric 
-	Better compatibility with existing positioning protocol framework. 
-	Great generalization capability.
and disadvantages: 
-	Positioning performance could suffer from severe degradation in heavy-NLOS scenarios.
-	Obtain LOS/NLOS labels is a challenging task for data collection.

	· Ericsson (R1-2300141)
Table 49 Evaluation results for AI/ML model deployed on network-side, without model generalization investigation. No network synchronization error. Two architectures of the ML model: Model I (6 layers: 3 Conv1D layers, 3 Dense layers) and Model II (9 layers: 6 Conv1D layers, 3 Dense layers)
	Model
	Model input
	Model output
	Label
	Settings
	Dataset size
	AI/ML complexity
	Horiz. pos. accuracy @90% (m)

	
	
	
	
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	I
	Time domain CIR, 1x2x256  complex array
	(1). LoS/NLoS classification
(2). ToA estimate
	Ideal

	{40%, 2m, 2m}
	{40%, 2m, 2m}
	5400 
	4000 
	71 k parameters
	7.3 M FLOPs
	0.109	

	II
	
	
	
	
	
	
	
	73 k parameters
	17 M FLOPs
	0.062




	· Apple (R1-2301341)
Table 6:  AI/ML-assisted Positioning: Evaluation results for AI/ML model deployed on network-side, without model finetuning, with a CNN
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
[18 x 256 x 2]
	ToA
[1x1]
	100% labeled
	Drop 1
	Drop 1
	47500
	2500
	1.6
	3.1
	1.138m




	· InterDigital (R1-2301101)
Table 2 Evaluation results for AIML assisted positioning by unobserved RSTD prediction
	Model Input

	Model output
	(Percentage of training data set without) Label
	Settings (drops, clutter param, network synchronization error)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	RSRP
	(estimated)
RSTD
	0% (default)
	{60%, 6m, 2m} , drop A, T1= 0 ns
	{60%, 6m, 2m} , drop A’ (unseen), T1= 0 ns
	16000
	4000
	332 k
	11.42 M FLOPs
	15.68

	RSRP
	(unobserved)
RSTD
	0% (default)
	{60%, 6m, 2m} , drop A, T1= 0 ns
	{60%, 6m, 2m} , drop A’ (unseen), T1= 0 ns
	16000
	4000
	332 k
	11.42 M FLOPs
	10.60




	· CATT (R1-2300675)
Observation 19: For single-TRP with the same AI/ML model which is trained with the CIR  of 18 TRPs, the horizontal accuracy is 0.58m@90%.
Observation 20: For single-TRP with the same AI/ML model which is trained with the CIR of 6 TRPs, the horizontal accuracy is 1.73m@90%.
Observation 22: For AI/ML assisted positioning with LOS/NLOS identification, the performance is similar with model inputs between PDP and CIR.

	· MediaTek (R1-2301591)
Observation 1:	The soft-decision approach outperforms the hard-decision approach for AI/ML assisted LOS/NLOS identification positioning.
Observation 2:	High user density of training dataset provides an improvement in LOS/NLOS identification accuracy over the low user density.
Observation 9:	The soft-decision approach outperforms the hard-decision approach for AI/ML assisted TOA estimation positioning.
Proposal 3	: Support means and variance of TOA as model output to report for AI/ML assisted TOA estimation positioning.



Generalization aspects (different setting for training and testing)
	· Qualcomm (R1-2301408)
Observation 20: The ML-assisted soft information reporting method using single-TRP approach generalizes well across inter-site changes with homogeneous clutter settings.
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Figure 20 CDF of horizontal positioning error for ML-based soft information reporting across drops
Observation 21: Training on a mix of clutter settings achieves good accuracy in each setting without the overhead of model switching, while training a separate model for each setting provides better accuracy. 
· The 90th percentile error increases from 5.10 m to 7.34 m when testing on (60%, 6m, 2m) clutter, and
· from 0.53 m to 0.91 m when testing on (40%, 2m, 2m) clutter 

Observation 22: The ML-assisted soft information reporting using single-TRP approach has good robustness to zone-specific time varying changes.
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Figure 22. CDF of horizontal positioning error for ML-based soft information reporting across time varying changes in a specific zone.

	· Huawei (R1-2300112)
Dimension 1: Clutter parameters.
Table 18. Evaluation results for AI/ML model deployed on network-side, CNN
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Identification rate

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	PDP 1*4*256
	LOS probability
	Ideal LOS/NLOS identification (LOS probability=0% or 100%)
	InF-DH {40%, 2m, 2m}
	InF-DH {40%, 2m, 2m}
	18000
	9000
	582
	192K
	97.2%

	PDP 1*4*256
	LOS probability
	Ideal LOS/NLOS identification (LOS probability=0% or 100%)
	InF-DH {40%, 2m, 2m}
	InF-DH {60%, 6m, 2m}
	18000
	9000
	582
	192K
	98.6%

	PDP 1*4*256
	LOS probability
	Ideal LOS/NLOS identification (LOS probability=0% or 100%)
	InF-DH {40%, 2m, 2m}
	InF-DH {40%, 3m, 5m}
	18000
	9000
	582
	192K
	97.7%


Observation 27: When the channel parameters of the inference dataset and the training dataset are different, AI/ML-based LOS/NLOS identification model provides great generalization performance of the intermediate LOS/NLOS Identification rate.
Dimension 2: InF scenarios.
Table 19. Evaluation results for AI/ML model deployed on network-side, CNN
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Identification rate

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	PDP 1*4*256
	LOS probability
	Ideal LOS/NLOS identification (LOS probability=0% or 100%)
	InF-SH {20%, 2m, 10m}
	InF-DH {40%, 2m, 2m}
	18000
	9000
	582
	192K
	95.1%

	PDP 1*4*256
	LOS probability
	Ideal LOS/NLOS identification (LOS probability=0% or 100%)
	InF-DH {40%, 2m, 2m}
	InF-SH {20%, 2m, 10m}
	18000
	9000
	582
	192K
	78%

	PDP 1*4*256
	LOS probability
	Ideal LOS/NLOS identification (LOS probability=0% or 100%)
	InF-DH {40%, 2m, 2m}& InF-SH {20%, 2m, 10m} mixed
	InF-SH {20%, 2m, 10m}
	18000
	9000
	582
	192K
	97.8%

	PDP 1*4*256
	LOS probability
	Ideal LOS/NLOS identification (LOS probability=0% or 100%)
	InF-DH {40%, 2m, 2m}& InF-SH {20%, 2m, 10m} mixed
	InF-DH {40%, 2m, 2m}
	18000
	9000
	582
	192K
	97.3%



Observation 28: When the model is trained under the InF-DH scenario but inferred under the InF-SH scenario, the performance deteriorates significantly. But when trained under the InF-SH scenario and inferred under the InF-DH scenario, the AI/ML-based LOS/NLOS identification model provides great generalization performance of the intermediate LOS/NLOS Identification rate.
Observation 29: When the mixed training dataset consists of samples with the same scenarios as the inference dataset, the performance of the intermediate LOS/NLOS identification rate is improved under both scenarios' inference.


	· Ericsson (R1-2300141)
Table 50. Evaluation results for AI/ML model deployed on network-side, with model generalization investigation where the model is trained in InF-DH {40%, 2m, 2m} and tested with various InF-DH clutter parameters and new drop.  No network synchronization error. Two architectures of the ML model: Model I (6 layers: 3 Conv1D layers, 3 Dense layers) and Model II (9 layers: 6 Conv1D layers, 3 Dense layers)
	Model
	Model input
	Model output
	Label
	Settings
	Dataset size
	AI/ML complexity
	Horiz. pos. accuracy @90% (m)

	
	
	
	
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	I
	Time domain CIR, 
1x2x256  complex array

	(1). LoS/NLoS classification(2). ToA estimate
	Ideal

	{40%, 2m, 2m}
	{40%, 2m, 2m} new drop
	5400 
	4000 
	71 k parameters
	7.3 M FLOPs
	0.100	

	
	
	
	
	
	{50%,2m,2m}
	
	
	
	
	0.264	

	
	
	
	
	
	{60%, 2m, 2m}
	
	
	
	
	5.340	

	
	
	
	
	
	{60%, 6m, 2m}
	
	
	
	
	13.476	

	II
	
	
	
	
	{40%,2m,2m} new drop
	
	
	73 k parameters
	17 M FLOPs
	0.061

	
	
	
	
	
	{50%,2m,2m}
	
	
	
	
	0.150

	
	
	
	
	
	{60%, 2m, 2m}
	
	
	
	
	4.732

	
	
	
	
	
	{60%, 6m, 2m}
	
	
	
	
	13.528




	· CATT (R1-2300675)
Observation 23: For the AI/ML assisted positioning with LOS/NLOS identification, the generalization performance with different clutter parameters and different scenarios is good.

	· MediaTek (R1-2301591)
3.1.2.3	Evaluation of different scenario
Observation 3:	Performance of AI/ML assisted LOS/NLOS identification positioning degrades when the model is trained with dataset of InF-DH scenario and tested with dataset of InF-SH large hall size scenario.  And the performance is improved when mix InF-DH and InF-SH training data.
3.1.2.4	Evaluation of channel estimation error
Observation 4:	Performance of AI/ML assisted LOS/NLOS identification positioning significantly degrades when the model is trained with small channel estimation error and tested with large channel estimation error.  
Observation 5:	AI/ML model in AI/ML assisted LOS/NLOS identification positioning has robust generalization capability when the model is trained with large channel estimation error and tested with small channel estimation error.
Proposal 1	: If generalization over channel estimation error is considered, training data should at least include large channel estimation error for AI/ML positioning.
3.1.2.5	Evaluation of timing error
Observation 6:	Performance of AI/ML assisted LOS/NLOS identification positioning significantly degrades when the model is trained with small timing error and tested with large timing error.  
Observation 7:	AI/ML model in AI/ML assisted LOS/NLOS identification positioning has robust generalization capability when the model is trained with large timing error and tested with small timing error.
Proposal 2	: If generalization over timing error is considered, training data should at least include large timing error for AI/ML positioning.




Evaluation of single-TRP construction with N models for N TRP
Evaluation without generalization considerations (same setting for training and testing)
	· CATT (R1-2300675)
Observation 21: For single-TRP with specific AI/ML model which is trained with the CIR of 6 TRPs separately, the horizontal accuracy is 2.37m@90%.

	· vivo (R1-2300448)
Table 3	Evaluation results for AI/ML model deployed on UE or Network side
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
	Pos.
	0
	Drop1
	Drop1
	25k
	1k
	1.65M
	22.30M
	0.99

	CIR
	TOA
	0
	Drop1
	Drop1
	25k
	1k
	4.26M*18
	8.50M*18
	0.73






Generalization aspects (different setting for training and testing)
	· vivo (R1-2300448)
Table 16	Evaluation results for AI/ML model deployed on UE or Network side
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
	TOA
	0
	{0.6, 6, 2}
	{0.6, 6, 2}
	25k
	1k
	4.26M*18
	8.50M*18
	0.73

	CIR
	TOA
	0
	{0.6, 6, 2}
	{0.4, 2, 2}
	25k
	1k
	4.26M*18
	8.50M*18
	3.70

	CIR
	TOA
	0
	{0.4, 2, 2}
	{0.4, 2, 2}
	25k
	1k
	4.26M*18
	8.50M*18
	0.32

	CIR
	TOA
	0
	{0.4, 2, 2}
	{0.6, 6, 2}
	25k
	1k
	4.26M*18
	8.50M*18
	1.53



Table 18	Evaluation results for AI/ML model deployed on UE or Network side
	
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
	TOA
	0
	DH
	DH
	25k
	1k
	4.26M*18
	8.50M*18
	0.73

	CIR
	TOA
	0
	DH
	HH
	25k
	1k
	4.26M*18
	8.50M*18
	[bookmark: OLE_LINK56]>10

	CIR
	TOA
	0
	DH
	SH
	25k
	1k
	4.26M*18
	8.50M*18
	>10

	CIR
	TOA
	0
	HH
	SH
	25k
	1k
	4.26M*18
	8.50M*18
	0.05



Observation 14:	For those scenarios whose positioning does not rely on fingerprint features, AI/ML based TOA estimation has better generalization ability than direct AI/ML positioning.
Observation 15:	AI/ML based TOA estimation has great advantages in positioning performance, deployment flexibility, compatibility with existing positioning protocol framework, and generalization capability.



Evaluation of multi-TRP construction
Evaluation without generalization considerations (same setting for training and testing)

	· xiaomi (R1-2300571)
Table 2 Evaluation results for AI-based ToA predication with model deployed on UE or NW side, without model generalization, ResNet
	Model input
	Model output
	Label
	Clutter param
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Training
	test
	Training
	test
	Model complexity
	Computational complexity
	AI/ML

	18*256*1 CIR
	18*1 UE TOA
	18*1 UE TOA
	{0.6，6，2}
	{0.6，6，2}
	70000
	10000
	21,285,650
	5.76GFlops
	0.6778

	18*256*1 CIR
	18*1 UE TOA
	18*1 UE TOA
	{0.4，2，2}
	{0.4，2，2}
	70000
	10000
	21,285,650
	5.76GFlops
	0.8533




	· vivo (R1-2300448)
Table 7	Evaluation results for AI/ML model deployed on UE or Network side
	Construction
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	Construction 1
	CIR
	TOA
	0
	Drop1
	Drop1
	25k
	1k
	4.26M*18
	8.50M*18
	0.73

	Construction 2
	CIR
	TOA
	0
	Drop1
	Drop1
	25k*18
	1k*18
	11.92M*1
	23.79M *1
	0.83

	Construction 3
	CIR
	TOA
	0
	Drop1
	Drop1
	25k
	1k
	1.65M 
	22.30M
	1.08




	· ZTE (R1-2300175)
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Intermediate results (RSTD errors at CDF=90% (meters))
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Training
	Test
	Training
	test
	Model complexity
	Computation complexity
	
	AI/ML

	CIR
 
= {1, 18, 256, 128}
	2-D UE position
(1x2)
	2-D UE position
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	28800
	1800
	9.50M
	158.66 M
	N/A
	0.278
(direct AI/ML positioning)

	CIR 

= {1, 18, 256, 128}
	DL RSTD values
(1x18)
	DL RSTD values

	{60%, 6m, 2m}
	{60%, 6m, 2m}
	28800
	1800
	9.50M
	158.66 M
	0.183
	0.269
(AI/ML assisted positioning)




	· CATT (R1-2300675)
Observation 10: For AI/ML assisted positioning with perfect network synchronization, the intermediate result of ToA estimating is 1.59ns@90% and the eventual result is 0.655m@90% of CDF percentile of horizontal accuracy.
Observation 11: For AI/ML assisted positioning with network synchronization error, the intermediate result of ToA estimating is 1.74ns@90% and the eventual result is 0.7m@90% of CDF percentile of horizontal accuracy.

	· MediaTek (R1-2301591)
Observation 8:	Multi-TRP approach outperforms single-TRP for AI/ML assisted TOA estimation positioning.
Observation 10:	High user density of training dataset provides an improvement in AI/ML assisted TOA estimation positioning over the low user density.
Proposal 4	: Support different user density of training dataset for different requirement on AI/ML positioning.

	· Nokia (R1-2300608)
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Figure 11 - Average accuracy and F1-score for AI/ML assisted positioning with LOS/NLOS in the output model. This prediction corresponds to a multi-TRP scenario with one model for N TRPs used simultaneously. This exercise considered dataset 1 (clutter density 40%).
Observation-18: For Assisted AI/ML positioning case, considering LOS/NLOS as the intermediate feature with multi-TRP (i.e., one model for N TRPs), the prediction accuracy is dropped when the number of TRPs (i.e., N) is increased.

	· Ericsson (R1-2300141)
[image: ]
Table 71 Evaluation results for AI/ML model deployed on network-side, without model generalization investigation. No network synchronization error. Architectures of the ML model: 34 layers complex network.
	Model
	Model input
	Model output
	Label
	Settings
	Dataset size
	AI/ML complexity
	Horiz. pos. accuracy @90% (m)

	
	
	
	
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	I
	Time domain CIR, 
3x2x256 complex array

	ToA estimate
	Ideal

	{60%, 6m, 2m}
	{60%, 6m, 2m}
	80,000
	4000 
	0.86 M parameters
	36 M FLOPs
	0.379

	
	
	
	
	
	
	40,000
	
	
	
	0.489

	
	
	
	
	
	
	20,000
	
	
	
	0.656

	
	
	
	
	
	
	10,000
	
	
	
	0.977

	II
	
	
	
	
	
	80,000
	
	 3.37 M parameters
	132 M FLOPs
	0.219

	
	
	
	
	
	
	40,000
	
	
	
	0.312

	
	
	
	
	
	
	20,000
	
	
	
	0.491

	
	
	
	
	
	
	10,000
	
	
	
	0.802

	III
	
	
	
	
	
	80,000
	
	11.2 M parameters
	425 M FLOPs
	0.167

	
	
	
	
	
	
	40,000
	
	
	
	0.264

	
	
	
	
	
	
	20,000
	
	
	
	0.443

	
	
	
	
	
	
	10,000
	
	
	
	0.761
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Table 95. Evaluation results for AI/ML model deployed on network-side, without model generalization investigation. No network synchronization error. Architectures of the ML model: 18 layers complex network.
	Model
	Model input
	Model output
	Label
	Settings
	Dataset size
	AI/ML complexity
	Horiz. pos. accuracy @90% (m)

	
	
	
	
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	I
	Time domain CIR, 
18x2x256 complex array

	Direct path ToA estimate
	Ideal

	{60%, 6m, 2m}
	{60%, 6m, 2m}
	80,000
	4000 
	0.73 M parameters
	32 M FLOPs
	0.335

	
	
	
	
	
	
	40,000
	
	
	
	0.409

	
	
	
	
	
	
	20,000
	
	
	
	0.568

	
	
	
	
	
	
	10,000
	
	
	
	0.79

	II
	
	
	
	
	
	80,000
	
	 2.85 M parameters
	110 M FLOPs
	0.222

	
	
	
	
	
	
	40,000
	
	
	
	0.294

	
	
	
	
	
	
	20,000
	
	
	
	0.413

	
	
	
	
	
	
	10,000
	
	
	
	0.641

	III
	
	
	
	
	
	80,000
	
	11.26 M  parameters
	410 M FLOPs
	0.166

	
	
	
	
	
	
	40,000
	
	
	
	0.263

	
	
	
	
	
	
	20,000
	
	
	
	0.374

	
	
	
	
	
	
	10,000
	
	
	
	0.597






Evaluation of generalization aspects
	· xiaomi (R1-2300571)
Table 4 Evaluation results for AI-based ToA predication with model deployed on UE or NW side, without model generalization (different clutter parameter), ResNet
	Model input
	Model output
	Label
	Clutter param
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Training
	test
	Training
	test
	Model complexity
	Computational complexity
	AI/ML

	18*256*1 CIR
	18*1 UE TOA
	18*1 UE TOA
	{0.6，6，2}
	{0.4，2，2}
	70000
	10000
	21,285,650
	5.76GFlops
	7.1173

	18*256*1 CIR
	18*1 UE TOA
	18*1 UE TOA
	{0.4，2，2}
	{0.6，6，2}
	70000
	10000
	21,285,650
	5.76GFlops
	1.5413



Table 10 Evaluation results for AI-based ToA predication with model deployed on UE or NW side, without model generalization (AI/ML model is trained by data set with ideal network synchronization and tested by data set with 100ns network synchronization error), ResNet
	Model input
	Model output
	Label
	Clutter param & network synchronization error
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Training
	test
	Training
	test
	Model complexity
	Computational complexity
	AI/ML

	18*256*1 CIR
	18*1 UE TOA
	18*1 UE TOA
	{0.6，6，2}
0ns error
	{0.6，6，2}
100ns error
	70000
	10000
	21,285,650
	5.76GFlops
	12.7748

	18*256*1 CIR
	18*1 UE TOA
	18*1 UE TOA
	{0.4，2，2}
0 ns error
	{0.4，2，2} 
100ns error
	70000
	10000
	21,285,650
	5.76GFlops
	15.4699




	· ZTE (R1-2300175)
AI/ML assisted RSTD estimation
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	
Intermediate results (RSTD errors at CDF=90% (meters))
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	
	AI/ML

	CIR 

= {1, 18, 256, 128}
	DL RSTD values
(1x18)
	DL RSTD values
(1x18)
	
1st Drop
	
N/A
	
1st Drop
	28800
	N/A
	1800
	9.50M
	158.66 M
	0.183
	0.271


	CIR 

= {1, 18, 256, 128}
	DL RSTD values
(1x18)
	DL RSTD values
(1x18)
	
1st Drop
	
N/A
	
2nd Drop
	28800
	N/A
	1800
	9.50M
	158.66 M
	16.759
	29.365

	CIR 

= {1, 18, 256, 128}
	DL RSTD values
(1x18)
	DL RSTD values
(1x18)
	
1st Drop
	
2nd Drop
	
2nd Drop
	28800
	5000
	1800
	9.50M
	158.66 M
	2.700
	3.491

	CIR 

= {1, 18, 256, 128}
	DL RSTD values
(1x18)
	DL RSTD values
(1x18)
	
1st Drop
	
2nd Drop
	
2nd Drop
	28800
	10000
	1800
	9.50M
	158.66 M
	2.092
	3.136

	[bookmark: OLE_LINK2]CIR 

= {1, 18, 256, 128}
	DL RSTD values
(1x18)
	DL RSTD values
(1x18)
	
1st Drop
	
2nd Drop
	
2nd Drop
	28800
	15000
	1800
	9.50M
	158.66 M
	1.889
	2.896

	CIR 

= {1, 18, 256, 128}
	DL RSTD values
(1x18)
	DL RSTD values
(1x18)
	
1st Drop
	
2nd Drop
	
2nd Drop
	28800
	20000
	1800
	9.50M
	158.66 M
	1.374
	1.863




	· CATT (R1-2300675)
Observation 12: For generalization performance with different assumptions on AI/ML assisted positioning, the positioning accuracy is seriously degraded.

	· MediaTek (R1-2301591)
3.1.3.4	Evaluation of different scenario
Observation 11:	Performance of AI/ML assisted TOA estimation positioning degrades when the model is trained with dataset of one scenario and tested with dataset of another scenario, especially for different hall size scenario.
Proposal 5	: Further study the monitor mechanism of different hall size scenario for AI/ML positioning.
3.1.3.5	Evaluation of channel estimation error
Observation 12:	Performance of AI/ML assisted TOA estimation positioning significantly degrades when the model is trained with small channel estimation error and tested with large channel estimation error.  
Observation 13:	AI/ML model in AI/ML assisted TOA estimation positioning has robust generalization capability when the model is trained with large channel estimation error and tested with small channel estimation error.
3.1.3.6	Evaluation of timing error
Observation 14:	Performance of AI/ML assisted TOA estimation positioning significantly degrades when the model is trained with small timing error and tested with large timing error.  
Observation 15:	AI/ML model in AI/ML assisted TOA estimation positioning has robust generalization capability when the model is trained with large timing error and tested with small timing error.

	· Ericsson (R1-2300141)
Table 97. Evaluation results for AI/ML model deployed on network-side, with model generalization investigation where the model is trained in InF-DH {60%, 6m, 2m}, then fine-tuned with InF-DH {40%, 2m, 2m}, and tested with various InF-DH clutter parameters.  No network synchronization error. Architectures of the ML model: 18 layers complex network
	Model
	Model input
	Model output
	Label
	Settings
	Dataset size
	AI/ML complexity
	Horiz. pos. accuracy @90% (m)

	
	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	Test
	Model complexity
	Computation complexity
	AI/ML

	I
	Time domain CIR, 
18x2x256 complex array

	Direct path ToA estimates
	Ideal

	{60%, 6m, 2m}
	{40%, 2m, 2m} 
	{40%,2m,2m} 
	40,000 
	40,000  
	4000 
	0.73 M parameters
	32 M FLOPs
	0.672

	
	
	
	
	
	
	
	
	20,000  
	
	
	
	0.917

	
	
	
	
	
	
	
	
	10,000  
	
	
	
	1.290

	
	
	
	
	
	
	
	
	4,000  
	
	
	
	1.943

	
	
	
	
	
	
	
	
	2,000  
	
	
	
	2.698

	
	
	
	
	
	
	
	
	1,000  
	
	
	
	4.127






Impact of user density/size of the training dataset
	· xiaomi (R1-2300571)
[image: ]
Figure 4 Relationship between size of training data set and positioning accuracy for ToA-based prediction

	· Ericsson (R1-2300141)
Table 4. 90%tile 2D positioning accuracy for different model size classes in the {60%, 6m, 2m} InF-DH scenario.
	Model class
	Positioning approach
	Model complexity
[# parameters]
	Computational complexity
[FLOPs]
	90%tile 2D positioning error [m]
with different train set sizes in 
{60%, 6m, 2m} InF-DH

	
	
	
	
	80,000
	40,000
	20,000
	10,000

	Small models
	Dist. Assist.
	0.86 M
	36 M
	0.379
	0.489
	0.656
	0.977

	
	Cent. Assist.
	0.73 M
	32 M
	0.335
	0.409
	0.568
	0.790

	
	Cent. Direct
	0.73 M
	32 M
	0.366
	0.443
	0.596
	0.830

	Medium-size models
	Dist. Assist.
	3.37 M
	132 M
	0.219
	0.312
	0.491
	0.802

	
	Cent. Assist.
	2.85 M
	110 M
	0.222
	0.294
	0.413
	0.641

	
	Cent. Direct
	2.85 M
	110 M
	0.250
	0.338
	0.484
	0.763

	Large models
	Dist. Assist.
	11.2 M
	425 M
	0.167
	0.264
	0.443
	0.761

	
	Cent. Assist.
	11.26 M
	410 M
	0.166
	0.263
	0.374
	0.597

	
	Cent. Direct
	11.26 M
	410 M
	0.203
	0.299
	0.470
	0.743
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Figure 5: Positioning accuracy vs training data size according to Table 4.



Model LCM evaluations
Evaluation of model fine-tuning 
	· vivo (R1-2300448)
Table 32	Evaluation results of fine-tuning for AI/ML model deployed on UE or Network side, FNN
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal Pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
	TOA
	0%
	Drop1
	/
	Drop2
	25k
	0
	1k
	4.26M*18
	8.50M*18
	10.37

	CIR
	TOA
	0%
	Drop1
	Drop2
	Drop2
	25k
	0.5k
	1k
	4.26M*18
	8.50M*18
	5.61

	CIR
	TOA
	0%
	Drop1
	Drop2
	Drop2
	25k
	1k
	1k
	4.26M*18
	8.50M*18
	5.50

	CIR
	TOA
	0%
	Drop1
	Drop2
	Drop2
	25k
	2k
	1k
	4.26M*18
	8.50M*18
	5.03

	CIR
	TOA
	0%
	Drop1
	Drop2
	Drop2
	25k
	3k
	1k
	4.26M*18
	8.50M*18
	4.08


Table 34	Evaluation results of fine-tuning for AI/ML model deployed on UE or Network side, FNN
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal Pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
	TOA
	0%
	DH
	/
	HH
	25k
	0
	1k
	4.26M*18
	8.50M*18
	>10

	CIR
	TOA
	0%
	DH
	HH
	HH
	25k
	0.5k
	1k
	4.26M*18
	8.50M*18
	0.30

	CIR
	TOA
	0%
	DH
	HH
	HH
	25k
	1k
	1k
	4.26M*18
	8.50M*18
	0.17

	CIR
	TOA
	0%
	DH
	HH
	HH
	25k
	2k
	1k
	4.26M*18
	8.50M*18
	0.09

	CIR
	TOA
	0%
	DH
	HH
	HH
	25k
	3k
	1k
	4.26M*18
	8.50M*18
	0.06


Proposal 10:	Further study and confirm the benefits of fine-tuning in terms of model generalization enhancement for AI/ML assisted positioning.
Proposal 11:	 Capture in the TR the benefits of fine-tuning for AI/ML assisted positioning in terms of positioning accuracy for AI model generalization capability.
Table 46	Fine-tuning data sample efficiency for different cases
	Cases
	Range of sample size
	Data efficiency (@90% per 100 additional samples)
	Positioning accuracy with sample size N1 for sample range N1~N2(@90%)

	Train: {0.6, 6, 2}
Fine-tuning: {0.4, 2, 2}
Testing: {0.4, 2, 2}
	0-500
	0.570
	3.70 (0 samples)

	
	500-1000
	0.044
	 0.85(500 samples)

	
	1000-2000
	0.015
	 0.63(1000 samples)

	
	2000-3000
	0.001
	0.48(2000 samples)

	Train: Drop1
Fine-tuning: Drop2
Testing: Drop2
	0-500
	0.952
	10.37

	
	500-1000
	0.022
	5.61

	
	1000-2000
	0.047
	5.50

	
	2000-3000
	0.095
	5.03

	Train: DH
Fine-tuning: HH
Testing: HH
	0-500
	1.99
	20.20

	
	500-1000
	0.026
	0.30

	
	1000-2000
	0.008
	0.17

	
	2000-3000
	0.003
	0.09

	Train: DH
Fine-tuning: SH
Testing: SH
	0-500
	2.042
	20.70

	
	500-1000
	0.022
	0.28

	
	1000-2000
	0.007
	0.17

	
	2000-3000
	0.001
	0.10

	Train: Sync. Error 0ns
Fine-tuning: 50ns
Testing: 50ns
	0-500
	0.896
	8.45

	
	500-1000
	0.114
	3.97

	
	1000-2000
	0.043
	3.40

	
	2000-3000
	0.042
	2.97

	Train: Sync. Error 0ns
Fine-tuning: 10ns
Testing: 10ns
	0-500
	0.002
	2.11

	
	500-1000
	0.064
	2.10

	
	1000-2000
	0.021
	1.78

	
	2000-3000
	0.017
	1.57

	Train: Sync. Error 0ns
Fine-tuning: 2ns
Testing: 2ns
	0-500
	0.054
	1.70

	
	500-1000
	0.012
	1.43

	
	1000-2000
	0.001
	1.37

	
	2000-3000
	0.006
	1.37




	· xiaomi (R1-2300571)
Table 8 Evaluation results for AI-based ToA predication with model deployed on UE or NW side, with model generalization (with fine-tuning), ResNet
	Model input
	Model output
	Label
	Clutter parameter 
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	AI/ML

	18*256*1 CIR
	18*1 UE TOA
	18*1 UE TOA
	{0.6，6，2}
	{0.4，2，2}
	{0.4，2，2}
	70000
	5000
	10000
	21,285,650
	5.76GFlops
	1.5325

	18*256*1 CIR
	18*1 UE TOA
	18*1 UE TOA
	{0.4，2，2}
	{0.6，6，2}
	{0.6，6，2}
	70000
	5000
	10000
	21,285,650
	5.76GFlops
	0.8494



Table 14 Evaluation results for AI-based ToA predication with model deployed on UE or NW side, with model generalization (with fine-tuning), ResNet
	Model input
	Model output
	Label
	Clutter param & network synchronization error
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	AI/ML

	18*256*1 CIR
	18*1 UE TOA
	18*1 UE TOA
	{0.6，6，2} , 0ns error 
	{0.6，6，2} , 100 ns error
	{0.6，6，2} , 100 ns error
	70000
	5000
	10000
	21,285,650
	5.76GFlops
	4.4925

	18*256*1 CIR
	18*1 UE TOA
	18*1 UE TOA
	{0.4，2，2} 0ns error
	{0.4，2，2}
100 ns error
	{0.4，2，2}
100 ns error
	70000
	5000
	10000
	21,285,650
	5.76GFlops
	7.5060




	· CATT (R1-2300675)
Observation 16: When AI/ML-assisted model is trained with the dataset of clutter parameter {60%, 6m, 2m} and fine-tuned with a small dataset of clutter parameter {40%, 2m, 2m}, the horizontal positioning accuracy is improved obviously compared with AI/ML model without fine-tuning. If the fine-tuning dataset size is larger, the improvement of horizontal positioning accuracy is greater.
Observation 17: When AI/ML model is trained with perfect network synchronization and fine-tuned with a small dataset with network synchronization error, the horizontal positioning accuracy is improved obviously compared with AI/ML model without fine-tuning. If the fine-tuning dataset size is larger, the improvement of horizontal positioning accuracy is greater.
Observation 18: When AI/ML-assisted model is trained with InF-DH and fine-tuning with a small dataset with InF-SH, the horizontal positioning accuary is improved obviously compared with AI/ML model with fine-tuning. If the fine-tuning dataset size is larger, the improvement of horizontal positioning accuracy is greater.

	· MediaTek (R1-2301591)
Observation 16:	Fine-tuning the model with samples from a scenario can achieve positioning accuracy improvement when the pre-trained model is transferred to a new scenario for AI/ML assisted TOA estimation positioning (the more fine-tuning data the better performance), but performance degrades for pre-trained scenario.

	· Ericsson (R1-2300141)
Table 97. Evaluation results for AI/ML model deployed on network-side, with model generalization investigation where the model is trained in InF-DH {60%, 6m, 2m}, then fine-tuned with InF-DH {40%, 2m, 2m}, and tested with various InF-DH clutter parameters.  No network synchronization error. Architectures of the ML model: 18 layers complex network
	Model
	Model input
	Model output
	Label
	Settings
	Dataset size
	AI/ML complexity
	Horiz. pos. accuracy @90% (m)

	
	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	Test
	Model complexity
	Computation complexity
	AI/ML

	I
	Time domain CIR, 
18x2x256 complex array

	Direct path ToA estimates
	Ideal

	{60%, 6m, 2m}
	{40%, 2m, 2m} 
	{40%,2m, 2m} 
	40,000 
	40,000  
	4000 
	0.73 M parameters
	32 M FLOPs
	0.672

	
	
	
	
	
	
	
	
	20,000  
	
	
	
	0.917

	
	
	
	
	
	
	
	
	10,000  
	
	
	
	1.290

	
	
	
	
	
	
	
	
	4,000  
	
	
	
	1.943

	
	
	
	
	
	
	
	
	2,000  
	
	
	
	2.698

	
	
	
	
	
	
	
	
	1,000  
	
	
	
	4.127






Evaluation of training with mixed dataset
	· xiaomi (R1-2300571)
Table 6 Evaluation results for AI-based ToA predication with model deployed on UE or NW side, with model generalization (different clutter parameter), ResNet
	Model input
	Model output
	Label
	Clutter param
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Training
	test
	Training
	test
	Model complexity
	Computational complexity
	AI/ML

	18*256*1 CIR
	18*1 UE TOA
	18*1 UE TOA
	Mix of
{0.6，6，2}
{0.4，2，2}
	{0.6，6，2}
	35000+35000
	10000
	21,285,650
	5.76GFlops
	0.6867

	18*256*1 CIR
	18*1 UE TOA
	18*1 UE TOA
	Mix of
{0.6，6，2}
{0.4，2，2}
	{0.4，2，2}
	35000+35000
	10000
	21,285,650
	5.76GFlops
	0.7974




	· CATT (R1-2300675)
Observation 13: When AI/ML-assisted model is mix-trained with the dataset of clutter parameter {60%, 6m, 2m} and a small dataset of clutter parameter {40%, 2m, 2m}, the horizontal positioning accuracy is improved from 3.11m to 1.51m compared with AI/ML model generalization performance without mix-training.
Observation 14: When AI/ML-assisted model is mix-trained with the dataset of ideal synchronization and a small dataset of network synchronization error 50ns, the horizontal positioning accuracy is improved from 12.8m to 1.81m compared with AI/ML-assisted model generalization performance without mix-training.
Observation 15: When AI/ML-assisted model is mix-trained with the dataset of InF-DH {60%, 6m, 2m} and a small dataset of InF-SH {20%, 10m, 2m}, the horizontal positioning accuracy is improved from 6.894m to 1.467m compared with AI/ML model generalization performance without mix-training.

	· Ericsson (R1-2300141)
Table 98. Evaluation results for AI/ML model deployed on network-side, with model generalization investigation where the model is trained with mixed datasets in InF-DH {60%, 6m, 2m} and InF-DH {40%, 4m, 2m} and tested with various InF-DH clutter parameters.  No network synchronization error. Architectures of the ML model: 18 layers complex network.
	Model
	Model input
	Model output
	Label
	Settings
	Dataset size
	AI/ML complexity
	Horiz. pos. accuracy @90% (m)

	
	
	
	
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	I
	Time domain CIR, 
18x2x256 complex array

	Direct path ToA estimates
	Ideal

	{60%, 6m, 2m}, 
{40%, 2m, 2m}
	{40%,2m,2m} 
	40,000   each train dataset
	4000 
	0.73 M parameters
	32 M FLOPs
	0.697

	
	
	
	
	
	{60%,2m,2m}
	
	
	
	
	0.604

	
	
	
	
	
	{40%,6m,2m}
	
	
	
	
	0.470

	
	
	
	
	
	{60%,6m,2m} 
	
	
	
	
	0.459






Evaluation of input size reduction
	· xiaomi (R1-2300571)
Table 15 Evaluation results for reduced input dimension for direct AI-based positioning and AI-based ToA predication, model deployed on UE or NW side, without model generalization, ResNet
	Model input
	Model output
	Label
	Clutter param
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Training
	test
	Training
	test
	Model complexity
	Computational complexity
	AI/ML

	18*24*2 CIR 
	2*1 UE coordinates
	2*1 UE coordinates
	{0.6，6，2}
	{0.6，6，2}

	70000
	10000
	21,277,442
	539.94MFlops
	0.8219

	18*24*2 CIR 
	18*1 UE TOA
	18*1 UE TOA
	{0.6，6，2}
	{0.6，6，2}
	70000
	10000
	21,285,650
	539.95MFlops
	0.8993






Semi-supervised learning
	· MediaTek (R1-2301591)
Table 15. Evaluation results for UE side model, CNN
	Model input
	Model output
	(percentage of training data set without) Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	
	Training & validation
	test
	Model complexity
	Computational complexity
	AI/ML

	non-normalized PDP(256*8)
	18TOA
	0%
	{40%, 4m, 2m}
	32400UE*18TRP labelled
	3600UE*18TRP
	187k
	15M
	1.56

	non-normalized PDP(256*8)
	18TOA
	0%
	{40%, 4m, 2m}
	3600UE*18TRP labelled
	3600UE*18TRP
	187k
	15M
	5.58

	non-normalized PDP(256*8)
	18TOA
	50%
	{40%, 4m, 2m}
	3600UE*18TRP labelled
3600UE*18TRP un-labelled
	3600UE*18TRP
	187k
	15M
	4.64

	non-normalized PDP(256*8)
	18TOA
	88.9%
	{40%, 4m, 2m}
	3600UE*18TRP labelled
28800UE*18TRP un-labelled
	3600UE*18TRP
	187k
	15M
	4.46

	non-normalized PDP(256*8)
	18TOA
	0%
	{40%, 4m, 2m}
	7200UE*18TRP labelled
	7200UE*18TRP
	187k
	15M
	3.33

	non-normalized PDP(256*8)
	18TOA
	50%
	{40%, 4m, 2m}
	7200UE*18TRP labelled
7200UE*18TRP un-labelled
	7200UE*18TRP
	187k
	15M
	3.06

	non-normalized PDP(256*8)
	18TOA
	75%
	{40%, 4m, 2m}
	7200UE*18TRP labelled
21600UE*18TRP un-labelled
	7200UE*18TRP
	187k
	15M
	2.83






1st round discussion
For AI/ML assisted positioning, companies have submitted a large amount of evaluation results on the various generalization aspects and many other issues as shown above. Similar observations have been made by companies, and the observations below are drawn.

Observation 7.8-1 
[bookmark: _Toc127547044]Observation: For AI/ML assisted positioning using single-TRP with same model for N TRPs, 
· A single AI/ML model deployed to all TRPs for LoS classification and/or ToA estimation can generalize to different InF-DH clutter parameters and different drops. 
· LoS classification KPIs are robust to network synchronization error and UE/gNB RX and TX timing error.

	
	Company

	Support
	

	Not support
	



	Company
	Comments

	HW/HiSi
	

	OPPO
	In the proposal, there is no quantification or description on the generalization performance can be obtained by the AI/ML model. Suggest to be more specific to what generalization performance or robustness the AI/ML model can achieve.

	Mediatek
	From our observation, LoS classification performance degrade if training data with 0 ns timing error and test with 50ns timing error.



Observation 7.8-2 
Observation: For AI/ML assisted positioning using multi-TRP construction, evaluation of generalization aspects show that the positioning accuracy deteriorates when the ML model is trained with dataset of one setting, while tested with dataset of a different setting. 
· The generalization aspects include:
· Deployment environment: 
· Different drops
· Different clutter parameters
· Different InF scenarios
· SINR mismatch
· Time varying changes
· Implementation imperfections: 
· Network synchronization error 
· UE/gNB RX and TX timing error 
· Channel estimation error
· Companies have provided evaluation results which show that the positioning accuracy on the test dataset can be improved by better training dataset construction and/or model fine-tuning.
· Better training dataset construction: The training dataset is composed of data from multiple settings, which include data from the same setting as the test dataset. 
· Model fine-tuning: the model is re-trained with a dataset from the same setting as the test dataset.

	
	Company

	Support
	Fujitsu, CATT

	Not support
	



	Company
	Comments

	OPPO
	Fine with the proposal.

	Qualcomm
	Please include model switching as a third solution in the second bullet.

	Mediatek
	From our observations, the positioning accuracy is not always degraded when the ML model is trained with dataset of one setting, while tested with dataset of a different setting. For example training data with 50ns timing error and test data without timing error.



Evaluation of model monitoring methods
For the topic of model monitoring, the following methods have been proposed by companies.
Model monitoring based on inference accuracy
	· vivo (R1-2300448)
7.2.1.	Ground truth label based model monitoring
Proposal 18:	The accuracy and quantity of ground truth labels should be considered for ground truth label based model monitoring
7.2.2.	Motion sensors assisted model monitoring
Observation 36:	 Motion sensors can be used to assist model monitoring.
Proposal 19:	Further study how to use motion sensors’ information to assist model monitoring.
7.2.3.	Self-monitoring for AI/ML assisted positioning
[image: ]
Observation 37:	The proposed self-monitoring method can achieve model monitoring for AI/ML assisted positioning.

	· Ericsson (R1-2300141)
[image: Chart, line chart

Description automatically generated]
Figure 7: Residual losses from conventional triangulation-based error minimization positioning algorithms. The ML model is trained in the {60%, 6m, 2m} environment and tested in three environments: {60%, 6m, 2m}, {40%, 6m, 2m} and {40%, 2m, 2m}.
Observation 11	For AI/ML assisted positioning approaches (e.g., Case 3a), model monitoring metrics can be accurately and reliably provided by the conventional positioning methods (e.g., residual loss). This is an important advantage of AI/ML assisted positioning approaches over the direct AI/ML positioning approach (e.g., Case 3b).
Observation 12	For AI/ML assisted positioning approaches, model monitoring leveraging conventional positioning method incurs negligible cost in terms of: signaling overhead, complexity, latency, and power consumption for obtaining a model monitoring sample.
Proposal 6	Capture in TR 38.843 that: For AI/ML assisted positioning, model monitoring metrics can be reliably provided by the conventional positioning methods.




Model monitoring based on input data distribution
	· vivo (R1-2300448)
7.1.1.	The shift detection of dominant feature distribution
Observation 33:	Adopting SINR as a dominant feature of CIR is valid for model monitoring
Proposal 15:	When model input is CIR or PDP, identify these dominant features strongly related to positioning for model monitoring
Proposal 16:	The metrics that can describe the difference between two distributions mathematically can be reused directly for model monitoring.
7.1.2.	AI/ML based adversarial validation
[image: ]
7.1.3.	AI/ML based out-of-distribution detection
[image: ]

	· LG (R1-2300534)
Proposal #1: Consider model monitoring metric based on model input depending on the amount of similarity between input and training data distribution



Model monitoring based on both input and output
	· Ericsson (R1-2300141)
[image: ]
Figure 6. 2D position estimate difference using unmodified or modified positioning request data at production in different operating environments for a small centralized direct positioning model trained with {60%, 6m, 2m} dataset samples.
Observation 9	For a direct positioning ML model, self-model monitoring can be performed if the model was trained with data augmentation techniques. Otherwise, model monitoring generally requires collecting new ground truth samples during model operation.
Observation 10	For both direct and AI/ML assisted positioning methods, self-model monitoring method does not require ground truth label and has no signaling overhead. The complexity, power consumption, and latency for obtaining one model monitoring sample are equal to one round of model inference. 
Proposal 5	Capture in TR 38.843 that: For both direct and AI/ML assisted positioning methods, self-model monitoring is a candidate solution for model monitoring.




1st round discussion
In RAN1#111, the following agreement was made for model monitoring for AI/ML assisted approach:
Agreement
For AI/ML assisted approach, study the performance of model monitoring metrics at least where the metrics are obtained from inference accuracy of model output.

For this meeting, more model monitoring methods are proposed, including those for direct AI/ML approach. 
Some methods require a complementary mechanism to provide ground truth label (or its approximation) during model deployment. Other methods do not require ground truth label (or its approximation), including the methods that monitor based on input data distribution, and the methods that monitor based on both model input and model output.

Based on the preliminary evaluation results, the following are proposed for companies to further investigate the model monitoring methods.
Proposal 8.4-1 
For direct AI/ML positioning, study the performance of model monitoring methods, including:
· Inference accuracy based methods, where ground truth label (or its approximation) is provided during model deployment for the calculation of inference accuracy.
· Label-free methods, which do not require ground truth label (or its approximation).

	
	Company

	Support
	Fujitsu

	Not support
	



	Company
	Comments

	Fujitsu
	For positioning, the second bullet is quite important, the only concern is that we should keep aligned with 9.2.1 on the general model monitoring discussion.




Proposal 8.4-2 
For AI/ML assisted approach, study the performance of label-free model monitoring methods, which do not require ground truth label (or its approximation).

	
	Company

	Support
	Fujitsu

	Not support
	



	Company
	Comments

	Fujitsu
	For positioning, this point is quite important, the only concern is that we should keep aligned with 9.2.1 on the general model monitoring discussion.

	Qualcomm
	Please include inference accuracy as an option (like in the previous proposal for direct AI/ML approach).
[Moderator] This has been agreed in last meeting  See agreement copied below. 
Agreement
For AI/ML assisted approach, study the performance of model monitoring metrics at least where the metrics are obtained from inference accuracy of model output.

	Mediatek
	For AI/ML assisted approach, we also need to study ground truth label model monitoring methods. For example TOA based on known position as label for TOA assisted positioning.



Conclusion
TBD
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