[bookmark: _Hlk37418177]3GPP TSG RAN WG1 #112 Meeting	R1-2300604
Athens, Greece, 27 February-03 March 2023

Agenda item:		9.2.2.1	
Source:	Nokia, Nokia Shanghai Bell
Title:	Evaluation of ML for CSI feedback enhancement
Document for:		Discussion and Decision
[bookmark: _Ref111120162]Introduction
In this contribution, we continue the discussion of the evaluation of machine learning for CSI feedback from RAN1#111 [1] and address open issues. We discuss both CSI feedback compression with autoencoders and CSI prediction.
[bookmark: _Hlk510705081]Discussion
CSI compression
Model Performance
In this section, we discuss the performance of AI/ML models for compression of the eigenvectors of the transmit covariance matrix. In past contributions (e.g., [2]), we have reported on a convolutional neural network (CNN) based model architecture. In this contribution, we report on the transformer-based model architecture shown in Figure 1. Both the encoder and decoder contain three multi-head self-attention blocks. For the results reported here, the model is trained using Type I joint training with embedded fixed scalar quantization (i.e., the training is quantization-aware using Case 2-1). The training dataset contains 630K samples of which 126K samples are used for testing and the remaining samples are used for training. The dataset is drawn from a dense urban scenario (Urban macro models) using the parameters shown in Table 1. In addition, the hyperparameters are shown in Table 2.
[image:]
[bookmark: _Ref127450353]Figure 1: Architecture of the transformer model for eigenvector compression.
[bookmark: _Ref127310935]

[bookmark: _Ref127496300][bookmark: _Ref127366054]Table 1: SLS Parameters for Transformer Model Training Data
	Parameter
	Value

	Simulation scenario
	UMa

	Carrier frequency
	4 GHz

	Bandwidth
	20 MHz

	Num. cell sites
	7

	BS antenna height
	25m

	Distribution of UEs (indoor %, outdoor %)
	80, 20

	UE speed (Indoor/Outdoor)
	3 km/h / 30 km/h

	Macrocell inter-site distance
	200m

[bookmark: _Ref127365775]Table 2: Hyperparameters for the Transformer Model
	Parameter
	Value

	Number of training/testing samples
	504K/126K

	Learning Rate
	

	Epochs
	500

	Batch size
	200

	Quantization
	Scalar (Uniform)

	Objective function
	GCS

	Total Trainable Parameters
	About 1.5 M

The model performance is measured during the testing phase of the training process and intermediate SGCS results are shown in Figure 2 compared to the performance of the baseline Rel-16 Type II codebook. The baseline Rel-16 eTypeII codebook results are shown for parameter combinations 1-8, in that order, as defined in TS 38.214. Note that the feedback overhead for parameter combination 7 is somewhat lower than the overhead for parameter combination 6. The transformer model results are shown for the feedback overhead values shown in Table 3. We see that the transformer model outperforms the baseline codebook across the range of feedback overhead, either yielding the same SGCS performance with reduced overhead or yielding better SGCS performance at constant overhead.

[bookmark: _Ref127471157]Table 3: Feedback Overhead Dimensions for Transformer-based Compression Model
	Compression Ratio
	Latent Variable Dimension
	Quantization (bits/latent variable)
	Feedback Overhead (bits)

	32
	26
	2
	52

	32
	26
	3
	78

	16
	52
	2
	104

	13
	64
	2
	128

	16
	52
	3
	156

	13
	64
	3
	192

	8
	104
	2
	208

	8
	104
	3
	312

[image:]
[bookmark: _Ref127450512]Figure 2: Transformer model performance compared to the Rel-16 Type II baseline.
Observation 1: The transformer-based CSI compression model outperforms baseline Rel-16 eTypeII codebook performance based on the SGCS metric.
[bookmark: _Hlk111177408]
Generalization/Scalability
In RAN1#111, the following agreements were reached on generalizability and scalability of AI/ML models for CSI compression. These agreements define various cases primarily for studying the scalability of CSI compression models across the input and output dimensions of the CSI generation part, plus the number of CSI generation or reconstruction parts used to achieve scalability. The agreements are:

Agreement
For evaluating the generalization/scalability over various configurations for CSI compression, to achieve the scalability over different input dimensions of CSI generation part (e.g., different bandwidths/frequency granularities, or different antenna ports), the generalization cases of are elaborated as follows
· Case 1: The AI/ML model is trained based on training dataset from a fixed dimension X1 (e.g., a fixed bandwidth/frequency granularity, and/or number of antenna ports), and then the AI/ML model performs inference/test on a dataset from the same dimension X1.
· Case 2: The AI/ML model is trained based on training dataset from a single dimension X1, and then the AI/ML model performs inference/test on a dataset from a different dimension X2.
· Case 3: The AI/ML model is trained based on training dataset by mixing datasets subject to multiple dimensions of X1, X2,..., Xn, and then the AI/ML model performs inference/test on a single dataset subject to the dimension of X1, or X2,…, or Xn.
· Note: For Case 2/3, the solutions to achieve the scalability between Xi and Xj, are reported by companies, including, e.g., pre-processing to angle-delay domain, padding, additional adaptation layer in AI/ML model, etc.
· FFS the verification of fine-tuning
· FFS other additional cases

Agreement
For evaluating the generalization/scalability over various configurations for CSI compression, to achieve the scalability over different output dimensions of CSI generation part (e.g., different generated CSI feedback dimensions), the generalization cases of are elaborated as follows
· Case 1: The AI/ML model is trained based on training dataset from a fixed output dimension Y1 (e.g., a fixed CSI feedback dimension), and then the AI/ML model performs inference/test on a dataset from the same output dimension Y1.
· Case 2: The AI/ML model is trained based on training dataset from a single output dimension Y1, and then the AI/ML model performs inference/test on a dataset from a different output dimension Y2.
· Case 3: The AI/ML model is trained based on training dataset by mixing datasets subject to multiple dimensions of Y1, Y2,..., Yn, and then the AI/ML model performs inference/test on a single dataset of Y1, or Y2,…, or Yn.
· Note: For Case 1/2/3, companies to report whether the output of the CSI generation part is before quantization or after quantization.
· Note: For Case 2/3, the solutions to achieve the scalability between Yi and Yj, are reported by companies, including, e.g., truncation, additional adaptation layer in AI/ML model, etc.
· FFS the verification of fine-tuning
· FFS other additional cases

Agreement
For evaluating the generalization/scalability over various configurations for CSI compression, to achieve the scalability over different input/output dimensions, companies to report which case(s) in the following are evaluated
· Case 0 (benchmark for comparison): One CSI generation part with fixed input and output dimensions to 1 CSI reconstruction part with fixed input and output dimensions for each of the different input and/or output dimensions.
· Case 1: One CSI generation part with scalable input and/or output dimensions to N>1 separate CSI reconstruction parts each with fixed and different output and/or input dimensions
· Case 2: M>1 separate CSI generation parts each with fixed and different input and/or output dimensions to one CSI reconstruction part with scalable output and/or input dimensions
· Case 3: A pair of CSI generation part with scalable input/output dimensions and CSI reconstruction part with scalable output and/or input dimensions

Generalization is the testing of items not included in the training and testing data set with the purpose of assessing the performance of the model when new data is encountered. Since it is difficult for the data set used to develop the model to cover all possible situations that the model may encounter when used for inference, it is important in this study item to test the performance of models when presented with situations not included in the training dataset. Such testing can include both additional examples from the same types of scenarios used to create the dataset as well as other scenarios. For example, a training dataset for CSI compression might be generated from a UMa scenario. Generalization testing should consider the performance of the model when used with additional UMa samples not included in the training dataset, but also with samples from InH, RMa, or UMi scenarios. Generalization results can be reported for each of these cases to see how the generalization performance varies. This kind of testing also provides information about the diversity required in the training dataset in order to provide the required performance in the field.
Proposal 1: Study various model architectures for generalization performance, including an assessment of the trade-off between performance and model complexity.
Scalability is the ability of an AI/ML model to be used for multiple system configurations. It is important to assess scalability for CSI compression models to better understand the circumstances in which the gNB and UE would need to switch models as well as to understand the features to standardize to support model operation in different circumstances. System configuration variables which are important to consider for scalability include:
· gNB antenna array configuration: This includes not only the number of transmit ports but also the shape of the transmit antenna array (e.g., (2,8,2) vs. (4,4,2)).
· Bandwidth, subcarrier spacing, number of subbands: The variability of bandwidth due to the configuration bandwidth part configuration should be taken into account.
· Feedback overhead configuration
Some companies have already provided analyses and results on scalability of these parameters. The results of these assessments need to be collected and summarized.
[bookmark: _Hlk127512645]Proposal 2: Study the scalability of CSI compression models with parameters including gNB antenna array configuration, bandwidth/subcarrier spacing/subband count, and feedback overhead configuration. Collect and summarize the results of these analyses.
Quantization
In RAN1#111, the agreement below was reached identifying three different cases to consider for evaluation of quantization aware and quantization non-aware training:

Agreement
For the evaluation of quantization aware/non-aware training, the following cases are considered and reported by companies:
· Case 1: Quantization non-aware training, where the float-format variables are directly passed from CSI generation part to CSI reconstruction part during the training
· Fixed/pre-configured quantization method/parameters is applied for the inference phase
· Companies to report the design of the fixed/pre-configured quantization method/parameters, e.g., quantization resolution, vector quantization codebook, etc.
· Case 2: Quantization aware training, where quantization/dequantization is involved in the training process
· Case 2-1: Fixed/pre-configured quantization method/parameters are applied during the training phase; the same quantization codebook is applied for the inference phase
· Companies to report the design of the fixed/pre-configured quantization method/parameters, e.g., quantization resolution, vector quantization codebook, etc.
· Case 2-2: The quantization method/parameters are updated in together with the AI/ML models during the training; when training is finished, the final quantization codebook is applied for the inference phase
· Companies to report how to update the quantization method/parameters during the training
· Note: the above cases apply for training Type 1/2/3
· Others are not precluded.

Quantization non-aware training assumes there is no quantization in the training phase while the quantizer and potential de-quantizer, respectively, are added to the encoder and decoder in the inference phase. Therefore, the encoder/decoder parameters do not consider the quantization properties in the training of their parameters. One advantage of this scheme is that we can decouple the AI encoder/decoder training and quantizer formulation, at the cost of possible end-to-end performance degradation. This allows the selection of various quantization schemes without needing to load a new model. This scheme consists of 3 major steps:
1. AI encoder/decoder is trained without any intermediate quantization procedure between the CSI generation and reconstruction parts. The latent feature vector is directly fed into the AI decoder for training. As training outputs, quantization training data set of the latent feature vector samples at the final epoch can be provided for subsequent quantization formulation, as well as trained AI encoder/decoder parameters.
2. Quantization procedure is formulated. Either scalar quantization or vector quantization can be adopted. For this operation, a certain distance metric should be used to measure distance between input scalar/vector and output quantized value/codeword. Quantization parameters can be designed to minimize the quantization loss and degradation of the reconstructed CSI due to the quantization. Note that it may be challenging to find the distance metric which can lead to the solution minimizing loss at Step1.
3. The formulated quantizer and potential de-quantizer, respectively, can be plugged into the overall AI encoder and decoder to check end-to-end performance. Optionally, the AI encoder/decoder can be fine-tuned with Quantizer being in the chain to calibrate AI encoder/decoder parameters. Here, the quantizer operation is considered to be frozen (not a subject of update).
In quantization-aware training, the quantization procedure is determined prior to training and is incorporated into the training process. In this contribution, we consider both sub-cases of quantization-aware training: Case 2-1 where the quantizer is fixed prior to training and Case 2-2 where the quantizer type is determined prior to training but parameters of the quantizer are adapted during the training process.
To evaluate the performance degradation caused by a quantization block, we propose to define quantization loss as the difference between the reconstruction metric (SGCS or NMSE) obtained from testing the model trained without quantization and the reconstruction metric obtained from a model including quantization. For the case of quantization unaware training, the quantization loss is determined using the same trained AI/ML model but comparing the unquantized output performance (in inference) with the performance when quantization of the output has been added to the model. For the case of quantization aware training, the quantization loss is determined by comparing the reconstruction metric obtained from the model trained without quantization to the metric obtained from the model trained with quantization (whether fixed as in Case 2-1 or adapted as part of the training process as in Case 2-2). In all cases, the performance metric is obtained through inference testing of the AI/ML model and associated quantization. The quantization loss is reported in dB scale.
Proposal 3: Define quantization loss as the difference between the reconstruction metric (SGCS or NMSE) obtained from a model trained without quantization and a model which incorporates quantization whether through quantization aware or unaware training. Report the loss in dB.
We have performed a study comparing the different quantization methods and report the results of that study here. We compare the unquantized model performance with the quantized performance using scalar quantization (SQ) and vector quantization (VQ) for both quantization-aware and quantization-unaware cases. For scalar quantization, we consider both uniform quantization and non-uniform quantization, where non-uniform quantization uses μ-law quantization with μ=150. For vector quantization, the dimension of each segment is given by D and B is the number of bits allocated to the VQ codebook, where B = D × Feedback bits/element. For Case 1, the K-means algorithm is used to determine the VQ codebook. For Case 2-2, the VQ codebook elements are jointly adapted with the encoder and decoder parameters by incorporating the VQ performance into the loss function. The training dataset is described by the parameters in Table 1 and contains a total of 630K samples. In all cases, the latent variable dimension is 64 for a compression ratio of 13. The model is a CNN-based model, where the encoder and decoder are made of three convolutional layers and two fully connected layers
The results of the quantization study can be found in Table 4 (Case 1) and Table 5 (Case 2). We see that quantization-aware training performs somewhat better than quantization-unaware training in all cases. This makes sense because the training process allows the model to be optimized for the given quantization method. The loss we observed with quantization-unaware training is mostly less than about 0.5 dB, except in the uniform scalar quantization case where the loss is 2.2 dB. Also, vector quantization yields the smallest quantization loss.
Observation 2: Quantization-aware training performs better than quantization-unaware training due to the ability to optimize the model to the quantization method within the training process.
Observation 3: Vector quantization is found to have a smaller quantization loss than both uniform and non-uniform scalar quantization.
Observation 4: If the quantization design and properties match the distribution of the encoder outputs, Case-1 training can provide acceptable performance and adapt easily to different feedback sizes without the need to change the AE model.

[bookmark: _Ref127496619]Table 4: Case 1 Quantization Results (Quantization unaware) - SQ: Scalar quantization, VQ: Vector quantization
	Description
	Training Scheme
	Quantization (bits/element)
	Feedback Overhead (bits)
	SGCS
	Quantization Loss
	Codebook Size

	Unquantized
	
	32
	2048
	0.78 (-6.6 dB)
	-
	-

	SQ – Uniform
	Case 1
	2
	128
	0.55 (-3.5 dB)
	3.1 dB
	-

	SQ – Non-uniform
	Case 1
	2
	128
	0.67 (-4.8 dB)
	1.8 dB
	-

	VQ
	Case 1
	2 bits (D=1, B=2)
	128
	0.72 (-5.5 dB)
	1.1 dB
	4

	
	
	2 bits (D=2, B=4)
	128
	0.72 (-5.5 dB)
	1.1 dB
	16

	
	
	2 bits (D=4, B=8)
	128
	0.73 (-5.7 dB)
	0.9 dB
	256

[bookmark: _Ref127496633]Table 5: Case 2 Quantization Results (Quantization aware)
	Description
	Training Scheme
	Quantization (bits/element)
	 Feedback Overhead (bits)
	SGCS
	Quantization Loss
	Codebook Size

	Unquantized
	
	32
	2048
	0.78 (-6.6 dB)
	-
	-

	SQ – Uniform
	Case 2-1
	2
	128
	0.73 (-5.7 dB)
	0.9 dB
	-

	SQ – Non-uniform
	Case 2-1
	2
	128
	0.69 (-5.1 dB)
	1.5 dB
	-

	VQ
	Case 2-2
	2 bits (D=1, B=2)
	128
	0.74 (-5.9 dB)
	0.7 dB
	4

	
	
	2 bits (D=2, B=4)
	128
	0.74 (-5.9 dB)
	0.7 dB
	16

	
	
	2 bits (D=4, B=8)
	128
	0.74 (-5.9 dB)
	0.7 dB
	256

Preliminary study on latent vector element statistics
From the CSI feedback quantization perspective, it is important to understand the underlying statistics of the latent vector elements to design appropriate quantization schemes. In this section, we show some snapshot examples in an effort to motivate investigation and study of the statistics of CSI feedback and the corresponding quantization scheme. We fully acknowledge that it is premature to draw conclusions based on the results herein. Our intension is to encourage other parties to investigate further in this regard to have a better understanding of this topic, and to share their results in the 3GPP forum.
We have observed that by adding one batch normalization layer prior to the activation function (tanh, in our specific case) of the output layer in the UE encoder model (in our specific case, CNN-based), we can alter the statistics of the latent vector elements. Without this addition, the histogram of the latent vector elements (z-dim: 64) shows normal distribution like behavior, as depicted in Figure 3 and Figure 4. As can be observed, the underlying un-quantized floating point value (left subfigures) shows slightly different distribution with respect to its latent vector index, which is reflected in quantized latent vector element statistics (right subfigures). This kind of behavior is not favorable from a quantization perspective, as it requires a latent vector element index-specific quantization scheme (in case of element-wise scalar quantization), or a statistics-aware element grouping scheme (in case of vector quantization with grouping of latent vector elements to reduce the codebook dimension) for optimum quantization. From a quantization perspective, the below attributes are desired.
· Identical distribution over latent vector elements
· This attribute is required both for scalar quantization and vector quantization. It will allow identical element-wise scalar quantization schemes or arbitrary grouping of elements for vector quantization without significant performance degradation.
· Even distribution over the possible range of the element value
· This attribute is not a must, rather a good-to-have. It will render the uniform quantization scheme more attractive, as distribution-aware quantization level adaptation is not required if the underlying distribution is already “flattened (evenly distributed)”.

We have observed that adding batch normalization layer can help us alter the statistics of the latent vector elements such that the above desired attributes can be acquired to some extent, as depicted in Figure 5 and Figure 6.
Performance results for z-dim: {64, 312} case in terms of SGCS can be found in Table 6. For both cases of z-dim: {64, 312}, there is no meaningful performance difference for the un-quantized case (0.2dB for z-dim:64, 0.1dB for z-dim:312). However, in case of z-dim: 64, 2 bits/element SQ (128 bits in total) shows equal performance[footnoteRef:2] with respect to its floating-point counterpart (unquantized). Addition of the batch norm shows 0.8dB gain, thanks largely to its altered statistics. This performance gain with insertion of the batch norm cannot be observed for the case of z-dim: 312, though. Note that in case of z-dim: 312, only 1 bit is allocated per each latent vector element quantization (which leads to 312 bits in total). The limited number of levels (2) may restrict making full use of the equal and even distribution of the latent vector elements. [2: To be precise, the numerical difference is ~0.05dB, but this should be smaller than margin of error.]

So far, we have presented analysis results taken from a CNN-based autoencoder architecture. The latent vector element histograms generated from TF (transformer)-based encoder w/batch norm being placed prior to tanh are shown in Figure 7 and Figure 8. It shows a bit different behavior over different latent variable indices. Analysis of the characteristics of the latent vector element statistics may reveal identification of the AI encoder architecture in use at UE. It is too early to draw conclusions based on the observations in this section, but it seems worthwhile to keep investigating this topic. Note that the gap between SQ case and the reference floating-point case in terms of SGCS is about 1dB for TF-based autoencoder example. TF-based model performs quite well (floating-point performance: -8.4dB), so it may require “high fidelity” CSI feedback. It is not a fair comparison, but TF-based model (z-dim: 64) with a 2 bits/element SQ case [128 bits/CSI FB] outperforms (or on par with) CNN-based model (z-dim: 312; with a 1bit/element SQ) cases [312 bits/CSI FB] by 0.1~0.3dB, of which the reference floating-point case with the similar SGCS performance (~-8.4dB). It remains to be seen how much additional gain can be achieved, if any, by adopting VQ scheme instead of SQ scheme in this case.
[bookmark: _Hlk127512683]Observation 5: A slight modification of the AI encoder layer can lead to alteration of the latent vector element statistics.
Proposal 4: Possible impact of the final layer architecture of the AI encoder on the statistics of the latent vector needs to be investigated from the perspective of the corresponding quantization scheme and its performance.
Observation 6: A scalar quantization scheme can be still useful for some cases.
Proposal 5: Keep a scalar quantization scheme as possible quantization options for AI/ML-empowered CSI feedback compression scheme.
[image: A picture containing shoji, building

Description automatically generated][image: A close-up of a window

Description automatically generated with low confidence]
[bookmark: _Ref127450653]Figure 3: [CNN-based ENC] Histogram of 64 latent vector elements without batchnorm prior to the activation function of the last layer (left: without quantization, right: with 2 bits/element uniform scalar quantization)
[image: Logo

Description automatically generated][image: Chart, icon, bar chart

Description automatically generated]
[bookmark: _Ref127450680]Figure 4: [CNN-based ENC] Overlaid version of the previous figure (different color indicates different latent vector index; left: without quantization, right: with 2 bits/element uniform scalar quantization)

[image:] [image:]
[bookmark: _Ref127450706]Figure 5: [CNN-based ENC] Histogram of 64 latent vector elements with batchnorm prior to the activation function of the last layer (left: without quantization, right: with 2 bits/element uniform scalar quantization)
[image: Shape, arrow

Description automatically generated][image: Icon

Description automatically generated]
[bookmark: _Ref127450765]Figure 6: [CNN-based ENC] Overlaid version of the previous figure (different color indicates different latent vector index. Note that due to identical distribution over indices, we can hardly differentiate between latent variables; left: without quantization, right: with 2 bits/element uniform scalar quantization)
[image: A picture containing shoji, building

Description automatically generated][image: A picture containing shoji, building

Description automatically generated]
[bookmark: _Ref127450798]Figure 7: TF-based ENC] Histogram of 64 latent vector elements with batchnorm prior to the activation function of the last layer (left: without quantization, right: with 2 bits/element uniform scalar quantization)
[image: Shape

Description automatically generated][image: Chart, bar chart

Description automatically generated]
[bookmark: _Ref127450807]Figure 8: [TF-based ENC] Overlaid version of the previous figure (different color indicates different latent vector index; left: without quantization, right: with 2 bits/element uniform scalar quantization)

[bookmark: _Ref127483056]Table 6: SGCS performance results for {CNN,TF}-based E2E autoencoder with or without batch norm at the final layer of the encoder (SQ: scalar quantization)
	[bookmark: _Hlk127484593]Encoder
	Decoder
	z-dim
	Batch norm placed prior to tanh?
	Quantization
	SGCS

	
	
	
	
	
	Linear
	dB

	CNN
	CNN
	64
	Yes
	No
	0.77
	-6.4

	
	
	
	
	SQ
(2 bits/element)
	0.77
	-6.4

	
	
	
	No
	No
	0.76
	-6.2

	
	
	
	
	SQ
(2 bits/element)
	0.72
	-5.6

	
	
	312
	Yes
	No
	0.86
	-8.4

	
	
	
	
	SQ
(1 bit/element)
	0.80
	-7.1

	
	
	
	No
	No
	0.85
	-8.3

	
	
	
	
	SQ
(1 bit/element)
	0.80
	-7.0

	TF
	TF
	64
	Yes
	No
	0.86
	-8.4

	
	
	
	
	SQ
(2 bits/element)
	0.82
	-7.4

Training Types
In RAN1#111, the following agreements were reached regarding the evaluation of separate training (Type 3):

Agreement
For the evaluation of an example of Type 3 (Separate training at NW side and UE side), the following evaluation cases for sequential training are considered for multi-vendors
· Case 1 (baseline): Type 3 training between one NW part model and one UE part model
· Note 1: Case 1 can be naturally applied to the NW-first training case where 1 NW part model to M>1 separate UE part models
· Companies to report the dataset used between the NW part model and the UE part model, e.g., whether dataset for training UE part model is the same or a subset of the dataset for training NW part model
· Note 2: Case 1 can be naturally applied to the UE-first training case where 1 UE part model to N>1 separate NW part models
· Companies to report the dataset used between the NW part model and the UE part model, e.g., whether dataset for training NW part model is the same or a subset of the dataset for training UE part model
· Companies to report the AI/ML structures for the combination(s) of UE part model and NW part model, which can be the same or different
· FFS: different quantization methods between NW side and UE side
· Case 2: For UE-first training, Type 3 training between one NW part model and M>1 separate UE part models
· Note: Case 2 can be also applied to the M>1 UE part models to N>1 NW part models
· Companies to report the AI/ML structures for the M>1 UE part models and the NW part model
· Companies to report the dataset used at UE part models, e.g., same or different dataset(s) among M UE part models
· Case 3: For NW-first training, Type 3 training between one UE part model and N>1 separate NW part models
· Note: Case 3 can be also applied to the N>1 NW part models to M>1 UE part models
· Companies to report the AI/ML structures for the UE part model and the N>1 NW part models
· Companies to report the dataset used at NW part models, e.g., same or different dataset(s) among N NW part models
· FFS: whether/how to report overhead of dataset

Agreement
For the evaluation of an example of Type 3 (Separate training at NW side and UE side) with sequential training, companies to report the set of information (e.g., dataset) shared in Step 2
· For NW-first training
· Dataset construction, e.g., the set of information includes the input and output of the Network side CSI generation part, or includes the output of the Network side CSI generation part only, or other information if applicable.
· Quantization behavior, e.g., whether the shared output of the Network side CSI generation part is before or after quantization.
· For UE-first training
· Dataset construction, e.g., the set of information includes the input and label of the UE side CSI reconstruction part, or includes the input of the UE side CSI reconstruction part only, or other information if applicable.
· Quantization behavior, e.g., whether the shared input of the UE side CSI reconstruction part is before or after quantization.

[bookmark: _Hlk127488474]Figure 9 depicts the procedure for UE-first separate training. On the left size if the figure, Step 1 involves simultaneously training the encoder at the UE and a hypothetical decoder on the network side. Once the encoder/hypothetical decoder pair has been trained, a dataset is determined by running the pair in inference, collecting the eigenvectors prior to compression (), the unquantized encoder output (), and the quantized encoder output (). This dataset is used in Step 2 to train the decoder at the network (NW) side, shown at the right size of the figure. The pairs are used to train the decoder without quantization and the pairs are used to train the decoder with quantization.
[image:]
[bookmark: _Ref127487822][bookmark: _Ref127487816]Figure 9: UE-first separate training procedure

Case 1 simulation results are provided in Table 7 for the UE-first separate sequential training and the corresponding Joint E2E training cases as a reference baseline.
· Input to AI encoder: dominant channel eigenvector pre-processed from the ideal channel matrix with dimensions (Number of Tx ports × Number of subbands × Number of samples: 32 × 13 × 630,000)
· SQ (Scalar Quantization): per-element uniform quantization with pre-defined levels over the [-1 +1] latent vector element range, i.e., in case of 2 bits/latent vector element {-0.75, -0.25, +0.25, +0.75}.
· Quantization-aware training for SQ case (w/fixed pre-defined levels)
· Latent vector size of 64 (z-dim), which is equivalent to CR (compression ratio) 13 in this particular case (2×32×13 real numbers à 64 real numbers).
· Feedback overhead: no quantization case (32×64 = 2048 bits), SQ case (2×64 = 128 bits)
The key observation is that there is no degradation introduced by separate training in terms of SGCS, with respect to the baseline joint E2E training case when the AI encoder and AI decoder models are matching.
Observation 7: For UE-first Type 3 separate training with matched encoder/decoder models, results indicate little performance degradation relative to Type I joint training.
Proposal 6: Continue further study of the separate training case for mismatched models.

[bookmark: _Ref127491012]Table 7: Joint E2E and UE-first separate sequential training results (SQ: scalar quantization)
	Encoder
	Decoder
	z-dim
	Quantization
	Training Type
	Training Dataset
	SGCS

	
	
	
	
	
	Step 1 (E2E training)
	Step 2 (NW Decoder training)
	Linear
	dB

	CNN
	CNN
	64
	No
	Type 1 (Joint E2E)
	{}
	N.A.
	0.79
	-6.7

	
	
	
	SQ
(2 bits/element)
	
	
	
	0.75
	-6.0

	
	
	
	No
	Type 3 (Separate)
	{}
	{(
	0.79
	-6.7

	
	
	
	SQ
(2 bits/element)
	
	
	{(
	0.75
	-6.0

Data Collection
In RAN1#111, the following two agreements were reached regarding high resolution quantization of ground truth CSI for the purpose of data collection for CSI compression:

Agreement
For the evaluation of the high resolution quantization of the ground-truth CSI in the CSI compression, Float32 is adopted as the baseline/upper-bound of performance comparison.

Agreement
For the evaluation of the high resolution quantization of the ground-truth CSI in the CSI compression, if R16 Type II-like method is considered, companies to report the R16 Type II parameters with specified or new/larger values to achieve higher resolution of the ground-truth CSI labels, e.g., L,, , reference amplitude, differential amplitude, phase, etc.

In RAN1#110bis-e, an agreement was reached on the study of ground-truth quantization in for CSI compression. There are various uses for ground-truth CSI including training, data collection, and performance monitoring. For offline-engineering-based training, standardization of ground-truth quantization is not required since it could be agreed between the vendors involved in the training. This particularly applies to Type 2 and Type 3 training. However, an agreed approach to ground-truth quantization could potentially be convenient to simplify interactions between vendors during model training.
For data collection, ground-truth CSI can be quantized and reported in order to (for example) build datasets based on data collected in the field. For data collection at the UE, the UE has access to both the input to the CSI compression model and the ground-truth CSI. Therefore, it has control over the quantization of the data for its data collection purposes and standardization of the quantization is not required. Even if the UE transmits the data over the air for storage in a proprietary location, the UE continues to control the data. For data collection at the network, ground-truth quantization must be considered for standardization because the UE must feed back the ground-truth CSI to the network.
For AI/ML model performance monitoring, there are several possibilities to consider. Model performance monitoring could be based on metrics already available, such as throughput performance and detected packet errors. However, it is also possible and advantageous to monitor the model performance through KPI measurements, such as SGCS. In order to calculate these metrics, the network must have access to the ground-truth CSI, so standardization of the feedback methods is necessary.
In all of these cases, when ground-truth quantization and transmission is necessary, the transmission of the data is an overhead in the system operation. Since high resolution quantization is needed, these transmissions should be infrequent. In addition, the need and details of ground-truth quantization are dependent on the use cases for the data. Therefore, RAN1 should examine these use cases to better direct the study of ground-truth quantization.
Observation 8: The need and details of ground-truth quantization are dependent on the use cases for the data.
In particular, when data is collected for the purpose of model training, the effect of different quantization levels on performance of the models can be studied through simulations. The performance of models trained using different quantization levels for the training dataset can be assessed by comparing the model output to the unquantized dataset. For example, to assess the effect of data quantization on compression of channel eigenvectors, models can be trained with unquantized eigenvectors as well as eigenvectors quantized to various bit widths. The SGCS in all of these cases can be measured by comparing the model output to the unquantized eigenvectors. Such a study would provide an indication of the tradeoffs between performance and data collection overhead to guide the standardization of data collection resolution.
Proposal 7: Study the tradeoff between system performance and data collection overhead, especially for the use case of data collection for the purpose of building datasets for model training.
CSI prediction
Evaluation Methodology
For channel prediction, link level as well as system level evaluations have been agreed on. The bases for all evaluations are UE tracks over a few hundreds of milliseconds or even over multiple seconds. We use either simple link-level (LL) channel models like EVA7 or EVA70 to assess specific issues or use the radio channels as agreed for the latest system-level (SL) simulations.
In accordance with the EVM agreements we evaluate the NMSE as well as cosine similarity over the channel prediction horizon. Note that the first focus of channel prediction is often related to the smooth evolution of the radio channel components and its prediction. The related Type II CSI feedback for the prediction time is then calculated at the UE based on the predicted channel components. Note that for more general evaluations this step might be omitted, and the cosine similarity is then calculated not for the precoding vectors, but for the real and imaginary parts of the channel coefficients.
One can consider different prediction methods, where either the channel predictor neural network (NN) is applied individually per each of the 16 or 32 antenna ports (APs), or a larger NN infers the prediction for all the APs in one single step. In both cases the Type II CSI feedback is then calculated as defined, e.g., in Release 16, but for the predicted instead of the current radio channels.
In another approach one might directly infer the CSI potentially using one specific NN, which would save the extra post processing step of Type II CSI calculation. At the same time, the different rules for generating Type II CSI might be a challenge with respect to ML based training of a neural network.
Performance Baseline
In RAN1#111, the following working assumption on the performance baseline for CSI prediction was adopted for further consideration at RAN1#112:
Working assumption
For the AI/ML based CSI prediction sub use case, the nearest historical CSI w/o prediction as well as non-AI/ML/collaboration level x AI/ML based CSI prediction approach are both taken as baselines for the benchmark of performance comparison, and the specific non-AI/ML/collaboration level x AI/ML based CSI prediction is reported by companies.
· Note: the specific non-AI/ML based CSI prediction is compatible with R18 MIMO; collaboration level x AI/ML based CSI prediction could be implementation based AI/ML compatible with R18 MIMO as an example
· It does not imply any restriction on future specification for CSI prediction
· FFS how to model the simulation cases for collaboration level x CSI prediction and LCM for collaboration level y/z CSI prediction

We support the adoption of the working assumption since it includes legacy CSI reporting as a baseline performance as well as the performance of conventional prediction algorithms, including Kalman filtering. In addition, the working assumption takes into account the Rel-18 work currently in progress under the MIMO evolution work item [3].
[bookmark: _Hlk118682500]It is clearly possible that AI/ML-based CSI prediction could work within the framework for CSI prediction being developed under the Rel-18 MIMO evolution work item. As that work progresses, it is clearly important to identify whether any additional specification impact is necessary to support AI/ML-based CSI prediction within that framework.
Proposal 8: Identify the additional specification effects required by AI/ML-based CSI prediction beyond what is specified through the Rel-18 MIMO evolution work item.
Generalization
Generally, mobile radio cells experience strong variations in radio channel conditions including indoor, outdoor, LOS, NLOS, or obstructed LOS scenarios, etc. One option to adapt to these strong channel variations is to use scenario-specific trained AI/ML models. This leads to a more complex system design and requires maintaining a potentially large number of trained and verified AI/ML models.
Alternatively, one can try to train generalized AI/ML models with data sets from all potential and expected channel conditions to reduce the number of required AI/ML models. In that case one must expect some performance degradations compared to ML models trained by specialized scenario specific data sets.
The latest agreement regarding generalization defines three cases of scenario and configuration variations for verification of such generalized AI/ML models.
For channel prediction we propose a specific variant of generalization as agreed in the last meeting, which is not only for the verification process of the generalized AI/ML model, but results in a specialized inference method relying on one more or less well generalized AI/ML model.
We refer to the case that the generalized AI/ML is first trained on Scenario#A/Configuration#A and then updated based on a fine-tuning data set different than Scenario#A/Configuration#A.
Conventional channel prediction such as Kalman filtering typically requires a long channel observation time over ideally hundreds of ms to learn the state space model for the current UE location. Only after that will a suitable channel prediction based on this state space model become possible. One could say that Kalman filters must learn the radio channel from scratch for every new UE activation.
Here, we observe one interesting benefit of AI/ML based channel prediction as it can be applied after only a few, e.g., three channel estimates based on semi-persistent CSI RSs with a repetition rate of, for example, 5 ms. This enables channel prediction already after, e.g. 15 ms. But, corresponding to our observations, the channel prediction quality of the generalized AI/ML model varies over different radio channel conditions. Even if the training data set had been large including already similar channels from Scenario#A/Configuration#A we see such variations. More importantly, the generalized AI/ML model for Scenario#A/Configuration#A has often a performance gap compared to a fully specialized AI/ML model for the specific current channel conditions of a certain UE. With a specialized AI/ML model we refer to an AI/ML model which has been overfitted to the current radio channel evolution of the UE by using the channel estimates of the last 50 ms, 100 ms, or several hundreds of ms as a data set for fine tuning the AI/ML model. Here, we see then the close relation to Kalman filtering, which always requires such long channel observations, while for the AI/ML based approach it can be used for optimizing the channel prediction quality.
The performance gap between the generalized AI/ML model and the specialized model varies for different UE positions within the radio cell; i.e., for some UEs there is almost no gain due to fine tuning, while other UEs observe large gaps between the generalized and the specialized AI/ML model. For that reason, we propose that the UE first estimates the potential performance gain due to fine tuning, which can be done based on the latest radio channel estimates. The UE might then report to the gNB an indication which allows the gNB to adjust the CSI-RS repetition rate based on how close the generalized AI/ML model performs relative to the best possible AI/ML model. The gNB can then configure, depending on the indication, a semi static set of CSI RS transmissions, where the length and the repetition rate is increased when performance is now as close to the best possible model so that the UE has a longer data set for fine tuning. This single data set for fine tuning is then configured to allow for a fast and efficient fine tuning of the generalized AI/ML model over a single epoch.
The proposed method provides benefits similar to conventional Kalman filtering from the optimal adaptation to the current UE channel conditions by specialization of the AI/ML model. At the same time, it minimizes the required channel observation time as far as possible so that in cases where the performance is close to the best possible only short or even no fine tuning is needed at all. Correspondingly, the overhead for transmission of CSI-RSs and the execution latency for the channel prediction is minimized and can be adapted based on higher layer criteria.
The concept allows a UE to cover a wide range of Scenarios/Configurations with a single or very few generalized AI/ML models due to the built-in adaptation capabilities.
We should note that specialization can be seen as an overfitting to the current channel conditions of a single UE. For that reason, the purpose of the fine tuning of the generalized AI/ML model is not to update the generalized AI/ML model as such, but to use it for channel prediction of this specific UE under the current channel conditions.
[bookmark: _Hlk118682519]Proposal 9: Consider specialized AI/ML models based on one or few generalized AI/ML models to achieve highest channel prediction performance with minimum number of AI/ML model versions.
KPIs
As already indicated, both throughput and overhead are KPI’s for system level performance of CSI prediction. Another important KPI for CSI prediction is the prediction horizon, which is typically a measure of the normalized mean square error (NMSE) of the predicted CSI over time and/or spatial movement of the UE relative to one RF wavelength. A typical target value might be –20 dB at 10 ms, which would support high-end precoding schemes at least for nomadic users, or users with moderate mobility of less than 15 km/h.
Another relevant KPI for channel prediction is the execution latency, as CSI information is outdated extremely fast. The execution latency includes not only the inference time, but also the time required to do any preprocessing of the CSI-RS signal and post-processing after inference (see also our discussion in [4]). Obviously, the execution latency should be significantly smaller than the intended, or achievable prediction time. Therefore, ideal values would be in the range of one to less than 10 ms for the FR1 frequency range below 6 GHz. Channel prediction for the FR2 bands becomes even more challenging due to the shorter wavelength, but also less relevant due to lower number of multipath components per narrow beam.
A third relevant KPI is then the processing complexity, which is related to the latency and to the required CSI accuracy. Relative complexity of an ML-based predictor should be compared to conventional methods, such as legacy (Rel-16) codebook-based methods for obtaining CSI and methods such as Kalman filtering.
Another sub-use case specific KPI is the required observation time tobserve, which might range for different prediction methods from a few ms to 500 ms or even seconds. Note that methods which achieve a high prediction horizon with few channel observations reduce the overhead for CSI-RS and are more practical than methods which require a channel observation over 500 ms.
The proposed KPIs for CSI prediction are summarized in Table 8.
[bookmark: _Ref127401147]Table 8: Proposed KPIs for CSI Prediction
	KPI
	Measured in
	Target Value

	System-level throughput (mean and cell-edge)
	Spectral efficiency (bits/sec/Hz)
	

	Feedback overhead
	Bits
	

	Reference signal overhead
	Transmissions per second
	

	Channel prediction horizon
	NMSE over the prediction time or, alternatively, cosine similarity in case of PMI prediction
	-20dB at 10 ms (for NMSE)

	Execution latency
	Time (ms) between CSI-RS transmission to transmission of the predicted CSI
	< 1 to 10 ms

	Processing complexity
	FLOPS, tic toc (MATLAB), memory size, number of NN weights, quantization of NN weights, …
	

	Observation time
	Minimum channel observation time needed, e.g., minimum number of CSI-RS measurements needed
	

In RAN1#111, the following working assumption on performance reporting was adopted for re-examination at RAN1#112:
Working assumption
For the AI/ML based CSI prediction sub use case, the following initial template is considered for companies to report the evaluation results of AI/ML-based CSI prediction for the case without generalization/scalability verification
· FFS the description and results for generalization/scalability may need a separate table
· FFS whether/how to capture the multiple predicted CSI instances and their mapping to slots

An important metric which is not covered by the proposed reporting template is the execution latency. In addition to the effect of the model architecture on latency, the execution latency is also affected by the processing power of the UE so that execution latency could be considered as a UE capability. The reporting of execution latency for a given model would then depend on the implementation platform assumed in the UE, if it is reported in time units. One possible solution is to report a measure of the sequential calculation depth of the model, such as the number of layers in the model. This measure is independent of time but can be used as an indicator of execution latency when coupled with an assumption on the UE processing capability.

Proposal 10: Adopt a measure of execution latency and include it in the performance reporting template for CSI prediction.

Simulation Results
In the following, we provide simulation results to discuss some specific aspects like the impact of the number of observation time steps, the number of observed subcarriers in the frequency domain, and the benefit of interpolation in the time domain.
The most basic assumption for channel prediction is to do it per antenna port (AP) or per beam pair, where the best beam pairs between UE and gNB are then inferred from the related beam management, which is not part of this sub-use case. To each AP, the gNB regularly transmits the AP-specific CSI-RS. Ideally, for optimum channel estimation and prediction performance, the gNB transmits the CSI-RS over the full RF bandwidth, i.e., over all PRBs.
Obviously, this needs a sequence of consecutive CSI-RS signals tracked by the moving UE, which should follow some predefined spatial tracks.
Some initial channel prediction methods have been implemented based on a single neural network as described above and given in Table 9.
[bookmark: _Ref127401226]Table 9: CSI Prediction Parameters
	Parameter
	Value

	Training data
	Simulated channels EVA7 using the MATLAB LTE Toolbox

	ML algorithm
	RNN / LSTM: 10 LSTM cells followed by one dense layer
Activation function: tanh
Training epochs: 25
Batch size: 1 sample
Loss function: MSE

	Input
	Estimated downlink channel H, k time instance

In Figure 10 we present the results for CSI prediction with the LSTM NN and compare its performance with a Kalman filter, which is claimed to be the optimum theoretic solution for channel prediction. The channels are simulated using the MATLAB LTE Toolbox. The R.13 channel configuration is assumed, with a single antenna at the gNB and UE, and channel model EVA7, maximum Doppler frequency of 7Hz. A total of 50 random seeds are used and 50 OFDM frames are collected per seed. The LSTM is trained to do a prediction of one time-step ahead after watching the last three time-steps.
The Kalman filter uses an autoregressive model of order three and updates the state-space equations for the prediction. As can be observed in Figure 10, the LSTM has a better performance for the 5 ms prediction time instance (one time-step ahead). For the second time-step prediction, the LSTM has slightly worse performance than the Kalman filter. However, the LSTM was not trained for a two-step prediction.
[image:]
[bookmark: _Ref127450899]Figure 10: Channel prediction with Kalman filter (blue) and LSTM (red) considering a SISO-OFDM channel with maximum Doppler frequency of 7Hz.
Evaluation of data preprocessing
For evaluation of the impact of the input data processing we reuse the EVA7 channel model as provided by the MATLAB LTE Toolbox for some LL simulations. Specifically, we examine the effect of decreasing the sample time of the channel response (more channel samples over time) and increasing the observation bandwidth. We have a channel sample time of 0.5 ms and use either 20 or 30 time-domain input samples. As long as the Nyquist criterion is satisfied for the UE speed, sampling rates such as this can be reached from coarser sampling through interpolation. Figure 11 illustrates the related convolutional LSTM NNs, which have been adapted to the different input sequences. Since the NN can predict the channel evolution at multiples of the channel sample time, 10 outputs are required to get a prediction at the intended 5 ms prediction horizon.
From Figure 12 we can identify the impact of the channel observations in time and frequency. In line with theoretical expectations the Fisher information increases with increasing number of channel observations. Correspondingly, the theoretical Kramer Rao Lower bound of the minimum channel estimation error for any unbiased channel estimator is improved as well. For example, increasing the number of frequency domain input subcarriers from 16 to 100 so that the observation bandwidth increases from 1.44 MHz to 9 MHz improves the NMSE by almost 7 dB. Increasing the number of time domain samples from 20 to 30 brings another 2 dB.
[bookmark: _Hlk118682554]Observation 9: Channel prediction performance improves as the observation bandwidth increases and as the time step between measurements decreases.
The related complexity increased for 20 versus 30 time-domain input samples from 3624 to 5208 trainable parameters, which is an increase of 43%. The number of frequency domain samples does not have any impact on the number of trainable parameters.
[bookmark: _Hlk111177559]Observation 10: The complexity due to higher number of time domain and frequency domain channel samples increases only moderately.
Especially, a high frequency domain observation bandwidth is beneficial due to its low impact on the number of trainable parameters and due to the low related latency. By a proper design with cell specific CSI RSs the CSI RS overhead for a high bandwidth can be small.
Proposal 11: Support high number of frequency-domain and of time-domain channel samples for training and inference of NNs for channel prediction.
[image:]
[bookmark: _Ref127450954]Figure 11: High level illustration of convolutional LSTM NN models adapted for 20 input time domain signals (left) and 30 input domain signals (right). The output signals are in both cases 10 time-domain signals.
[image:]
[bookmark: _Ref127450997]Figure 12: CDF of the NMSE for either 20 or 30 input time domain signals as well as either 16 or 100 input frequency domain CSI reference signals. The CSI reference signals are spaced by 6 subcarriers so that for a subcarrier spacing of 15 kHz we have an input bandwidth of either 1.44 MHz or of 9 MHz.
Evaluation of channel prediction in UMa Scenario
Given in Table 10 are the simulation parameters which follow the EVM agreement for system level simulations for the UMa scenario as well as the main ML parameters.

[bookmark: _Ref127401316]Table 10: CSI Prediction Parameters for UMa scenario
	Parameter
	Value

	Training data
	21 tracks corresponding to EVM agreement for Rel 16
UMa, RF = 2GHz, ISD = 200m, UE mobility = 30kmph,
Channel sampling period 5 ms

	ML algorithm
	RNN / convolutional LSTM
Activation function: tanh
Training epochs: 25
Batch size: 1 sample
Loss function: MSE, cosine similarity on real and imaginary channel coefficients

	Input
	Estimated downlink channel H, k time instance

We have the following dataset pre-processing:
· Every Rx-Tx pair, i.e., every antenna port (AP) out of overall 16 APs for estimating the massive MIMO antenna, is considered a new channel realization: SISO-OFDM assumption.
· [bookmark: _Hlk115215020]Each UE track is up-sampled by a factor of 5 to increase the time resolution of the input signal from the channel sample period of = 5 ms to 1 ms. Note that with = 5 ms the Nyquist criterion for the UE mobility of 30 kmph is still fulfilled.
· 50% of all tracks are used for training, the other 50% are for testing.
· 20% of the training dataset is used for validation.
For clarity Figure 13 illustrates how the radio channels of 21 UE tracks over 5s each have been allocated to training validation and testing.
[image:]
[bookmark: _Ref127451051]Figure 13: 21 tracks of mobile UEs used for training, validation and testing of the convolutional LSTM NN.
Description of the overall evaluation setup:
· The input signals for training, validation, and testing consist of 15 ms of channel coefficients – 15 channel coefficients, 16 PRBs, 2 real/imaginary parts.
· In Figure 14 we see – compared to the LSTM in the previous section – the slightly updated convolutional LSTM NN structure, which avoids the last dense layer and has been optimized for the UMa channel conditions as defined for Rel 16 and partly given in Table 10.
· The channel prediction horizon is 5 ms for the channel coefficients, i.e., five channel coefficients with 1 ms resolution.
· The number of trainable parameters for the architecture in Figure 14 is 4368.
· Note that the number of PRBs used does not affect the number of trainable parameters.
· According to TensorFlow the number of FLOPS is 129472.
[image:]
[bookmark: _Ref127451036]Figure 14: AI/ML architecture for channel prediction adapted to UMa channels corresponding to latest EVM agreement.
The channel prediction quality per AP for the maximum prediction time of 5 ms is given in Figure 15, where the NMSE is on average better than -15dB.
[bookmark: _Hlk118682601]Observation 11: Performance results for CSI prediction using the agreed evaluation methodology conditions continue to indicate promising performance for this use case.
[image:]
[bookmark: _Ref127451177]Figure 15: Channel prediction with convolutional LSTM for one single AP: CDF of NMSE

Evaluation of channel prediction with specialized AI/ML models in UMa Scenario
We take the same UMa scenario as agreed for the EVM and given in Table 10, but now with 400 user tracks. For illustration of the potentially large effect of the specialization operation as discussed above in section 2.2.1.2, we evaluate first a single UE. In Figure 16, we see the CDF of the normalized squared error for a channel prediction 5 ms ahead and the AI/ML architecture as well as data pre- and post-processing as given in the previous subsection.
The solid lines in Figure 16 are for the channel prediction with the generalized AI/ML model but evaluated only for one single UE track. We observe that the red line is somewhat improved compared to the blue line, which is due to the longer time used for training of 4.875s versus otherwise only 125 ms.
The dashed lines are for the same UE track, but now including the specialization of the AI/ML model over a time of 4.875s versus 125 ms. We see that fine tuning of the generalized AI/ML model improves the performance significantly by more than ten dB in this case and longer time durations for the fine tuning data set helps as well. Note that this UE has been selected as it shows such large performance gains, while there are other UEs which are already close to optimum without any specialization.
Observation 12: Additional fine tuning of the CSI prediction model has the potential to improve the performance of the CSI prediction for certain UEs.
[image: Chart, line chart

Description automatically generated]
[bookmark: _Ref127451677][bookmark: _Ref127401791]Figure 16: Cumulative distribution function (CDF) of the NSE when specializing the weights of the CSI predictor to a certain UE track that was unseen during pre-training. A channel duration of 125 ms is taken to re-train the AI/ML model, the remaining 4.875s of the UE track simulation is used for testing. Solid lines denote the output of the CSI predictor before fine tuning and dashed lines represent the output performance after fine tuning with 125 ms channel duration.
To get an idea of the potential effect of channel prediction on the system level we used the UMa scenario as described in the EVM with the NMSE as the intermediate KPI once with zero order hold (ZOH) and once with a 5 ms prediction with results shown in Figure 17. These results already include the specialization operation for a single generalized AI/ML model. Similarly, Figure 18 provides the CDFs of the NMSE for a channel prediction time of 10 ms, where the channel prediction provides a gain of roughly 7 dB over ZOH.
[bookmark: _Hlk118682629]Observation 13: CSI prediction using AI/ML has the potential for substantial performance gain at 5 and 10 ms prediction times compared with zero-order hold as measured by NMSE.
[image:]
[bookmark: _Ref127451750]Figure 17: CDF of the NMSE with channel prediction 5 ms ahead compared to ZOH over 5 ms.
[image:]
[bookmark: _Ref127451768]Figure 18: CDF of the NMSE with channel prediction 10 ms ahead compared to ZOH over 10 ms.
Due to the potential for performance gain demonstrated to date for AI/ML-based CSI prediction, we propose the adoption of CSI prediction as a second sub-use case AI/ML-based CSI.

System Level Evaluations
The generalized convolutional LSTM AI/ML model without specialization of the specific UE channel conditions has been integrated into the system level simulator with the assumptions as given in the appendix. For ideal CSI RS a gain of the mean and 5% user throughput of around five percent could be achieved compared to ZOH as benchmark. This was under the assumption of a relatively short prediction time predict of 4ms, which compensates then just the 4ms CSI processing delay.
The proper result templates for collection of the evaluation results are still under discussion, but we used the current version to capture these very preliminary SL results in Table 11.

[bookmark: _Ref127401494]Table 11: Evaluation results for CSI prediction without model generalization/scalability, [traffic type], [Max rank value], [RU]
	
	
	Source 1: Nokia

	AI/ML model description
	AL/ML model backbone
	convolutional LSTM

	
	[Pre-processing]
	time domain interpolation / oversample factor 5

	
	[Post-processing]
	Type II Release 16

	
	FLOPs/M
	129472

	
	Parameters/M
	5208

	
	[Storage /Mbytes]
	

	
	Input type
	complex CSI, 50 PRB , 16 AP

	
	Output type
	complex CSI, 50 PRB , 16 AP

	Assumption
	UE speed
	30 kmph

	
	CSI feedback periodicity
	5 ms

	
	Observation window (number/distance)
	4 / 5 ms

	
	Prediction window (number/distance)
	1 / 4 ms

	
	Whether/how to adopt spatial consistency
	Track over 500 ms

	Dataset size
	Train/k
	420 UE tracks

	
	Test/k
	120 UE tracks

	Benchmark 1
	ZOH

	Intermediate KPI #1 of Benchmark 1
	
	8.65% < 0.9 GSCS

	Gain for intermediate KPI#1 over Benchmark 1
	
	3.74%
(See Observation 14)

	Intermediate KPI #2 of Benchmark 1
	
	

	Gain for intermediate KPI#2 over Benchmark 1
	
	

	Intermediate KPI #1 of Benchmark 1
	
	

	Gain for eventual KPI (Benchmark 1)
	Mean UPT
	3 %

	
	5% UPT
	6 %

The intermediate KPI results for the system level simulation in Table 11 are presented in Figure 19. The intermediate SGCS is evaluated every 5ms due to the CSI-RS reporting frequency. Due to our data pre-processing, the output of the AI/ML CSI predictor can provide channel prediction with 1ms resolution which allows the system level simulation to account for the processing delay of 4ms.
[bookmark: _Ref127520731]Observation 14: Preliminary system level simulation results with ideal channel estimation indicate that CSI prediction can provide throughput gains around 5%.

[image:]
[bookmark: _Ref127451809]Figure 19: SGCS for rank-1 CSI-Prediction @ 5ms with the UE moving at 30kmph.
Conclusion
In this contribution, we have addressed evaluation issues for both CSI feedback with autoencoders and CSI prediction with AI/ML
For CSI feedback with autoencoders, our observations and proposals are:
Observation 1: The transformer-based CSI compression model outperforms baseline Rel-16 eTypeII codebook performance based on the SGCS metric.
Proposal 1: Study various model architectures for generalization performance, including an assessment of the trade-off between performance and model complexity.
Proposal 2: Study the scalability of CSI compression models with parameters including gNB antenna array configuration, bandwidth/subcarrier spacing/subband count, and feedback overhead configuration. Collect and summarize the results of these analyses.
Proposal 3: Define quantization loss as the difference between the reconstruction metric (SGCS or NMSE) obtained from a model trained without quantization and a model which incorporates quantization whether through quantization aware or unaware training. Report the loss in dB.
Observation 2: Quantization-aware training performs better than quantization-unaware training due to the ability to optimize the model to the quantization method within the training process.
Observation 3: Vector quantization is found to have a smaller quantization loss than both uniform and non-uniform scalar quantization.
Observation 4: If the quantization design and properties match the distribution of the encoder outputs, Case-1 training can provide acceptable performance and adapt easily to different feedback sizes without the need to change the AE model.
Observation 5: A slight modification of the AI encoder layer can lead to alteration of the latent vector element statistics.
Proposal 4: Possible impact of the above feature needs to be investigated from the perspective of the corresponding quantization scheme and its performance.
Observation 6: A scalar quantization scheme can be still useful for some cases.
Proposal 5: Keep a scalar quantization scheme as possible quantization options for AI/ML-empowered CSI feedback compression scheme.
Observation 7: For UE-first Type 3 separate training with matched encoder/decoder models, results indicate little performance degradation relative to Type I joint training.
Proposal 6: Continue further study of the separate training case for mismatched models.
Observation 8: The need and details of ground-truth quantization are dependent on the use cases for the data.
Proposal 7: Study the tradeoff between system performance and data collection overhead, especially for the use case of data collection for the purpose of building datasets for model training.

For CSI prediction, our observations and proposals are:
Proposal 8: Identify the additional specification effects required by AI/ML-based CSI prediction beyond what is specified through the Rel-18 MIMO evolution work item.
Proposal 9: Consider specialized AI/ML models based on one or few generalized AI/ML models to achieve highest channel prediction performance with minimum number of AI/ML model versions.
Proposal 10: Adopt a measure of execution latency and include it in the performance reporting template for CSI prediction.
Observation 9: Channel prediction performance improves as the observation bandwidth increases and as the time step between measurements decreases.
Observation 10: The complexity due to higher number of time domain and frequency domain channel samples increases only moderately.
Proposal 11: Support high number of frequency-domain and of time-domain channel samples for training and inference of NNs for channel prediction.
Observation 11: Performance results for CSI prediction using the agreed evaluation methodology conditions continue to indicate promising performance for this use case.
Observation 12: Additional fine tuning of the CSI prediction model has the potential to improve the performance of the CSI prediction for certain UEs.
Observation 13: CSI prediction using AI/ML has the potential for substantial performance gain at 5 and 10 ms prediction times compared with zero-order hold as measured by NMSE.
Observation 14: Preliminary system level simulation results with ideal channel estimation indicate that CSI prediction can provide throughput gains around 5%.
References
[1] [bookmark: _Ref111120193][bookmark: _Ref101872208]“Draft Report of 3GPP TSG RAN WG1 #111 v0.2.0,” RAN1#111, Toulouse, France, 14-18 November 2022.
[2] [bookmark: _Ref127364025]R1-2212327, “Evaluation of ML for CSI feedback enhancement,” Nokia, Nokia Shanghai Bell, 3GPP RAN1#111, Toulouse, France, 14-18 November 2022.
[3] [bookmark: _Ref127389707]RP-223276, “WID Update: MIMO Evolution for Downlink and Uplink,” Samsung (Moderator), 3GPP RAN#98-e, 12-16 December 2022.
[4] [bookmark: _Ref101906828][bookmark: _Hlk118680629]R1-2209366, “Further discussion on the general aspects of ML for Air-interface,” Nokia, Nokia Shanghai Bell, 3GPP RAN1#110bis-e, 10-19 October 2022.
Appendix
Table 12: System Level Simulation Assumptions
	Parameter
	Value

	Duplex, Waveform
	FDD, OFDM

	Multiple access
	OFDMA

	Scenario
	Dense Urban

	Carrier Frequency
	2 GHz

	Inter-BS distance
	200m

	Channel model
	According to TR 38.901

	Antenna setup and port layouts at gNB
	32 ports: (8.8,2,1,1,2,8), (dH,dV) = (0.5, 0.8)λ

	Antenna setup and port layouts at UE
	4 Rx: (1,2,2,1,1,1,2), (dH,dV) = (0.5, 0.5)λ

	BS Tx power
	41 dBm (10 MHz bandwidth)

	BS antenna height
	25m

	UE antenna height & gain
	According to TR 36.873

	UE receiver noise figure
	9 dB

	Modulation
	Up to 256QAM

	Subcarrier spacing
	15kHz

	Simulation bandwidth
	10 MHz

	MIMO scheme
	MU-MIMO

	CSI Feedback
	Baseline: Rel-16 Type II codebook
Scheduling delay: 4 ms

	Traffic model
	FTP 1, 2MB file size

	Traffic load (Resource utilization target)
	20/50/70 %

	UE distribution
	80% indoor (3km/h), 20% outdoor (3 km/h)

	Channel estimation
	Realistic

image1.png

image2.png

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.png

image17.png

image18.png

image19.png

image20.png

image21.png

image22.png

image23.png

image24.png

image25.png

