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1	Introduction and our key proposals 
To have confidence in a data driven CSI reporting mechanism requires model monitoring in live networks. For the CSI compression use case, such monitoring implies a comparison between the input and the output of the autoencoder based neural network (that is from the encoder input to the decoder output). Different from the single side AI/ML use cases, the input and output reside on different sides of the Uu interface and are in the typical case owned by different vendors. In such situations involving multiple vendors, 3GPP standardization is the resolution. Note that encoder side only monitoring is meaningless in this two-sided case since the end-to-end loss performance of the full autoencoder is unknown at the UE side. 
Therefore, the data labels, i.e. the target CSI needs to be conveyed from the UE to the gNB in live networks using a standardized format and associated procedures. This together with the “normal” AI/ML based compressed CSI report is necessary for the network to be able to perform monitoring of the encoder-decoder model performance. Such target CSI has higher resolution and thus UCI payload than a “normal” compressed CSI report, but on the other hand the latency requirements are significantly relaxed in comparison. Possibly can RRC be used for such reporting as there seem to be no need for UCI based reporting.  
The target CSI reported from UE to the gNB in live networks together with the “normal” AI/ML based CSI report from the UE can also be used for decoder fine tuning, i.e., using offline training of an improved decoder model without the need to update already deployed encoder models in the networks. As discussed in this contribution, such fine tuning which is based on real data collected in the field using real deployed UEs and gNBs, may be able to compensate from losses due to any idealities not captured in the dataset used in the initial training before the deployment. 
Based on this motivation (and further elaboration in this contribution), a first key proposal for RAN1#112 is:
[bookmark: _Ref126159778][bookmark: _Toc127520262]For CSI compression use case, it is required that standardized procedures and associated data format for UE to gNB data collection of a high-resolution CSI (target CSI) is supported to enable model monitoring and to provide data for enabling decoder fine tuning. 
Secondly, RAN1 has discussed several training types, initially under the assumption that the same vendor trains both encoder and decoder (as in Type 1) and recently there has been some development in the evaluation agenda to assess the performance for the more realistic case of multiple gNB and UE chipset vendors. The cellular network is inherently “one to many” in its characteristics, where one gNB serves multiple UEs simultaneously. For the CSI reporting use case, the gNB thus need to process multiple CSI reports in parallel and to keep implementation efficiency, cost, and complexity feasible, it is paramount that one and the same decoder can be used for all UEs that is served by the gNB. Having a single encoder in the UE is less important since such switching of encoders happens very rarely, only in roaming situations. 
Hence, the guiding principle is that the training methodology must ensure that the same decoder can be used irrespectively of the brand or model in the UE. 
Our second key proposal is thus:
[bookmark: _Toc127520263]For CSI compression use case, it is a requirement that only training types and methods that enables a single decoder to be implemented in the network side is to be considered, irrespectively of the vendor origins of the connected UE devices and/or UE chipsets.
This requirement reduces the set of feasible training methods to the following three:
· (Type 1 NW first) NW trains encoder and decoder and delivers the encoder to the UE 
· (Type 3 NW first) NW trains first, latent space dataset and training dataset passing to the UE 
· NW train first, freezes the decoder and UE side can perform training of encoder using API to the NW side decoder (Here labelled as sequential Type 2 NW first with frozen decoder and gradient passing to UE [8]) 

Hence, either NW trains a decoder-encoder first, transfer the latent space or gradient to the UE side and discards its nominal encoder or alternatively, delivers the trained encoder to the UE side. The model delivery as in Type 1 seems not feasible from UE chipset implementation complexity, resulting UE power consumption etc and due to the large effort in developing and agreeing on a model format for such delivery. 
Our third key proposal is thus
[bookmark: _Toc127520264]For CSI use case in this SI, down-prioritize any studies on model transfer unless it is the only solution that provides performance benefits over legacy CSI reporting
Hence, the model transfer approach should be seen as the last resort and only be given time in this SI if other methods (e.g. Type 2 or 3 based collaboration) cannot demonstrate a performance benefit with the agreed KPIs. 
2 Specification impact of training for two-sided models
It is assumed that training between UE chipset and NW vendors is carried out offline, i.e., outside 3GPP. This will produce an encoder and decoder for deployment in products. However, it is likely that the UE chipset will be implemented in multiple different UE vendor’s products, with different RF and antenna characteristics. Hence, the offline trained encoder and decoder may not perform as well in reality as in the training phase. 
In addition, the training data used for this offline training needs to come from a variety of deployment scenarios and UE/chipset vendors to ensure good generalization performance. It is uncertain if such data is possible to gather for the pre-development and offline training and there should be a mechanism to support improvements of the AI-CSI to make it possible to enable AI-CSI for new scenarios (e.g. tunnels, railways, stadiums). 
Therefore, it is important to have the possibility to fine tune the model based on actual data measured in the field, using measurements by deployed UEs. The fine tuning is carried out by the decoder only, since changing the encoder behaviour in the field leads to a bifurcation in the number of model variants in the field which leads to a significant complexity increase in the network, for the monitoring of UE side models. 
In addition, the single gNB decoder development should ideally be exposed to a training data set from all kinds of deployment scenarios, UE chipsets from multiple chipset vendors, UE RF implementations and UE antennas from multiple UE vendors, but also a large variety of gNB antennas and RF, baseband implementations (i.e. across NW product portfolio) from different sites of multiple networks in the world etc. 
Therefore, data to train the decoder for the two-sided case must be collected “in the field” and from many participating UE side vendors and implementations. As we see, the only feasible approach to such wide range of training data is that 3GPP specify data collection for CSI compression use case. 

In addition, if UE side of the model would change by fine tuning during its lifetime in the field, it would make the pre-deployment RAN4 testing invalid, it is not clear how to verify that the fine-tuned UE is passing the RAN4 requirement. Hence, we conclude that such fine tuning to adapt to reality needs to be performed by the decoder in the network. 
[bookmark: _Toc126058674][bookmark: _Toc126323384][bookmark: _Toc126745664][bookmark: _Toc127343028][bookmark: _Toc127343518][bookmark: _Toc127343647][bookmark: _Toc127343723][bookmark: _Toc127344464][bookmark: _Toc127520276] 3GPP specifications needs to support a mechanism to update/fine tune the decoder to consider implementation reality (e.g., UE and gNB RF and antennas at UE and gNB) and to ensure good generalization performance in scenarios not part of the pre-deployment training dataset
A standardized data collection supports such decoder fine tuning operations and retraining on the network side. This also allows to take full advantage of AI/ML potential, a trained decoder in the gNB could be further adapted to the local deployment (local radio propagation characteristics or local antenna configuration) to enhance the performance or to reduce the CSI payload. 
For example, in a FWA deployment or in a deployment with primarily LOS channel, the channel characteristics is very different compared to a dense urban with high rise buildings. Using local adaptation of the decoder for these scenarios may be beneficial. Hence, allowing for some degree of site or area optimization (local adaptation) could provide the opportunity to use smaller AI/ML models and better performance since the need for the model to be able generalize to all scenarios is less. 
The specifications could also support a model update in the deployed UE, where a new model is delivered to the UE using e.g., firmware update over the air (FOTA). Alternatively, a model switch to a new model is needed when the UE is roaming and a different network vendor is used in the new serving network, and hence a different decoder. The UE may thus need to store (at least) one encoder for each network vendor decoder, but the switching between encoder models happens very rarely in the UE. The Model ID and/or UE capability may be a method to align the encoder-decoder model pair in the network. 
The newly enabled encoder model would likely have to be tested in advance with respect to RAN4 requirements, together with the network vendor decoder. Hence, such model switching allows for a larger update as it involves a new encoder, compared to the decoder fine tuning discussed earlier. 
So to summarize, we have the following steps related to training and model fine tuning/updates and specification impact:
1. Activation signalling of initially (offline) trained and RAN4 tested encoder and decoder for AI-CSI compression in some cells in the network where the AI-CSI is beneficial. For this step, a feature-based UE capability reporting may be needed. 
2. Performance monitoring procedures of deployed models to ensure there is a benefit compared to legacy CSI in a given cell in the network (e.g., whether the used training dataset is representative for the cell to give a performance benefit of AI-CSI)
3. Data collection (CSI target) from UE to network that enables 
a. proprietary fine tuning of decoder for improved performance and adaptation to “reality” such as RF and antenna, network configuration aspects
b. gathering of data for new future scenarios where the currently used training data set was not representative (e.g. subway tunnels, stadiums etc) and to be used for development of evolved encoder-decoder in a future update
4. Model selection for the UE for roaming support and for enabling evolved AI-CSI models in already deployed UEs. This step may require the use of Model ID based framework in addition to the UE capability to distinguish different decoders/network vendors. 

3 Target CSI definition
Specification of a target CSI is needed for several procedures in the specifications. During inference, the gNB needs to be able to interpret the decoder output so it can further use it for scheduling and MIMO precoding algorithms. Hence it needs to be agreed by 3GPP. In data collection, the target CSI defines the metric that the UE needs to measure and report to the network. There may also be a need to use target CSI for model monitoring purpose as the NW can compare reported “real” CSI with the target CSI. 
Table 1. Four directions on how to standardize a CSI target.
	[bookmark: _Hlk126262750]Implicit CSI feedback (precoder hypothesis)
	Explicit (raw) CSI feedback

	Case 1
	Case 2
	Case 3
	Case 4

	Tx-side eigenvectors of a channel, per subband.
Non-structured target, arbitrary eigenvectors can be represented by amplitude and phase per vector element.

Rank can be reported separately.
	Approach based on eType-II framework.
Structured, model-based target, where L and M determines the model.
FFS if UE decides L and M (part of CSI report) or if configured by gNB.
Rank can be reported separately.
	Channel tensor (#Tx, #Rx, #subband).
Non-structured target, arbitrary channel tensors can be represented by amplitude and phase per tensor element.
	Approach based on eType-II framework.
Structured, model-based target, where L and M determines the model.
Compressed channel tensor format using a projection (per Rx) to eType-II based SD and FD basis vectors.



Evaluations are needed to answer the questions:
· Is there a MU-MIMO performance and UCI overhead difference between non model and model-based CSI target? i.e. between 1 and 2 and between 3 and 4?
· Is there a MU-MIMO performance and UCI overhead difference between implicit and explicit CSI feedback approaches, i.e., between 1 and 3 and between 2 and 4?

A standardized solution for beam-delay processing of precoding vector feedback has many advantages. For example, the model-based approach has a lower overhead than the corresponding “raw” feedback, and the standardization effort is smaller given that it would reuse (parts of) the eType-II framework. It needs also to be discussed how to define an eigenvector of a given matrix in the 3GPP specifications, the matrix needs to be defined as well.   
Moreover, we note that the AI/ML models presented in our companion paper [7] are trained on data in this type of format. In that paper [7] we also evaluate the quality of precoders in a variety of these formats, and we find that by increasing the number of selected beams and taps it is possible to capture the true Tx-eigenvector with good accuracy, as can also be seen in Figure 1.

[image: ]
Figure 1: Squared Generalized Cosine Similarity (SGCS) between genie Tx-eigenvector and Case-2 approximations, for different values of L, M, and subband sizes.
This figure shows that Increasing L and M improves the SGCS and it is possible to get very close to the genie. There is also an effect of the subband size. We can thus observe the following.
[bookmark: _Toc127343029][bookmark: _Toc127343519][bookmark: _Toc127343648][bookmark: _Toc127343724][bookmark: _Toc127344465][bookmark: _Toc127520277]An approach based on the eType-II framework, with more selected beams, taps, and coefficients compared to existing eType-II, and with finer resolution in the quantization of the coefficients has the potential to accurately describe the true Tx-eigenvector.
Therefore, we propose that:
[bookmark: _Toc127520265]	Target CSI is standardized by use of the implicit CSI reporting principle (precoding vector) and is based on the eType-II framework. Study further the parameter values, e.g., of L, p_v, β,..
[bookmark: _Toc127343012][bookmark: _Ref118474591][bookmark: _Ref122507357]4 Data collection of target CSI from UE measurements
In Section 1, we discuss model training and the use of NW data collection of UE measurements. Here we further motivate why data needs to be collected by the network:
The network vendor has the responsibility of the performance of the network and hence the performance monitoring of the two sided CSI compression use case must reside at the network side which requires collection of target CSI from the UE. 
· NW side defines the loss function and is thus the side that can compare target CSI with the compressed CSI. This requires that the target CSI is reported to the network in live networks 
· The loss function is NW side proprietary and takes into account interactions with other algorithms in the NW side such as the MU-MIMO precoding algorithm. Hence, loss function cannot be specified or transferred to the UE side for monitoring purpose as it would require to use a “plain vanilla” loss function which has suboptimal network performance
· Since there are multiple UE side vendors, this reporting of target CSI must be performed using 3GPP signaling to avoid the complexity of handling multiple formats of such target CSI reporting for monitoring
Moreover, the re-training and model switching in the UE of the two-sided CSI compression use case must be controlled by the network side. A sudden change of the UE side encoder model may cause an unexpected performance drop and the operator needs to be aware of the cause of the performance change. Hence, as argued in previous sections, a decoder fine tuning is possible as the loss function can be assessed by the network side, while transparent updates of encoder side is risky and may violate the stated RAN4 requirements of testing as RAN4 re-testing in the field is unlikely. Hence, the decoder side updates also require collection of target CSI from the UE
[bookmark: _Toc126745665][bookmark: _Toc127343030][bookmark: _Toc127343520][bookmark: _Toc127343649][bookmark: _Toc127343725][bookmark: _Toc127344466][bookmark: _Toc127520278]Specification of UE to network data collection of UE measurements of target CSI is motivated by both monitoring and decoder adaptation purposes
We note that the latency requirement for the NW to obtain training data is not the same as for AI/ML model inference. Data collected for AI/ML training will not be used for live scheduling and MIMO precoding decisions; therefore, the latency requirements for collecting training data can be significantly larger than those for AI/ML model inference. It is important that a UE can log/store its radio measurements together with the assistance information (e.g., time stamps, cell ID, and/or UE location) for multiple measurement occasions, and then report these accumulated data to the NW using an RRC message. It is also important to include the encoder output (i.e. the UCI payload) in the same container as the collected target CSI. The bulk of the discussions on how the data collection should be carried out although RAN1 needs to define the requirements.
[bookmark: _Toc126745666][bookmark: _Toc127343031][bookmark: _Toc127343521][bookmark: _Toc127343650][bookmark: _Toc127343726][bookmark: _Toc127344467][bookmark: _Toc127520279][bookmark: _Toc126745668][bookmark: _Toc126745669]RAN1 need to define requirements for the NW data collection of UE measurements while RAN2 studies the procedures using these requirements. 
As discussed in our general aspects paper [6], data collection for model training should consider data types, measurement occasion configuration, measurement occasion interval or logging interval configuration, data collection duration configuration, data logging triggers/types and UE reporting triggers/types. In the following, we discuss these aspects for the CSI compression use case and identify the potential standard impacts. 
4.1	CSI-RS measurement occasion configuration
The data collection framework should support a UE to collect data from multiple measurement occasions so that the UE can report the accumulated data to the NW. For the CSI compression use case, a measurement occasion can consist of a single RS resource (e.g. as in Rel.16 CSI reporting). 
Proposal 1 [bookmark: _Toc127520266][bookmark: _Toc118316451]For NW data collection for model training a measurement occasion consists of a single CSI-RS resource
4.2	Content/type/size of the collected CSI data
In general, the collected data for model training can include CSI-RS measurement data of the radio channel as well as non-radio-measurement data. The radio measurement data includes CSI from CSI-RS measurements expressed in the target CSI format (see Section 3) and the non-radio measurement data can include for example CSI-RS configuration, cell-ID, time stamp and/or UE location to enable training of site/area specific models. 
If the UE that performs the data collection has a model for CSI compression deployed already, then the latent space information (encoder output) as would have been sent in the UCI needs also to be collected together with the target CSI, so the data collection report contains all the information needed for decoder fine tuning and/or model monitoring. This ensures that the target CSI and latent space encoder output is collected by one and the same CSI-RS measurement. 
The accumulated data of one or multiple measurement occasions are then reported from the UE to the NW. 
For a study on the high resolution format and expected payloads, see our evaluation paper [5]. 
Proposal 2 [bookmark: _Toc118316453][bookmark: _Toc127520267]For NW data collection for model training for the CSI enhancement use case, a UE should log all measurements performed on CSI-RS stored in a high resolution target CSI format in addition to the assistance information (e.g., time stamps, cell ID, and/or UE location) and if available, also the encoder output (latent space as sent over UCI) obtained from the same measurement as the target CSI.
4.3	CSI Measurement logging interval and duration
It is expected that a UE performs measurements at each configured measurement occasion and logs the measurement data together with non-radio measurement data and assistance information (if needed). The network can trigger data collection in cells where more data needs to be gathered for an enhancement of the decoder as discussed in Section 1 and 2. It could also be that network would like to use site specific models and thus need to collect more data for a particular site. The network may also trigger data collection for certain UEs for performance monitoring purpose. 
In this case, the data logging interval is equivalent to the measurement occasion interval, and it is the periodicity for a UE to store measurement results and associated non-radio-measurement data. The following requirements will likely impact specification and, therefore, should be studied: the required payload size, the required logging frequency, the need for site-specific AI/ML models and how it impacts the logging.
Proposal 3 [bookmark: _Toc118709439][bookmark: _Toc118716856][bookmark: _Toc118716905][bookmark: _Toc118721335][bookmark: _Toc118721565][bookmark: _Toc118316455][bookmark: _Toc127520268][bookmark: _Toc118709441][bookmark: _Toc118716858][bookmark: _Toc118716907][bookmark: _Toc118721337][bookmark: _Toc118721567][bookmark: _Toc118709442][bookmark: _Toc118716859][bookmark: _Toc118716908][bookmark: _Toc118721338][bookmark: _Toc118721568][bookmark: _Toc118461943][bookmark: _Toc118461944]For NW data collection for model training for the CSI compression use case, RAN1 should study and define the candidate values of measurement occasion interval (data logging interval) and duration to be used as an input to further RAN2 work.
4.4 UE side data collection
For UE-side data collection, where UE performs measurements for its own model training. Hence, for the CSI prediction use case, where AI/ML model is one sided on the UE, the UE-side data collection can be studied. For example, the CSI measurement procedure may need to be enhanced similarly as is done for prediction in the Rel.18 MIMO WI. The findings and agreements in the WI can be used as a starting point. 
[bookmark: _Toc127520269]Studies on UE side data collection can be considered for the one-sided (UE side) CSI prediction sub use case
5 Model transfer
There are several issues with model transfer between gNB and UE (and vice versa) such as vendor incompatibility, lack of optimization for the model at the receiving node, need for on device compilation, inefficient model leading to high energy consumption and the need to standardize or agree on a formt to be used for such model transfer etc.  
The other alternatives with NW first training and passing of gradient or latent space to the UE in offline training seems more attractive as they allow the UE side to develop their own algorithm and use optimized hardware. Hence, model transfer should be the last resort. 
[bookmark: _Toc127520270]For CSI use case in this SI, down-prioritize studies on model transfer 
6 Inference
6.1 Pre-processing information / Target CSI configuration
As discussed in Section 3, if the target CSI approach of eType-II based is used, then there may be need for the UE to report details of the pre-processing to the gNB to enable that the gNB can fully interpret the decoder output. 
For example, assuming Type-II based CSI target definition and if L=10 SD basis are configured, the channel may be LOS and the UE can decide not to use all 10 SD basis vectors in the CSI report. In this case, the UE need to convey information to the gNB about discarded SD basis vectors.
[bookmark: _Toc118726095][bookmark: _Toc118726302][bookmark: _Toc126052294][bookmark: _Toc126058676][bookmark: _Toc126323385][bookmark: _Toc126745670][bookmark: _Toc127343032][bookmark: _Toc127343522][bookmark: _Toc127343651][bookmark: _Toc127343727][bookmark: _Toc127344468][bookmark: _Toc127520280]If the pre-processing contains removal of raw channel subspace (by the UE), then information about the remaining subspace (e.g., the SD and FD basis vectors) needs to be reported to the network side along with the encoder output bits.
6.2 Rank and CQI reporting
In current specifications, how the UE computes RI and CQI is up to UE implementation. What is specified is the channel and interference measurement resources and the CSI reference resource to meet the target transport bock error probability. In the current framework, CQI is conditioned on PMI, RI, CRI.
We have not identified why this basic principle needs to be changed if the current 3GPP framework of implicit CSI reporting (i.e. recommended precoding matrix) is used. We acknowledge that in an AI/ML-based framework there would not exist a well-defined PMI that the UE and gNB both can refer to. However, with the introduction of a target CSI, as discussed in Section 3, the CQI can be conditioned on the target CSI (as well as on the RI and CRI). The CQI is then well-defined, and the UE behavior is consistent and predictable by the network. Moreover, the implementation of CQI determination can be tested independently of the AI/ML model, reducing complexity in testing, and deploying models. Nevertheless, the CQI determination is not restrictive in the sense that the UE may still use and AI/ML model (possibly integrated with channel estimation and/or CSI compression) to determine CQI.
In the current framework as well as  in an AI/ML framework, the gNB is free to change the suggested precoder, e.g., for MU-MIMO scheduling. The gNB is today able to choose an MCS, that is possibly different what was reported in the CQI, e.g., if the DL-precoder is changed in MU-MIMO scheduling. Hence, the gNB can handle that CQI is conditioned on a hypothesis that is not used for DL-precoding, as long as the conditioning is well-defined and resulting in predictable UE behavior.
In a case where the target CSI is explicit (full channel tensor), but the CSI reporting is implicit (precoder hypothesis), the CQI can still be conditioned on the target CSI. The additional assumption would be that CQI is conditioned on that the RI number of strongest Tx-eigenvectors, of the target CSI, are used as precoder hypothesis.
If raw channel-based CSI reporting is supported (i.e. full Tx * Rx MIMO channel), then the CSI report is similar to the CSI acquired by SRS measurements in TDD. For this case, there is no gNB transmission hypothesis that the UE can use to compute rank and CQI, hence gNB can re-use the method to acquire rank and CQI used today for TDD reciprocity. Therefore, for this case, the CQI and RI reporting is disabled.
[bookmark: _Toc127520271]For determination of RI and CQI: Use UE implementation-based RI. CQI should be conditioned on the target CSI.
[bookmark: _Toc127520272]If raw channel-based CSI reporting is supported (i.e. full Tx * Rx MIMO channel), then the CSI report does not contain any of RI, LI or PMI. 

6.3 Quantization for UCI payload
In two-sided CSI compression, the encoder in the UE side will transmit the encoder output to the decoder on the NW side. Specifically, the decoder side will receive S=KQ bits of information from the UE, where K is the output size (i.e. the number of nodes in the output layer) of the encoder and Q is the number of quantization bits (if scalar quantization is used) per node. During the inference, this quantization is important to minimize the number of bits used in the CSI report (and thus, save the UL resources). 
In two-sided CSI compression, the encoder part and decoder part may have different architectures, particularly if Type2 or Type 3 training is used since these originate from different vendors. Therefore, knowing only the total number of exchanged bits S over the air interface may not be sufficient to derive the number of encoder output K and the number of quantization bits Q. 
Although the total number of bits S exchanged between the encoder and the decode is known, the total number of bits may come from different combination of the number of encoder outputs and the number of quantization bits (i.e., as different vendor may have their own preferences). For example, it is possible that the encoder has K1 encoder outputs with Q1 quantization bits while the decoder assumes K2 encoder outputs with Q2 quantization bits and S=K1Q1 = K2Q2.
If K and Q are not standardized for training Type 2 and 3 (quantization bits and encoder output size) it will lead to different interpretation, e.g., in the size of the encoder/decoder architecture in one side that suitable to handle the encoder/decoder architecture in another side. If the encoder and decoder side use different sizes on the encoder and the decoder architectures it may lead to some performance degradation, in particular, when the differences are large.
Without specification of K and Q, a vendor has to resort to train considering the input/output as a string of non-structured bits. While this in theory could yield encoders and decoders of decent performance, it may be a difficult training task since it effectively imposes a -sized classification problem in the middle of the AE. In some sense this classification problem reflects the complexity of the task but may not be a fruitful formulation for training. In particular, the gradients may not behave nicely, and it may effectively make it impossible to use some of the common techniques for quantization aware training. Therefore, we believe that the encoder-side and the decoder-side need to align on how the quantization bits are used (either or both during training and inference). 
[bookmark: _Toc127343033][bookmark: _Toc127343523][bookmark: _Toc127343652][bookmark: _Toc127343728][bookmark: _Toc127344469][bookmark: _Toc127520281][bookmark: _Toc127343034]Given the potential complexity arising from unmatched quantization, proponents of non-standardized quantization need to motivate the benefits to why the quantization should not be standardized.
Since the MIMO channel and domain-specific feature extraction methods (e.g., DFT-based transmission) are complex-valued, the latent variable of the implemented NNs may for some vendors also be in a form of complex value. Considering this, the quantization methods should also be capable to work for complex-value number.
Regarding the number of quantization bits, a simple solution is to standardize the number of quantization bits Q for the encoder outputs. If, however, this solution is found to be too restrictive, then we may allow a different number of quantization bits per encoder output. Allowing for a variable number of quantization bits may give better flexibility in setting up the trade-off between the auto-encoder model size, possible UCI payload, number of information exchanges during the training, and the expected performance. 
In this approach, quantization information needs to be shared between the encoder and the decoder to make sure that the encoder and the decoder are aligned. For example, an additional bitfield (contains of a few bits of quantization-bit information) may be exchanged between the UE and the NW. This is also important to let the NW understand how the bits received in the UCI are segmented. Note that the size of this additional information will be non-substantial compared to the size of information exchanges required for datasets and target CSI delivery during training or the size of CSI payload during inference.
[bookmark: _Toc127520273]RAN1 to study whether the number of quantization levels per encoder output should be fixed or configurable by the network in CSI report configuration.
One straightforward approach to enable a flexible CSI payload size via flexible quantization-bits is by having different models trained specifically for the respected quantization bit (quantization-specific training). This approach, however, may result in the UE and the NW needs to store multiple models to handle different quantization size during the inference. 
In another approach, the model may be trained to handle multiple quantization sizes (quantization-common training). In the below table, simulation results are given for the case of quantization-specific training and quantization-common training. For the quantization-specific training, the quantization bit used in the inference is the same as the quantization bit during the training. Meanwhile, for quantization-common training, the model is trained using all 4, 6, and 8 quantization bits.
Table 6. Mean SGCS of different training approaches to handle quantization sizes.
	Training approach
	Quantization size Q during inference

	
	4 bits
	6 bits
	8 bits

	Quantization specific
	0.7528
	0.7768
	0.7902

	Quantization common
	0.7530
	0.7758
	0.7809



From the above table, we can observe that it is feasible to have AI/ML model that could handle multiple quantization sizes. I.e., the performance degradation of the quantization-common model compared to the quantization specific model is very minor. Given the additional complexity arises in using quantization-specific model (e.g., a larger model storage needed), having quantization-common model may be beneficial. On the other words, having a common model that can handle different quantization bits may serve as one approach to enable a flexible payload size for CSI report.
[bookmark: _Toc127343035][bookmark: _Toc127343524][bookmark: _Toc127343653][bookmark: _Toc127343729][bookmark: _Toc127344470][bookmark: _Toc127520282][bookmark: _Toc127343037]It is feasible to have a quantization-common model, the performance difference to a quantization-specific model is non-substantial.
As mentioned above, there will be S=KQ quantized encoder output that will be transmitted to the decoder side as UCI. Therefore, another possibility in obtaining flexible UCI payload size may come from a flexible number of encoder output size, K. Similar to the quantization-common above, if a flexible number of encoder output size is to be supported, it will be preferable to have a model that could handle different numbers of encoder output size, i.e., to minimize the model storage and avoid unnecessary latency in switching between two models that specifically trained for a certain encoder output size. It may be a further study on whether to support flexible UCI bits via flexible quantization bit, flexible encoder output size, or both.
7	Performance monitoring, model update, activation/de-activation/switching
As discussed in previous sections, the model LCM of a two-sided model not relying on model transfer will be considerably easier to handle if the encoder is frozen and never changed after AI model deployment in UE. 
Firstly, the updating of the decoder can be transparent to the encoder side and by then avoid inter-vendor coordination for re-training. Secondly, with CSI target and encoder output (i.e., decoder input) being occasionally reported jointly, the NW can autonomously monitor its decoder reconstruction error via an intermediate KPI defined by a loss function. 
A detected drift of the intermediate KPI may initiate a re-training of the decoder, and if that cannot resolve the performance issue then one should consider also updating the encoder, i.e., a model switch (or model update) using FOTA and associated activation from NW side. 
Hence, such procedure for decoder model updating basically follows the steps of initial training with NW model first in sequential training, with the difference that the second step of training the encoder is not needed. 
As also discussed in Section 4, the alternative to CSI targets being sent to the NW using 3GPP signalling would be data collection over the top (OTT) to some UE-sided model LCM entity data repository for the purpose of model monitoring and re-training. But, without having the associated NW decoder output and associated loss function, it will not be possible for the UE vendor to determine the KPI with deployed models, so the UE-side must monitor performance of its encoder with a reference decoder e.g., the decoder that was developed together with their encoder using an assumed reference loss function which is different from the loss function used by the NW side when performing the training of the actually deployed decoder.
If model drifts are detected using such approximate method on the UE side only monitoring, one UE-side may then indicate that it has observed drifts whereas another UE-side is not indicating drifts, possibly due to a different reference decoder. Whether there is a need to initiate re-training of decoder only or both decoder and encoder will be unclear. However, with the principle of a single decoder in mind, such model LCM becomes complicated. 
For example, the NW would have to understand if this drift is truly a drift with the actually deployed decoder or only in the UE’s reference decoder. Moreover, since the decoder can be updated transparently to the encoder, the UE will not know when the decoder is updated, meaning that the UE cannot be sure about the time scale over which it should aggregate the statistics and if the reference decoder is relevant or obsolete. Furthermore, only the NW will know if the problem exists for many UEs or if it is prevalent in a single category of UEs.
[bookmark: _Toc126323387][bookmark: _Toc126745672][bookmark: _Toc127343038][bookmark: _Toc127343525][bookmark: _Toc127343654][bookmark: _Toc127343730][bookmark: _Toc127344471][bookmark: _Toc127520283]Specifying  reporting  of target CSI from UE to NW is crucial for making two-sided model LCM implementable in practice.
Hence, we propose the following.
[bookmark: _Toc127520274] Model monitoring of two-sided models using intermediate KPIs shall be based on that the UE can be triggered to report the target CSI together with the CSI report.

As discussed In Section 2, model selection/switching may be considered in case a UE vendor has improved their model and downloaded a new model to the already deployed UEs in the field (e.g. using FOTA). This could be the case if more data has been collected to improve performance or to extend the applicability of AI-CSI to new scenarios such as a railway or stadium. Alternatively, the UE may be deployed with multiple models for the CSI compression feature already at the deployment, targeting different scenarios such as rural, urban high rise etc.
The control over whether a different model in the UE should be activated and replace the old model (for the same feature) or whether a model should be selected among a set of supported models is controlled by the network and operator. 
Model switching impose deploying multiple encoder models which drive complexity and cost to the UE implementation. Hence, the gains with encoder model switching should justify the cost. 
[bookmark: _Toc127520275][bookmark: _Toc126745650][bookmark: _Toc126745651][bookmark: _Toc126745652][bookmark: _Toc126745653][bookmark: _Toc126745654][bookmark: _Toc126745655][bookmark: _Toc126745656][bookmark: _Toc126745657][bookmark: _Toc126745658][bookmark: _Toc126745659][bookmark: _Toc126745660][bookmark: _Toc126745661][bookmark: _Toc126745662]An encoder model update shall be coordinated with the NW-side where the encoder model is trained, validated, and tested together with the NW decoder (frozen) before being deployed and activated.
9 Conclusion
In the previous sections we made the following proposals 
Proposal 1	For CSI compression use case, it is required that standardized procedures and associated data format for UE to gNB data collection of a high-resolution CSI (target CSI) is supported to enable model monitoring and to provide data for enabling decoder fine tuning.
Proposal 2	For CSI compression use case, it is a requirement that only training types and methods that enables a single decoder to be implemented in the network side is to be considered, irrespectively of the vendor origins of the connected UE devices and/or UE chipsets.
Proposal 3	For CSI use case in this SI, down-prioritize any studies on model transfer unless it is the only solution that provides performance benefits over legacy CSI reporting
Proposal 4	Target CSI is standardized by use of the implicit CSI reporting principle (precoding vector) and is based on the eType-II framework. Study further the parameter values, e.g., of L, p_v, β,..
Proposal 5	For NW data collection for model training a measurement occasion consists of a single CSI-RS resource
Proposal 6	For NW data collection for model training for the CSI enhancement use case, a UE should log all measurements performed on CSI-RS stored in a high resolution target CSI format in addition to the assistance information (e.g., time stamps, cell ID, and/or UE location) and if available, also the encoder output (latent space as sent over UCI) obtained from the same measurement as the target CSI.
Proposal 7	For NW data collection for model training for the CSI compression use case, RAN1 should study and define the candidate values of measurement occasion interval (data logging interval) and duration to be used as an input to further RAN2 work.
Proposal 8	Studies on UE side data collection can be considered for the one-sided (UE side) CSI prediction sub use case
Proposal 9	For CSI use case in this SI, down-prioritize studies on model transfer
Proposal 10	For determination of RI and CQI: Use UE implementation-based RI. CQI should be conditioned on the target CSI.
Proposal 11	If raw channel-based CSI reporting is supported (i.e. full Tx * Rx MIMO channel), then the CSI report does not contain any of RI, LI or PMI.
Proposal 12	RAN1 to study whether the number of quantization levels per encoder output should be fixed or configurable by the network in CSI report configuration.
Proposal 13	Model monitoring of two-sided models using intermediate KPIs shall be based on that the UE can be triggered to report the target CSI together with the CSI report.
Proposal 14	An encoder model update shall be coordinated with the NW-side where the encoder model is trained, validated, and tested together with the NW decoder (frozen) before being deployed and activated.

In addition, we have the following observations:
Observation 1	3GPP specifications needs to support a mechanism to update/fine tune the decoder to consider implementation reality (e.g., UE and gNB RF and antennas at UE and gNB) and to ensure good generalization performance in scenarios not part of the pre-deployment training dataset
Observation 2	An approach based on the eType-II framework, with more selected beams, taps, and coefficients compared to existing eType-II, and with finer resolution in the quantization of the coefficients has the potential to accurately describe the true Tx-eigenvector.
Observation 3	Specification of UE to network data collection of UE measurements of target CSI is motivated by both monitoring and decoder adaptation purposes
Observation 4	RAN1 need to define requirements for the NW data collection of UE measurements while RAN2 studies the procedures using these requirements.
Observation 5	If the pre-processing contains removal of raw channel subspace (by the UE), then information about the remaining subspace (e.g., the SD and FD basis vectors) needs to be reported to the network side along with the encoder output bits.
Observation 6	Given the potential complexity arising from unmatched quantization, proponents of non-standardized quantization need to motivate the benefits to why the quantization should not be standardized.
Observation 7	It is feasible to have a quantization-common model, the performance difference to a quantization-specific model is non-substantial.
Observation 8	Specifying  reporting  of target CSI from UE to NW is crucial for making two-sided model LCM implementable in practice.
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