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1	Introduction
The approval of the Rel-18 work package marks the start of 5G Advanced evolution. The package includes a study item on AI/ML for NR air interface, and the work item description can be found in [1].
The initial use cases focused in this study include:
 (
CSI feedback enhancement, e.g., overhead reduction, improved accuracy
, prediction [RAN1]
Beam management, e.g., 
beam prediction in time,
 and/or 
spatial domain
 for overhead and
 
latency reduction
, beam selection accuracy improvement [RAN1]
Positioning accuracy enhancements
 for different scenarios including, e.g.,
 
those with
 heavy
 
NLOS 
conditions [RAN1] 
)
For the use cases under consideration, the study aims to evaluate performance benefits of AI/ML based algorithms:
 (
Methodology based on statistical models (from TR 38.901 and TR 38.857 [positioning]), for link and system level simulations. 
Extensions of 3GPP evaluation methodology for better suitability to AI/ML based techniques should be considered as needed.
Whether f
ield data 
are optionally needed 
to further assess the performance and
 
robustness in real-world environments 
should be discussed as part of the study. 
Need for common
 assumptions in
 dataset construction for training, validation and test for the
 
selected use cases
.
 
Consider adequate model training strategy, collaboration levels and associated implications
Consider agreed-upon base AI model(s) for calibration
AI model description and training methodology used for evaluation should be reported for information and cross-checking purposes
KPIs: 
Determine the common KPIs and corresponding requirements for the AI/ML operations.
 
Determine the use-case specific KPIs and benchmarks of the selected use-cases.
Performance, inference latency and computational complexity of AI/ML based algorithms should be compared to that of a state-of-the-art baseline
Overhead, power consumption (including computational), memory storage, and hardware requirements (including for given processing delays) associated with enabling respective AI/ML scheme, as well as generalization capability should be considered.
)
At RAN1#109-e and RAN1#110, a comprehensive set of evaluation assumptions were agreed (see Appendix A.1 and A.2). 
In this contribution, we discuss the remaining issues on evaluation assumptions and present initial evaluation results on AI/ML for positioning enhancements.
2	Methodology
NR offers a variety of positioning technologies. Release-15 NR supports positioning, e.g., by using LTE positioning in non-standalone (NSA) operation. Release-16 NR much enhances the positioning support with a range of positioning methods, including both downlink-based and uplink-based positioning. Release-17 NR introduces additional enhancements to reduce latency for time-critical use cases such as remote control, deliver positioning accuracy down to the level of 20-30 cm for use cases such as factory automation, and improve integrity protection of the location information. 3GPP Release 18 is investigating solutions to further improve accuracy, integrity, and power efficiency in positioning, study sidelink positioning, and investigate positioning support for RedCap devices.
NR supports large channel bandwidth (up to 100 MHz in FR1 and up to 400 MHz in FR2). Such large signal bandwidths offer an improved ability to resolve multipath effects. The use of multiple antennas for transmission and/or reception in NR facilitates directional positioning including Angle-of-Arrival positioning and Angle-of-Departure positioning. The evaluation results captured in TR 38.855 [2] and TR 38.857 [3] show that NR can achieve high positioning accuracy results.
Nonetheless, the achievable position accuracy is largely dependent on the network deployment pertinent to the corresponding environment, such as if the density of base stations is high enough to create a high probability of LOS conditions. It is reasonable to focus on scenarios with heavy NLOS signal propagation conditions between base station and UE to study AI/ML based algorithms for positioning accuracy enhancements.
With Industry 4.0, we are at a new dawn of automation and intelligence, with smart, connected products and the smart factories that produce them. Positioning is a valuable service for Industry 4.0. Industrial factories may also have heavy NLOS signal propagation conditions between base station and UE, and thus are ideal scenarios for study AI/ML based algorithms for positioning accuracy enhancements. 3GPP has defined a set of indoor factory (InF) scenarios, focusing on factory halls of varying sizes and with varying levels of density of clutters, e.g., machinery, assembly lines, storage shelves. Evaluating indoor factory (InF) scenarios as part of the study on AI/ML based algorithms for positioning accuracy enhancements is essential.
For positioning accuracy enhancements, AI/ML based algorithms can be used for either direct AI/ML positioning or AI/ML assisted positioning.
· Direct AI/ML positioning: The output of the AI/ML model directly provides position estimate. 
· AI/ML assisted positioning: The output of the AI/ML model provides intermediate estimates such as LOS/NLOS classification, timing estimates, and angular estimates. These intermediate estimates become input to another algorithm (AI/ML based or non-AI/ML based) to derive the final position estimate. 
Both direct AI/ML positioning and AI/ML assisted positioning can improve positioning accuracy enhancements with different degrees of complexity and specification impact. From evaluation perspective, it is necessary to evaluate both to develop a holistic understanding of AI/ML based algorithms for positioning accuracy enhancements.
As the Rel-18 study on AI/ML for NR air interface is the first one in 3GPP that explores the benefits of augmenting air interface with features enabling improved support of AI/ML based algorithms, it is important to calibrate evaluation results from different companies in order to facilitate drawing observations and making conclusions. 
3GPP has established simulation methodology for studying positioning (see, e.g., TR 38.855 [2] and TR 38.857 [3]), which can be used to generate synthetic data for the study of AI/ML based algorithms for positioning accuracy enhancements. 
However, the simulation layout for indoor factory scenarios described in TR 38.857 (see Figure 1) is much simplified compared to real-world indoor factory scenarios. Additional simulation methodology for generating synthetic data, such as digital twins, can be explored. A digital twin is a virtual representation — a true-to-reality simulation of physics and materials — of a real-world physical asset or system, which is continuously updated. Digital twins can help generate synthetic data that are closer to real-world data, compared to the traditional 3GPP statistical simulation methodology.
Besides generating synthetic data, real data is valuable for the study of AI/ML based algorithms for positing accuracy enhancements. It is beneficial to identify existing sets of real data as part of the evaluation work for the study of AI/ML based algorithms for positing accuracy enhancements. In addition, companies are encouraged to contribute real data to evaluate AI/ML based algorithms for positioning accuracy enhancements.
Proposal 1: Companies are encouraged to contribute real data to evaluate AI/ML based algorithms for positioning accuracy enhancements.
3	KPIs
The study item description lists many dimensions for KPIs, including performance, inference latency, computational complexity, overhead, power consumption, memory storage, hardware requirements, and generalization capability. 
Though it is beneficial to have a full characterization of the performance of AI/ML based algorithms for NR air interface, it is important to focus on a few most important KPIs in the initial phase to understand the gains of AI/ML based algorithms. 
From positioning accuracy enhancement perspective, the key requirement is to improve positioning accuracy. Positioning accuracy can be measured by 
· Horizontal accuracy, which is the difference between the calculated horizontal position and the actual horizontal position of a UE. 
· Vertical accuracy, which is the difference between the calculated vertical position and the actual vertical position of a UE.
With the collected positioning error distribution, a set of percentiles of positioning error can be analysed, such as 50%, 67%, 80%, 90%, and 95%.
Also, many of the KPIs such as inference latency depend on the used computing platform (such as the GPU model). Therefore, it is important to report the KPIs together with the used computing platform (such as the GPU model).
It was discussed that complexity should be evaluated as a KPI, where complexity include model complexity and computational complexity. For evaluation of AI/ML based positioning, the computational complexity can be reported via the metric of floating point operations (FLOPs). 
It is however important to keep in mind that increasing hardware performance can support successively more complex models. For example, Figure 1 shows how single GPU performance has scaled up to meet the demands of deep learning. GPU inference performance has improved by 317x, more than doubling each year. Figure 2 shows single GPU FP64 performance increased by 20x over the decade from 2010 to 2020, an annual growth rate of 35%. In addition to scaling up the performance of individual GPUs, GPUs are also being scaled out to larger clusters for deep learning and high performance computing applications.
Observation 1: Increasing hardware performance can support successively more complex AI/ML models. For example, GPU inference performance has improved by 317x in 8 years (2012-2020), more than doubling each year.
Proposal 2: AI/ML model complexity and computational complexity should not be regarded as a roadblock to the adoption of AI/ML based algorithms for positioning accuracy enhancements.
[image: Chart, line chart

Description automatically generated]
Figure 1: GPU inference performance is more than doubling every year. (Source: Ref. [4])
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Figure 2: Single GPU performance scaling. (Source: Ref. [4])
4	Evaluation results
In this section, we provide initial evaluation results on positioning accuracy improvement using AI/ML based algorithms. 
The system-level simulation assumption and scenarios are built on the basis of the RAN1 agreements. Specifically, we evaluate the positioning accuracy for heavy NLOS case in the InF-DH scenario. The scenario layout is illustrated in Figure 3.
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Figure 3: Scenario layout.
4.1	Direct AI/ML positioning: RF fingerprinting  
The direct AI/ML positioning utilizes a convolutional neural network (CNN). The input to the CNN is a fingerprint consisting of multiple channel impulse responses (CIRs). The output of the CNN is the predicted position of UE. As a benchmark, we use a time-of-arrival (TOA) based positioning.
Table 1 summarizes the computational and model complexity values.
Table 1: Model complexity and computational complexity
	Number of model parameters
	1.8 M

	Number of FLOPs
	90.9 M



Figure 4 shows the CDF of the horizontal positioning accuracy of both AI/ML based positioning and TOA based positioning. It can be seen that the AI/ML based positioning significantly outperforms the TOA based positioning.
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Figure 4: Positioning accuracy improvement of using an AI/ML based method.
Table 2 summarizes the CDF percentiles (50%, 67%, 80%, 90%,) of horizontal positioning accuracy of both AI/ML based positioning and TOA based positioning.
Table 2: Summary of CDF percentiles of horizontal positioning accuracy
	CDF percentile
	50%
	67%
	80%
	90%

	ToA
	12.1 m
	17.2 m
	24.1 m
	34.9 m

	AI/ML
	1.1 m
	1.5 m
	1.8 m
	2.3 m



Observation 2: AI/ML-based algorithms for direct AI/ML positioning can significantly improve positioning estimation accuracy when compared to classical approaches.
4.2	Direct AI/ML positioning: RF fingerprinting with different drops 
To investigate the model generalization capability, we consider different drops, i.e., training dataset from drops {A0, A1,…, AN-1}, test dataset from unseen drop(s) (i.e., different drop(s) than any in {A0, A1,…, AN-1}, where N>=1.
Specifically, we generate two datasets referred to as Drop 1 and Drop 2 in the InF-DH scenario with the same clutter settings. Since the two drops were produced with different random seed values, UEs in the two drops experienced different channel realizations. These two drops may be thought of as two different indoor factories that have the same clutter settings.
Figure 5 shows the CDF of the horizontal positioning accuracy of the AI/ML based method under the two drops. For comparison, we also show the CDF of the horizontal positioning accuracy of the AI/ML based method under the same drop.
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Figure 5: Positioning accuracy of AI/ML based method under different drops.
Table 3 summarizes the CDF percentiles (50%, 67%, 80%, 90%,) of horizontal positioning accuracy of AI/ML based method under the two drops.
Table 3: Summary of CDF percentiles of horizontal positioning accuracy under different drops.
	Training
	Testing
	50%
	67%
	80%
	90%

	Drop 1
	Drop 1
	1.1 m
	1.5 m
	1.8 m
	2.3 m

	Drop 1
	Drop 2
	7.1 m
	9.3 m
	11.6 m
	14.5 m



From the above results, we can see that RF fingerprinting performs well when training and testing are performed on the same drop, but the positioning accuracy of RF fingerprinting degrades considerably when training and testing are performed on different drops. 
The above observation is not surprising, because RF fingerprinting is site specific, i.e., the AI/ML model learns the mapping between channel realizations and the corresponding UE’s positions. When training and testing are performed on different drops, the AI/ML model learned the mapping between channel realizations and the corresponding UE’s positions in a first site and is applied to a second site which has a different mapping between channel realizations and the corresponding UE’s positions. As a result, one should not expect the AI/ML model to perform well under different drops.
Observation 3: RF fingerprinting is site specific, i.e., the AI/ML model learns the mapping between channel realizations and the corresponding UE’s positions.
Observation 4: The AI/ML model for RF fingerprinting trained on Drop 1 does not generalize well to a different Drop 2.
Proposal 3: If the AI/ML model for RF fingerprinting trained on Drop 1 is directly applied to a different Drop 2, it should not be expected that the model can generalize well. 
4.3	Direct AI/ML positioning: RF fingerprinting with finetuning
In the previous section, we have observed that the positioning accuracy of AI/ML based RF fingerprinting degrades considerably when training and testing are performed on different drops. In general, AI/ML model performance degrades when there is a mismatch between training data and test data, such as training the AI/ML model in a first scenario and applying it to a second scenario.
One solution to the problem is to use AI/ML model finetuning. Specifically, the AI/ML model is trained in a first scenario. When the AI/ML model is transferred to a second scenario, the AI/ML model is finetuned/retrained with new data from the second scenario. With transfer learning, the amount of data required for finetuning/retraining the AI/ML model is expected to be much less than the amount of training data needed for training the AI/ML model from scratch. 
Next, we evaluate the performance of model finetuning for AI/ML based RF fingerprinting. Specifically, we generate two datasets referred to as Drop 1 and Drop 2 in the InF-DH scenario with the same clutter settings. Since the two drops were produced with different random seed values, UEs in the two drops experienced different channel realizations. These two drops may be thought of as two different indoor factories that have the same clutter settings. The AI/ML model is first trained using the dataset of Drop 1, consisting of 16k samples. Then we finetune the AI/ML model with 1k and 2k samples from the dataset of Drop 2. 
Figure 6 shows the CDF of the horizontal positioning accuracy of the AI/ML based method with fine-tuning. For comparison, we also show the CDF of the horizontal positioning accuracy of the AI/ML based method under the same drop (performance upper bound) and the CDF of the horizontal positioning accuracy of the AI/ML based method without finetuning (performance lower bound).
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Figure 6: Positioning accuracy of AI/ML based method under different drops.
Table 4 summarizes the CDF percentiles (50%, 67%, 80%, 90%,) of horizontal positioning accuracy of AI/ML based method with model finetuning.
Table 4: Summary of CDF percentiles of horizontal positioning accuracy with model finetuning.
	Training
	Testing
	Finetuning
	50%
	67%
	80%
	90%

	Drop 1
	Drop 1
	N/A
	1.1 m
	1.5 m
	1.8 m
	2.3 m

	Drop 1
	Drop 2
	No finetuning
	7.1 m
	9.3 m
	11.6 m
	14.5 m

	Drop 1
	Drop 2
	Finetuning with 1k samples
	2.5 m
	3.3 m
	4.2 m
	5.3 m

	Drop 1
	Drop 2
	Finetuning with 2k samples
	2.1 m
	2.7 m
	3.5 m
	4.3 m

	Note: The original model was trained with 16k samples. Thus, 1k (resp. 2k) finetuning samples corresponds to 6.25% (resp. 12.5%) of the total 16k samples.



From the above results, we can see that finetuning the model with only 1k samples achieves a horizontal positioning accuracy of 5.3 m at 90% (vs. 14.5 m at 90% without model finetuning), demonstrating the clear benefit of model finetuning. Note that 1k finetuning samples is only 6.25% of the total 16k samples used in the original training from scratch.
Observation 5: When the AI/ML model for RF fingerprinting trained on Drop 1 is finetuned with a small number of samples from Drop 2, the positioning accuracy of the finetuned AI/ML model is much improved compared to the performance of the AI/ML model without finetuning.
Proposal 4: When an AI/ML model for RF fingerprinting trained in a first scenario is transferred to a second scenario, the AI/ML model should be finetuned/retrained with new data from the second scenario.
4.5	AI/ML assisted positioning: LOS/NLOS classification
The AI/ML assisted positioning utilizes a convolutional neural network (CNN). The input to the CNN is a fingerprint consisting of a CIR. The output of the CNN is the LOS/NLOS probability.  
Table 2 provides the confusion matrix of the true test labels and the predicted labels. In the shaded region of the table, the rows and the columns correspond to the predicted class and the true class, respectively, and the number of observations for each case is shown in the corresponding cell.
The non-shaded rightmost column provides the precision values, each denoting the percentage of all the samples predicted to belong to each class that are correctly classified. It can be seen that the precision values exceed 99%.
The non-shaded row at the bottom provides the recall values, each denoting the percentage of all the samples belonging to each class that are correctly classified. It can be seen that the recall value for target class NLOS is as high as 99.99%, and the recall value for target class LOS exceeds 97%.
Table 2: Confusion matrix of LOS/NLOS classification
	
	Target class: NLOS
	Target class: LOS
	Precision

	Output class: NLOS
	70120
	45
	99.94%

	Output class: LOS
	9
	1539
	99.42%

	Recall
	99.99%
	97.16%
	Overall accuracy: 99.92%



Observation 6: AI/ML assisted positioning can provide high-fidelity intermediate estimates such as LOS/NLOS classification, which in turn can be used to derive final position estimate.
Conclusion
In the previous sections, we discuss general aspects of AI/ML framework for NR air interface and make the following observations:
Observation 1: Increasing hardware performance can support successively more complex AI/ML models. For example, GPU inference performance has improved by 317x in 8 years (2012-2020), more than doubling each year.
Observation 2: AI/ML-based algorithms for direct AI/ML positioning can significantly improve positioning estimation accuracy when compared to classical approaches.
Observation 3: RF fingerprinting is site specific, i.e., the AI/ML model learns the mapping between channel realizations and the corresponding UE’s positions.
Observation 4: The AI/ML model for RF fingerprinting trained on Drop 1 does not generalize well to a different Drop 2.
Observation 5: When the AI/ML model for RF fingerprinting trained on Drop 1 is finetuned with a small number of samples from Drop 2, the positioning accuracy of the finetuned AI/ML model is much improved compared to the performance of the AI/ML model without finetuning.
Observation 6: AI/ML assisted positioning can provide high-fidelity intermediate estimates such as LOS/NLOS classification, which in turn can be used to derive final position estimate.
Based on the discussion in the previous sections we propose the following:
Proposal 1: Companies are encouraged to contribute real data to evaluate AI/ML based algorithms for positioning accuracy enhancements.
Proposal 2: AI/ML model complexity and computational complexity should not be regarded as a roadblock to the adoption of AI/ML based algorithms for positioning accuracy enhancements.
Proposal 3: If the AI/ML model for RF fingerprinting trained on Drop 1 is directly applied to a different Drop 2, it should not be expected that the model can generalize well. 
Proposal 4: When an AI/ML model for RF fingerprinting trained in a first scenario is transferred to a second scenario, the AI/ML model should be finetuned/retrained with new data from the second scenario.
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Appendix
A.1	RAN1#109-e agreements
Agreement
The IIoT indoor factory (InF) scenario is a prioritized scenario for evaluation of AI/ML based positioning. 
Agreement
For evaluation of AI/ML based positioning, at least the InF-DH sub-scenario is prioritized in the InF deployment scenario for FR1 and FR2.
Agreement
For InF-DH channel, the prioritized clutter parameters {density, height, size} are:
· {60%, 6m, 2m};
· {40%, 2m, 2m}. 
· Note: an individual company may treat {40%, 2m, 2m} as optional in their evaluation considering their specific AI/ML design.
Agreement
For evaluation of AI/ML based positioning, reuse the common scenario parameters defined in Table 6-1 of TR 38.857.
Agreement
For evaluation of InF-DH scenario, the parameters are modified from TR 38.857 Table 6.1-1 as shown in the table below.
· The parameters in the table are applicable to InF-DH at least. If another InF sub-scenario is prioritized in addition to InF-DH, some parameters in the table below may be updated.

Parameters common to InF scenario (Modified from TR 38.857 Table 6.1-1)
	 
	FR1 Specific Values 
	FR2 Specific Values

	Channel model
	InF-DH
	InF-DH

	Layout 
	Hall size
	InF-DH: 
(baseline) 120x60 m
(optional) 300x150 m

	
	BS locations
	18 BSs on a square lattice with spacing D, located D/2 from the walls.
-	for the small hall (L=120m x W=60m): D=20m
-	for the big hall (L=300m x W=150m): D=50m

[image: ]

	
	Room height
	10m

	Total gNB TX power, dBm
	24dBm
	24dBm
EIRP should not exceed 58 dBm

	gNB antenna configuration
	(M, N, P, Mg, Ng) = (4, 4, 2, 1, 1), dH=dV=0.5λ – Note 1
Note: Other gNB antenna configurations are not precluded for evaluation
	(M, N, P, Mg, Ng) = (4, 8, 2, 1, 1), dH=dV=0.5λ – Note 1
One TXRU per polarization per panel is assumed

	gNB antenna radiation pattern
	Single sector – Note 1
	3-sector antenna configuration – Note 1

	Penetration loss
	0dB

	Number of floors
	1

	UE horizontal drop procedure
	Uniformly distributed over the horizontal evaluation area for obtaining the CDF values for positioning accuracy, The evaluation area should be selected from
- the convex hull of the horizontal BS deployment.
- the whole hall area if the CDF values for positioning accuracy is obtained from whole hall area. 
FFS: which of the above should be baseline.
FFS: if an optional evaluation area is needed

	UE antenna height
	Baseline: 1.5m
(Optional): uniformly distributed within [0.5, X2]m, where X2 = 2m for scenario 1(InF-SH) and X2=[image: ][image: ] for scenario 2 (InF-DH)  
FFS: if the optional UE antenna height is needed

	UE mobility
	3km/h 

	Min gNB-UE distance (2D), m
	0m

	gNB antenna height
	Baseline: 8m
(Optional): two fixed heights, either {4, 8} m, or {max(4,[image: ][image: ]), 8}.
FFS: if the optional gNB antenna height is needed

	Clutter parameters: {density [image: ][image: ], height [image: ][image: ],size [image: ][image: ]}
	High clutter density:
- {40%, 2m, 2m} 
- {60%, 6m, 2m}
· Note: an individual company may treat {40%, 2m, 2m} as optional in their evaluation considering their specific AI/ML design.


	Note 1:	According to Table A.2.1-7 in TR 38.802



Agreement
For AI/ML-based positioning evaluation, the baseline performance to compare against is that of existing Rel-16/Rel-17 positioning methods.
· As a starting point, each participating company report the specific existing positioning method (e.g., DL-TDOA, Multi-RTT) used as comparison.
Agreement
For all scenarios and use cases, the main KPI is the CDF percentiles of horizonal accuracy.
· Companies can optionally report vertical accuracy.
Agreement
The CDF percentiles to analyse are: {50%, 67%, 80%, 90%}.
· 90% is the baseline. {50%, 67% 80%} are optional.
Agreement
Target positioning requirements for horizonal accuracy and vertical accuracy are not defined for AI/ML-based positioning evaluation.
Agreement
For evaluation of AI/ML based positioning, the KPI include the model complexity and computational complexity.
· FFS: the details of model complexity and computational complexity
Agreement
Synthetic dataset generated according to the statistical channel models in TR38.901 is used for model training, validation, and testing.
Agreement
The dataset is generated by a system level simulator based on 3GPP simulation methodology.
Agreement
As a starting point, the training, validation and testing dataset are from the same large-scale and small-scale propagation parameters setting. Subsequent evaluation can study the performance when the training dataset and testing dataset are from different settings.
Agreement
For AI/ML-based positioning evaluation, RAN1 does not attempt to define any common AI/ML model as a baseline.
Agreement
The entry “UE horizontal drop procedure” in the simulation parameter table for InF is updated to the following.
	UE horizontal drop procedure
	Uniformly distributed over the horizontal evaluation area for obtaining the CDF values for positioning accuracy, The evaluation area should be selected from
- (baseline) the whole hall area, and the CDF values for positioning accuracy is obtained from whole hall area.
- (optional) the convex hull of the horizontal BS deployment, and the CDF values for positioning accuracy is obtained from the convex hull.


 
Agreement
The entries “UE antenna height” and “gNB antenna height” in the simulation parameter table for InF is updated to the following.
	UE antenna height
	Baseline: 1.5m
(Optional): uniformly distributed within [0.5, X2]m, where X2 = 2m for scenario 1(InF-SH) and X2= for scenario 2 (InF-DH) 

	…
	…

	gNB antenna height
	Baseline: 8m
(Optional): two fixed heights, either {4, 8} m, or {max(4,), 8}.



Agreement
If spatial consistency is enabled for the evaluation, companies model at least one of: large scale parameters, small scale parameters and absolute time of arrival, where
· the large scale parameters are according to Section 7.5 of TR 38.901 and correlation distance =  for InF (Section 7.6.3.1 of TR 38.901)
· the small scale parameters are according to Section 7.6.3.1 of TR 38.901
· the absolute time of arrival is according to Section 7.6.9 of TR 38.901
Agreement
If spatial consistency is enabled for the evaluation of AI/ML based positioning, the baseline evaluation does not incorporate spatially consistent UT/BS mobility modelling (Section 7.6.3.2 of TR 38.901).
-         It is optional to implement spatially consistent UT/BS mobility modelling (Section 7.6.3.2 of TR 38.901).
Agreement
For evaluation of AI/ML based positioning, companies are encouraged to evaluate the model generalization.
· FFS: the metrics for evaluating the model generalization (e.g., model performance based on agreed KPIs under different settings)
Agreement
Companies are encouraged to provide evaluation results for:
· Direct AI/ML positioning
· Companies are encouraged to describe at least the following implementation details for the evaluation
· details of the channel observation used as the input of the AI/ML model inference (e.g., type and size of model input), model input acquisition and pre-processing
· AI/ML assisted positioning
· Companies are encouraged to describe at least the following implementation details for the evaluation
· details of the channel observation used as the input of the AI/ML model inference (e.g., type and size of model input), model input acquisition and pre-processing
· details of the output of the AI/ML model inference, how the AI/ML model output is used to obtain the UE’s location
Agreement
When reporting evaluation results with direct AI/ML positioning and/or AI/ML assisted positioning, proponent company is expected to describe if a one-sided model or a two-sided model is used.
· If one-sided model (i.e., UE-side model or network-side model), the proponent company report which side the model inference is performed (e.g. UE, network), and any details specific to the side that performs the AI/ML model inference.
· If two-sided model, the proponent company report which side (e.g., UE, network) performs the first part of interference, and which side (e.g., network, UE) performs the remaining part of the inference.
Agreement
For evaluation of AI/ML based positioning, the computational complexity can be reported via the metric of floating point operations (FLOPs).
· Note: For AI/ML assisted methods, computational complexity for the AI/ML model is only one component of the overall complexity for estimating the UE’s location.
· Note: Other metrics to measure the computational complexity are not precluded.
Agreement
For evaluation of AI/ML based positioning, details of the training dataset generation are to be reported by proponent company. The report may include (in addition to other selected settings, if applicable):
· The size of training dataset, for example, the total number of UEs in the evaluation area for generating training dataset;
· The distribution of UE location for generating the training dataset may be one of the following:
· Option 1: grid distribution, i.e., one training data is collected at the center of one small square grid, where, for example, the width of the square grid can be 0.25/0.5/1.0 m.
· Option 2: uniform distribution, i.e., the UE location is randomly and uniformly distributed in the evaluation area. 

A.2	RAN1#110 agreements
Agreement
For AI/ML-based positioning, both approaches below are studied and evaluated by RAN1:
· Direct AI/ML positioning
· AI/ML assisted positioning
Agreement
For AI/ML-based positioning, study impact from implementation imperfections.
Agreement
For evaluation of AI/ML based positioning, the model complexity is reported via the metric of “number of model parameters”. 
Agreement
To investigate the model generalization capability, at least the following aspect(s) are considered for the evaluation for AI/ML based positioning:
1. Different drops
0. Training dataset from drops {A0, A1,…, AN-1}, test dataset from unseen drop(s) (i.e., different drop(s) than any in {A0, A1,…, AN-1}). Here N>=1.
1. Clutter parameters, e.g., training dataset from one clutter parameter (e.g., {40%, 2m, 2m}), test dataset from a different clutter parameter (e.g., {60%, 6m, 2m});
1. Network synchronization error, e.g., training dataset without network synchronization error, test dataset with network synchronization error;
· Other aspects are not excluded.
Note: It’s up to participating companies to decide whether to evaluate one aspect at a time, or evaluate multiple aspects at the same time.
Agreement
When providing evaluation results for AI/ML based positioning, participating companies are expected to describe data labelling details, including:
· Meaning of the label (e.g., UE coordinates; binary identifier of LOS/NLOS; ToA)
· Percentage of training data without label, if incomplete labeling is considered in the evaluation
· Imperfection of the ground truth labels, if any

Agreement
For evaluation of AI/ML based positioning, study the performance impact from availability of the ground truth labels (i.e., some training data may not have ground truth labels). The learning algorithm (e.g., supervised learning, semi-supervised learning, unsupervised learning) is reported by participating companies.
Agreement
For AI/ML-based positioning, for evaluation of the potential performance benefits of model finetuning, report at least the following: 
· training dataset setting (e.g., training dataset size necessary for performing model finetuning)
· horizontal positioning accuracy (in meters) before and after model finetuning.

Agreement
For both direct AI/ML positioning and AI/ML assisted positioning, the following table is adopted for reporting the evaluation results.
Table X. Evaluation results for AI/ML model deployed on [UE or network]-side, [with or without] model generalization, [short model description] 
	Model input
	Model output
	Label
	Clutter param
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	
	Training
	test
	Model complexity
	Computational complexity
	AI/ML

	
	
	
	
	
	
	
	
	


To report the following in table caption: 
· Which side the model is deployed
· Model generalization investigation, if applied
· Short model description: e.g., CNN
Further info for the columns:
· Model input: input type and size
· Model output: output type and size
· Label: meaning of ground truth label; percentage of training data set without label if data labeling issue is investigated (default = 0%)
· Clutter parameter: e.g., {60%, 6m, 2m}
· Dataset size, both the size of training/validation dataset and the size of test dataset
· AI/ML complexity: both model complexity in terms of “number of model parameters”, and computational complexity in terms of FLOPs
· Horizontal positioning accuracy: the accuracy (in meters) of the AI/ML based method
Note: To report other simulation assumptions, if any.
Agreement
For evaluation of AI/ML assisted positioning, an intermediate performance metric of model output is reported.
· FFS: Detailed definition of the intermediate performance metric of the model output
Agreement
To investigate the model generalization capability, the following aspect is also considered for the evaluation of AI/ML based positioning:
(d) UE/gNB RX and TX timing error. 
· The baseline non-AI/ML method may enable the Rel-17 enhancement features (e.g., UE Rx TEG, UE RxTx TEG).
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