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Introduction
[bookmark: _Hlk66110521]The revised SID [1] has been endorsed in RAN#97-e.
	The study item includes the following objectives:
· Identify evaluation methodology (including the use cases) & KPIs [RAN1]
· Primarily target low-power WUS/WUR for power-sensitive, small form-factor devices including IoT use cases (such as industrial sensors, controllers) and wearables
· Other use cases are not precluded
· Study and evaluate low-power wake-up receiver architectures [RAN1, RAN4] 
· Study and evaluate wake-up signal designs to support wake-up receivers [RAN1, RAN4] 
· Study and evaluate L1 procedures and higher layer protocol changes needed to support the wake-up signals [RAN2, RAN1] 
· Study potential UE power saving gains compared to the existing Rel-15/16/17 UE power saving mechanisms, the coverage availability, as well as latency impact of low-power WUR/WUS. System impact, such as network power consumption, coexistence with non-low-power-WUR UEs, network coverage/capacity/resource overhead should be included in the study [RAN1]
· Note: The need for RAN2 evaluation will be triggered by RAN1 when necessary. 


This contribution provides LP-WUR architectures and feasibility studies.
LP-WUR architectures
Collect proposals for LP-WUR architectures
Mixer-first zero IF
As reported by [2], sub-mW LP-WUR architectures can be categorized into a) Direct envelope detection architecture, b) Mixer-first heterodyne architecture, and c) Mixer-first zero-IF architecture.
For a) Direct envelope detection architecture, the receiver has an envelope detector (ED) that converts RF signal directly down to the baseband. This receiver can achieve a sub-micro power consumption but has limited receiver sensitivity and interference rejection. To handle the limitation, it takes filters and amplifiers before the ED.    
For b) Mixer-first heterodyne architecture, the receiver has IF processing before the ED. A typical IF processing uses wideband IF LNA, amplifying the received signal in the desired band. The wideband IF LNA suppresses adjacent channel interference and provides receiving gain. However, high-quality IF circuits are bulky and hard to integrate with the main radio. Also, a local oscillator is needed to enable IF processing, taking hundreds of microwatts at least.
For c) Mixer-first zero-IF architecture, the receiver aims to integrate with the main radio and share RF and digital baseband (DBB) components. This receiver moves ED and amplifiers to DBB with the aid of N-bit ADC, consuming ten microwatts typically. A passive mixer and an LPF suppress interference and prevent the use of wideband ADC.  
[image: ]
Figure 1: illustrations of LP-WUR architectures
A comparison considering size, weight, and power (SWaP), interference resiliency, and receiver sensitivity are below.
Table 1: Summary of LP-WUR architectures 
	LP-WUR Architectures
	Size, Weight, and Power (SWaP)
	Interference Resiliency
	Receiver Sensitivity

	a) Direct envelope detection architecture
	Best
	Worst
	Worst

	b) Mixer-first heterodyne architecture
	Worst
	Best
	Best

	c) Mixer-first zero-IF architecture
	Medium
	Medium
	Medium


The architecture c) Mixer-first zero-IF architecture has the best balance among the three and potentially integrates RF front-end and digital baseband with the main radio on-chip.  
[bookmark: _Toc115350318]Mixer-first zero-IF architecture can be considered a starting point to determine target power consumption, interference resiliency, and receiver sensitivity. 

Reference design
A reference design based on architecture c) is reported in [3]. The reference design achieves -72dBm sensitivity and 62.5kbps. Some design principles are listed below.
· Use passive mixer and LPF rather than BPF
· Use 32KHz RTC + Ring oscillator (VCO) rather than LC oscillator
· Use FLL rather than PLL (OOK does not need phase coherent)
· Use N-bits ADC rather than a comparator, i.e., one-bit ADC
· Use DBB envelop detector and DBB amplifiers rather than in RF/IF stages
[image: ]
Figure 2: A reference analog front-end (AFE) design [3]
[image: ]
Figure 3: A reference digital baseband (DBB) design [3]
The major power consumption components in the reference design [3] are given below. 
Table 2: major power consumption components in [3]
[image: ]
Note that ADC can be power efficient, taking 22 microwatts, which makes it reasonable to implement interference suppression and gain control in DBB instead of in the RF or IF stages. 
Also, BB DSP takes 20 microwatts for WIFI preamble detection and needs 78 microwatts for WIFI payload parsing, showing significant power overhead on payload parsing, including CRC, channel coding, and payload packet parser. 
[bookmark: _Toc115350319]The power consumption target can be less than 1mW, e.g., around 0.1mW to 0.5mW.
[bookmark: _Toc115350320]Low-power receivers usually use low-complexity devices, and the tradeoff between performance and power savings should be evaluated.

Simulation consideration
The low-complexity devices impact receiver sensitivity and data rate. Some considerations are listed below.
Table 3: Evaluation considerations for low-power consumption devices
	Devices
	Implementation considerations
	Evaluation considerations

	RF
	Passive mixer
	Not using I/Q, the real-number signal only

	
	Low complexity LO
	Carrier frequency offset. Oscillator inaccuracy probably up to 200 ppm

	
	Low complexity LPF
	ACI suppression. Filter order probably up to 2 – 3 

	
	N-bit ADC
	Quantization errors. N effectively up to 4 - 6 bits (at a sample rate of signal BW)

	DBB
	Envelop detection
	
Related to in tradeoff between power consumption and performance

	
	MC-OOK
	

	
	Preamble
	

	
	Payload
	

	
	Channel coding/CRC
	


[bookmark: _Toc115350321]Evaluate the performance impact caused by low-power consumption devices, e.g., passive mixer, local oscillator, low pass filter, and N-bit ADC for the mixer-first zero-IF architecture.

Performance and power consumption tradeoff
LP-WUR prototypes reported in [4] could achieve power consumption at 0.1mW and 0.5mW, with a sensitivity of -72 dBm and -82 dBm, respectively. The sensitivity is formulated below.
,
where NF refers to the noise figure, BW denotes signal bandwidth, and SNR means the minimum required SNR to achieve a target error rate or satisfactory performance. NF, BW, and SNR impact receiver power consumption and sensitivity. We list some design considerations below.
Table 4: receiver sensitivity and performance tradeoff
	Design considerations 
	Comments
	Reference

	Noise figure (NF)
	8 dB margin comparing to NR (i.e., 9dB to 17dB) to relax implementation for less power-hunger devices.
	[5][6]

	Modulation
	Replace BPSK/QPSK with OOK may lose 3 to 4 dB
	[7]

	Bandwidth
	Considering 17 dB NF and SNR requirement of 10 dB, -82 dBm sensitivity corresponds to ~3MHz WUS BW  
	

	Repetition/coding gain
	WIFI Manchester coding can gain 4 dB at a reduced data rate
	[8]


[bookmark: _Toc115350322]Consider the performance and power consumption tradeoff parameters: noise figure, modulation, signal bandwidth, and repetition/coding gain.

Conclusion
In this contribution, we have the following observations and proposals.
Proposal 1	Mixer-first zero-IF architecture can be considered a starting point to determine target power consumption, interference resiliency, and receiver sensitivity.
Proposal 2	The power consumption target can be less than 1mW, e.g., around 0.1mW to 0.5mW.
Proposal 3	Low-power receivers usually use low-complexity devices, and the tradeoff between performance and power savings should be evaluated.
Proposal 4	Evaluate the performance impact caused by low-power consumption devices, e.g., passive mixer, local oscillator, low pass filter, and N-bit ADC for the mixer-first zero-IF architecture.
Proposal 5	Consider the performance and power consumption tradeoff parameters: noise figure, modulation, signal bandwidth, and repetition/coding gain.
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