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In RAN#110-e, the following agreements were made [1].
	Agreement
For AI/ML-based positioning, both approaches below are studied and evaluated by RAN1:
· Direct AI/ML positioning
· AI/ML assisted positioning

Agreement
For AI/ML-based positioning, study impact from implementation imperfections.

Agreement
For evaluation of AI/ML based positioning, the model complexity is reported via the metric of “number of model parameters”. 

Agreement
To investigate the model generalization capability, at least the following aspect(s) are considered for the evaluation for AI/ML based positioning:
(a) Different drops
· Training dataset from drops {A0, A1,…, AN-1}, test dataset from unseen drop(s) (i.e., different drop(s) than any in {A0, A1,…, AN-1}). Here N>=1.
(b) Clutter parameters, e.g., training dataset from one clutter parameter (e.g., {40%, 2m, 2m}), test dataset from a different clutter parameter (e.g., {60%, 6m, 2m});
(c) Network synchronization error, e.g., training dataset without network synchronization error, test dataset with network synchronization error;
· Other aspects are not excluded.
Note: It’s up to participating companies to decide whether to evaluate one aspect at a time, or evaluate multiple aspects at the same time.

Agreement
When providing evaluation results for AI/ML based positioning, participating companies are expected to describe data labelling details, including:
· Meaning of the label (e.g., UE coordinates; binary identifier of LOS/NLOS; ToA)
· Percentage of training data without label, if incomplete labeling is considered in the evaluation
· Imperfection of the ground truth labels, if any

Agreement
For evaluation of AI/ML based positioning, study the performance impact from availability of the ground truth labels (i.e., some training data may not have ground truth labels). The learning algorithm (e.g., supervised learning, semi-supervised learning, unsupervised learning) is reported by participating companies.

Agreement
For AI/ML-based positioning, for evaluation of the potential performance benefits of model finetuning, report at least the following: 
· training dataset setting (e.g., training dataset size necessary for performing model finetuning)
· horizontal positioning accuracy (in meters) before and after model finetuning.

Agreement
For both direct AI/ML positioning and AI/ML assisted positioning, the following table is adopted for reporting the evaluation results.
Table X. Evaluation results for AI/ML model deployed on [UE or network]-side, [with or without] model generalization, [short model description] 
	Model input
	Model output
	Label
	Clutter param
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	
	Training
	test
	Model complexity
	Computational complexity
	AI/ML

	
	
	
	
	
	
	
	
	



To report the following in table caption: 
· Which side the model is deployed
· Model generalization investigation, if applied
· Short model description: e.g., CNN
Further info for the columns:
· Model input: input type and size
· Model output: output type and size
· Label: meaning of ground truth label; percentage of training data set without label if data labeling issue is investigated (default = 0%)
· Clutter parameter: e.g., {60%, 6m, 2m}
· Dataset size, both the size of training/validation dataset and the size of test dataset
· AI/ML complexity: both model complexity in terms of “number of model parameters”, and computational complexity in terms of FLOPs
· Horizontal positioning accuracy: the accuracy (in meters) of the AI/ML based method
Note: To report other simulation assumptions, if any.



In this contribution, evaluation results for generalization capability of AI/ML based positioning in IIoT scenarios are demonstrated.
Evaluation results
 
Methodology for evaluation of generalization capability
Due to dynamicity of the channel conditions, input measurements provided to AIML model may be noisy compared to the input measurements observed during training. Examples of such noisy inputs may be created by error sources such as network synchronization error, change in LOS/NLOS condition, change in clutter parameters etc.. Model generalization is defined as model’s ability to provide same positioning accuracy while being inferred to previously unseen input measurements. To evaluate generalization capability of AIML model for positioning use case, the following three categories of generalization are proposed: 
1. Trained and inferred with ideal input measurements
2. Trained with ideal input measurements and inferred with non-ideal input measurements
3. Trained with a combination of ideal and non-ideal input measurements; inferred with non-ideal input measurements   

Proposal 1: For the evaluation of AIML based positioning, adopt the following 3 categories of model generalization and evaluate the performance under each category
· Category 1: Trained and inferred ideal input measurements
· Category 2: Trained at ideal input measurements and inferred at non-ideal input measurements
· Category 3: Trained at combination of ideal and non-ideal input measurements; inferred at non-ideal input measurements. 

Proposal 2: For the evaluation of Category 3 model generalization, agree on the split of the training data set between ideal(X%) and non-ideal(100-X) %) measurements. FFS: X.      
Evaluation assumptions for generalization performance
Detailed simulation assumptions are listed in Table A1. Details of model input/output, model details and dataset size are described in Table A2.  Summary of the evaluation assumptions are as follows: 
· Inputs: RSRP measurements
· Output: Location information
· Motivation: To evaluate generalization performance for the ML model for direct AIML position
· Model: ResNet (By varying number of residual layers, computation complexity of the model is changed)
As agreed in the RAN1#110-e meeting, model generalization capability for different drops and different clutter parameters are evaluated. To measure the impact of each generalization aspect individually, two simulation configurations (A and B) are implemented, each focussing on one generalization aspect. 
· Simulation configuration A: evaluates model generalization by utilizing dataset of unseen drop
· Simulation configuration B: evaluates model generalization by utilizing dataset of unseen drop and clutter parameters
For both simulation cases, a single AIML model is trained with ideal input measurement (Category 2 generalization). A summary of the evaluation configurations is described in Table 1.
Table 1: Simulation configurations for model generalization evaluation
	
Simulation Cases

	UE drop for training dataset
	UE drop for test dataset
	Clutter Parameters for training dataset
{density [image: ][image: ], height [image: ][image: ],size [image: ][image: ]}
	Clutter Parameters during inference
{density [image: ][image: ], height [image: ][image: ],size [image: ][image: ]}
	Network synchronization error for training dataset (as per model defined in TR 38.857)
	Network synchronization error during inference (as per model defined in TR 38.857)

	Case 1: RSRP fingerprinting, configuration A
	drops {A0, A1,…, AN-1}
	unseen drop(s) (i.e., different drop(s) than any in {A0, A1,…, AN-1})
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	T1=0 ns 
	T1=0 ns 

	Case 2: RSRP fingerprinting, configuration B
	
	
	
	{40%, 2m, 2m}
	
	T1=0 ns 



Evaluation results

 
Figure 1 AIML based positioning
In this subsection, results for model generalization for direct AIML positioning for two different simulation cases are presented, each focusing on different parameters as described in section 2.2. In Table 2, horizontal accuracy of both simulation cases is presented. For the baseline (non AIML) performance comparison, case 0: DL-TDOA is evaluated. CDF plots of horizontal positioning accuracy for case 1 and 2 are plotted in Figure 2. 
[bookmark: _Hlk115283116]Table 2 Horizontal accuracy of Direct AI/ML positioning (m)
	[bookmark: _Hlk115280908]
Simulation Cases

	Complexity (FLOPS)
	
50% ile
	
67% ile
	
80% ile
	
90 %ile

	Case 0: DL-TDOA
	N.A.
	2.2944
	4.5906
	7.9878
	10.9090

	Case 1: RSRP fingerprinting, configuration A
	18.34 M
	1.6021
	2.0669
	2.6096
	3.2796

	Case 2: RSRP fingerprinting, configuration B
	18.34 M
	1.8230    
	2.4021    
	2.9737    
	3.7447



Observation 1: In simulation case 1(by utilizing test dataset of unseen drops), direct AIML positioning based on RSRP fingerprinting technique achieves 3.2796 m accuracy for 90%ile UEs which is ~7.63 m lower than DL-TDOA positioning for 90%ile UEs.
Observation 2: In simulation case 2(by utilizing test dataset of unseen drops and clutters), direct AIML positioning based on RSRP fingerprinting technique achieves 3.7447 m accuracy for 90%ile UEs which is ~7.16 m lower than DL-TDOA positioning for 90%ile UEs.
Observation 3: At the 90%ile, horizontal positioning accuracy difference between simulation case 1 and case 2 is ~ 0.47 m. 
Observation 4: RSRP fingerprinting based positioning technique generalizes well across UE drops and clutter parameters with 90%ile horizontal accuracy of ~3.7m
[image: ]
[bookmark: _Hlk115435035]Figure 2 CDF plot of positioning accuracy performance of different simulation configurations
Summary of evaluation results for generalization performance
In this section, a summary of evaluation results as per the table format agreed in RAN#110e[1] is presented. The evaluation results and simulation assumptions are summarized in  Table 3. 
[bookmark: _Ref115422104]Table 3 Summary of evaluation results
	Model input
	Model output
	Label
	Clutter param
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	
	Training
	test
	Model complexity
	Computational complexity
	AI/ML

	RSRP 
	UE position
	percentage of training data set without label = 0%(default)
	{60%, 6m, 2m} for training and testing
	16000 samples
	4000 samples
	108 RSRP values per sample
	18.34 M FLOPs
	3.2796

	RSRP 
	UE position
	percentage of training data set without label = 0%(default)
	{60%, 6m, 2m} for training and {40%, 2m, 2m}for testing
	16000 samples
	4000 samples
	108 RSRP values per sample
	18.34 M FLOPs
	3.7447



The following proposal is made 
Proposal 3: Capture the results and simulation assumptions in Table 3 in TR 38.843
Conclusion.
 Proposal 1: For the evaluation of AIML based positioning, adopt the following 3 categories of model generalization and evaluate the performance under each category
· Category 1: Trained and inferred ideal input measurements
· Category 2: Trained at ideal input measurements and inferred at non-ideal input measurements
· Category 3: Trained at combination of ideal and non-ideal input measurements; inferred at non-ideal input measurements. 

Proposal 2: For the evaluation of Category 3 model generalization, agree on the split of the training data set between ideal(X%) and non-ideal(100-X) %) measurements. FFS: X.      
Proposal 3: Capture the results and simulation assumptions in Table 3 in TR 38.843
Observation 1: In simulation case 1(by utilizing test dataset of unseen drops), direct AIML positioning based on RSRP fingerprinting technique achieves 3.2796 m accuracy for 90%ile UEs which is ~7.63 m higher than DL-TDOA positioning for 90%ile UEs.
Observation 2: In simulation case 2(by utilizing test dataset of unseen drops and clutters), direct AIML positioning based on RSRP fingerprinting technique achieves 3.7447 m accuracy for 90%ile UEs which is ~7.16 m higher than DL-TDOA positioning for 90%ile UEs.
Observation 3: At the 90%ile, horizontal positioning accuracy difference between simulation case 1 and case 2 is ~ 0.47 m. 
Observation 4: RSRP fingerprinting based positioning technique generalizes well across UE drops and clutter parameters with 90%ile horizontal accuracy of ~3.7m
Reference
[1] RAN1 Chairman’s note, RAN1#110e, August 2022.
Appendix
Table A1 : IIoT scenario system parameters
	Parameter
	 Values

	Carrier frequency, GHz 
	3.5GHz

	Bandwidth, MHz
	100MHz

	Subcarrier spacing, kHz
	30kHz 

	Channel model
	InF-DH

	Hall size
	120(L) x 60(W) m, D – 20 m

	BS locations
	18 BSs on a square lattice with spacing D, located D/2 from the walls.

[image: ]

	Room height
	10 m

	Number of floors
	1

	Clutter parameters: {density [image: ][image: ], height [image: ][image: ],size [image: ][image: ]}
	1) InF-DH - {60%, 6m, 2m}
2) InF-DH - {40%, 2m, 2m}


	UE model parameters 
	

	UE noise figure, dB
	9dB – Note 1

	UE max. TX power, dBm
	23dBm – Note 1

	UE antenna configuration
	Panel model 1 – Note 1
Mg = 1, Ng = 1, P = 2, dH = 0.5λ,
(M, N, P, Mg, Ng) = (1, 2, 2, 1, 1)

	UE antenna radiation pattern 
	Omni, 0dBi

	Network synchronization
	The network synchronization error, per UE dropping, is defined as a truncated Gaussian distribution of (T1 ns) rms values between an eNB and a timing reference source which is assumed to have perfect timing, subject to a largest timing difference of T2 ns, where T2 = 2*T1
–	That is, the range of timing errors is [-T2, T2]
–	T1:0ns (perfectly synchronized), 50ns 

	UE/gNB RX and TX timing error
	0 ns

	UE horizontal drop procedure
	Uniformly distributed over entire factory floor

	UE antenna height
	1.5 m

	gNB model parameters 
	

	Total gNB TX power, dBm
	24 dBm

	gNB noise figure, dB
	5dB

	gNB antenna configuration
	(M, N, P, Mg, Ng) = (4, 4, 2, 1, 1), dH=dV=0.5λ – Note 1

	gNB antenna height
	8 m



Table A2 : Data Set generation procedure for direct AI/ML positioning
	Parameter
	 Values

	Training input measurements
	RSRP: Per beam RSRP from multiple TRPs (108 RSRP values, 6 beams per TRP)

	Output
	UE position

	Number of TRPs
	18

	BS locations
	As specified in Table A1

	Size of total dataset (fingerprint)
	20000 UEs

	Size of dataset used for model training (training phase)
	14000 UEs (70% of total dataset)

	Size of Validation dataset (training phase)
	2000 UEs (10% of total dataset)

	Size of test dataset (inference phase)
	4000 UEs (20% of total dataset)

	ML model
	ResNet (1 Convolutional layer, ‘k’ residual layers,  1 fully connected layer) 
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