TSGR1-99h98

TSG-RAN Working Group 1 meeting No. 8 Octber 12 - 15, New York, U.S.A.

Agenda Item: -

Source: Secretary

Title: draft minutes

Document for:

Draft Minutes for 3GPP RAN-TSG 7th bis WG1 Meeting

Meeting start: October 4th, 1999

Day 1, start 9.00

1. Opening of the meeting

The chairman, Mr. Antti Toskala(Nokia), opened the meeting.

2. Approval of agenda (R1-99e44)

Chairman presented the modified version of the agenda on the screen.

Though some contributions were added to the schedule to be discussed in #7bis, agenda itself was approved with no comments.

3. Corrections to specification that have been raised on the reflector prior the meeting (necessary corrections to notation or figure, etc)

3.1 TS25.211 v.2.4.1 (Tdoc: R1-99e70)

The editor (Mr.Andreas Wilde) made a presentation about the changes having been made to the previous version.

The changes were approved with one remark concerning the terminology.

("Node B" should be replaced by " UTRAN access point" according to the liaison statement from WG3.)

Text proposals discussed in relation to TS25.211

No	Tdoc No.	Title	Source	Conclusion	Notes
1	R1-99e47	Text Proposal of 1 Pilot Symbol Pattern for Downlink DPCH	LGIC	Approved	no comments
2	R1-99f00	Proposal for update of Common Pilot Channel description in 25.211	Ericsson	Approved	(*1)
3	R1-99f14	Text Changes for 25.211 (revision of e79)	Philips	Partly Approved	(*2)
4	R1-99e83	Text proposals for TS 25.211 and TS.25.214 (TS 25.211 part)	Nokia	Partly Approved	(*3)
5	R1-99e84	Clarification of physical channel timing	Ericsson	Approved	(*4)
6	R1-99e92	Clarifications to DSCH sections in 25.211 and 25.213 (TS 25.211 part)	Nokia	Partly Approved	(*5)
7	R1-99f02	Text proposals for TS 25.211 V2.4.1	Nokia	Partly Approved	(*6)

- (*1) Tx diversity issues (clarification on the common pilot in case of open loop) should be checked later on.)
- (*2) Changes in
 - -- 5.2.2.2.2 (CPCH Access preamble part) approved with no comments
 - -- 5.3 (addition of "**5.3.4 Mapping of physical channels to carriers**") was postpone to N.Y. meeting.
 - technical discussion should be needed
 - this is not only WG1 issue (we should also try to check the impact on WG2 TSs.) This would be mentioned in the WG1 report to RAN.
 - -- 7.3 (PRACH/AICH timing relations) was approved with no comments

(*3) Changes in

- -- Table 9 in 5.3.1 was approved with one remark that "7.5ksps" should be replaced by "SF512"
- -- Figure 10 in 5.3.1.1.2 was approved with one remark that "Spreading code" should be replaced by "Channelization code"
- -- 5.3.2.1 was approved with one remark that "7.5ksps" should be replaced by "SF512"
- -- 5.3.3.1 (Common Pilot Channel) was not included.
- (*4) Some more on T0 might be needed to be discussed in the future.
- (*5) Timing issues were not included because they had been covered in E84 already.
- (*6) Table 1 is for uplink, and the lined sentence "If TFCI bits are not used, then DTX shall be used in TFCI field" is for downlink. Both approved without comments.
 - Modification in code groups, {5.3.3.4 (last sentence in second paragraph below the Figure 18)} was already covered. Not included.
 - Modification in 5.3.3.3 (second sentence in paragraph below the Table 16) regarding signaling on BCH for FACH/PCH addition/removal was not included.
 - (As to the radio frame corresponding to a certain transport format combination of the FACHs and/or PCHs, we have to check WG2 specifications.)
 - Modification regarding DSCH {5.3.3.5.1 (second sentence in last paragraph)} was already covered by e92. Not included.

3.2 TS25.212

Text proposals discussed in relation to TS25.212

No	Tdoc No.	Title	Source	Conclusion	Notes
1	R1-99c54	Blind rate detection for AMR speech transmission (*1)	NTT DoCoMo	Approved	no comments
2	R1-99e80	Text Changes for 25.212	Philips	Approved	no comments
3	R1-99e96	Harmonization of notation for 3.2, 4.2.2.2, and 4.2.3 of TS25.212 v2.2.0	Nokia	Approved	(*2)
4	R1-99f32	Text proposal for corrections in the RM sections (revision of e61)	Mitsu- bishi	Approved	(*3)
5	R1-99f07	Proposed CPCH-related insertions to 25.212	GBT	Approved	no comments

- (*1) Text proposal agreed in Ad HocH 4 but not treated yet.
- (*2) This proposal should be applied to both TS25.212 and TS25.222.
- (*3) Notation should be applied to both TS25.212 and TS25.222

3.3 TS25.213 v.2.3.0 (Tdoc: R1-99e49)

Mr. Joern Krause on behalf of the editor made a presentation about the changes having been made to the previous version.

The changes were approved but there were following two remarks.

- 4.3.1 Notation of c SF, Code No. should be replaced by Cch, SF, Code No.
- 4.3.3.1.2 The sentence "The long code in-phase component is used directly on both in phase and quadrature branches without offset between branches" should be removed because this is not referred in the section.

Text proposals discussed in relation to TS25.213

No	Tdoc No.	Title	Source	Conclusion	Notes
1	R1-99e59	Clarification of RACH preamble generation	Ericsson	Approved	(*1)
2	R1-99f15	Text Changes for 25.213 (revision of e81)	Philips	Approved	no comments
3	R1-99e89	Proposal for removal of "sync BTS" search code	Ericsson		Already covered
4	R1-99e92	Clarifications to DSCH sections in 25.211 and 25.213 (TS 25.211 part)	Nokia	Approved	no comments
5	R1-99e97	The figure for uplink long scrambling codes TS25.213v2.3.0	Nokia	Approved	no comments
6	R1-99e98	Text proposal for downlink long scrambling code of TS25.213 v2.3.0	Nokia	Approved	(*2)
7	R1-99e99	Fixed channelization codes for AICH and PICH TS25.213v2.3.0	Nokia	Postponed to N.Y.	(*3)
8	R1-99f06	Proposed editorial modifications to 25.213 (CPCH Sections)	GBT	to be revised	(*4)

- (*1) Only technical contents in 4.3.3.1.1 should be reflected in 25.213.
- (*2) In the definition of Xn, modulo2¹⁸ should be retained. (should not be deleted taking into account of the case in which n is quite big).
- (*3) What it the Primary AICH? Secondary?

(Channelization code for the AICH is related to the scrambling code for the RACH.) Answer would be provided in New York.

(*4)

3.4 TS25.214 v.1.3.1 (Tdoc:R1-99e45)

The editor (Mr.Takehiro Nakamura) made a presentation about the changes having been made to the previous version.

(Chairman's comment)

Section 6.2 CPCH Access Procedures would be discussed afterwards separately still on this meeting.

The changes were approved but there were following two remarks.

- 4.4 PRACH synchronization and 4.6 PCPCH Synchronization are the same text and would be replaced by the text proposal of R1-99e82 (Ericsson) if it was approved.
- Chairman raised the question regarding the Random Access Procedure (Section 6.1.7 and 6.1.7.2 concerning the signature). In relation to this question, Mr. Fredrik Ovesjo made a comment that Ericsson would probably provide the new text proposal for the Random Access Procedure in the next RAN1 meeting though the validity of its assumption itself was not sure at this moment and he also pointed out that the whole Random Access Procedure section would possibly be replaced.

Text proposals discussed in relation to TS 25.214

No	Tdoc No.	Title	Source	Conclusion	Notes
1	R1-99e58	Text proposals for 25.214 V1.3.1	Ericsson	Approved	no comments
2	R1-99e82	Text Changes for 25.214	Philips	Approved	no comments
3	R1-99e83	Text proposals for TS 25.211 and TS.25.214 (TS25.211 part)	Nokia	Approved	(*1)
4	R1-99f01	Power reference for AICH and PICH	Ericsson	Postponed to AdHoc9	needs discussion
5	R1-99f29	SSDT text update for R99	NEC & Telecom MODUS	Approved	no comments
6	R1-99f16	Text proposals for Closed loop transmit diversity mode 2 to TS.25.214	Motorola	Approved	no comments

(*1) - 4.4 was already addressed in R1-99e58.

(- Comment was made to the second paragraph of the 8.2.3.1. Downlink in compressed mode and uplink in normal mode.

How can we continue to calculate the phase adjustments based on the received CPICH from antennas 1 and 2 under the condition that when we are in downlink compress mode and still in uplink normal mode, we are to stop receiving?

(We can possibly use the pilot and keep that estimation. This paragraph should be kept.)

3.5 TS25.221 v.2.0.1 (Tdoc:R1-99e65)

The editor (Mr. Joern Krause) made a presentation about the changes having been made to the previous version.

Approved with no comments.

3.6 TS25.222 v.2.2.0 (Tdoc:R1-99e66)

The editor (Mr. Jussi Kahtava) made a presentation about the changes having been made to the previous version.

Approved with no comments.

3.7 TS25.223 v.2.3.1 (Tdoc:R1-99e91)

The editor (Mr. Kenji Ito) made a presentation about the changes having been made to the previous version.

Approved with no comments

3.8 TS25.224 v.2.0.1 (Tdoc:R1-99e67)

The editor (Mr. Stefan Oestreich) made a presentation about the changes having been made to the previous version.

In addition to the editorial changes, the definition of the parallel code channel power was modified.

Approved with no comments

4.Inputs for open items in TS 25.212

4. 1 Uplink slotted mode slot structure

No	Tdoc No.	Title	Source	Conclusion	Notes
1	R1-99e86	Compressed mode	Ericsson	Partly Approved	
2	R1-99e90	Uplink Compressed Mode Frame Format	Mitsu- bishi	Not approved	(*1)
3	R1-99e93	Uplink Compressed Mode slot structure	Nokia	Not approved	
4	R1-99e94	Text proposal for section 4.4 in TS25.212 on compressed mode	Mitsu- bishi	Partly Approved	(*2)
5	R1-99f31	Text proposal to TS 25.212 for Implementation of compressed mode in the IL & MUX chain	Mitsu- bishi	Postponed to WG1#8	

(*1)

(Chairman's conclusion)

We are now regarding slot structure itself. There is a slight deference between the papers from Nokia / Ericsson and complex paper from Mitsubishi. In Nokia and Ericsson papers, when the uplink is ended, it ends for n full slots. Uplink and downlink are a little bit in offset to each other. In the Mitsubishi proposal, it propose to add some extra symbols there (that is the pilot, in this case) mainly to make this uplink and downlink more than a bit time. When the different parties submit discussing , we need this kind of mediate proposal of the Mitsubishi alternative. Some clarification for the actual benefit with the additional slot structures from the Mitsubishi proposal should be needed.

As a conclusion for the slot structure, the principles contained in Nokia/Ericsson papers would be adopted for the specifications and then we expect to see in WG1#8 more detailed proposals from Mitsubishi about what additional we need for the slot performance to include that one as well.

Adding this, Ericsson 's text proposal is rather complete, contains pictures as well as definitions for this fields in different place. So we would take it as basis for this slot structure and then maybe we need a few works to discuss other parts of Ericsson paper regarding mapping of the TFCI, etc. For these other parts of text proposal (R1-99e86) still need to be discussed.

In R1-99e86,

Sections starting 4.4 Compress mode were approved. As to the preceding sections, the downlink parts were not agreeable and further discussions should be need. Rate matching section for was also approved only for uplink.

(*2) Changes were approved except the equations in Method A and Method B in 4.4.2. These should not be included for the time being. Method A2 would be removed to items not included for Release99.

5. Inputs for open items For 25.214

5.1 Ad Hoc 9 session

Separate Agenda has been provided by the Ad Hoc 9 Chairman

5.1.1 Approval of agenda

Ad Hoc 9 Chairman (Ms. Evelyne Le Strat) made presentation of the agenda on the screen. Agenda was approved with no comments.

<Note> Refer the Agenda attached to this minutes.

Agenda Item CCH/DPDCH Power difference

Tdoc R1-99e85 Setting of uplink DPCCH and DPDCH power difference

Source: Ericsson

Approved.

Under the condition that WG2 specification includes transmission of the transformer information for the RACH and all this information will be available on the DCCH, chairman agreed to the text proposal

Agenda Item Uplink inner loop power control in normal mode in soft handover

-Tdoc R1-99e73 Algorithm 2 power control in soft handover

Source: Philips

No comments raised.

- Tdoc R1-99d65 Text proposal for power control in soft handover

Source: Philips, Nortel

Approved with no comments

(Tdoc R1-99f03 did not exist.)

Agenda Item Uplink inner loop power control in compressed mode not in soft handover

-Tdoc R1-99c24 Comparison between algorithms with fixed and adaptive recovery period for fast power control in compressed mode

Source: Alcatel

- Mr. Tim Moulsley (Philips) pointed out that this text proposal made mistake in updating previous text proposal. (It is not correct to call TGL slots as the recovery period.)

 He also pointed out that this text proposal was related to the earlier version of specifications
- TGL should be RPL.
- 3rd paragraph which begins with "After After the recovery period the ordinary power---" is the repetition of the table 1, and should be removed.

Even though this needs some modification and correction, technical contents should be clarified. We agreed on the principle. We would review this text proposal in the plenary.

-Tdoc R1-99e75 Proposal for power control in compressed mode

Source: Philips

Approved.

(One question was made by the chairman as to the Table1 Mode1, but it was answered.)

-Tdoc R1-99e74 Proposal for initial transmit power level after transmission gap in

compressed mode

Source: Philips

Approved.

Agenda Item Liaisons from other groups

-**Tdoc R1-99f67** LS on Slow TPC (from WG2)

Text concerning Slow TPC would be removed to the item list not included for Release99 (Technical Report R1.03) with the text proposal R1-99c00.

WG1 chairman would inform WG2 chairman about this change.

Agenda Item Downlink inner loop power control for FDD Postponed to N.Y. meeting.

Day 2 (October 5th)

5.2 CPCH procedure in 25.214

Relevant papers to reach agreement to the text in 25.214 on CPCH

Chairman's comment

Our aim is to discuss following text proposals in relevant to CPCH procedure in TS25.214 and make this part of TS25.214 into such a shape that fits for submission to RAN as version 3.0.0.

Tdoc R1-99f96 Summary of Ad Hoc 14 E-mail discussions

Summary of Ad Hoc14 E-mail discussions was briefly overviewed in terms of RACH subchannel before moving on to the following text proposals.

Text proposals discussed in relation to CPCH

No	Tdoc No.	Title	Source	Conclusion	Notes
1	R1-99f04	Proposed text changes to 25.211 (CPCH sections)	GBT	Approved	Some modifications are needed. (*1)
2	R1-99f05	Proposed text modifications to 25.214 to include sub RACH-channel scheme to CPCH	GBT	Not Approved	(*2)
3	R1-99f30	CPCH access procedure, proposal for change of 25.214- version	Nortel	Not Approved	(*3)
4	R1-99b36	Performance of CPCH	Philips		(*4) Not a text proposal
5	R1-99b13	Enhanced CPCH with Channel Assignment	Samsung Philips	Approved	(*5)

- (*1) The change to 5.2.2.2.2 CPCH access preamble part was already made by the philips paper.
 - 5.2.2.2.4 *CPCH power control preamble part* The table added was approved with no comments.
 - 5.2.2.2.5 *CPCH message part* Newly added portion in the second paragraph should be moved to downlink section (5.3.2).
 - SF in Table would remain as 512 for the time being.
 - 7.4 PCPCH/AICH timing relation Time should be expressed by the chip values instead of millisecond.
- (*2) Notel (R1-99f30) and GBT(R1-99f05) had been working on trying to align text for the same section (6.2 in TS25.214) over the last 3 weeks. This morning after the local discussion, GBT came to an conclusion that they would withdraw their release.
- (*3) Big discussion was made as to the CPCH access preamble and CPCH collision detection resource setting in terms of scrambling code/signature and access sub-channels. Finally, chairman suggested to merge Nortel and GBT contributions.
- (*4) Mr. Tim Moulsley (Philips) explained the analytical results for performance of CPCH on the screen. Various alternatives were compared in terms of number of access attempts and average delay.
 - If we have a fading case which results in failure in the CPCH protocols that will simply add extra re-transmissions and delay. We do not include that here. What we present here is effectively best AICH performance.

- Can this be WG2 issue?
 Access / allowing access is a resource managing issue.
- There are various assumptions made, to be sure, but the basic shapes of the result will not be affected by changing such assumptions or parameters.
- (*5) In this proposal, the channel assignment is provided by the physical channel, and there is no corresponding transport channel. Though this is a good idea in terms of performance and delay, should the channel assignment / resource management be the WG2 issue?
 - < Conclusion > This proposal should be included in the specification, but, as this would be done by the node B, we need to be careful with WG2. We can not conclude at this moment . We should have WG2 on this issue. The liaison statement would be needed in addition to the chairman's report in order to get the feedback. This issue would be discussed further in the New York meeting.

CPCH Monitoring

Chairman suggested to overview what are the different proposals there before RAN. 10 minutes presentations were made for following CPCH monitoring part.

Contributions discussed in relation to CPCH monitoring part (10 minutes presentation)

No	Tdoc No.	Title	Source	Conclusion	Notes
1	R1-99f44	Idle-AICH for CPCH	GBT		(*1)
2	R1-99f83	Text proposal for transmission of CPCH status information on DL-DPCCH	LGIC		(*2)
3	R1-99b38	Status information for CPCH	Philips		Not presented due to the lack of time
4	R1-99e78	Proposal for CPCH Status Monitoring	Philips		(*3)

- (*1)
- (*2) Complementary proposal of GBT's idle AICH.
- (*3) Use unused bits on the acquisition indicator channel for the information of the availability of the CPCH channels.

(Chairman's comment)

We agree that we should do some monitoring to improve performance.

The first one is to have another physical channel which uses the empty spaces on the same code that is used by acquisition indicator channel, the 2nd approach is to use separate idle acquisition indicator and the 3rd proposal is to use associated dedicated channel in the downlink for CPCH.

At this point we can not expect consensus. This is something we hope we can solve on the next meeting.

5.3 Status of gated transmission on control only substate. Liaison from RAN WG2 (Tdoc R1-99F65).

(Chairman's comment)

The answer for this Liaison Statement is not necessary now because WG2's meeting will be after our New York meeting. Though we have Mitsubishi proposal for this issue, it was late submission and we need more time. We would discuss the details in New York.

Relevant contributions

- R1-99f77 A clarification on DPCCH gated transmission: Samsung
- R1-99f78 EMC Test in Gated Transmission of DPCCH: Samusng
- R1-99f79 Text proposal on section 7.1 in TS 25.214 : Samsung
- R1-99f80 Random Gating Pattern for Uplink DPCCH Gated Transmission: Samsung
- R1-99f43 Reducing EMC problem in uplink DPCCH Gated mode: Mitsubishi

R1-99f78 was presented on the screen.

EMC problem with the hearing aid (noise) was demonstrated.

(Chairman's comment)

We would not have this into the version submitted to RAN because there are issues which need to be discussed. We will come back to this in the New York meeting. If we get consensus in N.Y. then we should incorporate this with CR.

I will report to RAN that WG1 is still studying this issue and not yet reached an agreement. and WG1 will continue to effort on this issue.

5.4 Status of reverse link synchronous transmission. (Tdoc R1-99D45)

No	Tdoc No.	Title	Source	Conclusion	Notes
1	R1-99e68	Uplink Synchronous Transmission Scheme	SK Telecom	Approved	(*1)

- (*1) Text proposal suggests that all the terminal in the cell would be using this technique. If not then there would be mixed terminals, some synchronous and some not synchronous in the cell. What exactly is pre-required?
 - → There is the broadcasting information. Though it requires some modification in layer2 and layer3 specification, using this broadcasting information, terminals can know whether USTS are supported or not.

(Conclusion)

We should include the statement "not a baseline implementation capability".

6. Inputs for measurements in 25.215 & 25.225

6.1 TS25.215 v.0.1.1 (Tdoc:R1-99f99)

Drafting group made a presentation about the changes having been made to the previous version.

It was pointed out that there was the problem in terminology. (with regard to LCS) Changes were approved.

Text proposals discussed in relation to TS 25.215

No	Tdoc No.	Title	Source	Conclusion	Notes
1	R1-99f81	Monitoring of TDD from FDD with prior timing informtion (for TS25.213)	Nokia	Approved	no comments
2	R1-99e87	Definition of measurements in UTRA/FDD	Ericsson	Approved	(*1)
3	R1-99e88	Timing measurements in UTRA/FDD	Ericsson	Approved	(*2)
4	R1-99f12	Physical CH BER on DPCCH in UTRA/FDD	Ericsson	Approved	

- (*1) The connection with transport channel block error rate and CRC should be mentioned.
 - Block Error Rated estimation available in idle mode should be on PCH.
 - 6.1 row of Ec/No should be removed.
 - 6.2.4 one channelization code \rightarrow one scrambling code and one channelization code
- (*2) 6.1 Table column of "interfrequency" should not be removed.

(5.2) CPCH procedure in 25.214

Relevant papers to reach agreement to the text in 25.214 on CPCH

Tdoc R1-99g03 CPCH access procedure for change of 25.214

Source: Nortel Networks and Golden Bridge Technology

In A.M. session, two different contributions concerning section 6.2 of TS25.214 were discussed. R1-99f05 from Golden Bridge and R1-99f30 from Nortel suggested different changes to incorporate access slot subchannels for CPCH access. This proposal represents the result of discussions to merge the above two contributions.

This contribution was Approved. (editor's note below sec6.2 should be removed.)

7. Approval of the changes in 25.2-series

7.1 Text proposals

No	Tdoc No.	Title	Source	Conclusion	Notes
1	R1-99g00	Text proposal for inner power control in compressed mode (rev. of R1-99c52)	Alcatel	Approved	no comments
2	R1-99g04	Proposed editorial modifications to 25.213 (CPCH Sections)	GBT	Approved	no comments
3	R1-99f97	Text proposal for PRACH/PCPCH spreading	Ericsson	Approved	no comments

7.2 Approval of the changes in 25.2-series

All TSs were approved with some modifications.

No	Disccused Tdoc No.	Title	RAN Tdoc No.	Notes	V3.0.0 Tdoc No.
1	R1-99e16	TS 25.201 v2.3.0	RP-99526	Already discussed in RAN1 #7	RP-99586
2	R1-99f82	TS 25.211 v2.4.2 \rightarrow v2.5.0	RP-99475	Revised to R1-99g08	RP-99587
3	R1-99g02	TS 25.212 v2.2.1 → v2.3.0	RP-99476	Revised to R1-99g09	RP-99588
4	R1-99f93	TS 25.213 v2.3.1 → v2.4.0	RP-99477	Revised to R1-99g14	RP-99589
5	R1-99g05	TS 25.214 v1.3.2 → v2.0.0	RP-99478	Revised to R1-99g13	RP-99531
6	R1-99g06	TS 25.215 \rightarrow v2.0.0	RP-99479	Revised to R1-99g12	RP-99590
7	R1-99f89	TS 25.221 v2.1.0	RP-99480	No modification made	RP-99591
8	R1-99f85	TS 25.222 v2.2.1 → v2.3.0	RP-99481	Revised to R1-99g10	RP-99592
9	R1-99f90	TS 25.223 v2.4.0 →	RP-99482	No modification made	RP-99593
10	R1-99f91	TS 25.224 v2.1.0	RP-99483	No modification made	RP-99594
11	R1-99f92	TS 25.225 v0.1.1 → v2.0.0	RP-99484	Revised to R1-99g11	RP-99595
12	R1-99e40	TR R1.03 v0.1.0	RP-99527	Not discussed	

8. WG1 Chairman's report (RP-99474)

Chairman made brief presentation of the WG1 Chairman's Report to RAN

9. Liaison statements identified that need to be sent out prior October 13th & have been provided prior the meeting on the reflector.

No	Discussed Tdoc	То	Title	Source	Approved Tdoc	Notes
1	R1-99g07	RAN WG2	Proposed liaison statement on Channel Assignment for CPCH	Samsung	R1-99g07	Approved with no comments (*1)
2	R1-99f98	RAN WG2	Draft LS on contents of measurement control RRC messages	Ad Hoc	R1-99g18	(*2)
3	R1-99e12	RAN WG3	Draft Liaison Statement on the measurement of the Physical channel BER as UL Quality estimate	Philips	R1-99g19	(*3)

- (*1) Approved Tdoc number will not change because the title and source are already written in due form.
- (*2) "TDD to TDD handover measurements" should be add to the item of "FDD to TDD handover measurements on other frequencies" because the same in formation is needed for TDD to TDD handover measurements.
 - "The cell ID number. This may not be necessary if the scrambling code is known, and certain assumptions can be made about the cell planning." should be removed because in WG2 specs they have certain assumption that they do not need cell ID, they use scrambling code.
 - "from TS. 25.225" should be appended to "RAN WG1 has already as a consequence of this liaison statement removed the information below from TS 25.215
- (*3) "It should be noted that WG1 specifications are expected to cover the range of such kind of measurement but not the resolution to be used." should be added.

10. Closing

WG1 #7bis meeting was closed at 21:00 October 5th.

Annex Participants List

Name	Company
Antti Toskala	Nokia
Jussi Kahtava	Nokia Mobile ommunicationsK.K.
Katsuhiko Hiramatsu	Panasonic
Bourendu Saram	Nortel Networks
Pascal Agin	ALCATEL CSELT
Nicola Pio Magnani	
Hideshi Murai	Mitsubishi ElectricCorporation
Karin Zickermann	Golden Bridge Technology
Kourosh Parsa	Golden Bridge Technology
Emmanuel Kanterakis	Golden Bridge Technology
Joe Kwak	Golden Bridge Technology
Ian Corden	Lucent Technologies
Richard Burbidge	Motorola
D'AVELLA Renato	ITALTEL Spa
Takashi Mochizuki	NEC
Nobutaka Okuyama	LSI Logic
Belaiche Vincent	Mitsubishi
Choi Hokyu	Samsung Electronics
Younsun Kim	Samsung Electronics
Hyunwoo Lee	Samsung Electronics
Hichan Moon	Samsung Electronics
Sungoh Hwang	Samsung Electronics
Ikeda Shinobu	ETSI
Young-Joon Song	LGIC
Kenji Ito	Siemens K.K.
Yutaka Asanuma	Toshiba
Hiroshi Komatsu	JAPAN TELECOM CO.LTD
Hiroshi Katsuragawa	OKI Electric Ind.
Joern Krause	Siemens AG
Fredrik Ovesjo	Ericsson LM
Kuniyuki Suzuki	Mitsubishi Electric Corporation
Katsutoshi Itoh	SONY
Tim moulsley	Philips Research Laboratories
Fredrik Ovesjo	Ericsson LM
Karin Zickermann	Golden Bridge Technology
Kourosh Parsa	Golden Bridge Technology
Emmanuel Kanterakis	Golden Bridge Technology
Joe Kwak	Golden Bridge Technology
Prem Sood	Sharp Labs of America
Rudolf, Marian	Mitsubishi Electric Ite
Jussi Kahtava	Nokia Mobile Communications K.K.
Hidetoshi Suzuki	Panasonic
Otto Lehtinen	Nokia
Hiroshi Komatsu	JAPAN TELECOM CO.LTD
Peter Stahlfjall	Ericsson Radio Systems AB
·	· ·

Name	Company
Andreas Wilde	Nippon Ericsson
Benabdallah Nadia	Omnitel Pronto Italia
Kenji Ito	Siemens K.K.
Masayuki Ikeda	Seiko Epson Corporation
Joern Krause	Siemens AG
Ju-Sang Kim	Hyundaei Elc. Inc. co.Ltd.
Jae-Yong Lee	Hyundaei Elc. Inc. co.Ltd.
Sung-ho Cho	Hyundaei Elc. Inc. co.Ltd.
Min-Soo Jang	Hyundaei Elc. Inc. co.Ltd.
Kumpamaki Timo	Sonera Ltd.
Yutaka Asanuma	TOSHIBA
Hee Sun Cho	Samsung Electronics
Sung Bok Park	Samsung Electronics
Kyung Ha Lee	Samsung Electronics
Oestreich Skfan	Siemens AG
Schuff f.necker	France Telecom
Koichi Harada	DoCoMo Europe
Spase Drakul	STMicroelectronics NV
Hyu-Soo JIN	Korea Telecom Corp.
Kyoung-Won MIN	Korea Telecom Corp.
One-Hak JANG	Korea Telecom Corp.
Chang-Joo KIM	ETRI
Kyung-Hi CHANG	ETRI
Serge Willenegger	QUALCOMM Europe