CHANGE REQUEST
Please see embedded help file at the bottom of this page for instructions on how to fill in this form correctly.

### 25.213 CR 005

Current Version: v3.0.0
GSM (AA.BB) or 3G (AA.BBB) specification number $\uparrow$
$\uparrow$ CR number as allocated by MCC support team
For submission to: RAN \#6
list expected approval meeting \# here $\uparrow$


Form: CR cover sheet, version 2 for 3GPP and SMG The latest

Nokia
Date: 1 Nov 1999
Subject: Harmonization of notations scrambling codes

## Work item:

| Category: | F | Correction |
| :--- | :--- | :--- |
|  | A | Corresponds to a correction in an earlier release |
| (only one category | B | Addition of feature |
| shall be marked | C | Functional modification of feature |
| with an $X$ ) | D | Editorial modification |



| Reason for | The current text in 4.3.2.1 is misleading, notation is clarified. |
| :--- | :--- |
| change: | To improve the quality of the definition of uplink long scrambling codes in 4.3.2.2. |
|  | 5.2.2 is updated in line with changes in 4.3.2.1 and 4.3.2.2 |

Clauses affected: $\quad 4.3 .2 .1,4.3 .2 .2$ and 5.2.2 of TS25.213
Other specs Other 3G core specifications
affected:

Other GSM core specifications MS test specifications BSS test specifications O\&M specifications

## Other <br> comments:

### 4.3.2 Scrambling codes

### 4.3.2.1 General

There are $2^{24}$ uplink scrambling codes. All uplink channels shall use either short or long complex valued scrambling codes, indicated by higher layers. except for the-However, PRACH, for which uses only the long scrambling code. is used. Both short and long serambling codes are represented with complex value.
The uplink scrambling generator (either short or long) -shall be initialised by a 24 --bit value, resulting in $2^{24}$ uplink scrambling codes of each type.
The n:th uplink scrambling code, denoted by $\mathrm{C}_{\text {scramb, } \mathrm{n}}$, is defined as either short
$C_{\text {scramb,n }}(i)=\left\{\begin{array}{cl}c_{1, n}(i \bmod 256)\left(1+j c_{2, n}(i \bmod 256)\right) & \text { if } i \text { is even } \\ c_{1, n}(i \bmod 256)\left(1-j c_{2, n}((i-1) \bmod 256)\right) & \text { if } i \text { is odd }\end{array}\right.$
or long
$C_{\text {scramb }, n}(i)=\left\{\begin{array}{cc}c_{1, n}(i)\left(1+j c_{2, n}(i)\right) & \text { if } i \text { is even } \\ c_{1, n}(i)\left(1-j c_{2, n}(i-1)\right) & \text { if } i \text { is odd }\end{array}\right.$
where $i=0,1,2, \ldots$, and the lowest index corresponds to the chip transmitted first in time.
The constituent codes $\mathrm{c}_{1, \mathrm{n}}$ and $\mathrm{c}_{2, \mathrm{n}}$ are formed differently for the short and long scrambling codes as described in Sections 4.3.2.2 and 4.3.2.3.

Both short and long uplink scrambling codes for dedicated channels are formed as follows:

$$
S_{u 1, n} \underline{(i)}=C_{s c r a m b, n} \underline{(i)}
$$

Where $i=0,1,2, \ldots, 38399$, and $i=0$ corresponds to the chip transmitted first in time.

$$
\epsilon_{\text {seramb, } \mathrm{n}}=c_{1}\left(\mathrm{w}_{\theta}+j c_{z}^{\prime}{ }^{\prime} W_{1}\right)
$$

where $w_{\theta}$ and $w_{ \pm}$are chip rate sequences defined as repetitions of:
$W_{0}=\left\{\begin{array}{ll}1 & 1\end{array}\right\}$
$W_{1}=\left\{\begin{array}{ll}1 & 1\end{array}\right\}$

Also, $c_{4}$ is a real chip rate code, and $c_{2}{ }^{\prime}$ ' is a decimated version of the real chip rate code $c_{2}$ -
With a decimation factor $2, c_{2}$ - is given as:

$$
\mathrm{e}_{2}^{\prime}(2 \mathrm{k})=\mathrm{c}_{2}^{\prime}(2 \mathrm{k}+1)=\mathrm{e}_{2}(2 \mathrm{k}), \quad \mathrm{k}=0,1,2 \ldots
$$

The constituent codes $e_{+}$and $\epsilon_{z}$ are formed differently for the short and long serambling codes as deseribed in Sections 4.3.2.2 and 4.3.2.3.

### 4.3.2.2 Long scrambling code

The long scrambling codes are formed as described in Section 4.3.2, where $\mathrm{c}_{1 \underline{n} \mathrm{n}}$ and $\mathrm{c}_{2, \underline{n}}$ are constructed as the position wise modulo 2 sum of 38400 chip segments of two binary $m$-sequences generated by means of two generator polynomials of degree 25 . Let $x$, and $y$ be the two $m$-sequences respectively. The $x$ sequence is constructed using the
primitive (over $\mathrm{GF}(2)$ ) polynomial $X^{25}+X^{3}+1$. The $y$ sequence is constructed using the polynomial $X^{25}+X^{3}+X^{2}+X+1$. The resulting sequences thus constitute segments of a set of Gold sequences.

The code, $\mathrm{c}_{2, n}$, used in generating the quadrature component of the complex spreading code is a $16,777,232$ chip shifted version of the code, $\mathrm{c}_{1, \mathrm{n}}$, used in generating the in phase component.

The uplink scrambling code word has a period of one radio frame.
Let $n_{23} \ldots n_{0}$ be the 24 bit binary representation of the scrambling code number $n$ (decimal) with $n_{0}$ being the least significant bit. The $x$ sequence depends on the chosen scrambling code number $n$ and is denoted $x_{n}$, in the sequel. Furthermore, let $x_{n}(i)$ and $y(i)$ denote the $i$ :th symbol of the sequence $x_{n}$ and $y$, respectively

The $m$-sequences $x_{n}$ and $y$ are constructed as:
Initial conditions:
$x_{n}(0)=n_{0}, x_{n}(1)=n_{1}, \ldots=x_{n}(22)=n_{22}, x_{n}(23)=n_{23}, x_{n}(24)=1$
$y(0)=y(1)=\ldots=y(23)=y(24)=1$
Recursive definition of subsequent symbols:
$x_{n}(i+25)=x_{n}(i+3)+x_{n}(i)$ modulo $2, i=0, \ldots, 2^{25}-27$,
$y(i+25)=y(i+3)+y(i+2)+y(i+1)+y(i)$ modulo $2, i=0, \ldots, 2^{25}-27$.
The definition of the $n$ :th scrambling code word for the in phase and quadrature components follows as (the left most index correspend to the chip serambled first in each radio frame):

## Define

$\underline{z}_{n}(i)=x_{n}(i)+y(i), i=0,1,2, \ldots, 2^{25}-2$,
$\mathrm{e}_{1, \mathrm{n}}=\left\langle x_{H}(\theta)+y(0), x_{H}(1)+y(1), \ldots, x_{H}(\mathrm{~N}-1)+y(\mathrm{~N} 1)\right\rangle$,
$\mathrm{e}_{2, \mathrm{n}}=\left\langle x_{t H}(M)+y(M), x_{H}(M+1)+y(M+1), \ldots, x_{H}(M+N-1)+y(M+N-1)\right\rangle$,
again all sums of symbols being modulo 2 additions
Where N is the period in chips and $\mathrm{M}=16,777,232$.
The real valued Gold sequence $Z_{\underline{n}}$ is defined by
$Z_{n}(i)=\left\{\begin{array}{ll}+1 & \text { if } z_{n}(i)=0 \\ -1 & \text { if } z_{n}(i)=1\end{array}\right.$ for $i=0,1, \ldots, 2^{25}-2$.

Now, the real valued codes $\mathrm{c}_{1, n}$ and $\mathrm{c}_{2, n}$ for the long scrambling are defined as follows:
$\underline{c}_{\underline{l, n}}=Z_{\underline{n}}(i)$ for $i=0,1,2, \ldots, 2^{25}-2$ and
$\underline{c}_{2, n}=Z_{n}\left((i+16,777,232)\right.$ modulo $\left.\left(2^{25}-1\right)\right)$ for $i=0,1,2, \ldots, 2^{25}-2$;
the lowest index corresponds to the chip applied first in time.
These binary code words are converted to real valued sequences by the transformation ' 0 ' $>{ }^{\prime}+1$ ', ' 1 ' $>$ ' 1 '.

In case the OVSF code on the PDSCH varies from frame to frame, the OVSF codes shall be allocated such a way that the OVSF code(s) below the smallest spreading factor will be from the branch of the code tree pointed by the smallest spreading factor used for the connection. This means that all the codes for UE for the PDSCH connection can be generated according to the OVSF code generation principle from smallest spreading factor code used by the UE on PDSCH.

In case of mapping the DSCH to multiple parallel PDSCHs, the same rule applies, but all of the branches identified by the multiple codes, corresponding to the smallest spreading factor, may be used for higher spreading factor allocation.

### 5.2.2 Scrambling code

A total of $2^{18}-1=262,143$ scrambling codes, numbered $0 \ldots 262,142$ can be generated. However not all the scrambling codes are used. The scrambling codes are divided into 512 sets each of a primary scrambling code and 15 secondary scrambling codes.

The primary scrambling codes consist of scrambling codes $n=16 * i$ where $i=0 \ldots 511$. The $i$ :th set of secondary scrambling codes consists of scrambling codes $16 * \mathrm{i}+\mathrm{k}$, where $\mathrm{k}=1 \ldots 15$.

There is a one-to-one mapping between each primary scrambling code and 15 secondary scrambling codes in a set such that i:th primary scrambling code corresponds to i:th set of scrambling codes.

Hence, according to the above, scrambling codes $\mathrm{k}=0,1, \ldots, 8191$ are used. Each of these codes are associated with an even alternative scrambling code and an odd alternative scrambling code, that may be used for compressed frames. The even alternative scrambling code corresponding to scrambling code k is scrambling code number $\mathrm{k}+8192$, while the odd alternative scrambling code corresponding to scrambling code k is scrambling code number $\mathrm{k}+16384$.

The set of primary scrambling codes is further divided into 64 scrambling code groups, each consisting of 8 primary scrambling codes. The j :th scrambling code group consists of primary scrambling codes $16 * 8 * j+16 * \mathrm{k}$, where $\mathrm{j}=0 . .63$ and $\mathrm{k}=0 . .7$.

Each cell is allocated one and only one primary scrambling code. The primary CCPCH and primary CPICH areis always transmitted using the primary scrambling code. The other downlink physical channels can be transmitted with either the primary scrambling code or a secondary scrambling code from the set associated with the primary scrambling code of the cell.

The mixture of primary scrambling code and secondary scrambling code for one CCTrCH is allowable.
The scrambling code sequences are constructed by combining two real sequences into a complex sequence. Each of the two real sequences are constructed as the position wise modulo 2 sum of 38400 chip segments of two binary $m$ sequences generated by means of two generator polynomials of degree 18 . The resulting sequences thus constitute segments of a set of Gold sequences. The scrambling codes are repeated for every 10 ms radio frame. Let $x$ and $y$ be the two sequences respectively. The $x$ sequence is constructed using the primitive (over $\mathrm{GF}(2)$ ) polynomial $1+X^{7}+X^{18}$. The $y$ sequence is constructed using the polynomial $1+X^{5}+X^{7}+X^{10}+X^{18}$.

The sequence depending on the chosen scrambling code number $n$ is denoted $z_{n}$, in the sequel. Furthermore, let $x(i)$, $y(i)$ and $z_{n}(\mathrm{i})(\underline{i})$ denote the $i$ :th symbol of the sequence $x, y$, and $z_{n}$, respectively

The $m$-sequences $x$ and $y$ are constructed as:
Initial conditions:
$x$ is constructed with $x(0)=1, x(1)=x(2)=\ldots=x(16)=x(17)=0$
$y(0)=y(1)=\ldots=y(16)=y(17)=1$
Recursive definition of subsequent symbols:

$$
\begin{aligned}
& x(i+18)=x(i+7)+x(i) \text { modulo } 2, i=0, \ldots, 2^{18}-20, \\
& y(i+18)=y(i+10)+y(i+7)+y(i+5)+y(i) \text { modulo } 2, i=0, \ldots, 2^{18}-20 .
\end{aligned}
$$

The $n$ :th Gold code sequence $z_{n}, n=0,1,2, \ldots, 2^{18}-2$, is then defined as
$z_{n}(i)=x\left((i+n)\right.$ modulo $\left(2^{18}-\underline{1} 2\right)+y(i)$ modulo $2, i=0, \ldots, 2^{18}-2$.
 +1 ', ' 1 ' $\rightarrow-1$ '.
$Z_{n}(i)=\left\{\begin{array}{ll}+1 & \text { if } z_{n}(i)=0 \\ -1 & \text { if } z_{n}(i)=1\end{array}\right.$ for $\quad i=0,1, \ldots, 2^{18}-2$
Finally, the n:th complex scrambling code sequence $S_{d l, n}$ is defined as(the lowest index corresponding to the chip serambled first in each radio frame) (where N is the period in chips and M is 131,072):
$S_{d l, n}(i)=\underline{Z} \underline{z}_{n}(i)+j \underline{Z} z_{n}\left((i+\underline{131072} 4)\right.$ modulo $\left.\left(2^{18}-1\right)\right), i=0,1, \ldots, \underline{38399} \mathrm{~N}-1$.
Note that the pattern from phase 0 up to the phase of 38399 is repeated.


Figure 11: Configuration of downlink scrambling code generator

