
TDoc TSG RAN WG1 (99)614
3GPP TSG-RAN Working Group 1, Meeting #5

Cheju, South Korea, June 1-4 1999
Agenda Item:
Source:

Siemens AG

Title:

RACH in TDD Mode
Document for:

Discussion

1 Introduction

At the last 3GPP TSG RAN WG1 meetings (Nynashamn, Sweden, Mar 99 and Shin Yokohama, Japan, Apr 99) some discussions took place on payload of RACH in TDD mode. Some intermediary results were shown in TDoc TSG RAN WG1 (99)306.

However, the work on this topic continues and can be separated in two issues:

· Coding for TDD RACH

· Burst Length for RACH / Number of Collision Groups

2 Coding for TDD RACH

2.1 Convolutional Coding

Currently, specification document S1.22 v2.0.0 shows the values of 2/3 or 7/8 for convolutional encoding of TDD RACH. However, these figures are given in square brackets, as no formal decision has been taken by WG1. The values are different from FDD, thus we have to explain why.

Compared to FDD mode, the TDD RACH burst occupies a very short period of time: 10ms in FDD, 289µs in TDD. Due to the general properties of the mobile channel, in TDD it can be expected that there is either no ‘drop’ during the RACH burst or a significant part of the burst is affected due to bad channel conditions. Considering this, we compared in our simulations the block error rates (BLER) of different coding schemes. The results are shown in table 1.

Eb,Gross/N0 [dB]
Coderates

0,50
0,70
0,90

3,00
1,50E-02
5,00E-02
9,00E-02

4,50
3,50E-03
1,70E-02
6,00E-02

5,00
2,60E-03
1,00E-02
4,00E-02

6,00
8,00E-04
4,00E-03
1,70E-02

Table1:
Block Error Rates (BLER) for different coding schemes

Please note, that we use Eb,Gross for comparison instead of Eb. The reason is when comparing different coding schemes with unchanged number of gross bits, we have to look at the amount of energy finally transmitted on air. In other words we have to unify the basis when comparing different coderates. This was done by introducing Eb,Gross, representing the transmission energy and reflecting the transmission power, thus the interference caused by the particular scheme.

As expected, the BLER did not decrease significantly for better coding. The reason is that if there is a ‘drop’ in the mobile channel, even a good coding is not able to overcome this. If we compare the achieved BLER with net bit rate, we get the ‘Throughput’ figures given in table 2:

Eb,Gross/N0 [dB]
Coderates

0,50
0,70
0,90

3,00
0,4925
0,665
0,819

4,50
0,49825
0,6881
0,846

5,00
0,4987
0,693
0,864

6,00
0,4996
0,6972
0,8847

Table2:
‘Throughput’ for different coding schemes

For example, if your ‘Air-bit-rate’ is 100, so your net bit rate in case of 0.9 coding is 90. Assuming an Eb,Gross/N0 of 4.5dB 6 percent of all attempts will fail. Thus you get an average ‘Throughput’ of 84.6 bits for 100 ‘Air bits’.

From table 2 it can be obtained that 0.9 coding is leading to the best result. Averaged over different Eb/N0 values, Figure 1 will show this effect in a diagram:

[image: image1.wmf]0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

0,40

0,50

0,60

0,70

0,80

0,90

1,00

coderate

throughput

Figure1:
Throughput versus coderate of different coding schemes
From our simulations, we obtained even better results when using ‘CRC only’. This is, we omitted the convolutional coder (rate 1 coding) and added CRC bits, leading to a coderate of approximately 0.9.

These results show, that a very low coding gain is sufficient due to the inherent TDD RACH properties. Of course RACH coding has to provide the means to securely detect the presence of bit or block errors. Regarding this, we propose to introduce a block coding scheme as given in section below.

2.2 Block Coding

As an alternative to the use of a CRC error detecting code and a convolutional error correcting code a shortened binary BCH code can be used instead . The BCH(127,99) code is a 4 error correcting code that adds 28 parity bits, allowing a payload of 56 bits. Another alternative is the BCH(128,92) code that adds 35 parity bits, giving a payload of 48 bits. Shortening the BCH(127,99) code is preferred because it allows a larger payload size.

It is envisaged that hard decision decoding would be used, and performance results are supplied below of the probability of undetected block error and the probability of correct decoding for the situation where the decoder corrects up to 2 errors. Error detection performance is compromised by allowing the decoder to correct up to 4 errors. The channel is the binary symmetric channel.
[image: image2.wmf]0.001

10

8

Qe

i

0.158114

5

10

3

.

ber

i

1

10

3

0.01

0.1

1

1

10

8

1

10

7

1

10

6

1

10

5

1

10

4

1

10

3

Channel Bit Error Rate

Undetected Error Probability

Figure2:
Probability of Undetected Error for BCH(127,99) Code

The results of figure 2 indicate that the probability of undetected block error for the unshortened code is < 2-14. For the shortened code a slightly lower probability of undetected error would be expected.

[image: image3.wmf]1

10

4

Pe

i

0.158114

5

10

3

.

ber

i

1

10

3

0.01

0.1

1

1

10

4

1

10

3

0.01

0.1

1

Channel Bit Error Rate

Probability of Correct Decoding

Figure3:
Probability of Correct Decoding for Shortened BCH(84,56)
The results of figure 3 show that 90% of codewords can be detected at a bit error rate of 2% on the binary symmetric channel.

BCH codes are cyclic codes and can be generated using a n-k stage shift register with feedback connections defined by a generator polynomial. For the specific code described above the 56 bit RACH payload is appended with 43 bits of zero value. The resulting 99 bit word is then applied to a linear feedback shift register with generator polynomial:

[image: image4.wmf]G

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

(

)

=

+

+

+

+

+

+

+

+

+

+

+

+

+

+

28

27

26

23

20

19

18

13

10

9

7

5

4

3

1

The 28 parity bits, are appended to the original 56 bits of the RACH to form the codeword of a shortened BCH(84,56) code. The parity bits are the contents of the shift register after application of the 99 bit input word.

As this block coding scheme provides reliable detection of block errors and good code correction properties, we propose to introduce this scheme for RACH coding in TDD mode. Text proposal is given in the Annex below.

3 Burst Length for RACH / Number of Collision Groups

Currently, the 3GPP standard shows in specification document S1.21, that a special burst format is used for RACH in TDD mode. A TDD RACH burst occupies less than half a timeslot, i.e. it has a duration of 289µs. Due to this one timeslot may contain two RACH bursts in time domain. In code domain, 8 different midamble structures allow 8 distinguishable RACH resources in code domain. As a consequence of this, we obtain 16 RACH resources per timeslot allocated. This RACH burst provides a total number of 84 air bits.

Due to the collision risk, the number of successful RACH attempts is in general following the ALOHA principle. Considering the 16 collision groups from above (1 timeslot per frame is allocated for RACH traffic), simulations have been carried out with the following assumptions:

There is a number (of new (initial) RACH accesses per frame. If a UE does not succeed at first attempt, it will go into a ‘backoff state’. The following scheme is applied then:

· UEs in ‘backoff state’ select a uniformly distributed random frame-count to wait between retransmissions. The backoff frame-count is selected from the set {S, S+1, ... , S+R-1}.

· Each (re-)transmission takes place on a new randomly selected collision group.

· No collision groups are reserved for special UE classes.

· There is a maximum number of M retransmissions

The parameters used for the simulations are:

Parameter
Description

M=7
Upper bound on the number of retransmissions, see above

S+R-1=10
Maximum number of RACH slots to wait between retransmissions (used in backoff algorithm, see above)

S=1
Minimum number of RACH slots to wait between retransmissions (used in backoff algorithm, see above)

P(survival)=0.9
P defines the probability of packet loss when no collision occurs (probability of correct decoding).

sigma(p)=4dB
sigma(p) is the standard deviation of the (log-normal) fast-fading model used in the simulation.

Regarding these conditions the mean delay for TDD RACH attempts was simulated and is shown in figure 2:

 EINBETTEN Word.Document.8 \s
[image: image5.wmf]10

-3

10

-2

10

-1

10

0

10

1

10

-1

10

0

10

1

TDD RACH mean delay with retransmissions

New traffic intensity

l

 [mean number of initial accesses per frame]

Mean Delay [Frame Count]

New traffic intensity ([mean number of initial accesses per frame]

Figure 2:
Mean Delay for TDD RACH with retransmissions

16 collision groups per frame assumed

From this figure 2, it can be seen that e.g. for a intensity of 3 new accesses per frame a mean delay of 0.8 frames is achieved. This number of 3 new attempts per frame is a result of the traffic models depicted in TDoc TSG RAN WG1 (99)188.

Same simulations have been done for a new proposal (cf. TDoc TSG RAN WG1 (99)192) which assumes using a full burst for RACH transmission. Considering one timeslot per frame allocated for RACH traffic, this leads to 8 RACH collision groups per frame. Using same conditions and parameters as shown above, we then obtain from simulations the results shown in figure 3:

[image: image6.jpg]10

—— mean
—— median

—— 95 percentile
—— 98 percentile

Number of RACH RUs per frame: 8
Full access bursts only
P(Survival)= 0.900000

7,822, R=10, o(p)=4.0

107 107" 107 10°
New traffic intensity A [mean number of initial accesses per frame]

Figure 3:
Mean Delay for TDD RACH with retransmissions

8 collision groups per frame assumed

From this figure 3, it can be seen that e.g. for a intensity of 3 new accesses per frame a mean delay of 4.5 frames is achieved. Moreover if we are considering more than 3 accesses per frame, the mean delay will reach the point of instability very soon. This is due to the fact, that in case of 8 collision groups 3 accesses per frame pose 37.5% of the load, which is beyond 1/e = 36.8% load point. Thus, we run into stability problems of RACH and this will lead to high packet delay and high congestion.

From these considerations, we recommend to keep the working assumption of having 16 collision groups per frame. The current RACH burst allows to do so using only one timeslot per frame for RACH purposes and supporting an air-bit-rate sufficient for the request for further resources. And then, resulting from fast allocation of dedicated resources, the system will profit from all link control schemes like Power Control, Timing Advance, Inter-Frame-Interleaving, appropriate antenna pattern etc.

4 Conclusion

Regarding the trade off between payload and capacity of RACH, we recommend to keep the current working assumptions concerning the format of TDD RACH bursts. For very efficient use of TDD RACH capacity, we propose to use a BCH(84,56) block coding scheme, for which a text proposal is shown in the Annex.

6.2.2
Channel coding

The following options are available for the transport-channel specific coding, see also Figure 6-2:

· Convolutional coding
· Turbo coding

· Block coding

· Service-specific coding, e.g. unequal error protection for some types of speech codecs.

[image: image7.wmf]Convolutional

coding

Service-specific

coding

Block

coding

Turbo

coding

[image: image8.wmf]Convolutional

coding

Service-specific

coding

Turbo

coding

Figure 6‑2. Channel coding in UTRA/TDD.

In Real Time (RT) services a FEC coding is used, instead Non Real Time (NRT) services could be well managed with a proper combination of FEC and ARQ.

Table 6.2.2–1 Error Correction Coding Parameters
Transport channel type

(Maximum coding unit size)
Coding scheme

 (constraint length)
Coding rate

BCH
Convolutional code (K=9)
1/2

PCH

FACH

RACH
Block Code
BCH(84,56)

DCH (less than or equal to 32kbps)
Convolutional code (K=9)
1/2 or 1/3

DCH (more than 32 kbps)
Turbo code

...

6.2.2.4
Block Coding (for RACH)
For RACH encoding a shortened binary BCH code shall be used: BCH(84,56).

The 56 bit RACH payload is appended with 43 bits of zero value. The resulting 99 bit word is then applied to a linear feedback shift register with generator polynomial:

[image: image9.wmf]G

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

(

)

=

+

+

+

+

+

+

+

+

+

+

+

+

+

+

28

27

26

23

20

19

18

13

10

9

7

5

4

3

1

The 28 parity bits, are appended to the original 56 bits of the RACH to form the codeword of a shortened BCH(84,56) code. The parity bits are the contents of the shift register after application of the 99 bit input word.

Mean Delay [Frame Count]

Mean Delay [Frame Count]

R1-99614.doc
Page 1 of 8
TDoc TSG RAN WG1 (99)614

_989323410.doc

Convolutional

coding

coding

Block

Turbo

coding

Service-specific

coding

_989324092.doc

Convolutional

coding

Turbo

coding

Service-specific

coding

_989330795.xls
Diagramm2

		0.5

		0.7

		0.9

coderate

throughput

0.4972625

0.685825

0.853425

Tabelle1

		

						Coderates

						0.50		0.70		0.90

				3.00		1.50E-02		5.00E-02		9.00E-02

				4.50		3.50E-03		1.70E-02		6.00E-02

				5.00		2.60E-03		1.00E-02		4.00E-02

				6.00		8.00E-04		4.00E-03		1.70E-02

				3.00		0.4925		0.665		0.819

				4.50		0.49825		0.6881		0.846

				5.00		0.4987		0.693		0.864

				6.00		0.4996		0.6972		0.8847

				Average		0.50		0.69		0.85

Seite &P

Erstellt von &D&RSeite &P

Tabelle1

		

&A

Seite &P

coderate

throughput

Tabelle2

		

&A

Seite &P

Tabelle3

		

&A

Seite &P

Tabelle4

		

&A

Seite &P

Tabelle5

		

&A

Seite &P

Tabelle6

		

&A

Seite &P

Tabelle7

		

&A

Seite &P

Tabelle8

		

&A

Seite &P

Tabelle9

		

&A

Seite &P

Tabelle10

		

&A

Seite &P

Tabelle11

		

&A

Seite &P

Tabelle12

		

&A

Seite &P

Tabelle13

		

&A

Seite &P

Tabelle14

		

&A

Seite &P

Tabelle15

		

&A

Seite &P

Tabelle16

		

&A

Seite &P

_988047996.doc

_988459345.unknown

