
1

TSG-RAN Working Group1 meeting #3                              TSGR1#3(99)189
Nynäshamn 22-26, March 1999

Agenda Item:

Source:        Lucent Technologies

Title: A unifying code proposal for all data rates, block sizes and Quality of

Service: Performance/Complexity trade-off

Document for: Discussion
____________________________________________________________________

Introduction
In this document, we present a proposal for a unique solution to the channel coding required
for UMTS applications, encompassing all data rates, block sizes, and quality of services. It is
based on the serial concatenation of two 4-state convolutional codes with an interleaver in
between.

Extended comparisons of the 4-state serially concatenated convolutional code (4-SCCC) with
the 8-state parallel concatenated convolutional code (8-PCCC) are presented. The comparison
encompasses all code block sizes, from 80 to 5120, and refers to three different quality of
services, namely a bit error probability of 10-6 , 10-7 and    10-8 . For voice applications, and thus
block sizes of 80 and 160, we also compare the performance of 4-SCCC with that of the 256-
state convolutional code, which is suggested as working assumption for low data rate services.

The results have been obtained assuming an additive white Gaussian noise (AWGN) channel.
We have three valid reasons for that: first, it would not have been possible to obtain such a large
amount of results, down to 10-8, on a channel more complex to simulate. Second, the
simulations over the correlated Phase 2 fading channel are not sufficiently reliable, because of
the impossibility to consider a sufficient number of independent fading events in the
simulations. Third, the hierarchy of performance obtained on an AWGN channel is maintained
over the worse fading channel, with an obvious performance degradation which can be safely
assumed to be uniform for the two coding schemes.

The results that will be presented later clearly show that the 4-SCCC solution offers very good
performance over the whole range of block sizes and quality of services, and thus it should be
used as a unique, simple code for all applications.

Types of services, delays, data rates and block sizes
In the following Table 1, we list different type of services, and, for each category, the range of
delay constraints, as coming from the transmission time intervals specified in [1], the
information data rates, the information block sizes obtained as the product of the delay times
the data rate, and, finally, the pertinent quality of services, as derived from [2].
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Table 1. Services, delays, data rates, block sizes, and QoS.

Services
Delay
[ms]

Information
data rates

[kbit/s]

Maximum
information

block sizes for
channel coding

[bit]

QoS
[BER, FER]

Voice & LDD
(Class A)

20 8 160 [BER]10-3-10-5

Real –time data
(Voice-band
data, fax, video
etc.)
(Class B )

10-80 9.6
14.4
28.8
64
128 and beyond

96-768
144-1152
288-2304
640-4320
1280-10240 and
beyond

[BER]<10-6

Non real time
data:
(packet data
services like
Internet services
etc.)
(Class C & D)

10-80 64
144
384 and beyond

640-4320
1440-11520
1280 and beyond

[BER] <10-8

[FER] ~10-5

for FEC
[FER] =10-2-10-3

for ARQ

Table 1 shows that the largest block size can amount to 11,520 bits and beyond. However, since
the decoder complexity increases linearly with the block size, whereas the performance
improvement saturates for block sizes around 1,000-2,000 (see next Figure 11 and Figure 12), it
is convenient to limit the block size to 1,280-2,560.

The results
We present two sets of results: the first refers to the computed true minimum (free) distance of
4-SCCC and 8-PCCC, and the second reports the outcomes of extensive simulation runs.

The minimum (free) distance of the codes

In Table 2, we show the minimum distances measured through a very fast, proprietary algorithm
that tries as input information to the encoder all sequences with weight up to the minimum
distance. They refer to 4-state SCCC and 8-state PCCC for all block sizes from 80 to 5,120, as
the two reasonable extremes coming from Table 1. For the larger block sizes, the algorithm has
not been able to measure the actual minimum distance. In those cases, there is an inequality in
the corresponding table element. Its meaning is that we have found an error event with a weight
equal to the upper bound of the inequality, and we have not found error events with a weight
equal to the lower bound of the inequality, which was the largest size that our algorithm could
manage.

The interleavers that have been used for the codes are the most recent interleavers proposed
jointly by HNS and Nortel in Document [3] for 8-state PCCC, and interleavers kindly provided
by NTT-DoCoMo for 4-state SCCC.
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Table 2 : Free distance of  4-state SCCC and 8-state PCCC for different interleaver types and
sizes

HNS Mix MIL Nortel

8
0 4 SCCC

18/1/6 23/1/2

8 PCCC 11/1/1

1
6

4 SCCC 23/1/6 28/10/56

8 PCCC 17/2/6

3
2

4 SCCC 29<d<32 25/1/5 29/1

8 PCCC 19/1/1 19/1/1 17/1/3

6
4

4 SCCC 29<d <36 29/2/18

8 PCCC 18/1/2 19/1/1 19/1/3

1
2

4 SCCC 29<d<=32/1

8 PCCC 22/2/4 d<=28/20

2
5

4 SCCC 29<d<=39/449

8 PCCC 23/1/1 d<=26/1

3
8

4 SCCC

8 PCCC d<26/4 d<=25/1

5
1

4 SCCC Spread <62/1 29<d<=54/1250

8 PCCC d<28/314 d<=28/12

Table 2 clearly shows that, for all block sizes, 4-state SCCC yields a significantly larger minimum
distance than 8-state PCCC. Considering that the free distance of the rate 1/3, 256-state
convolutional code is 18, 4-SCCC is also superior to 256-state convolutional code. In terms of
performance, this means that 4-SCCC will have a lower error floor than 8-PCCC, and, also, that
it should be less sensitive to the puncturing required for rate matching.

Simulation results

In the following we report the results of extensive simulation results for 4-state SCCC and 8-
state PCCC for the following cases:

• Figure 1 and Figure 2: FER with a maximum of 10 iterations of the decoding algorithm

• Figure 3 and Figure 4: BER with a maximum of 10 iterations of the decoding algorithm

• Figure 5 and Figure 6: : FER with a maximum of 100 iterations of the decoding algorithm
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• Figure 7 and Figure 8: : BER with a maximum of 100 iterations of the decoding algorithm

Simulation results - 4 SCCC - AWGN Channel
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Figure 1: Frame error probability of the 4-state SCCC over the AWGN channel with a
maximum of 10 iterations. Information block sizes: 80, 160, 320, 640, and 5120.

Simulation results - 8 PCCC - AWGN Channel
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Figure 2 Frame error probability of the 8-state PCCC over the AWGN channel with a
maximum of 10 iterations. Information block sizes: 80, 160, 320, 640, 1280, 2560, 3840, and
5120.
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Simulation results - 4 SCCC - AWGN Channel
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Figure 3: Bit error probability of the 4-state SCCC over the AWGN channel with a maximum of
10 iterations. Information block sizes: 80, 160, 320, 640, and 5120.

Simulation results -  8 PCCC - AWGN Channel
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Figure 4: Bit error probability of the 8-state PCCC over the AWGN channel with a maximum
of 10 iterations. Information block sizes: 40, 80, 160, 320, 640, 1280, 2560, 3840, and 5120.
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Simulation results - 4 SCCC - AWGN Channel
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Figure 5: Frame error probability of the 4-state SCCC over the AWGN channel with a
maximum of 100 iterations. Information block sizes: 40, 80, 160, 320, 640, and 5120.

Simulation results - 8 PCCC - AWGN Channel
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Figure 6: Frame error probability of the 8-state PCCC over the AWGN channel with a
maximum of 100 iterations. Information block sizes: 80, 160, 320, 640, 1280, 2560, 3840,
and 5120.
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Simulation results- 4 SCCC - AWGN Channel
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Figure 7: Bit error probability of the 4-state SCCC over the AWGN channel with a maximum of
100 iterations. Information block sizes: 80, 160, 320, 640, and 5120.

Simulation results - 8 PCCC - AWGN Channel
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Figure 8: Bit error probability of the 8-state PCCC over the AWGN channel with a maximum
of 100 iterations. Information block sizes: 80, 160, 320, 640, 1280, 2560, 3840, and 5120.

From the figures we can clearly appreciate the different behaviour of the two codes. In fact, 8-
PCCC shows an evident error floor below 10-6  (BER) and 10-3 (FER).



8

The required Eb/N0 and implementation complexity versus block size

From the previous simulation results, we have extracted, for different quality of services, namely
a bit error probability of 10-6, 10-7 and 10-8 (as required from Table 1) and frame error
probabilities of 10-1 ,  10-2 , 10-3  and    10-5, the curves of the required Eb/N0 versus block size for
the two coding schemes. In the same curve, we also report a measure of the ASIC
implementation complexity for the 4-SCCC and the 8-PCCC coding schemes, in terms of the
required ASIC area in squared mm for a 0.5 µm CMOS technology, based on the results
presented in [4].

 Figure 9 shows the frame error probability (on the LHS ordinate axis) and implementation
complexity (on the RHS ordinate axis) versus block size for the two coding schemes for a
maximum of 10 iterations. Figure 10 gives the same informations for a maximum of 100
iterations.

Figure 11 and Figure 12 give the same kind of informations referring for the bit error
probability.

Eb/N0 for different QoS (FER) and different Block sizes
SCCC: solid lines - PCCC: dashed lines 
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Figure 9: Eb/N0 for different QoS (FER) and different Block sizes with a maximum of 10
iterations. The RHS ordinate reports the ASIC implementation complexity in square millimetres.
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Eb/N0 for different QoS (FER) and different Block sizes
SCCC: solid lines - PCCC: dashed lines 
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Figure 10: Eb/N0 for different QoS (FER) and different Block sizes with a maximum of 100
iterations. The RHS ordinate reports the ASIC implementation complexity in square millimetres.

Eb/N0 for different QoS (BER) and different Block sizes
SCCC: solid lines - PCCC: dashed lines
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Figure 11: Eb/N0 for different QoS (BER) and different Block sizes with a maximum of 10
iterations.
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Eb/N0 for different QoS (BER) and different Block sizes
SCCC: solid lines - PCCC: dashed lines
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Figure 12: Eb/N0 for different QoS (BER) and different Block sizes with a maximum of 100
iterations.

Table 3: Comparison in Eb/N0, capacity and complexity gains of 4 SCCC versus 8 PCCC for
all block sizes, high quality services (BER). A maximum of 10 iterations of the decoding
algorithm.

BER 1.00E-06 1.00E-07 1.00E-08

Block size

Gain in 
Eb/N0 
[dB]

Gain in 
Capacity

Gain in 
Eb/N0 
[dB]

Gain in 
Capacity

Gain in 
Eb/N0 
[dB]

Gain in 
Capacity

Complexity 
gain

80 0.16 3.62% 0.64 13.70% 1.01 20.75% 90%
160 -0.19 -4.47% 0.03 0.69% 0.22 4.94% 85%
320 -0.20 -4.71% -0.02 -0.46% 0.52 11.28% 80%
640 -0.25 -5.93% 0.11 2.50% 0.18 4.06% 68%

5120 -0.24 -5.68% 0.31 6.89% 0.98 20.20% 16%
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Table 4: Comparison in Eb/N0, capacity and complexity gains of 4 SCCC versus 8 PCCC for
all block sizes, high quality services (FER). A maximum of 10 iterations of the decoding
algorithm.

FER 1.00E-03 1.00E-04 1.00E-05
Complexity 

gain

Block size
Gain in 
Eb/N0 
[dB]

Gain in 
Capacity

Gain in 
Eb/N0 
[dB]

Gain in 
Capacity

Gain in 
Eb/N0 
[dB]

Gain in 
Capacity

80 -0.14 -3.28% 0.11 2.50% 0.67 14.30% 90%
160 -0.19 -4.47% -0.19 -4.47% 0.02 0.46% 85%
320 -0.25 -5.93% -0.18 -4.23% 0.14 3.17% 80%
640 -0.27 -6.41% -0.20 -4.71% 0.10 2.28% 68%

5120 -0.19 -4.47% 0.43 9.43% 1.14 23.09% 16%

Table 5: Comparison in Eb/N0 and capacity gains of 4 SCCC versus 256 CC for voice and low
data rate, low quality services. A maximum of 10 and 100 iterations of the decoding algorithm.

BER 1.00E-03 1.00E-04 1.00E-05
Block size Gain in

Eb/N0
[dB]

Gain in
Capacity

Gain
in

Eb/N0
[dB]

Gain in
Capacity

Gain
in

Eb/N0
[dB]

Gain in
Capacity

160 (100 it.) 0.49 10.67% 0.96 19.83% 1.32 26.22%
160 (10 it.) 0.10 2.28% 0.56 12.09% 0.85 17.80%

In Table 3 and Table 4 we report the numerical results obtainable from Figure 11 and Figure 9.
The second (fourth and sixth) columns provides the difference in Eb/N0  (in dB) between 8-
PCCC and 4-SCCC, and the third (fifth and seventh) columns reports the gain in capacity
induced by the gain in signal-to-noise ratio according to a formula based on very simplifying
assumptions. Finally, the eighth column reports the gain of 4-SCCC in ASIC implementation
complexity measured as area saving.

Table 5 reports analogous comparisons between 4-SCCC and 256-state convolutional code for
voice and low data rate, low quality services. In terms of complexity, we do not report results
here, because in any case we are comparing a single code with a situation in which the same
code, plus the 256 CC are needed, so that the complexity of the Viterbi decoder adds to the one
with the single 4-SCCC code.

In Table 5 we have reported the 4-SCCC performance using both 10 and 100 as the maximum
number of iterations of the decoding algorithm. Notice that using 100 iterations as the
maximum number significantly improves the performance (and the capacity), without affecting
significantly the power consumption, since the average number of iterations required (less than
10) remain almost the same. On the other hand, 100 iterations, for these data rates, are widely
within the reach of any reasonable decoder implementations (see next Table 6 which reports the
maximum number of iterations for data rates of 4 and 8 kbit/s in a VLSI implementation, based
on the architecture described in [5] that has been used to obtain the complexity measures shown
in Figure 1 and using a clock of 50MHz).
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Table 6: Maximum number of iterations at 50 MHz (4SCCC)

Block size /
Data rate

4 kbit/s 8 kbit/s

80 2,632 1,316
160 3,448 1,724

From Table 3 and Table 5 (and figures) we can derive the following important system
observations:

• The 4-SCCC yields uniformly good performance for all block sizes and quality of services.
As compared to 8-PCCC, it is always superior for the bit error rate of 10-8, yielding a gain in
capacity up to 20%. For the bit error rate of 10-7, it yields capacity gains up to 13. For the bit
error rate of 10-6, it is better for the block size of 80 and looses no more than 0.25 dB (5%
loss in capacity) for the larger block sizes. If the two codes are compared in terms of frame,
instead of bit, error rates, then 4-SCCC shows even superior performance with respect to 8-
PCCC.

• As compared with the 256-state convolutional code, it yields a gain of about 0.49 dB (10%
gain in capacity) at a bit error rate of 10-3 (for a block size of 160), and even better at lower
bit error rates. For a block size of 80, the two codes show the same performance at a bit
error rate of  10-3, whereas significant gains, up to 10% in capacity are provided by the 4-
SCCC at lower bit error rates.  As a consequence, 4-SCCC can be used without requiring the
presence of the convolutional code.

• The implementation complexity of 4-SCCC is lower than for 8-PCCC for all block sizes,
yielding a saving close to 90 % for the lower block sizes, of about 80 % for a size of 320, 70
% for 640, and 35 % for 1,280. At the largest block size (5,120), the saving becomes to 16
%.

• The performance curves versus block size show a marginal improvement for block sizes
above 1,280. In fact, increasing from 1,280 to 5,120 yields about 0.4 dB of improvement,
whereas going from 2,560 to 5,120 yields an improvement less than 0.2 dB. On the other
hand, the implementation complexity increases more than twice. As a consequence, it seems
more effective, for a better performance/complexity trade-off, to limit the information
block size to 1,280.

• For non real time services (as an example packet data) one could use either the FEC or
ARQ option. When using a rather weak code, like a convolutional code alone, the ARQ
option allows obtaining low bit error rates at low Eb/N0, at the expense of the data
throughput. This is because ARQ can base its strategy on relatively high FER (10-2-10-3 ) to
obtain low BER (10-7 - 10-8 ). On the other hand, when a very powerful code (like the 4-
SCCC) is available, showing almost vertical curves of BER versus Eb/N0 down to BER of
10-8 without error floors, it is convenient to use an FEC strategy, yielding BER of 10-8

without sacrificing neither throughput nor Eb/N0. As a consequence, 4-SCCC can be
effectively used also for non real time services, together with an FEC strategy.

Sensitivity to puncturing for rate matching
We have also performed a preliminary investigation of the sensitivity of 4-SCCC and 8-PCCC to
the puncturing required for the rate matching. The following results refer to a puncturing depth
such as to reduce the code rate from 1/3 to ½.

We have chosen as puncturing pattern two different cases:
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• A random puncturing pattern varying from block to block, corresponding to a completely
uncorrelated operation of the rate matching puncturing with respect to the encoder (curves
denoted by (R) in the figures).

• A periodic puncturing, one bit every three, corresponding to the presently proposed rate
matching algorithm directly applied to the encoded blocks encoder (curves denoted by (P)
in the figures).

Figure 13 and Figure 14 report the results for the two extreme block sizes of 80 and 5120 for
the cases of 4-SCCC and 8-PCCC. The results for the unpunctured rate 1/3 code are also
reported for comparison. The case of periodic puncturing for the 8-PCCC code has been
chosen so as to puncture one of the two parity check bits. In fact, puncturing the systematic bit
would lead to a quasi-catastrophic code.

From the curves we see that the loss for puncturing lies between 0.79 and 0.9 dB for SCCC, and
between 0.85 and 5.5 for PCCC in the case of  N=5120. For the case N=80 SCCC looses from
0.95 to 1.66 dB whereas PCCC looses from 2.03 to 2.09 dB. The large loss for periodic
puncturing in the case of 8-PCCC stems from the lack of the turbo effect in this case.

Simulation results - 4 SCCC -AWGN Channel
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Figure 13: Bit error probability of the 4-state SCCC for block sizes of 80 and 5120 in the
presence of random and periodic puncturing leading to a rate ½ code. The curves for rate 1/3
(unpunctured) is also reported.
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Simulation results- 8-PCCC - AWGN Channel
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Figure 14: Bit error probability of the 8-state PCCC for block sizes of 80 and 5120 in the
presence of random and periodic puncturing leading to a rate ½ code. The curves for rate 1/3
(unpunctured) is also reported.

Conclusions
Based on the set of results presented in this document, we can conclude that the coding scheme
based on the serial concatenation of two 4-state convolutional codes with interleaver (4-SCCC)
is a very strong candidate for all data rates, block sizes and quality of services. Indeed:

1. It offers good performance for all block sizes (80 to 5,120) and all bit and frame error rates
(10-3 – 10-8), thus making unnecessary to standardize several different codes for the various
data rates, block sizes and quality of services.

2. For real time data and non real time data ( packet data services) which required BER<10-6 a
capacity gain up to 20% is achieved.

3. For all block sizes, the free distance of the 4-SCCC is better than the other proposed
solutions (256-state convolutional code and 8-state PCCC). This makes 4-SCCC very robust
to further puncturing for rate (or service-specific) matching.

4. For voice, which typically requires a bit error rate around 10-3, 4-SCCC is almost as good as
256 CC, and for BER=10-3 – 10-5  , block size 160 bits, 4-SCCC offers a capacity gain of
10% -26%.

5. In terms of complexity, 4-SCCC is significantly better than the 8-PCCC (from 90 % to 16 %
less complex depending on the block size), and does not require extra codes for low data
rates, or high-quality services, like a solution based on 8-PCCC would indeed require.

6. The only price to be paid for choosing this universal code would be a penalty of no more
than 0.25 dB for the large block sizes at a bit error rate of 10-6  for  rate 1/3 codes.

7. A preliminary investigation of the sensitivity to puncturing for rate matching shows the
robustness of the 4-SCCC, which does not seem to present significant losses both for
random and periodic, or regular, deterministic puncturing.
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