

Enhancements for High Speed Downlink Packet Access (HSDPA) using multiple antennas

Outline

- Impact of multiple antennas on Shannon capacity
- Space-time transmission and processing techniques
 - space-time transmit diversity
 - spreading code re-use
- Implementing these techniques for the downlink shared channel (DSCH)

Multiple antenna advantage

- Consider a multi-input multi-output channel with independent Rayleigh fading channel, H_{MXN}
- The Shannon capacity as measured in bits per second per Hertz is:

$$C = \log_2 \det \left(\mathbf{I}_M + SNR * \mathbf{H}^H \mathbf{H} / M \right)$$

 $\approx \log_2 \det \left(\mathbf{I}_M + SNR * \mathbf{I}_M \right) - As M, N \text{ increase, with } M = N$
 $= M \log_2 (1 + SNR)$

 If multiple antennas are used at both the transmitter and receiver, capacity grows linearly with number of antennas.

Multiple antenna advantage

How do we realize the capacity?

- Space-time (ST) transmission and processing:
 - Transmit data with redundancy across antennas (space) and time dimension.
 - Process received signal in space and time.
 - Multiple receive antennas allow combining advantage to increase SNR.

Examples:

- Alamouti space-time block code
- AT & T space-time trellis code
- BLAST (Bell Labs Layered Space-Time)

Alamouti space-time block coding

- Achieves full two-branch transmit diversity without using additional bandwidth or power resources compared to a single transmit antenna system.
- Implemented as space-time transmit diversity (STTD) in UMTS standard.

Space-time trellis coding

- Systematic approach to achieve maximum transmit diversity and coding gain
 - very useful when there is only one receive antenna and no other form of diversity
- With constellation size of M maximum throughput is limited to log₂M bits per symbol when designed for maximum diversity.
 - Example : max of 2 bits/sym with QPSK

BLAST

- When multiple receive antennas are also available need for transmit diversity is not as critical
- Trade off higher diversity in favor of higher spectral efficiency.
 - Increase throughput by sending independent information from different transmit antennas and separate the streams at the receiver
 - Much higher peak throughputs with small constellations. Example: With QPSK and 4 Tx and 4 Rx antennas can achieve 8 bits per symbol period.
- In general, the number of receive antennas must be greater or equal to the number of transmit antennas.

BLAST

Demultiplex coded data stream among antennas

- Because conventional codes are used, decoding complexity is much less than for space-time codes.
- In a CDMA system, use same spreading code to modulate substreams (code re-use). w₁

Code re-use in DSCH

 Combine multicode transmission and code re-use for transmission on downlink shared channel (DSCH).

Combined code re-use and ST block coding

 It is possible to combine code re-use and space-time block coding to provide both higher throughputs and

How do multiple antennas help HSDPA?

- Additional receive antennas improve C/I allowing the use of higher rate schemes more often.
- New schemes with higher peak throughput can be introduced
 - example: 16 QAM with 2 Tx antennas and rate 3/4 coding yields 6 bits/symbol (doubling of peak throughput with 16QAM)
- Improvement in performance of current rates:
 - example for 3 bits/symbol:
 rate 1/2 coded 8 PSK with 2 streams may be superior
 to rate 3/4 coded 16 QAM with Tx diversity

Transmit Options

- Original
 - Variable constellation size (QPSK, 8 PSK, 16 QAM, 64QAM)
 - Variable channel code rate (rates 1/2, 3/4)
- With multiple antennas
 - Transmit diversity via STTD
 - Code re-use: independent data streams on the same CDMA code transmitted on different antennas

Adaptive Coded Modulation Order

 Based on preliminary simulation results without coding we have the following schemes with increasing Ec/Nt requirement for 4 transmit and 4 receive antennas

```
STTD QPSK (2 bits/sym)
```

- STTD-BLAST (2 streams) QPSK (4 bits/sym)
- STTD-BLAST (2 streams) 8 PSK (6 bits/sym)
- BLAST (4 streams) QPSK (8 bits/sym)
- With coding we will have additional schemes with finer granularity.

Summary

- Additional receive antennas improve C/I allowing the use of higher rate schemes more often.
- Technique for increasing the throughput using multiple antennas can give up to 4 times peak throughput and improvements in average throughput when there are 4 Tx and 4 Rx antennas.
- Simulations with Turbo coding and system simulations are necessary.