# TSG-RAN Working Group 1 meeting #10 Beijing, China January 18 – 21, 2000 ### TSGR1#10(00)0117 Agenda item: Source: Ericsson Title: CR 25.212-041: Correction of UL compressed mode by higher layer scheduling **Document for:** Decision The number of bits in a radio frame in normal mode is denoted by $N_{data,j}$ and the number of bits located in the transmission gap $N_{TGL}$ . In compressed mode by higher layer scheduling, the number of bits in a radio frame is calculated as $N_{data,j}^{cm} = N_{data,j} - N_{TGL}$ (1). In uplink, the spreading factor (SF) and therefore $N_{data,j}$ is changed on radio frame basis. The idea with compressed mode by higher layer scheduling is that higher layers will only allow TFCs with low bitrate in compressed frames. If all TFCs use the same SF, $N_{data,j}$ is constant and the relation (1) is correct. If there for example are two TFCs that use different SFs then the lower SF may be needed in compressed mode by higher layer scheduling. That is, only allowing the TFC with lower bitrate but using the SF of the TFC with higher bitrate creates the transmission gap. However, in the relation (1) $N_{data,j}$ denotes the number of bits for current TFC, i.e. in compressed mode this would always correspond to the number of bits for the TFC with lower bitrate. This is of course not what is wanted and it is therefore proposed that 25.212 is changed as shown in the attached CR. In 25.211, $N_{data}$ is defined as the number of bits in a slot, while $N_{data}$ in section 4.2.7.1.1 means the number of bits in a frame. The attached CR therefore also proposes that the notation in section 4.2.7.1.1 is changed. ## 3GPP TSG RAN WG1 Meeting #10 Beijing, China, January 18 – 21, 2000 help.doc Document ???99??? e.g. for 3GPP use the format TP-99xxx or for SMG, use the format P-99-xxx | CHANGE REQUEST Please see embedded help file at the bottom of this page for instructions on how to fill in this form correctly. | | | | | | | | | |-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------|------------|-------------------------------------------------------|----------------------------|----------------------|-------------------------------------------------------------------------------|------| | | | 25.212 | CR | 041 | | Current Vers | ion: 3.1.0 | | | GSM (AA.BB) or 3G (AA.BBB) specification number ↑ | | | | | | | | | | For submission | meeting # here<br>↑ | N #7 for ap | | X version of this | is form is availah | strate<br>non-strate | egic use of | nly) | | Form: CR cover sheet, version 2 for 3GPP and SMG The latest version of this form is available from: ftp://ftp.3gpp.org/Information/CR-Form-v2.doc Proposed change affects: (at least one should be marked with an X) The latest version of this form is available from: ftp://ftp.3gpp.org/Information/CR-Form-v2.doc WE X UTRAN / Radio X Core Network | | | | | | | | | | Source: | Ericsson | | | | | Date: | 2000-01-17 | | | Subject: | Correction of | f UL compressed | l mode b | y higher | r layer sch | neduling | | | | Work item: | | | | | | | | | | Category: A (only one category shall be marked with an X) F A O O O O O O O O O O O O O O O O O | Correspond Addition of the Functional recognition | nodification of fea | | rlier relea | ase | Release: | Phase 2<br>Release 96<br>Release 97<br>Release 98<br>Release 99<br>Release 00 | X | | Reason for change: | | ression for the nu<br>only holds when a | | | | | ssed mode by | | | <u>Clauses affected:</u> 4.2.7.1.1 and 4.2.7.1.2 | | | | | | | | | | - | Other 3G core Other GSM core specificati MS test speci BSS test speci O&M specificati | ons<br>fications<br>cifications | -<br>- | → List of | f CRs:<br>f CRs:<br>f CRs: | | | | | Other comments: | These CR als | o aligns the defin | ition of I | V <sub>data</sub> with | the defin | nition in 25.21 | 1. | | | Wy | | | | | | | | | <----- double-click here for help and instructions on how to create a CR. #### 4.2.7.1.1 Determination of SF and number of PhCHs needed In uplink, puncturing can be applied to match the CCTrCH bit rate to the PhCH bit rate. The bit rate of the PhCH(s) is limited by the UE capability and restrictions imposed by UTRAN, through limitations on the PhCH spreading factor. The maximum amount of puncturing that can be applied is signalled from higher layers and denoted by PL. The number of available bits in the radio frames of one PhCH is $15N_{data}$ , where the number of bits per slot, $N_{data}$ for all possible spreading factors is given in [2]. Denote the <u>number of bits in one radio framese values</u> by $N_{256}$ , $\overline{N_{128}}$ , $N_{64}$ , $N_{32}$ , $N_{16}$ , $N_{8}$ , and $N_4$ , where the index refers to the spreading factor. The possible number of bits, N, available to the CCTrCH on all <u>PhCHs</u>values of $N_{data}$ then are { $N_{256}$ , $N_{128}$ , $N_{64}$ , $N_{32}$ , $N_{16}$ , $N_{8}$ , $N_{4}$ , $2N_{4}$ , $3N_{4}$ , $4N_{4}$ , $5N_{4}$ , $6N_{4}$ }. Depending on the UE capability and the restrictions from UTRAN, the allowed set of N<sub>data</sub>, denoted SET0, can be a subset of { N<sub>2.56</sub>, N<sub>1.28</sub>, N<sub>64</sub>, $N_{32}$ , $N_{16}$ , $N_{8}$ , $N_{4}$ , $2N_{4}$ , $3N_{4}$ , $4N_{4}$ , $5N_{4}$ , $6N_{4}$ ). The number of bits, $N_{data, j_{2}}$ available to the CCTrCH for the transport format combination *j* is determined by executing the following algorithm: SET1 = { $$N_{data}$$ in SET0 such that $N_{data} - \sum_{x=1}^{I} \frac{RM_{x,}}{\min_{1 \le y \le I} \{RM_y\}} \cdot N_{x,j}$ is non negative } If SET1 is not empty and the smallest element of SET1 requires just one PhCH then $$N_{data,j} = \min SET1$$ else SET2 = { $$N_{data}$$ in SET0 such that $N_{data} - PL \cdot \sum_{x=1}^{I} \frac{RM_x}{\min_{1 \le y \le I} \{RM_y\}} \cdot N_{x,j}$ is non negative } Sort SET2 in ascending order $N_{data} = \min SET2$ While $N_{data}$ is not the max of SET2 and the follower of $N_{data}$ requires no additional PhCH do $$N_{data}$$ = follower of $N_{data}$ in SET2 End while $$N_{data,i} = N_{data}$$ End if ### 4.2.7.1.2 Determination of parameters needed for calculating the rate matching pattern The number of bits to be repeated or punctured, $DN_{ij}$ , within one radio frame for each TrCH i is calculated with equation 1 for all possible transport format combinations j and selected every radio frame. $N_{data,j}$ is given from section 4.2.7.1.1. In compressed mode $N_{data,j}$ is replaced by $N_{data,j}^{cm}$ in Equation 1. $N_{data,j}^{cm}$ is given from the following relation: $$N_{data,j}^{cm} = 2N_{data,j} - 2N_{TGL}$$ , for compressed mode by spreading factor reduction $$N_{data,j}^{cm} = N_{data,j} - N_{TGL}$$ , for compressed mode by higher layer scheduling $$\begin{split} N_{data,j}^{cm} &= N_{data,j} \quad N_{TGL}, \text{ for compressed mode by higher layer scheduling} \\ N_{TGL} &= \left\{ \begin{array}{l} \frac{TGL}{15} N_{data,j}, \text{ if } N_{first} + TGL \leq 15 \\ \\ \frac{15 - N_{first}}{15} N_{data,j}, \text{ in first frame if } N_{first} + TGL > 15 \\ \\ \frac{TGL - (15 - N_{first})}{15} N_{data,j} \text{ in second frame if } N_{first} + TGL > 15 \end{array} \right. \end{split}$$ $N_{first}$ and TGL are defined in section 4.4. In compressed mode by higher layer scheduling, $N_{data,j}^{cm}$ is obtained by executing the algorithm in section 4.2.7.1.1 but with the number of bits in one radio frame of one PhCH replaced by $N_{tr} \cdot N_{data}$ . The number of bits in a slot, $N_{data}$ , is defined in [2] and $N_{tr}$ is the number of transmitted slots in a compressed radio frame. If $DN_{ij} = 0$ then the output data of the rate matching is the same as the input data and the rate matching algorithm of section 4.2.7.5 does not need to be executed. If $DN_{ij} \neq 0$ the parameters listed in sections 4.2.7.1.2.1 and 4.2.7.1.2.2 shall be used for determining $e_{ini}$ , $e_{plus}$ , and $e_{minus}$ (regardless if the radio frame is compressed or not).