
3GPP/TSG/RAN/WG1#3 TDOC 641/99 page 1/4

TSG-RAN Working Group 1 meeting No. 5 TSGR1-641/99
June 1-4, Cheju, Korea

Agenda Item: Adhoc 4 item 7 Channel Interleaving

Source: Siemens

Title: Properties of optimised puncturing scheme

Document for: Information and Discussion

Introduction
For puncturing after first interleaving an optimised puncturing algorithm has been proposed in [1]. This algorithm is
proposed to be used together with the FS-MIL for the first interleaver and the modified FS-MIL interleaver as proposed
in [2] for the second interleaver. The puncturing algorithm [1] is repeated here, together with an optimisation which
gives the same results but will be less complex for a possible implementation.

The performance of this puncturing scheme is investigated in comparison to an alternative proposal [3] i.e. the algebraic
interleaver. We then compare the complexity and flexibility of the two proposals.

As a conclusion we will see that the optimised Puncturing scheme has the most advantageous properties.

Principle of optimised algorithm
The goal of a good puncturing algorithm is to spread
punctured bits as evenly as possible. This was the driving
principle for the algorithm in [2] as well. This can best be
obtained by puncturing every nth bit (for non integer
puncturing rates sometimes every nth and sometimes every
n+1st bit). We suggest to apply this principle also for
puncturing after interleaving, but there is one constraint: We
have to distribute punctured bits on all frames evenly. For
example, assume 80 ms interleaving and a puncturing rate of
1:6. By puncturing every 6th bit we would only puncture
column 0,2,4,6 but not 1,3,5,7 which is of course impossible.
To balance puncturing between columns, we have to change
the puncturing interval sometimes (here once) to avoid
hitting always the same columns. This is shown in Fig. 1.
Bold horizontal arrows show puncturing distance of 6 and
the thick hollow arrow shows puncturing distance 5 to avoid
hitting the first column twice. After having punctured every
column once, the pattern can be shifted by 6 rows to
determine the next bits to be punctured (vertical arrows).
Obviously this is equivalent to puncture every 6th bit in each column and shifting puncturing patterns in different
columns relative to each other. The actual puncturing is done using the well known puncturing algorithm from S1.12,
and the shift can be realised by loading the initial offset in the variable e with a proper value.

Formulas for optimised algorithm
We now repeat the formulas for the optimised algorithm: Denote the number of bits in one frame before rate matching
by Nc, the number of bits after rate matching by Ni, the frame number by k, and the number of interleaved frames by K
(0 ≤ k < K). We mainly consider the case when Nc>Ni, that means puncturing, but the formulas will be applicable for
repetition as well. Shifting could then be achieved with the following formula:

-- calculate average puncturing distance
q:= Nc/(Ni-Nc) -- where   means round downwards and means absolute value.

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63

64 65 66 67 68 69 70 71

72 73 74 75 76 77 78 79

80 81 82 83 84 85 86 87

88 89 90 91 92 93 94 95

Figure 1: Principle of optimised puncturing

3GPP/TSG/RAN/WG1#3 TDOC 641/99 page 2/4

if q is even -- avoid hitting the same column twice:
 then q' = q – gcd(q, K)/K -- where gcd (q, K) means greatest common divisor of q and K
 -- note gcd can be easily computed using bit manipulations, because K is a power of 2.
 -- note that q' is now not an integer, but calculations with q' can be easily done using binary fixed point
 -- arithmetic (or integer arithmetic and a few shift operations) because q' is a multiple of 1/8
else

q' = q

endif
– calculate S , S represents the shift of the row

for i = 0 to K-1
 S(RK (i*q' mod K)) = (i*q' div K) -- where   means round upwards. RK(k) reverts the interleaver as in [7]

end for

Then, eoffset can be calculated as
 eoffset (k) = ((2*S)* y + Nc) mod 2Nc
eoffset (k) is then used to preload e in the rate matching formula in [4] (there the constant value e = NC is used).

Note that the values of S(k) are not calculated in their natural order. In an implementation, optionally, instead of using
the preceding formula the value of i belonging to a specific combination of q and k can be pre-stored in a table. Note
that the table also includes the effect of re-mapping the column randomising achieved by RK(k). Then S can then be
calculated from i as follows:

S(k) = i*q'  div K

 i K 1 2 4 8
k 0 0 1 0 1 2 3 0 1 2 3 4 5 6 7
0 0 0 1 0 2 3 1 0 4 6 2 7 3 5 1
1 0 1 0 2 1 3 0 4 2 6 1 5 3 7
2 0 1 3 2 0 2 1 3 5 7 6 4
3 0 2 3 1 0 4 6 2 3 7 1 5
4 0 1 5 4 7 6 3 2
5 0 4 2 6 5 1 7 3
6 0 2 3 1 7 5 6 4

(q mod K)

7 0 4 6 2 7 3 5 1

Table 1: Value of i to be used to calculate S depending on k, q and K. Note that the table only contains 3 bit
values and is still somewhat redundant

This algorithm will obtain the perfect puncturing as if puncturing using the rate matching algorithm was applied directly
before interleaving, if the puncturing rate is an odd fraction i.e. 1:5 or 1:9. For other cases, adjacent bits will never be
punctured, but sometimes the distance between punctured bits may have to be reduced by one in order to avoid hitting
only even frames. Note that this algorithm should be applied to bit repetition as well. While repeating adjacent bits is not
as bad as puncturing them, it is still advantageous to distribute repeated bits as evenly as possible.

The basic intention of these formulas is to try to achieve equidistant spacing of the punctured bits in the original order,
but taking into account the constraint, that the bits have to be punctured equally in different frames. This may make it
necessary to reduce the puncturing distance by 1 sometimes. The presented algorithm is optimum in the sense, that it
will never reduce the distance by more than 1, and will reduce it only as often as necessary. This gives the best possible
puncturing pattern under the above mentioned constraints.

Performance considerations
A decisive property of a puncturing scheme is that punctured bits are distributed as evenly as possible (in the original
ordering of the bits). Otherwise some bits will be coded weaker and therefore suffer a higher BER and will thus spoil the
performance. An extreme case would be puncturing of adjacent bits, which should clearly be avoided. The optimised
puncturing algorithm was designed with exactly these points in mind and will achieve a next to optimum performance,
i.e. the puncturing is (almost) as evenly distributed as is the case if puncturing was applied before of first interleaving.

3GPP/TSG/RAN/WG1#3 TDOC 641/99 page 3/4

In the following table we present the minimum distance between consecutive punctured bits. The first row shows the
puncturing rate, the second one the average distance (inverse of puncturing rate), the third row the actually achieved
minimum puncturing distance for the case of 10 ms interleaving (which is the same as for the case that puncturing is
performed before first interleaving) and the last row the minimum puncturing distance if interleaving is done over more
than 10ms. Note that almost always the optimum puncturing distance is achieved, in particular for the puncturing rates
above 17% (indicated by bold figures). Of course for high puncturing rates, where the performance is most noticeable
affected by the puncturing pattern, it is most important to have an even puncturing.

Puncturing
rate in %

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

average
distance

100 50 33,3 25 20 16,7 14,3 12,5 11,1 10 9,09 8,33 7,69 7,14 6,67 6,25 5,88 5,56 5,26 5

Min. dist.
10 ms interl.

100 50 33 25 20 16 14 12 11 10 9 8 7 7 6 6 5 5 5 5

Min. dist. >
10 ms interl.

99 49 33 25 19 15 13 11 11 9 9 7 7 7 5 5 5 5 5 5

These minimum puncturing distances were agreed to be made available for the different schemes, unfortunately these
data are lacking for the algebraic interleaving and puncturing scheme. In order to be able to compare the schemes we
have derived the puncturing distances from the interleaver and puncturing files which have been made available by the
proponents and calculated the distribution of the distance between successive punctured bits.

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Distance between consecutive punctured bits

N
u

m
b

er
 o

f
O

cc
u

re
n

ce
s Algebraic Puncturing

Format #2

Optimised Puncturing
Format #2

Figure 2: Distribution of punctured bits

In a first approach we have investigated the distribution of punctured bits for simulation format 2 and a puncturing rate
of 19.8 %. Figure 2 shows the results, specifically the distance between consecutive punctured bits considering the input
data stream of the interleaver. We achieve a balanced distribution of punctured bits and a very low variance of distance
between consecutive punctured bits using the optimised puncturing scheme. Note that the average puncturing distance is
always 1/p where p is the puncturing rate, because if two punctures are moved closer together then they have to be
moved further apart from the next puncture. As can be seen easily there is no puncturing of consecutive bits using the
optimised puncturing algorithm. But the occurrences of punctured adjacent bits for the algebraic scheme is very high
compared to the occurrences of “better” distances e.g. 5 and 6. Note that it will be the cases of close punctured bits which
will spoil the performance, a loss that can not be recovered. Therefore the maximum puncturing distance does not tell
anything about the performance, as bit errors can not be compensated by other extra secure transmitted bits. We think

3GPP/TSG/RAN/WG1#3 TDOC 641/99 page 4/4

this results clearly show the better balanced performance of the optimised puncturing scheme. This also explains the
better performance in AWGN simulations compared to the algebraic scheme.

Complexity estimation
The proposed puncturing algorithm is very similar to the second interleaver or the bit merging process which is
proposed for the algebraic interleaver. In both cases, the current puncturing algorithm was copied and slightly modified.
Therefor the amount of work to be done per bit i.e. the effort to be spent in the inner loop is almost equal. The initial
overhead to initialise the loops may be different, but this is performed rarely, at most every 10 ms and as explained
above, by using small tables it can be implemented very efficiently, so it will be a negligible contribution to the overall
complexity.

Considering the complexity of the associated interleavers, it can be observed, that both the Algebraic and the modified
FS-MIL interleaver are built of two stages, the column randomising and the row randomising step, but the actual
formulas for the column and row randomising differ and both steps are executed in the first interleaver for the algebraic
interleaver while row randomising (here called intra frame interleaving) is done in the second interleaver for the MIL.
However, the modified MIL allows a very efficient implementation in particular (but not exclusively) if a DSP solution
is considered. This is due to the fact, that the MIL can be implemented using a few short lookup tables and otherwise
modulo 2x addressing. Both operations are typically supported by modern DSPs and can also be implemented efficiently
in hardware. The Algebraic interleaver however requires more sophisticated modulo calculations using prime numbers
which are harder to implement on both DSPs and dedicated hardware, because both inherently use binary
representations of numbers.

Note that a flexible DSP implementation is very appealing for the following reason: A DSP could either perform a video
compression for medium data rates, then the video handy would be used as in standalone operation. Alternatively the
same DSP could handle higher data rates which would then be delivered to a PC, i.e. the DSP would not perform any
source coding but only deliver the user data. The same argument is valid for a low end terminal that either supports low
data rates for speech (running the AMR and additional acoustic operations like filtering, distortion compensation and
echo cancellation) or medium data rates when connected to a PC or similar device. With dedicated hardware one could
not reuse the resource for these different applications (source coding or extra channel coding and interleaving). Note that
video compression algorithms and advanced acoustic algorithms use both a sizeable amount of RAM, which could be
used as interleaving RAM as well and also require more and more processing power.

Flexibility, in particular for turbo coding
Two proposals have been presented in Adhoc 5 regarding puncturing for turbo coding [5],[6]. Both make use of the
existing puncturing algorithm and introduce small modifications to it to address the specific requirements for turbo
coding. As the original puncturing algorithm is also used for the optimised puncturing, both the turbo coding specific
modifications can be easily incorporated in a straight forward manner. This will allow to enjoy the corresponding
performance gain for punctured turbo codes also in the uplink.

Conclusion
This paper has shown that optimised puncturing has very appealing properties regarding performance, implementation
complexity and flexibility as compared to the algebraic puncturing scheme and should therefore be considered for
puncturing in the uplink.

References
[1] R1-99203 Optimised Rate Matching after interleaving Siemens

[2] NTT DoCoMo "Modified Rate Matching Algorithm in uplink" 3GPP RAN TSG WG1 Ad Hoc 4; March 15th, 1999

[3] R1-99466 On the Algebraic Channel Interleaver Design Nortel Networks

[4] 25.212 v1.0.0; 3GPP TSG RAN WG1; Multiplexing and channel coding (FDD)

[5] R1-99338 Puncturing Algorithm for Turbo Code LGIC

[6] R1-99388 Optimised puncturing scheme for Turbo coding Fujitsu

