

1xEV-DV Evaluation Methodology

Objective and Overview

- Goal is to describe a common simulation environment for simulating 1xEV-DV systems
- Evaluations are to be simulated using the common simulation environment
- Developed 89 page "Evaluation Strawman" document
- Covers both Forward Link and Reverse Link
- Provides
 - Definitions
 - Assumptions
 - Methodology
- Primarily consists of a description of:
 - Link level simulation
 - System level simulation

Link Level Modeling

- Joint link/system level simulation too complex computationally
- Split simulations between system level and link level
- For voice, developed a set of short term FER curves where received Eb/Nt is that measured over a frame
- For the turbo encoded packet channel, used a quasi-static approach
 - The aggregated Es/Nt is computed over a transmission period and mapped to an FER using AWGN curves
 - FER is determined by:
 - » Map the aggregated Es/Nt directly to the AWGN curve corresponding to the given modulation and coding
 - » Adjust the aggregated Es/Nt for the given modulation and coding and lookup a curve obtained using a reference modulation and coding
 - Corrections used for higher velocities
- Control channels are directly modeled

Short Term Voice Curves for Traffic Model A (1 path 3 km/hr)

System Level Simulation

- Operates at 1.25 ms intervals (cdma2000 power control group interval)
- Independent simulations for Forward and Reverse links (coupling done through simple error models)
- Takes into account
 - Fast power control loops (800 Hz)
 - Slow power control loops
 - Scheduling
 - Protocol execution
 - C/I feedback delays
 - Acknowledgement delays
 - Different propagation models
 - Different traffic types

Some FL System Simulation Parameters

-	
9	-

Parameter	Value	Comments	PARTNEREHIP PROJECT 2
Number of Cells (3 sectored)	19	2 rings, 3-sector system, 57 s	sectors.
Propagation Model (BTS Ant Ht=32m, MS=1.5m)	28.6+ 35log10(d) dB, d in meters	Modified Hata Urban Prop. @1.9GHz (COST 231). Minim meters separation between MS	um of 35
Log-Normal Shadowing	Standard Deviation = 8.9 dB	Independently generate lognor mobile	rmal per
Base Station Correlation	0.5		
Overhead Channel Forward Link Power Usage	Pilot, Paging and Sync overhead: 20%.	Any additional overhead needed other control channels (dedic common) must be specified and	cated or
Fast Fading Model	Based on Speed	Jakes or Rician	
Active Set Parameters		Secondary pilots within 6 dE strongest pilot and above minim threshold (-16dB). The active set the drop. The maximum active st three.	num Ec/Io is fixed for
Forward Link Power Control	Power Control loop delay: two PCGs	Update Rate: Up to 800)	Hz
(If used on dedicated channel)		PC BER: 4%	

Antenna Pattern

$$A(\mathbf{q}) = -\min \left[12 \left(\frac{\mathbf{q}}{\mathbf{q}_{3dB}} \right)^2, A_m \right] \text{ where } -180 \le \mathbf{q} \le 180$$

Channel Models

Channel Model	Multi-path Model	# of Fingers	Speed (kmph)	Fading	Assignment Probability
			•	_	
Model A	Pedestrian A	1	3	Jakes	0.30
Model B	Pedestrian B	3	10	Jakes	0.30
Model C	Vehicular A	2	30	Jakes	0.20
Model D	Pedestrian A	1	120	Jakes	0.10
Model E	Single path	1	0, fb=1.5 Hz	Rician Factor	0.10
				K = 10 dB	

Fractional Recovered Power and Fractional Unrecovered Power

Model	Finger1 (dB)	Delay	Finger2 (dB)	Delay (Tc)	Finger3 (dB)	Delay (Tc)	FURP (dB)
Ped-A	-0.06	0.0					-18.8606
Ped-B	-1.64	0.0	-7.8	1.23	-11.7	2.83	-10.9151
Veh-A	-0.9	0.0	-10.3	1.23			-10.2759

Traffic Models

- Combination of
 - FTP
 - HTTP 1.0
 - HTTP 1.1
 - WAP
 - Video streaming
 - Voice (standard cdma2000 variable rate)
- Takes into account statistics of the traffic, multiple objects, TCP slow start
- Takes into account some aspects of TCP (e.g., slow start, 3-way handshake, TCP packet size, typical windows), but does not fully model TCP

Delay / Outage Criteria

- For HTTP or FTP users no more than 2% of the users shall get less than 9600 bps.
- For WAP no more than 2% of the users shall get less than 4800 bps.
- For Neal Real Time Video no more than 2% of the users shall get less than 9600 bps AND more than 98% of the users shall meet the following performance requirement: the fraction of video frames that are not completely transmitted within 5 seconds of their arrival at the scheduler shall be less than 2% for each user
- Voice must meet system outage of less than 3%
 - System outage is Prob(Per-user outage among all N users in all runs) < T_{system outage} = 3%
 - Per-user outage is defined as the event where a user's voice connection in either direction has short-term FER higher than 15% more often than $T_{per\,link} = 1\%$ of the time
- Also test of scheduler fairness (for FTP and HTTP traffic)

Example of FL Outage (50% Voice, RC3, Max C/I=13 dB)

Example of Fairness Criteria (FTP Full Buffers)

Full buffer FTP

Required 1xEV-DV Simulation Evaluation Comparison Cases

-		Tx Diversity	no Tx Diversity	Max C/I 13.0 dB	Max C/I 17.8 dB	RC3	RC4
	Loading Scenarios		·				
1	voice only 100% (Nmax) load	X		X		х	
2			X	X		х	
3		X		X			x
4			X	X			X
5		X			X	х	
6			X		X	х	
7		X			х		X
8			X		X		X
9	1xEVDV data only	Х		X			
10			X	X			
11		X			X		
12			X		X		
13	50%voice + 1xEVDV data	X		X		х	
14			X	X		х	
15		X		X			X
16			X	X			X
17		X			X	х	
18			X		X	х	
19		X			X		X
20			X		X		X
21	80%voice + 1xEVDV data	X		X		Х	
22			x	X		x	
23		X		X			x
24			x	X			x
25		X			х	х	
26			х		х	х	
27		X			х		x
28			X		X		X

Some Output Matrices

- 1. Data throughput per sector
- 2. Averaged packet delay per sector
- 3. The histogram of data throughput per user
- 4. The histogram of packet call throughput for users with packet call arrival process. The histogram of averaged packet delay per user
- 5. The histogram of averaged packet call delay for users with packet call arrival process
- 6. The scattering plot of data throughput per user vs. the distance from the user's location to its serving sector
- 7. The scattering plot of packet call throughputs for users with packet call arrival processes vs. the distance from the users' locations to their serving sectors
- 8. The scattering plot of averaged packet delay per user vs. the distance from the mobile's location to its serving sector
- 9. The scattering plot of averaged packet call delays for users with packet call arrival processes vs. the distance from the mobiles' locations to their serving sectors
- 10. The scattering plot of data throughput per user vs. its averaged packet delay
- 11. The scattering plot of packet call throughputs for users with packet call arrival processes vs. their averaged packet call delays
- 12. The scattering plot of packet call throughputs for users with packet call arrival processes vs. their averaged packet call delays

Example FL Outage Prob versus Distance (Voice only, RC3, Max C/I=13 dB)

Scatter plot of User Packet Call Throughput versus Distance -- Data-Only, without STS, wo PC bits for SHO, max C/I= 13 dB

Additional Viewgraphs on 1xEV-DV Evaluation Methodology

$$(C/I)_{i} = \frac{\|\boldsymbol{g}_{i}\|^{2}}{G^{-1} + \|\boldsymbol{I}\|^{2} + \sum_{1 \leq k \leq J, k \neq i} \|\boldsymbol{g}_{k}\|^{2}}$$

$$G = \frac{\hat{I}_{or}}{N_0 + \sum_{n=1}^{N} I_{oc}(n) \|\mathbf{r}_n\|^2}$$

$$(C/I)_{\text{combined}} = \frac{\left(\sum_{i=1}^{J} \|\mathbf{g}_{i}\|^{2}\right)^{2}}{\sum_{j=1}^{J} \|\mathbf{g}_{j}\|^{2} \left(G^{-1} + \|\mathbf{I}\|^{2} + \sum_{1 \leq k \leq J, k \neq j} \|\mathbf{g}_{k}\|^{2}\right)}$$

 $\{g_i\}_{i=1}^J$ denote the samples of the fading processes, for a particular PCG, of the J recovered rays; I denote the sample of the fading process for the additional ray used to model interference due to the unrecovered power, for a particular PCG

N is the number of interfering sectors, \mathbf{r}_n is the fading process of the ray between the receiver and the n-th interfering sector for a particular PCG, N_0 is the variance of the thermal noise

Effective C/I with Max C/I Cap

$$\mathbf{a} = \frac{1}{\left(C/I\right)_{\text{max}}}$$

$$(C/I)_{\text{effective}} = \frac{1}{\frac{1}{(C/I)_{\text{combined}}} + a}$$

The maximum C/I achievable in the subscriber receiver is limited by inter-chip interference induced by the base-band pulse shaping waveform, the radio noise floor, ADC quantization error, and adjacent carrier interference.

Mix of Service

- A configurable fixed number of voice calls are maintained during each simulation run. Data sector throughput is evaluated as a function of the number of voice users supported.
- Four cases studied: no voice users (i.e., data only), voice users only (i.e., the number of voice users equals to voice capacity), and average $\ddot{e}0.5N_{max}\hat{u}$ or $\ddot{e}0.8N_{max}\hat{u}$ voice users per sector plus data users, where N_{max} is the voice capacity.
- The data users in each sector are assigned one of the four traffic models: WAP (56.43%), HTTP (24.43%), FTP (9.29%), near real time video (9.85%), with the respective probabilities in parentheses.

HTTP Traffic Model

Packet Trace of a Typical Web Browsing Session

A Typical Web Page and Its Contents

Contents in a Packet Call

HTTP Traffic Model Parameters

URD MEMERATIC PARTNERSHIP PROJECT 2

Component	Distribution	Parameters	PDF
Main object size (S _M)	Truncated Lognormal	Mean = 10710 bytes Std. dev. = 25032 bytes Minimum = 100 bytes	$f_{x} = \frac{1}{\sqrt{2 \pi \sigma x}} \exp \left[\frac{-(\ln x - \mu)^{2}}{2 \sigma^{2}} \right], x \ge 0$ $\sigma = 1.37, \mu = 8.35$
Embedded object size (S _E)	Truncated Lognormal	<pre>Maximum = 2 Mbytes Mean = 7758 bytes Std. dev. = 126168 bytes Minimum = 50 bytes</pre>	$f_{x} = \frac{1}{\sqrt{2 \pi \sigma x}} \exp \left[\frac{-(\ln x - \mu)^{2}}{2 \sigma^{2}} \right], x \ge 0$ $\sigma = 2.36, \mu = 6.17$
Number of embedded objects per page (N _d)	Truncated Pareto	Maximum = 2 Mbytes Mean = 5.64 Max. = 53	$f_{x} = \frac{\alpha}{\alpha} \frac{\alpha}{k}, k \leq x < m$ $f_{x} = \left(\frac{k}{m}\right)^{\alpha}, x = m$ $\alpha = 1.1, k = 2, m = 55$
			Note: Subtract k from the generated random value to obtain N d
Reading time (D_{pc})	Exponential	M e a n = 30 s e c	$ \frac{\text{obtain } N_{\text{dx}}}{f_x = \lambda_e^{-\lambda_x}}, x \ge 0 $ $ \lambda = 0.033 $
Parsing time (T _p)	Exponential	Mean = 0.13 sec	$f_{x} = \lambda_{e}^{-\lambda x}, x \ge 0$ $\lambda = 7.69$

FTP Traffic Model

Packets of file 1

Packets of file 2

Packets of file 3

FTP Traffic Model Parameters

Component	Distribution	Parameters	PDF
File size (S)	Truncated Lognormal	Mean = 2Mbytes Std. Dev. = 0.722 Mbytes Maximum = 5 Mbytes	$f_x = \frac{1}{\sqrt{2\pi}\sigma x} \exp\left[\frac{-\left(\ln x - \mu\right)^2}{2\sigma^2}\right], x \ge 0$ $\sigma = 0.35, \mu = 14.45$
Reading time (D _{pc})	Exponential	Mean = 180 sec.	$f_{x} = \lambda_{e}^{-\lambda x}, x \ge 0$ $\lambda = 0.006$

WAP Traffic Model

WAP Traffic Model Parameters

Packet based information types	Size of WAP request	Object size	# of objects per response	Inter-arrival time between objects	WAP gateway response time	Reading time
Distribution	Deterministi c	Truncated Pareto (Mean= 256 bytes, Max= 1400 bytes)	Geometric	Exponential	Exponential	Exponential
Distribution Parameters	76 octets	$K = 71.7$ bytes, $\alpha = 1.1$	Mean = 2	Mean = 1.6 s	Mean = 2.5 s	Mean = 5.5 s

Near Real Time Video Traffic Model

Neal Real Time Traffic Model Parameters

Information types	Inter-arrival time between the beginning of each frame	Number of packets (slices) in a frame	Packet (slice) size	Inter-arrival time between packets (slices) in a frame
Distribution	Deterministic (Based on 10fps)	Deterministic	Truncated Pareto (Mean= 50bytes, Max= 125bytes)	Truncated Pareto (Mean= 6ms, Max= 12.5ms)
Distribution Parameters	100ms	8	$K = 20$ bytes $\alpha = 1.2$	K = 2.5 ms $\alpha = 1.2$

Fairness Criteria

- Because maximum system capacity may be obtained by providing low throughput to some users, it is important that all mobile stations be provided with a minimal level of throughput. This is called fairness.
- The fairness is evaluated by determining the normalized cumulative distribution function (CDF) of the user throughput, which meets a predetermined function in two tests (seven test conditions).
- The CDF of the normalized throughputs with respect to the average user throughput for all users shall lie to the right of the diagonal curve (y=x).
- The same scheduling algorithm is used for all simulation runs, l.e., the scheduling algorithm is not optimized for runs with different traffic mixes.

Delay / Outage Criteria

- For HTTP or FTP users no more than 2% of the users shall get less than 9600 bps.
- For WAP no more than 2% of the users shall get less than 4800 bps.
- For Neal Real Time Video no more than 2% of the users shall get less than 9600 bps AND more than 98% of the users shall meet the following performance requirement: the fraction of video frames that are not completely transmitted within 5 seconds of their arrival at the scheduler shall be less than 2% for each user

Link Level Modeling

- Since a combined system and link simulation is a tremendous task, the performance characteristics of individual links used in the system simulation are generated a priori from link level simulations, l.e., encoding and decoding are not modeled in the system simulation.
- These link level curves are used to generate frame erasures in the system simulation.
- MAX-LOG-MAP is used as turbo decoder metric.
- Quasi-static approach with fudge factors is used to generate the frame erasures for 1xEV-DV packet data channel, dynamically simulated forward link overhead channels.
- Quasi-static approach with short term FER is used to generate the frame erasures for voice and SCH users.

Quasi-static Approach with Fudge Factors

The aggregate Es/Nt

$$\Sigma_{\mathbf{E}_{\mathbf{S}}/\mathbf{N}_{\mathbf{t}}} = 10\log_{10} \left(\frac{1}{N} \left[\sum_{j=1}^{n} N_{j} \cdot (\mathbf{E}_{\mathbf{S}}/\mathbf{N}_{\mathbf{t}})_{j} \right] \right),$$

where

- 1. *N* equals the number of information bits (i.e., the encoder packet size).
- 2. N_j equals the number of modulation symbols transmitted in slot j.
- 3. *n* is the number of slots over which the transmission occurs. This includes both the original transmission, and retransmissions, if any.
- 4. $^{(\mathbb{E}_s/N_t)_j, j=1,...,n}$ is the SNR per modulation symbol for slot j. These terms are *not* in dB.
- 5. $^{(E_s/N_t)_j, j=1,...,n}$ is the Es/Nt observed *after* Rayleigh (or Jakes) fading.

Quasi-static Approach with Fudge Factors (II)

- The aggregated Es/Nt is computed over a transmission period and mapped to an FER using AWGN curves.
- FER is determined by:
 - Map the aggregated Es/Nt directly to the AWGN curve corresponding to the given modulation and coding.
 - Adjust the aggregated Es/Nt for the given modulation and coding and lookup a curve obtained using a reference modulation and coding.
- Additional Es/Nt loss at higher Dopplers needs to be accounted for.

Quasi-static Approach with Short Term FER

The short term FER vs. average Eb/Nt per frame curves are generated as follows:

1. The link-level simulation is conducted for a specific condition. The average Eb/Nt in a frame and the frame erasure indicator for the frame are recorded. The average Eb/Nt per frame is computed as follows in the link-level simulation

$$\frac{E_b}{N_t} = \frac{1}{16} \sum_{n=1}^{16} \left(\frac{m \sum_{k} (S_b^{(n,k)})^2}{\sum_{k} (n_t^{(n,k)})^2} \right)$$

where n is the index of PCG in a frame and k is the index of symbols within a PCG. $S_b^{(n,k)}$ is the signal component in the k-th received coded symbol in the n-th PCG, $n_t^{(n,k)}$ is the noise and interference component in the k-th received symbol in the n-th PCG in a frame, and m is the inverse of the code rate.

2. Generate the histogram of FER vs. the average Eb/Nt per frame, i.e., the range of Eb/Nt is divided into many bins, and the FER in each bin is computed based on the outputs mentioned in step 1.

Quasi-static Approach with Short Term FER (II)

In the system-level simulation, the average Eb/Nt per frame is computed as follows. First, the average Eb/Nt is calculated in a PCG. The short-term average Eb/Nt per frame is defined as the average of the average Eb/Nt for all 16 PCG's in a frame, i.e.,

$$\frac{E_b}{N_t} = \frac{1}{16} \sum_{n=1}^{16} \left(\frac{E_b}{N_t} \right)_n$$

where $(Eb/Nt)_n$ is the average Eb/Nt in the n-th PCG in a frame. Note. Once the Eb/Nt is calculated as in the above equation, it is used to look up the corresponding link level short term FER vs. average Eb/Nt per frame curves for the specific condition (i.e., radio configuration, transmission diversity scheme, channel model, way of soft hand-off (SHO), SHO imbalance(s), and geometry). A frame erasure event is then generated based on the FER value.

System Layout

Center Cell Method

- Mobiles are dropped over the 19 cells and dynamically simulated
- Statistics are collected from the center cell only

Iteration Method

- Iteration 0: Passive (neighbor) cells radiate at maximum power. Power statistics of the active (central) cell is collected for use in the next iteration
- Iteration n (n>0): Run the system forcing passive cells to follow the active's cell power profile found on the iteration (n-1). Time offsets are introduced to break the correlation
- Only mobiles in the center cell are dynamically simulated

Simulation Flow

Required 1xEV-DV Simulation Evaluation Comparison Cases

-		Tx Diversity	no Tx Diversity	Max C/I 13.0 dB	Max C/I 17.8 dB	RC3	RC4
	Loading Scenarios		·				
1	voice only 100% (Nmax) load	X		X		х	
2			X	X		х	
3		X		X			X
4			X	X			X
5		X			X	х	
6			X		X	х	
7		X			х		X
8			X		X		X
9	1xEVDV data only	Х		X			
10			X	X			
11		X			X		
12			X		X		
13	50%voice + 1xEVDV data	X		X		х	
14			X	X		х	
15		X		X			X
16			X	X			X
17		X			X	х	
18			X		X	х	
19		X			X		X
20			X		X		X
21	80%voice + 1xEVDV data	X		X		Х	
22			x	X		x	
23		X		X			x
24			x	X			x
25		X			х	х	
26			х		х	х	
27		X			х		x
28			X		X		X

Some Output Matrices

- 1. Data throughput per sector
- 2. Averaged packet delay per sector
- 3. The histogram of data throughput per user
- 4. The histogram of packet call throughput for users with packet call arrival process. The histogram of averaged packet delay per user
- 5. The histogram of averaged packet call delay for users with packet call arrival process
- 6. The scattering plot of data throughput per user vs. the distance from the user's location to its serving sector
- 7. The scattering plot of packet call throughputs for users with packet call arrival processes vs. the distance from the users' locations to their serving sectors
- 8. The scattering plot of averaged packet delay per user vs. the distance from the mobile's location to its serving sector
- 9. The scattering plot of averaged packet call delays for users with packet call arrival processes vs. the distance from the mobiles' locations to their serving sectors
- 10. The scattering plot of data throughput per user vs. its averaged packet delay
- 11. The scattering plot of packet call throughputs for users with packet call arrival processes vs. their averaged packet call delays
- 12. The scattering plot of packet call throughputs for users with packet call arrival processes vs. their averaged packet call delays