
3GPP TSG-RAN5 Meeting #2019-TTCN email
R5s190929
Online, 16th Dec 2019, - 31st Dec 2019
	CR-Form-v12.0

	CHANGE REQUEST

	

	
	38.523-3
	CR
	0427
	rev
	-
	Current version:
	15.5.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	
	Core Network
	

	

	Title:

	Correction to f_NR5GC_RRC_Idle_Steps5_9_AKA

	
	

	Source to WG:
	ROHDE & SCHWARZ

	Source to TSG:
	R5

	
	

	Work item code:
	5GS_NR_LTE-UEConTest
	
	Date:
	2019-10-10

	
	
	
	
	

	Category:
	F
	
	Release:
	Rel-15

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8
(Release 8)
Rel-9
(Release 9)
Rel-10
(Release 10)
Rel-11
(Release 11)
Rel-12
(Release 12)
Rel-13
(Release 13)
Rel-14
(Release 14)
Rel-15
(Release 15)
Rel-16
(Release 16)

	
	

	Reason for change:
	According to 38.508-1 Table 4.7.1-1, in the Authentication REQ the IE ngKSI-> NAS key set identifier should be an arbitrarily selected value between ‘000’B and ‘110’B, different from the valid NAS key set identifier of the UE, if such a value exists.

It is observed that in the current TTCN implementation of the function f_NR5GC_RRC_Idle_Steps5_9_AKA, the TTCN simply uses the NAS key set identifier value that has been provided in the Registration REQ before.

Thus, it is not in-line with the guidance provided in 38.508.

When testcases are run and if the UE has an earlier security context, the Authentication REQ is sent with the same NAS key set identifier which the UE has provided in REG REQ. This results in the UEs transmitting an Auth Failure, because the NAS key set identifier received in the Auth REQ is the old one.

This needs to be corrected

	
	

	Summary of change:
	Updated the implementation of function f_NR5GC_RRC_Idle_Steps5_9_AKA

Please see below.

	
	

	Consequences if not approved:
	A conformant UE will fail the testcase

	
	

	Clauses affected:
	ALL NR5GC testcases

	
	

	
	Y
	N
	
	

	Other specs
	
	x
	 Other core specifications

	

	affected:
	
	x
	 Test specifications
	

	(show related CRs)
	
	x
	 O&M Specifications
	

	
	

	Other comments:
	

	
	

	This CR's revision history:
	

Change 1
	Function name
	f_NR5GC_RRC_Idle_Steps5_9_AKA

	Reason for change
	According to 38.508-1 Table 4.7.1-1, in the Authentication REQ the IE ngKSI-> NAS key set identifier should be an arbitrarily selected value between ‘000’B and ‘110’B, different from the valid NAS key set identifier of the UE, if such a value exists.

It is observed that in the current TTCN implementation of the function f_NR5GC_RRC_Idle_Steps5_9_AKA, the TTCN simply uses the NAS key set identifier value that has been provided in the Registration REQ before.

Thus, it is not in-line with the guidance provided in 38.508.

When testcases are run and if the UE has an earlier security context, the Authentication REQ is sent with the same NAS key set identifier which the UE has provided in REG REQ. This results in the UEs transmitting an Auth Failure, because the NAS key set identifier received in the Auth REQ is the old one.

This needs to be corrected

	Summary of change
	Updated the implementation of function f_NR5GC_RRC_Idle_Steps5_9_AKA

Please see below.

	TTCN module
	NR5GC_NASSteps.ttcn

	MCC160 Comment
	

Before

	<<SKIPPED CODE>>
var SecurityHeaderType v_SentSecurityHeader;
 var template (present) SecurityHeaderType v_SecurityHeaderResponse;
 if(p_RegType == Initial_NoSecurity) { // @sic R5s190109 sic@
 v_SentSecurityHeader := tsc_SHT_NoSecurityProtection;
 v_SecurityHeaderResponse := tsc_SHT_NoSecurityProtection;
 } else {
 v_SentSecurityHeader := tsc_SHT_IntegrityProtected_Ciphered;
 v_SecurityHeaderResponse := tsc_SHT_IntegrityProtected_Ciphered; // @sic R5s190109 sic@
 }
 if (px_NAS_5GC_AuthenticationType == AKA_5G) {
 f_NR_Authentication5G_AKA(p_CellId, v_SentSecurityHeader, v_SecurityHeaderResponse, p_PLMN);
 } else {
 f_NR_AuthenticationEAP_AKA(p_CellId, v_SentSecurityHeader, v_SecurityHeaderResponse, p_PLMN);
 }

<<SKIPPED CODE>>

After:
	<<SKIPPED CODE>>

var SecurityHeaderType v_SentSecurityHeader;
 var template (present) SecurityHeaderType v_SecurityHeaderResponse;
 var NG_NAS_SecurityParams_Type v_NAS_SecurityParams := f_NR5GC_Security_Get(); //WA#R&S change
 if(p_RegType == Initial_NoSecurity) { // @sic R5s190109 sic@
 v_SentSecurityHeader := tsc_SHT_NoSecurityProtection;
 v_SecurityHeaderResponse := tsc_SHT_NoSecurityProtection;
 } else {
 v_SentSecurityHeader := tsc_SHT_IntegrityProtected_Ciphered;
 v_SecurityHeaderResponse := tsc_SHT_IntegrityProtected_Ciphered; // @sic R5s190109 sic@
 }
 //WA#R&S Change start
 if (v_ReceivedMsg.Pdu.Msg.registration_Request.ngNasKSI.nasKeySetId != '111'B) {

v_NAS_SecurityParams.KSIamf := v_ReceivedMsg.Pdu.Msg.registration_Request.ngNasKSI.nasKeySetId;

f_NR5GC_Security_Set(v_NAS_SecurityParams);

v_SentSecurityHeader := tsc_SHT_NoSecurityProtection;

v_SecurityHeaderResponse := tsc_SHT_IntegrityProtected; //UE has security context

}

//WA#R&S Change stop
 if (px_NAS_5GC_AuthenticationType == AKA_5G) {
 f_NR_Authentication5G_AKA(p_CellId, v_SentSecurityHeader, v_SecurityHeaderResponse, p_PLMN);
 } else {
 f_NR_AuthenticationEAP_AKA(p_CellId, v_SentSecurityHeader, v_SecurityHeaderResponse, p_PLMN);
 }
<<SKIPPED CODE>>

