3GPP TSG RAN Meeting #28 Quebec, Canada, 1 - 3 June 2005

RP-050211

Title CRs (Rel-5 & Rel-6) to 25.101, 25.104 & 25.141 for the removal of SSDT Source 3GPP TSG RAN WG4 (Radio)

Agenda Item 7.7.2

WG Tdoc	Spec	CR	R	Cat	Rel	Curr Ver	Title	Work Item
R4-050401	25.101	412		С	Rel-5	5.14.0	Feature Clean Up: Removal of SSDT	TEI5
R4-050402	25.101	413		С	Rel-6	6.7.0	Feature Clean Up: Removal of SSDT	TEI6
R4-050383	25.104	235		С	Rel-5	5.9.0	Feature Clean Up: Removal of SSDT	TEI5
R4-050384	25.104	236		С	Rel-6	6.8.0	Feature Clean Up: Removal of SSDT	TEI6
R4-050385	25.141	368		С	Rel-5	5.9.0	Feature Clean Up: Removal of SSDT	TEI5
R4-050386	25.141	369		С	Rel-6	6.9.0	Feature Clean Up: Removal of SSDT	TEI6

R4-050401

3GPP TSG RAN WG4 (Radio) Meeting #35

Athens, Greece 9 - 13 May 2005

CHANGE REQUEST							CR-Form-v7			
×	25	.101	CR 412	H	rev		 # (Current vers	5.14.	0 #
For <u>HELP</u> on u	ısing	this fo	rm, see botto	om of this p	age or l	look a	at the	pop-up text	over the 策 s	symbols.
Proposed change	affec	ts:	UICC apps₩		ME <mark>X</mark>	Rad	io Aco	cess Networ	rk <mark>X</mark> Core	Network
Title: 第	Fea	ature C	Clean Up: Re	moval of S	SDT					
Source: #	3G	PP TS	G RAN WG	4 (Radio)						
Work item code: ∺	TE	15						Date: ♯	16/05/2005	5
Category:	Deta	F (cor A (cor B (add C (fun D (edi iled ex	the following of rection) responds to a dition of feature torial modificational modificational of torial modifications of the acceptance o	correction in the contraction of feation of feation) the above cather the contraction	ture)			2	Rel-5 the following r (GSM Phase (Release 199 (Release 199 (Release 199 (Release 4) (Release 5) (Release 6)	2) 6) 7) 8)
Reason for change	e: #	RAN	l#27 decision	on Featur	e Clear	n-up				
Summary of chang	ge: ૠ	Sub Pow	reviation of S section 8.6.3 er Control m ted Impact A ionality remo	3 "Demodul ode" remov Analysis	lation of ved				n Diversity Tr	ansmission
		are r							, UE impleme upporting the	
Consequences if	\mathbb{H}				and ev	olutic	n of t	the existing	feature rema	in slow
not approved:		als0	in the future							
Clauses affected:	\mathfrak{H}	3.2,	8.6							
Other specs affected:	Ж	Y N X X	Other core Test specif O&M Spec	ications	ons		25.21 34.12		25.331, 25.42	23, 25.433

How to create CRs using this form:

Other comments: %

Comprehensive information and tips about how to create CRs can be found at http://www.3gpp.org/specs/CR.htm. Below is a brief summary:

- 2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.
- 3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

3.2 Abbreviations

For the purposes of the present document, the following abbreviations apply:

ACLR Adjacent Channel Leakage power Ratio

ACS Adjacent Channel Selectivity
AICH Acquisition Indication Channel

BER Bit Error Ratio
BLER Block Error Ratio

CQI Channel Quality Indicator

CW Continuous Wave (un-modulated signal)

DCH Dedicated Channel, which is mapped into Dedicated Physical Channel.

DL Down Link (forward link)
DTX Discontinuous Transmission
DPCCH Dedicated Physical Control Channel
DPCH Dedicated Physical Channel

DPCH_E Average energy per PN chip for DPCH.

 $\frac{DPCH_E_c}{I_{or}}$ The ratio of the transmit energy per PN chip of the DPCH to the total transmit power spectral

density at the Node B antenna connector.

DPDCH Dedicated Physical Data Channel
EIRP Effective Isotropic Radiated Power
E Average energy per PN chip.

 $\frac{E_c}{I}$ The ratio of the average transmit energy per PN chip for different fields or physical channels to the

 \mathbf{I}_{or}

total transmit power spectral density.

FACH Forward Access Channel FDD Frequency Division Duplex

FDR False transmit format Detection Ratio. A false Transport Format detection occurs when the

receiver detects a different TF to that which was transmitted, and the decoded transport block(s)

for this incorrect TF passes the CRC check(s).

Frequency of unwanted signal. This is specified in bracket in terms of an absolute frequency(s) or

a frequency offset from the assigned channel frequency.

HSDPA High Speed Downlink Packet Access HS-DSCH High Speed Downlink Shared Channel

HS-PDSCH High Speed Physical Downlink Shared Channel

HARQ Hybrid ARQ sequence

Information Data Rate

Rate of the user information, which must be transmitted over the Air Interface. For example,

output rate of the voice codec.

In the total received power spectral density, including signal and interference, as measured at the UE

antenna connector.

 I_{oc} The power spectral density (integrated in a noise bandwidth equal to the chip rate and normalized

to the chip rate) of a band limited white noise source (simulating interference from cells, which are

not defined in a test procedure) as measured at the UE antenna connector.

I The total transmit power spectral density (integrated in a bandwidth of $(1+\alpha)$ times the chip rate

and normalized to the chip rate)of the downlink signal at the Node B antenna connector.

 \hat{I}_{or} The received power spectral density (integrated in a bandwidth of $(1+\alpha)$ times the chip rate and

normalized to the chip rate) of the downlink signal as measured at the UE antenna connector.

MER Message Error Ratio

Node B A logical node responsible for radio transmission / reception in one or more cells to/from the User

Equipment. Terminates the Iub interface towards the RNC

OCNS Orthogonal Channel Noise Simulator, a mechanism used to simulate the users or control signals on

the other orthogonal channels of a downlink link.

1

OCNS_E Average energy per PN chip for the OCNS.

 $\frac{OCNS_E_c}{I_{or}}$ The ratio of the average transmit energy per PN chip for the OCNS to the total transmit power

spectral density.

P-CCPCH Primary Common Control Physical Channel

PCH Paging Channel

 $P-CCPCH = \frac{E_c}{I}$ The ratio of the received P-CCPCH energy per chip to the total received power spectral density at

the UE antenna connector.

 $\underline{P-CCPCH_E_c}$ The ratio of the average transmit energy per PN chip for the P-CCPCH to the total transmit power

spectral density.

P-CPICH Primary Common Pilot Channel
PICH Paging Indicator Channel
PPM Parts Per Million

R Number of information bits per second excluding CRC bits successfully received on HS-DSCH by

a HSDPA capable UE.

<REFSENS> Reference sensitivity

<REF $\hat{I}_{or}>$ Reference \hat{I}_{or}

RACH Random Access Channel

SCH Synchronization Channel consisting of Primary and Secondary synchronization channels

S-CCPCH Secondary Common Control Physical Channel. $S-CCPCH_{-}E_{c}$ Average energy per PN chip for S-CCPCH.

SIR Signal to Interference ratio

SSDT Site Selection Diversity Transmission
STTD Space Time Transmit Diversity
TDD Time Division Duplexing
TFC Transport Format Combination

TFCI Transport Format Combination Indicator

TPC Transmit Power Control

TSTD Time Switched Transmit Diversity

UE User Equipment
UL Up Link (reverse link)

UTRA UMTS Terrestrial Radio Access

---- Change of Section ----

8.6 Demodulation of DCH in downlink Transmit diversity modes

8.6.1 Demodulation of DCH in open-loop transmit diversity mode

The receive characteristic of the Dedicated Channel (DCH) in open loop transmit diversity mode is determined by the Block Error Ratio (BLER). DCH is mapped into in Dedicated Physical Channel (DPCH).

8.6.1.1 Minimum requirement

For the parameters specified in Table 8.19 the average downlink $\frac{DPCH_{-}E_{c}}{I_{or}}$ power ratio shall be below the specified value for the BLER shown in Table 8.20.

Table 8.19: Test parameters for DCH reception in an open loop transmit diversity scheme. (Propagation condition: Case 1)

Parameter	Unit	Test 1
Phase reference		P-CPICH
\hat{I}_{or}/I_{oc}	dB	9
I_{oc}	dBm/3.84 MHz	-60
Information data rate	kbps	12.2

Table 8.20: Test requirements for DCH reception in open loop transmit diversity scheme

Test Number	$\frac{DPCH_E_c}{I_{or}}$ (antenna 1/2)	BLER
1	,	40-2
1	-16.8 dB	10

8.6.2 Demodulation of DCH in closed loop transmit diversity mode

The receive characteristic of the dedicated channel (DCH) in closed loop transmit diversity mode is determined by the Block Error Ratio (BLER). DCH is mapped into in Dedicated Physical Channel (DPCH).

8.6.2.1 Minimum requirement

For the parameters specified in Table 8.21 the average downlink $\frac{DPCH_{-}E_{c}}{I_{or}}$ power ratio shall be below the specified value for the BLER shown in Table 8.22.

Table 8.21: Test Parameters for DCH Reception in closed loop transmit diversity mode (Propagation condition: Case 1)

Parameter	Unit	Test 1 (Mode 1)	Test 2 (Mode 2)
\hat{I}_{or}/I_{oc}	dB	9	9
I_{oc}	dBm/3.84 MHz	-60	-60
Information data rate	kbps	12.2	12.2
Feedback error rate	%	4	4
Closed loop timing adjustment mode	-	1	1

Table 8.22: Test requirements for DCH reception in closed loop transmit diversity mode

Test Nu	mber	$\frac{DPCH_{-}E_{c}}{I_{or}}$ (see note)	BLER		
1		-18.0 dB	10 ⁻²		
2		-18.3 dB	10 ⁻²		
NOTE: This is the total power from both antennas. Power sharing between antennas are feedback mode dependent as specified in TS25.214.					

8.6.3 (Void) Demodulation of DCH in Site Selection Diversity Transmission Power Control mode

The bit error characteristics of UE receiver is determined in Site Selection Diversity Transmission power control (SSDT) mode. Two Node B emulators are required for this performance test. The delay profiles of signals received from different Node Bs are assumed to be the same but time shifted by 10 chip periods (2604 ns).

8.6.3.1 Minimum requirements

The downlink physical channels and their relative power to Ior are the same as those specified in clause C.3.2 irrespective of Node Bs and the test cases. DPCH_Ec/Ior value applies whenever DPDCH in the cell is transmitted. In Test 1 and Test 3, the received powers at UE from two Node Bs are the same, while 3dB offset is given to one that comes from one of Node Bs for Test 2 and Test 4 as specified in Table 8.23.

For the parameters specified in Table 8.23 the average downlink $\underline{DPCH}_{\underline{E}_{c}}$ power ratio shall be below the specified $\underline{I}_{...}$

value for the BLER shown in Table 8.24.

Table 8.23: (Void)DCH parameters in multi-path propagation conditions during SSDT mode (Propagation condition: Case 1)

Parameter	Unit	Test 1	Test 2	Test 3	Test 4
Phase reference			P.	CPICH	
$\frac{\hat{I}_{or1}/I_{oc}}{I_{or}}$	d₿	Đ	-3	0	0
$\frac{\hat{I}_{or2}/I_{oc}}{I_{oc}}$	d₿	0	0	0	-3
- L oc	-60				
Information Data Rate	kbps	12.2	12.2	12.2	12.2
Cell ID code word error ratio in uplink	%	4	4	4	4
Number of FBI bits assigned to "S" Field		4	4	2	2
Code word Set		Long	Long	Short	Short
UL DPCCH slot Format		#	#2	i	#5

NOTE: The code word errors are introduced independently in both uplink channels.

Table 8.24: (Void) DCH requirements in multi-path propagation conditions during SSDT Mode

Test Number	$\frac{DPCH_E_c}{I_{or}}$	BLER
4	-6.0 dB	10⁻²
2	-5.0 dB	10⁻²
3	-10.5 dB	10⁻²
4	-9.2 dB	10⁻²

R4-050402

3GPP TSG RAN WG4 (Radio) Meeting #35

Athens, Greece 9 - 13 May 2005

												CR-Form-v7
	CHANGE REQUEST											
ж	25	.101	CR	413	ЖI	rev	ж	₿ Cu	rrent ver	sion:	6.7.0	X
For <u>HELP</u> on	using	this for	m, see	bottom of	this pa	ge or l	ook at	the po	p-up tex	t over	the	mbols.
Proposed change	affor	-te-	IICC ai	ps#	N	ИЕ Х	Radio	Δςς	s Netwo	rk Y	Core Ne	etwork
r roposed change	anco		5100 a _l	5p300		VIL X	rtadio	Acces	3 NOLWO	TIK A	ooic iv	Stwork
Title:	β Fe	ature C	Clean U	p: Remov	al of SS	DT						
Source:	₭ 3G	PP TS	G RAN	WG4 (Ra	adio)							
Moule Home on do. 9				`	,				Data: 9	10	/OF/200F	
Work item code:	# TE	16							Date: ₩	16/	05/2005	
Category:	₩ C								lease: ₩			
	Use		the follo rection)	wing categ	ories:			L	lse <u>one</u> of 2		ollowing rel ∕I Phase 2)	
				s to a corre	ection in	an earl	lier relea	ase)	R96		ease 1996)	
			dition of						R97		ease 1997)	
				nodification dification)	i oi ieatu	ire)			R98 R99	•	ease 1998) ease 1999)	
	Deta	ailed exp	olanatior	ns of the ab	ove cate	egories	can		Rel-4	(Rele	ease 4)	
	be fo	ound in	3GPP <u>T</u>	R 21.900					Rel-5 Rel-6	•	ease 5) ease 6)	
									71070	(11010	, doc 0 ₁	
Reason for chang	ge: Ж	RAN	#27 de	cision on I	Feature	Clean	ı-up					
Summary of chan	nae∙ ¥	Ahhr	eviation	of SSDT	remov	ed fron	n Secti	ion 3.2				
Gammary or chair	ige. 00			8.6.3 "De						n Dive	ersity Tran	smission
		Pow	er Cont	rol mode"	remove	ed						
		Isolat	ed Imp	act Analy	/sis							
		Funct	ionality	removed:	SSDT							
				act staten								
				cted. Wou	ıld affec	t UTR	AN imp	olemen	tations s	uppoi	rting the re	emoved
		Tunc	tionality									
Consequences if	\mathbb{H}	Intro	duction	of new fe	atures	and ev	olution	of the	existing	featu	re remain	slow
not approved:		also	in the f	uture.								
Clauses affected:	· #	3.2,	8.6									
		0.2,										
		YN										
Other specs affected:	\mathfrak{H}	X		core spec		าร		5.211, 4.121	25.214,	25.33	1, 25.423	, 25.433
anecieu.		X		pecification Specification			32	+. IZT				
			JOSIVI	-poomout	.5.15							

How to create CRs using this form:

Other comments: #

Comprehensive information and tips about how to create CRs can be found at http://www.3gpp.org/specs/CR.htm. Below is a brief summary:

- 2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.
- 3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

3.2 Abbreviations

For the purposes of the present document, the following abbreviations apply:

ACLR Adjacent Channel Leakage power Ratio

ACS Adjacent Channel Selectivity
AICH Acquisition Indication Channel

BER Bit Error Ratio
BLER Block Error Ratio

CQI Channel Quality Indicator

CW Continuous Wave (un-modulated signal)

DCH Dedicated Channel, which is mapped into Dedicated Physical Channel.

DL Down Link (forward link)
DTX Discontinuous Transmission
DPCCH Dedicated Physical Control Channel
DPCH Dedicated Physical Channel

DPCH_E Average energy per PN chip for DPCH.

 $\frac{DPCH_E_c}{r}$ The ratio of the transmit energy per PN chip of the DPCH to the total transmit power spectral

density at the Node B antenna connector.

DPDCH Dedicated Physical Data Channel
EIRP Effective Isotropic Radiated Power

E Average energy per PN chip.

 $\frac{E_c}{I}$ The ratio of the average transmit energy per PN chip for different fields or physical channels to the

total transmit power spectral density.

FACH Forward Access Channel FDD Frequency Division Duplex

FDR False transmit format Detection Ratio. A false Transport Format detection occurs when the

receiver detects a different TF to that which was transmitted, and the decoded transport block(s)

for this incorrect TF passes the CRC check(s).

Frequency of unwanted signal. This is specified in bracket in terms of an absolute frequency(s) or

a frequency offset from the assigned channel frequency.

HARQ Hybrid Automatic Repeat Request
HSDPA High Speed Downlink Packet Access
HS-DSCH High Speed Downlink Shared Channel

HS-PDSCH High Speed Physical Downlink Shared Channel

HS-SCCH High Speed Shared Control Channel

Information Data Rate

Rate of the user information, which must be transmitted over the Air Interface. For example,

output rate of the voice codec.

In the total received power spectral density, including signal and interference, as measured at the UE

antenna connector.

 $I_{\circ\circ}$ The power spectral density (integrated in a noise bandwidth equal to the chip rate and normalized

to the chip rate) of a band limited white noise source (simulating interference from cells, which are

not defined in a test procedure) as measured at the UE antenna connector.

 I_{or} The total transmit power spectral density (integrated in a bandwidth of $(1+\alpha)$ times the chip rate

and normalized to the chip rate)of the downlink signal at the Node B antenna connector.

 \hat{I}_{cr} The received power spectral density (integrated in a bandwidth of $(1+\alpha)$ times the chip rate and

normalized to the chip rate) of the downlink signal as measured at the UE antenna connector.

MER Message Error Ratio

Node B A logical node responsible for radio transmission / reception in one or more cells to/from the User

Equipment. Terminates the Iub interface towards the RNC

OCNS Orthogonal Channel Noise Simulator, a mechanism used to simulate the users or control signals on

the other orthogonal channels of a downlink link.

OCNS_E_c Average energy per PN chip for the OCNS.

Δ

 $\underline{\text{OCNS}_{-}E_{c}}$ The ratio of the average transmit energy per PN chip for the OCNS to the total transmit power

 I_{or}

spectral density.

P-CCPCH Primary Common Control Physical Channel

PCH Paging Channel

 $P-CCPCH = \frac{E_c}{L}$ The ratio of the received P-CCPCH energy per chip to the total received power spectral density at

the UE antenna connector.

 $\underline{P-CCPCH}_{\underline{E}_c}$ The ratio of the average transmit energy per PN chip for the P-CCPCH to the total transmit power

 I_{or}

spectral density.

P-CPICH Primary Common Pilot Channel PICH Paging Indicator Channel

PPM Parts Per Million

R Number of information bits per second excluding CRC bits successfully received on HS-DSCH by

a HSDPA capable UE.

<REFSENS> Reference sensitivity

 $\langle \text{REF } \hat{\mathbf{I}}_{\text{or}} \rangle$ Reference $\hat{\mathbf{I}}_{\text{or}}$

RACH Random Access Channel

SCH Synchronization Channel consisting of Primary and Secondary synchronization channels

S-CCPCH Secondary Common Control Physical Channel. $S-CCPCH_{-}E_{c}$ Average energy per PN chip for S-CCPCH.

SIR Signal to Interference ratio

SML Soft Metric Location (Soft channel bit)

SSDT Site Selection Diversity Transmission

STTD Space Time Transmit Diversity

TDD Time Division Duplexing

TFC Transport Format Combination

TFCI Transport Format Combination Indicator

TPC Transmit Power Control

TSTD Time Switched Transmit Diversity

UE User Equipment
UL Up Link (reverse link)

UTRA UMTS Terrestrial Radio Access

---- Change of Section ----

8.6 Demodulation of DCH in downlink Transmit diversity modes

8.6.1 Demodulation of DCH in open-loop transmit diversity mode

The receive characteristic of the Dedicated Channel (DCH) in open loop transmit diversity mode is determined by the Block Error Ratio (BLER). DCH is mapped into in Dedicated Physical Channel (DPCH).

8.6.1.1 Minimum requirement

For the parameters specified in Table 8.19 the average downlink $\frac{DPCH_{-}E_{c}}{I_{or}}$ power ratio shall be below the specified

value for the BLER shown in Table 8.20.

Table 8.19: Test parameters for DCH reception in an open loop transmit diversity scheme. (Propagation condition: Case 1)

Parameter	Unit	Test 1
Phase reference		P-CPICH
\hat{I}_{or}/I_{oc}	dB	9
I_{oc}	dBm/3.84 MHz	-60
Information data rate	kbps	12.2

Table 8.20: Test requirements for DCH reception in open loop transmit diversity scheme

Test Number	$\frac{DPCH_E_c}{I_{or}}$ (antenna 1/2)	BLER
1	-16.8 dB	10 ⁻²

8.6.2 Demodulation of DCH in closed loop transmit diversity mode

The receive characteristic of the dedicated channel (DCH) in closed loop transmit diversity mode is determined by the Block Error Ratio (BLER). DCH is mapped into in Dedicated Physical Channel (DPCH).

8.6.2.1 Minimum requirement

For the parameters specified in Table 8.21 the average downlink $\frac{DPCH_{-}E_{c}}{I_{or}}$ power ratio shall be below the specified value for the BLER shown in Table 8.22.

Table 8.21: Test Parameters for DCH Reception in closed loop transmit diversity mode (Propagation condition: Case 1)

Parameter	Unit	Test 1 (Mode 1)	Test 2 (Mode 2)
\hat{I}_{or}/I_{oc}	dB	9	9
I_{oc}	dBm/3.84 MHz	-60	-60
Information data rate	kbps	12.2	12.2
Feedback error rate	%	4	4
Closed loop timing adjustment mode	-	1	1

Table 8.22: Test requirements for DCH reception in closed loop transmit diversity mode

Test Nu	mber	$\frac{DPCH_{-}E_{c}}{I_{or}}$ (see note)	BLER			
1		-18.0 dB	10 ⁻²			
2		-18.3 dB	10 ⁻²			
NOTE:	This is the total power from both antennas. Power sharing between antennas are feedback mode dependent as specified in TS25.214.					

8.6.3 (Void) Demodulation of DCH in Site Selection Diversity Transmission Power Control mode

The bit error characteristics of UE receiver is determined in Site Selection Diversity Transmission power control (SSDT) mode. Two Node B emulators are required for this performance test. The delay profiles of signals received from different Node Bs are assumed to be the same but time shifted by 10 chip periods (2604 ns).

8.6.3.1 Minimum requirements

The downlink physical channels and their relative power to Ior are the same as those specified in clause C.3.2 irrespective of Node Bs and the test cases. DPCH_Ec/Ior value applies whenever DPDCH in the cell is transmitted. In Test 1 and Test 3, the received powers at UE from two Node Bs are the same, while 3dB offset is given to one that comes from one of Node Bs for Test 2 and Test 4 as specified in Table 8.23.

For the parameters specified in Table 8.23 the average downlink $\underline{DPCH}_{\underline{E}_{c}}$ power ratio shall be below the specified $I_{...}$

value for the BLER shown in Table 8.24.

Table 8.23: (Void) DCH parameters in multi-path propagation conditions during SSDT mode (Propagation condition: Case 1)

Parameter	Unit	Test 1	Test 2	Test 3	Test 4		
Phase reference		P-CPICH					
$\frac{\hat{I}_{or1}/I_{oc}}{I_{oc}}$	d₿	Đ	-3	0	Đ		
$\frac{\hat{I}_{or2}/I_{oc}}{I_{oc}}$	d₽	θ	θ	0	-3		
<u>-I_{oc}</u>	dBm/3.84 MHz	-60					
Information Data Rate	kbps	12.2	12.2	12.2	12.2		
Cell ID code word error ratio in uplink	%	4	4	4	4		
Number of FBI bits assigned to "S" Field		4	4	2	2		
Code word Set		Long	Long	Short	Short		
UL DPCCH slot- Format		#2 #5					

NOTE: The code word errors are introduced independently in both uplink channels.

Table 8.24: (Void) DCH requirements in multi-path propagation conditions during SSDT Mode

Test Number	$\frac{DPCH_E_c}{I_{or}}$	BLER
4	-6.0 dB	10 - 2
2	-5.0 dB	10 - 2
3	-10.5 dB	10⁻²
4	-9.2 dB	10⁻²

R4-050383

3GPP TSG RAN WG4 (Radio) Meeting #35

Athens, Greece 9 - 13 May 2005

				Cł	HANGE	REQ	UE	ST				CR-Form-v7
₩		25	.104	CR 2	35	жrev		ж	Current vers	sion:	5.9.0	¥
For <u>H</u>	ELP on u	sing	this for	m, see b	ottom of this	s page or	look	at the	pop-up text	over	the % syr	mbols.
Propose	d change a	affec	<i>ts:</i> (JICC app	s#	ME	Rad	dio Ac	cess Netwo	rk X	Core Ne	etwork
							_					
Title:	*	Fea	ature C	clean Un	Removal o	f SSDT						
				·								
Source:	**	36	PP 15	G RAN W	/G4 (Radio)						
Work ite	m code: ૠ	TE	15						Date: ℜ	16/	05/2005	
	for change	Deta be fo	F (corn A (corn B (add C (funn D (edii illed exp bund in SSDT Isolat Isolat are r	rection) responds a fition of fea ctional modi corial modi collanations 3GPP TR N#27 rem cications. is remove ed Impact conality rectionality rections.	dification of a fication) of the above 21.900. noval of sorted from the ct Analysis moved: SS ct statement	feature) categorie ne UTRA categorie	N fea	tures	Release: % Use one of 2) R96 R97 R98 R99 Rel-4 Rel-5 Rel-6 was agreed	the for (GSA) (Release (Releas	ollowing relative A Phase 2) pease 1996) pease 1997) pease 1998) pease 4) pease 5) pease 6) der to sim	plify the
Consequ		¥										
not appr	oved:											
Clauses	affected:	Ж	8.9									
Other sp		¥	Y N X X	Test spe	ore specifications pecifications		\varkappa	25.21 25.92 25.14		25.33	1, 25.423,	25.433,
Other co.	mments:	\mathbb{H}										

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at http://www.3gpp.org/specs/CR.htm. Below is a brief summary:

- 2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.
- 3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

8.9 BS Functionality in Site Selection Diversity Transmission (SSDT) Mode Void

Site Selection Diversity Transmission (SSDT) is an optional feature of BS. This requirement for SSDT mode ensures that BS correctly reacts to Layer 1 feedback signalling messages from UE.

8.9.1 Minimum requirements

For the conditions specified, the BS shall transmit or not transmit the downlink DPDCH channel.

Table 8.15: Parameters for SSDT mode test

Parameter Parameter	Unit	Test 1	Test 2	Test 3	Test 4			
Cell ID of BS under test	_	A	A	A	A			
SSDT Quality threshold, Qth, set for radio link under test	d₿	-3						
Target SIR, SIR _{target,} set for radio link under test	d₿		3					
Uplink SIR	d₿	SIR _{target} + Q _{th} + 7.5	SIR _{target} + Q _{th} + 7.5	SIR _{target} + Q _{th} -7.5	SIR _{target} + Q _{th} - 7.5			
Cell ID transmitted by UE	_	A	₽	A	₽			
Transmission of downlink DPCCH	-	Yes	Yes	Yes	Yes			
Transmission of downlink DPDCH	-	Yes	No	Yes	Yes			

The above test should be for repeated for each of the three code sets "long", "medium" and "short" Cell ID code sets.

Annex A (normative): Measurement channels

R4-050384

3GPP TSG RAN WG4 (Radio) Meeting #35

Athens, Greece 9 - 13 May 2005

	CHANGE REQUEST										
×	25	.104	CR 23	6	жrev		₩ C	urrent vers	sion:	6.8.0	#
For <u>HELP</u> on t	ısing	this for	m, see bot	tom of this	page or	look	at the p	op-up text	t over	the # sy	mbols.
Proposed change	affec	<i>ts:</i>	JICC apps	#	ME	Ra	dio Acc	ess Netwo	rk X	Core N	etwork
Title:	Fea	ature C	lean Up: F	Removal of	SSDT						
Source:	3G	PP TS	G RAN W	G4 (Radio)							
Work item code: ₩	TE	16						Date: ₩	16/	05/2005	
Category: #	Deta	F (corr A (corr B (add C (fund D (edit iiled exp	the following rection) responds to lition of feat ctional modific torial modific blanations o 3GPP TR 2	a correction ure), ification of fo cation) f the above	n in an ea eature)		elease)	Release: #6 Use <u>one</u> of 2 R96 R97 R98 R99 Rel-4 Rel-5 Rel-6	f the for (GSN (Rele (Rele (Rele (Rele (Rele (Rele)))))
Reason for change	a. ¥	In RAI	N#27 remo	val of som	ΔIITRA	N foa	ituras w	as agreed	in ord	der to sim	nnlify the
Reason for change	c.		ications.	ival ol soli		IN ICO	iluies w	as ayıccu	III OIC	dei to siii	ipiliy tile
Summary of chang	ge:₩	SSDT	is remove	d from the	specific	ation.					
		Isolat	ed Impact	Analysis							
		Functi	ionality ren	noved: SS	DT						
		are n	ted impact ot affected ionality.								
Consequences if not approved:	ж										
Clauses affected:	¥	8.9									
Other specs	¥	Y N X Z	Test spec	e specifica difications decifications		¥	25.211 25.922 25.141		25.33	1, 25.423	3, 25.433,
Other comments:	¥										

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at http://www.3gpp.org/specs/CR.htm. Below is a brief summary:

- 2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.
- 3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

8.9 BS Functionality in Site Selection Diversity Transmission (SSDT) Mode Void

Site Selection Diversity Transmission (SSDT) is an optional feature of BS. This requirement for SSDT mode ensures that BS correctly reacts to Layer 1 feedback signalling messages from UE.

8.9.1 Minimum requirements

For the conditions specified, the BS shall transmit or not transmit the downlink DPDCH channel.

Table 8.15: Parameters for SSDT mode test

Parameter Parameter	Unit	Test 1	Test 2	Test 3	Test 4
Cell ID of BS under test	-	A	A	A	A
SSDT Quality threshold, Qth, set for radio link under test	d₿			-3	
Target SIR, SIR _{target,} set for radio link under test	dB			3	
Uplink SIR	d₿	SIR _{target} + Q _{th} + 7.5	SIR _{target} + Q _{th} + 7.5	SIR _{target} + Q _{th} -7.5	SIR _{target} + Q _{th} - 7.5
Cell ID transmitted by UE	-	A	₽	A	₿
Transmission of downlink DPCCH	-	Yes	Yes	Yes	Yes
Transmission of downlink DPDCH	-	Yes	No	Yes	Yes

The above test shall be for repeated for each of the three code sets "long", "medium" and "short" Cell ID code sets.

8.10 Performance of ACK/NACK detection for HS-DPCCH

R4-050385

3GPP TSG RAN WG4 (Radio) Meeting #35

Athens, Greece 9 - 13 May 2005

			СН	ANGE	REQ	UE	ST				CR-Form-v7
×	25	.141	CR 368	3	∉rev		ж Сі	urrent vers	sion:	5.9.0	¥
For <u>HELP</u> on t	ısing	this for	m, see botte	om of this p	page or	look a	at the p	op-up text	over	the	mbols.
Proposed change	affec	<i>ts:</i>	JICC appsჵ	8	ME	Rad	lio Acce	ss Netwo	rk X	Core N	etwork
Title:	Fe	ature C	lean Up: Ro	emoval of S	SSDT						
Source:	3G	PP TS	G RAN WG	4 (Radio)							
Work item code: ₩	TE	15						Date: ℜ	16/	05/2005	
Category: #	Deta	F (corr A (corr B (add C (fund D (edit iiled exp	the following rection) responds to a lition of featuctional modificationial modifications of 3GPP TR 21	a correction re), ication of fea ation) the above c	ature)			elease: # Use <u>one</u> of 2 R96 R97 R98 R99 Rel-4 Rel-5 Rel-6	the fo (GSM (Rele (Rele (Rele (Rele (Rele (Rele))))
Reason for change	o. 40	In DA	N#27 romo	al of come	LITDAN	d foot	turos wo	ac agraed		,	polify the
Reason for change	E. &		ications	al OI SOITIE	UIKAI	v ieai	iuies wa	as agreeu	III OIC	iei io siii	ipiliy tile
Summary of chang	ge: ₩	SSDT	is removed	from the s	pecifica	ition.					
		Isolat	ed Impact	Analysis							
		Functi	ionality rem	oved: SSD	Т						
		are n	ted impact s ot affected. ionality.								
Consequences if not approved:	ж										
Clauses affected:	¥	4.1.4	; 4.2.3; 8.10); Annex F							
Other specs affected:	ж	Y N X	Other core Test speci	fications	ons		25.211, 25.922	25.214, 2	25.33 ⁻	1, 25.423	3, 25.433,
Other comments:	¥										

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at http://www.3gpp.org/specs/CR.htm. Below is a brief summary:

- 2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.
- 3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

4.1.4 Measurement of performance requirement

Table 4.1B: Maximum Test System Uncertainty for Performance Requirements

Subclause	Maximum Test System Uncertainty ¹	Derivation of Test System Uncertainty
8.2, Demodulation in static propagation condition	± 0.4dB	Wanted/AWGN: \pm 0.4dB (relative uncertainty for E _b /N ₀) (AWGN: \pm 1dB)
8.3, Demodulation of DCH in multiplath fading conditions	± 0.6dB	Fader: ± 0.5dB Wanted/AWGN: ± 0.4dB (relative) Combined relative uncertainty for E _b /N₀: ± 0.6dB
8.4 Demodulation of DCH in moving propagation conditions	± 0.6dB	Fader: ± 0.5dB Wanted/AWGN: ± 0.4dB (relative) Combined relative uncertainty for E _b /N ₀ : ± 0.6dB
8.5 Demodulation of DCH in birth/death propagation conditions	± 0.6dB	Fader: ± 0.5dB Wanted/AWGN: ± 0.4dB (relative) Combined relative uncertainty for E _b /N ₀ : ± 0.6dB
8.8.1 RACH preamble detection in static propagation conditions	± 0.4dB	Wanted/AWGN: \pm 0.4dB (relative uncertainty for E _o /N ₀) (AWGN: \pm 1dB)
8.8.2 RACH preamble detection in multipath fading case 3	± 0.6dB	Fader: ± 0.5dB Wanted/AWGN: ± 0.4dB (relative) Combined relative uncertainty for E₀/N₀: ± 0.6dB
8.8.3 Demodulation of RACH message in static propagation conditions	± 0.4dB	Wanted/AWGN: \pm 0.4dB (relative uncertainty for E _b /N ₀) (AWGN: \pm 1dB)
8.8.4 Demodulation of RACH message in multipath fading case 3	± 0.6dB	Fader: ± 0.5dB Wanted/AWGN: ± 0.4dB (relative) Combined relative uncertainty for E _b /N ₀ : ± 0.6dB
8.9.3 Demodulation of CPCH message in static propagation conditions	± 0.4 dB	Wanted/AWGN: \pm 0.4dB (relative uncertainty for E _b /N ₀) (AWGN: \pm 1dB
8.9.4 Demodulation of CPCH message in multipath fading case 3	± 0.6 dB	Fader: ± 0.5dB Wanted/AWGN: ± 0.4dB (relative) Combined relative uncertainty for E _b /N ₀ : ± 0.6dB
8.10 Site Selection Diversity Transmission (SSDT) Mode	± 0.4dB	Wanted/AWGN: ± 0.4dB (relative) (AWGN: ±1dB) ect of errors in the BER/FER measurements

Note 1: Only the overall stimulus error is considered here. The effect of errors in the BER/FER measurements due to finite test duration is not considered.

--- next changed section ---

4.2.3 Performance requirement

Table 4.1E: Test Tolerances for Performance Requirements.

Subclause	Test Tolerance ¹					
8.2, Demodulation in static propagation condtion	0.4dB					
8.3, Demodulation of DCH in multiplath fading conditions	0.6dB					
8.4 Demodulation of DCH in moving propagation conditions	0.6dB					
8.5 Demodulation of DCH in birth/death propagation conditions	0.6dB					
8.8.1 RACH preamble detection in static propagation conditions	0.4dB					
8.8.2 RACH preamble detection in multipath fading case 3	0.6dB					
8.8.3 Demodulation of RACH message in static propagation	0.4dB					
conditions						
8.8.4 Demodulation of RACH message in multipath fading case 3	0.6dB					
8.9.3 Demodulation of CPCH message in static propagation	0.4dB					
conditions						
8.9.4 Demodulation of CPCH message in multipath fading case 3	0.6dB					
8.10 Site Selection Diversity Transmission (SSDT) Mode 0.4dB						
Note 1: Unless otherwise stated, the Test Tolerances are applied to the stimulus signal(s). See						

Annex F.

--- next changed section ---

8.10 Site Selection Diversity Transmission (SSDT) Mode Void

8.10.1 Definition and applicability

Site Selection Diversity Transmission (SSDT) mode is an optional feature of BS and is a macro diversity method in soft handover mode. In SSDT mode, the UE selects one of the cells from its active set to be "primary", all other active cells are classed as "non primary". The non primary cells switch off the DCH transmission. The primary cell ID code is delivered to active cells using uplink FBI field of DPCCH.

The requirements and this test apply only to Base Station, which has a function of SSDT mode.

8.10.2 Minimum requirements

According to the conditions specified in Table 8.28, the downlink DPDCH and DPCCH are properly transmitted or stopped.

Table 8.28: Parameters for SSDT mode test

Parameter	Unit	Test 1	Test 2	Test 3	Test 4			
Cell ID of BS under test	-	A	A	A	A			
SSDT Quality threshold, Qth, set for radio link under test	dB		-3					
Target SIR, SIR _{target,} set for radio link under test	d₿		3					
Uplink SIR	d₿	SIR _{target} + Q _{th} +7.5	SIR _{target} + Q _{th} +7.5	SIR _{target} + Q _{th} -7.5	SIR _{target} + Q _{th} -7.5			
Cell ID transmitted by UE	-	A	₽	A	₽			
Transmission of downlink DPCCH	-	Yes	Yes	Yes	Yes			
Transmission of downlink DPDCH	-	Yes	No	Yes	Yes			

The reference for this requirement is in TS 25.104 clause 8.9.

8.10.3 Test purpose

To verify that downlink transmission reaction of BS to Layer 1 feedback signalling messages from UE.

8.10.4 Method of test

8.10.4.1 Initial conditions

Test environment: normal; see subclause 4.4.1.

RF channels to be tested: B, M and T; see subclause 4.8

- 1) Connect BS tester generating the wanted signal and an AWGN generator to the BS antenna connector as shown in Figure B. 13.
- 2) Disable inner loop power control.
- 3) Activate SSDT function using parameters specified in Table .8.28.

8.10.4.2 Procedure

- 1) Adjust the AWGN generator to -84 dBm/3.84 MHz at the BS input.
- 2) The characteristics of the wanted signal shall be configured as a UL reference measurement channel for 12.2kbps defined in annex A.
- 3) Adjust the level of the wanted signal so that required Uplink SIR specified in table 8.29 is achieved. The wanted signal level at the BS input should be adjusted to: $84 \cdot 10*Log_{10}(SF)+10*Log_{10}(Uplink SIR to set)$ [dBm], where SF = 256.
- 4) Check downlink DCH, properly transmitted on or off, according to Table 8.29 under conditions of Test1 through Test4 with 3 types of Cell ID sets, "long", "medium" and "short", respectively.

8.10.5 Test Requirements

According to the conditions specified in Table 8.29, the downlink DPDCH and DPCCH are properly transmitted or stopped.

Table 8.29: Parameters for SSDT mode test

Parameter	Unit	Test 1	Test 2	Test 3	Test 4			
Cell ID of BS under test	-	A	A	A	A			
SSDT Quality threshold, Qth, set for radio link under test	d₿	-3						
Target SIR, SIR _{target,} set in BS	d₿	3						
Uplink SIR	d₿	$\frac{SIR_{target} + Q_{th} + 7.9}{}$	$\frac{\text{SIR}}{\text{target}} + Q_{\text{th}} + 7.9$	SIR _{target} +Q _{th} - 7.9	SIR _{target} + Q _{th} - 7.9			
Cell ID transmitted by UE	1	A	₽	A	₽			
Transmission of downlink DPCCH	-	Yes Yes Yes Yes						
Transmission of downlink DPDCH	-	Yes	No	Yes	Yes			

--- next changed section ---

Annex F (informative): Derivation of Test Requirements

The Test Requirements in this specification have been calculated by relaxing the Minimum Requirements of the core specification using the Test Tolerances defined in subclause 4.2. When the Test Tolerance is zero, the Test Requirement will be the same as the Minimum Requirement. When the Test Tolerance is non-zero, the Test Requirements will differ from the Minimum Requirements, and the formula used for this relaxation is given in tables F.1, F.2 and F.3

Note that a formula for applying Test Tolerances is provided for all tests, even those with a test tolerance of zero. This is necessary in the case that the Test System uncertainty is greater than that allowed in subclause 4.1. In this event, the excess error shall be subtracted from the defined test tolerance in order to generate the correct tightened Test Requirements as defined in subclause 4.3.

For example, a Test System having 0.9 dB accuracy for test 6.2.1 Base Station maximum output power (which is 0.2 dB above the limit specified in subclause 4.) would subtract 0.2 dB from the Test Tolerance of 0.7 dB defined in subclause 4.2. This new test tolerance of 0.5 dB would then be applied to the Minimum Requirement using the formula defined in Table F.1 to give a new range of $\pm 2.5 \text{ dB}$ of the manufacturer's rated output power.

Using this same approach for the case where a test had a test tolerance of 0 dB, an excess error of 0.2 dB would result in a modified test tolerance of -0.2 dB.

Table F.1: Derivation of Test Requirements (Transmitter tests)

Test	Minimum Requirement in TS 25.104	Test Tolerance (TT)	Test Requirement in TS 25.141
6.2.1 Base station maximum output power	In normal conditions within +2 dB and -2 dB of the manufacturer's rated output power In extreme conditions within +2.5 dB and -2.5 dB of the manufacturer's rated output power	0.7 dB	Formula: Upper limit + TT Lower limit – TT In normal conditions within +2.7 dB and –2.7 dB of the manufacturer's rated output power In extreme conditions within +3.2 dB and –3.2 dB of the manufacturer's rated output power
6.2.2 CPICH Power accuracy	CPICH power shall be within ±2.1dB	0.8 dB	Formula: Upper limit + TT Lower limit - TT CPICH power shall be within ±2.9dB
6.3 Frequency error	Frequency error limit = 0.05 ppm	12 Hz	Formula: Frequency Error limit + TT Frequency Error limit = 0.05 ppm + 12 Hz
6.4.2 Power control steps	Lower and upper limits as specified in tables 6.9 and 6.10a	0.1 dB	Formula: Upper limits + TT Lower limits – TT 0.1 dB applied as above to tables 6.9 and 6.10a
6.4.3 Power control dynamic range	maximum power limit = BS maximum output power -3 dB minimum power limit = BS maximum output power –28 dB	1.1 dB	Formula: maximum power limit – TT minimum power limit + TT maximum power limit = BS maximum output power –4.1 dB minimum power limit = BS maximum output power –26.9 dB
6.4.4 Total power dynamic range	total power dynamic range limit = 18 dB	0.3 dB	Formula: total power dynamic range limit – TT total power dynamic range limit = 17.7 dB
6.4.5. IPDL time mask	maximum power limit = BS maximum output power –35 dB	0.7 dB	Formula: maximum power limit + TT maximum power limit = BS maximum output power – 34.3 dB
6.5.1 Occupied Bandwidth	occupied bandwidth limit = 5 MHz	0 kHz	Formula: Occupied bandwidth limit + TT Occupied bandwidth limit = 5 MHz
6.5.2.1 Spectrum emission mask	Maximum level defined in tables 6.11, 6.12, 6.13 and 6.14:	1.5 dB(0 dB for the additional Band II requirement s)	Formula: Maximum level + TT Add 1.5 to Maximum level entries in tables 6.11, 6.12, 6.13 and 6.14.
6.5.2.2 Adjacent Channel Leakage power Ratio (ACLR)	ACLR limit = 45 dB at 5 MHz ACLR limit = 50 dB at 10 MHz	0.8 dB	Formula: ACLR limit – TT ACLR limit = 44.2 dB at 5 MHz ACLR limit = 49.2 dB at 10 MHz
6.5.3 Spurious emissions	Maximum level defined in tables 6.16 to 6.26	0 dB	Formula: Maximum limit + TT Add 0 to Maximum level in tables 6.16 to 6.26
6.6 Transmit intermodulation (interferer requirements) This tolerance applies to the stimulus and not the measurements defined in 6.5.2.1, 6.5.2.2 and 6.5.3.	Wanted signal level – interferer level = 30 dB	0 dB	Formula: Ratio + TT Wanted signal level – interferer level = 30 + 0 dB
6.7.1 EVM	EVM limit =17.5 % for a composite signal modulated only by QPSK EVM limit = 12.5 % for a composite signal modulated by QPSK and 16QAM	0 %	Formula: EVM limit + TT EVM limit = 17.5% for a composite signal modulated only by QPSK EVM limit = 12.5 % for a composite signal modulated by QPSK and 16QAM

6.7.2 Peak code Domain error	Peak code domain error limit = -33 dB	1.0 dB	Formula: Peak code domain error limit + TT Peak code domain error limit = -32 dB
6.7.3 Time alignment error in TX diversity	Max time alignment error = 0.25 T _c Min time alignment error = - 0.25 T _c	0.1 T _c	Formula: Max time alignment error + TT Min time alignment error – TT Max time alignment error = 0.35 T _c Min time alignment error = -0.35 T _c
Annex H.3 Transmitted code power (absolute)	Absolute accuracy limit = Pout,code – 3 dB Pout,code + 3 dB	0.9 dB	Formula: Absolute accuracy limit –TT Absolute accuracy limit +TT Absolute accuracy limit: minimum power limit = -3.9 dB maximum power limit = +3.9 dB
Annex H.3 Transmitted code power (relative)	Relative accuracy limit = Pout,code1 - Pout,code2 ≤ 2 dB	0.2 dB	Formula: Relative accuracy limit + TT Relative accuracy limit = 2.2 dB
Annex H.4 Transmitted carrier power	total power dynamic range limit = 18 dB	0.3 dB	Formula: total power dynamic range limit – TT total power dynamic range limit = 17.7 dB

Table F.2: Derivation of Test Requirements (Receiver tests)

Test	Minimum Requirement in TS 25.104	Test Tolerance (TT)	Test Requirement in TS 25.141
7.2 Reference sensitivity	Reference sensitivity level = - 121 dBm	0.7 dB	Formula: Reference sensitivity level + TT
	FER/BER limit = 0.001		Reference sensitivity level = -120.3 dBm
			FER/BER limit is not changed
7.3 Dynamic range	Wanted signal level = -91 dBm AWGN level = -73 dBm/3.84 MHz	1.2 dB	Formula: Wanted signal level + TT AWGN level unchanged
	2		Wanted signal level = -89.8 dBm
7.4 Adjacent channel selectivity	Wanted signal level = -115 dBm W-CDMA interferer level = -52 dBm	0 dB	Formula: Wanted signal level + TT W-CDMA interferer level unchanged
			Wanted signal level = -115 dBm
7.5 Blocking characteristics	Wanted signal level = -115 dBm Interferer level See table 7.4a / 7.4b	0 dB	Formula: Wanted signal level + TT Interferer level unchanged Wanted signal level = -115 dBm
7.6 Intermod Characteristics	Wanted signal level = -115 dBm Interferer1 level (10 MHz offset CW) = -48 dBm Interferer2 level (20 MHz offset	0 dB	Formula: Wanted signal level + TT Interferer1 level unchanged Interferer2 level unchanged
	W-CDMA Modulated) = -48 dBm		Wanted signal level = -115 dBm
7.7 Spurious Emissions	Maximum level defined in Table 7.7	0 dB	Formula: Maximum level + TT
			Add TT to Maximum level in table 7.7

Table F.3: Derivation of Test Requirements (Performance tests)

Test	Minimum Requirement in TS 25.104		
8.2, Demodulation in static propagation condtion	Received E _b /N ₀ values	0.4 dB	Minimum requirement + TT
8.3, Demodulation of DCH in multiplath fading conditons	Received E _b /N ₀ values	0.6 dB	Minimum requirement + TT
8.4 Demodulation of DCH in moving propagation conditions	Received E _b /N ₀ values	0.6 dB	Minimum requirement + TT
8.5 Demodulation of DCH in birth/death propagation conditions	Received E _b /N ₀ values	0.6 dB	Minimum requirement + TT
8.8.1 RACH preamble detection in static propagation conditions	Received E₀/N₀ values	0.4dB	Minimum requirement + TT
8.8.2 RACH preamble detection in multipath fading case 3	Received E _o /N ₀ values	0.6dB	Minimum requirement + TT
8.8.3 Demodulation of RACH message in static propagation conditions	Received E _b /N ₀ values	0.4dB	Minimum requirement + TT
8.8.4 Demodulation of RACH message in multipath fading case 3	Received E _b /N ₀ values	0.6dB	Minimum requirement + TT
8.9.3 Demodulation of CPCH message in static propagation conditions	Received E _b /N ₀ values	0.4 dB	Minimum requirement + TT
8.9.4 Demodulation of CPCH message in multipath fading case 3	Received E _b /N ₀ values	0.6 dB	Minimum requirement + TT
8.10 Site Selection Diversity Transmission (SSDT) Mode	SIR _{target} + Q _{th} +7.5 SIR _{target} + Q _{th} -7.5	0.4 dB	Q _{th} + 7.5 + TT Q _{th} + 7.5 - TT

R4-050386

3GPP TSG RAN WG4 (Radio) Meeting #35

Athens, Greece 9 - 13 May 2005

				(CHAN	GE F	REQ	UE	ST				CR-Form-v7
*		25	.141	CR	369	H	rev		¥	Current ve	rsion:	6.9.0	æ
For <u>HEL</u>	P on u	sing	this for	rm, see	e bottom c	of this p	age or	look	at the	pop-up te	xt ove	r the ℋ syi	nbols.
Proposed ci	hange a	affec	ts:	UICC a	apps#		ME	Rad	dio Ac	cess Netw	ork X	Core Ne	etwork
•	J					1		_				_	
					 _								
Title:	Ж	Fea	ature C	Clean (Jp: Remo	val of S	SDT						
Source:	\mathfrak{R}	3G	PP TS	G RAI	NWG4 (R	adio)							
Work item c	ode: ೫	TE	l6							Date:	∺ 16	/05/2005	
Reason for Summary of	change	Deta be fo	F (con A (cor B (add C (fun D (edi) iiled expound in In RA specif	rection, respondition of ctional molanation of the color	ds to a corn f feature), modification, ons of the a TR 21.900. removal or is. noved from pact Anal / removed	rection in of feat habove can the sport the sp	ture) Itegories UTRAI	N fea	tures	2) R96 R97 R98 R99 Rel-4 Rel-5 Rel-6	of the for (GSI (Reli (Reli (Reli (Reli (Reli (Reli d in or	ollowing relimited by Phase 2) ease 1996) ease 1997) ease 1998) ease 1999) ease 4) ease 5) ease 6) der to sim	plify the
			are r		ected. Wo					nentations			
Consequent not approve		\aleph											
Clauses affe	ected:	\mathfrak{H}	4.1.4	1; 4.2.3	8; 8.10; Ar	nex F							
Other specs	5	¥	Y N X X	Test	r core spe specificati Specifica	ions	ons	*	25.21 25.92	11, 25.214, 22	25.33	31, 25.423,	25.433,
Other comm	nents:	Ħ											

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at http://www.3gpp.org/specs/CR.htm. Below is a brief summary:

- 2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.
- 3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

4.1.4 Measurement of performance requirement

Table 4.1B: Maximum Test System Uncertainty for Performance Requirements

Subclause	Maximum Test System Uncertainty ¹	Derivation of Test System Uncertainty
8.2, Demodulation in static propagation condition	± 0.4dB	Wanted/AWGN: \pm 0.4dB (relative uncertainty for E _b /N ₀) (AWGN: \pm 1dB)
8.3, Demodulation of DCH in multiplath fading conditions	± 0.6dB	Fader: ± 0.5dB Wanted/AWGN: ± 0.4dB (relative) Combined relative uncertainty for E _b /N₀: ± 0.6dB
8.4 Demodulation of DCH in moving propagation conditions	± 0.6dB	Fader: ± 0.5dB Wanted/AWGN: ± 0.4dB (relative) Combined relative uncertainty for E _b /N ₀ : ± 0.6dB
8.5 Demodulation of DCH in birth/death propagation conditions	± 0.6dB	Fader: ± 0.5dB Wanted/AWGN: ± 0.4dB (relative) Combined relative uncertainty for E _b /N ₀ : ± 0.6dB
8.8.1 RACH preamble detection in static propagation conditions	± 0.4dB	Wanted/AWGN: \pm 0.4dB (relative uncertainty for E _o /N ₀) (AWGN: \pm 1dB)
8.8.2 RACH preamble detection in multipath fading case 3	± 0.6dB	Fader: ± 0.5dB Wanted/AWGN: ± 0.4dB (relative) Combined relative uncertainty for E₀/N₀: ± 0.6dB
8.8.3 Demodulation of RACH message in static propagation conditions	± 0.4dB	Wanted/AWGN: \pm 0.4dB (relative uncertainty for E _b /N ₀) (AWGN: \pm 1dB)
8.8.4 Demodulation of RACH message in multipath fading case 3	± 0.6dB	Fader: ± 0.5dB Wanted/AWGN: ± 0.4dB (relative) Combined relative uncertainty for E _b /N ₀ : ± 0.6dB
8.9.3 Demodulation of CPCH message in static propagation conditions	± 0.4 dB	Wanted/AWGN: \pm 0.4dB (relative uncertainty for E _b /N ₀) (AWGN: \pm 1dB
8.9.4 Demodulation of CPCH message in multipath fading case 3	± 0.6 dB	Fader: ± 0.5dB Wanted/AWGN: ± 0.4dB (relative) Combined relative uncertainty for E _b /N ₀ : ± 0.6dB
8.10 Site Selection Diversity Transmission (SSDT) Mode	± 0.4dB	Wanted/AWGN: ± 0.4dB (relative) (AWGN: ±1dB) ect of errors in the BER/FER measurements

Note 1: Only the overall stimulus error is considered here. The effect of errors in the BER/FER measurements due to finite test duration is not considered.

--- next changed section ---

4.2.3 Performance requirement

Table 4.1E: Test Tolerances for Performance Requirements.

Subclause	Test Tolerance ¹			
8.2, Demodulation in static propagation condtion	0.4dB			
8.3, Demodulation of DCH in multiplath fading conditions	0.6dB			
8.4 Demodulation of DCH in moving propagation conditions	0.6dB			
8.5 Demodulation of DCH in birth/death propagation conditions	0.6dB			
8.8.1 RACH preamble detection in static propagation conditions	0.4dB			
8.8.2 RACH preamble detection in multipath fading case 3	0.6dB			
8.8.3 Demodulation of RACH message in static propagation	0.4dB			
conditions				
8.8.4 Demodulation of RACH message in multipath fading case 3	0.6dB			
8.9.3 Demodulation of CPCH message in static propagation	0.4dB			
conditions				
8.9.4 Demodulation of CPCH message in multipath fading case 3	0.6dB			
8.10 Site Selection Diversity Transmission (SSDT) Mode	0.4dB			
8.11.1 ACK false alarm in static propagation conditions	0.4dB			
8.11.2 ACK false alarm in multipath fading conditions	0.6dB			
8.11.3 ACK mis-detection in static propagation conditions	0.4dB			
8.11.4 ACK mis-detection in multipath fading conditions	0.6dB			
Note 1: Unless otherwise stated, the Test Tolerances are applied to the stimulus signal(s). See Annex F.				

--- next changed section ---

8.10 Site Selection Diversity Transmission (SSDT) Mode Void

8.10.1 Definition and applicability

Site Selection Diversity Transmission (SSDT) mode is an optional feature of BS and is a macro diversity method in soft handover mode. In SSDT mode, the UE selects one of the cells from its active set to be "primary", all other active cells are classed as "non primary". The non primary cells switch off the DCH transmission. The primary cell ID code is delivered to active cells using uplink FBI field of DPCCH.

The requirements and this test apply only to Base Station, which has a function of SSDT mode.

8.10.2 Minimum requirements

According to the conditions specified in Table 8.28, the downlink DPDCH and DPCCH are properly transmitted or stopped.

Table 8.28: Parameters for SSDT mode test

Parameter	Unit	Test 1	Test 2	Test 3	Test 4	
Cell ID of BS under test	_	A	A	A	A	
SSDT Quality threshold, Q _{th,} set for radio link under test	d₿	-3				
Target SIR, SIR _{target,} set for radio link under test	dB	3				
Uplink SIR	d₿	SIR _{target} + Q _{th} +7.5	SIR _{target} + Q _{th} +7.5	SIR _{target} + Q _{th} -7.5	SIR _{target} + Q _{th} -7.5	
Cell ID transmitted by UE	-	A	₽	A	₽	
Transmission of downlink DPCCH	-	Yes Yes Yes Yes			Yes	
Transmission of downlink DPDCH	-	Yes	No	Yes	Yes	

The reference for this requirement is in TS 25.104 clause 8.9.

8.10.3 Test purpose

To verify that downlink transmission reaction of BS to Layer 1 feedback signalling messages from UE.

8.10.4 Method of test

8.10.4.1 Initial conditions

Test environment: normal; see subclause 4.4.1.

RF channels to be tested: B, M and T; see subclause 4.8

- 1) Connect BS tester generating the wanted signal and an AWGN generator to the BS antenna connector as shown in Figure B. 13.
- 2) Disable inner loop power control.
- 3) Activate SSDT function using parameters specified in Table .8.28.

8.10.4.2 Procedure

1) Adjust the AWGN generator depending on the BS class under test at the BS input as follows:.

Wide Area: 84 dBm/3.84 MHz

Medium Range: 74 dBm/3.84 MHz

Local Area: 70 dBm/3.84 MHz

- 2) The characteristics of the wanted signal shall be configured as a UL reference measurement channel for 12.2kbps defined in annex A.
- 3) Adjust the level of the wanted signal so that required Uplink SIR specified in table 8.29 is achieved. The wanted signal level at the BS input should be adjusted to: $84 \cdot 10*Log_{10}(SF)+10*Log_{10}(Uplink SIR to set)$ [dBm], where SF = 256.
- 4) Check downlink DCH, properly transmitted on or off, according to Table 8.29 under conditions of Test1 through Test4 with 3 types of Cell ID sets, "long", "medium" and "short", respectively.

8.10.5 Test Requirements

According to the conditions specified in Table 8.29, the downlink DPDCH and DPCCH are properly transmitted or stopped.

Table 8.29: Parameters for SSDT mode test

Parameter Parameter	Unit	Test 1	Test 2	Test 3	Test 4
Cell ID of BS under test	-	A	A	A	A
SSDT Quality threshold, Q _{th} , set for radio link under test	d₿	-3			
Target SIR, SIR _{target} , set in BS	dB	3			
Uplink SIR	d₿	$SIR_{target} + Q_{th} + 7.9$	$\frac{SIR_{target}}{Q_{th}} + \frac{Q_{th}}{Q_{th}} + \frac{7.9}{Q_{th}}$	SIR _{target} +Q _{th} - 7.9	$\frac{SIR_{target} + Q_{th} - 7.9}{}$
Cell ID transmitted by UE	-	A	₽	A	₽
Transmission of downlink DPCCH	-	Yes Yes Yes Yes			Yes
Transmission of downlink DPDCH		Yes	No	Yes	Yes

--- next changed section ---

Annex F (informative): Derivation of Test Requirements

The Test Requirements in this specification have been calculated by relaxing the Minimum Requirements of the core specification using the Test Tolerances defined in subclause 4.2. When the Test Tolerance is zero, the Test Requirement will be the same as the Minimum Requirement. When the Test Tolerance is non-zero, the Test Requirements will differ from the Minimum Requirements, and the formula used for this relaxation is given in tables F.1, F.2 and F.3

Note that a formula for applying Test Tolerances is provided for all tests, even those with a test tolerance of zero. This is necessary in the case that the Test System uncertainty is greater than that allowed in subclause 4.1. In this event, the excess error shall be subtracted from the defined test tolerance in order to generate the correct tightened Test Requirements as defined in subclause 4.3.

For example, a Test System having $0.9 \, dB$ accuracy for test $6.2.1 \, Base$ Station maximum output power (which is $0.2 \, dB$ above the limit specified in subclause $4.0 \, dB$ above the limit specified in subclause $4.0 \, dB$ from the Test Tolerance of $0.7 \, dB$ defined in subclause $4.0 \, dB$ would then be applied to the Minimum Requirement using the formula defined in Table F.1 to give a new range of $\pm 2.5 \, dB$ of the manufacturer's rated output power.

Using this same approach for the case where a test had a test tolerance of 0 dB, an excess error of 0.2 dB would result in a modified test tolerance of –0.2 dB.

Table F.1: Derivation of Test Requirements (Transmitter tests)

Test	Minimum Requirement in TS 25.104	Test Tolerance (TT)	Test Requirement in TS 25.141
6.2.1 Base station maximum output power	In normal conditions within +2 dB and -2 dB of the manufacturer's rated output power In extreme conditions within +2.5 dB and -2.5 dB of the manufacturer's rated output power	0.7 dB	Formula: Upper limit + TT Lower limit – TT In normal conditions within +2.7 dB and –2.7 dB of the manufacturer's rated output power In extreme conditions within +3.2 dB and –3.2 dB of the manufacturer's rated output power
6.2.2 CPICH Power accuracy	CPICH power shall be within ±2.1dB	0.8 dB	Formula: Upper limit + TT Lower limit - TT CPICH power shall be within ±2.9dB
6.3 Frequency error	Frequency error limit = 0.05 ppm	12 Hz	Formula: Frequency Error limit + TT Frequency Error limit = 0.05 ppm + 12 Hz
6.4.2 Power control steps	Lower and upper limits as specified in tables 6.9 and 6.10a	0.1 dB	Formula: Upper limits + TT Lower limits – TT 0.1 dB applied as above to tables 6.9 and 6.10a
6.4.3 Power control dynamic range	maximum power limit = BS maximum output power -3 dB minimum power limit = BS maximum output power –28 dB	1.1 dB	Formula: maximum power limit – TT minimum power limit + TT maximum power limit = BS maximum output power –4.1 dB minimum power limit = BS maximum output power –26.9 dB
6.4.4 Total power dynamic range	total power dynamic range limit = 18 dB	0.3 dB	Formula: total power dynamic range limit – TT total power dynamic range limit = 17.7 dB
6.4.5. IPDL time mask	maximum power limit = BS maximum output power –35 dB	0.7 dB	Formula: maximum power limit + TT maximum power limit = BS maximum output power – 34.3 dB
6.5.1 Occupied Bandwidth	occupied bandwidth limit = 5 MHz	0 kHz	Formula: Occupied bandwidth limit + TT Occupied bandwidth limit = 5 MHz
6.5.2.1 Spectrum emission mask	Maximum level defined in tables 6.11, 6.12, 6.13 and 6.14:	1.5 dB(0 dB for the additional Band II requirement s)	Formula: Maximum level + TT Add 1.5 to Maximum level entries in tables 6.11, 6.12, 6.13 and 6.14.
6.5.2.2 Adjacent Channel Leakage power Ratio (ACLR)	ACLR limit = 45 dB at 5 MHz ACLR limit = 50 dB at 10 MHz	0.8 dB	Formula: ACLR limit – TT ACLR limit = 44.2 dB at 5 MHz ACLR limit = 49.2 dB at 10 MHz
6.5.3 Spurious emissions	Maximum level defined in tables 6.16 to 6.26	0 dB	Formula: Maximum limit + TT Add 0 to Maximum level in tables 6.16 to 6.26
6.6 Transmit intermodulation (interferer requirements) This tolerance applies to the stimulus and not the measurements defined in 6.5.2.1, 6.5.2.2 and 6.5.3.	Wanted signal level – interferer level = 30 dB	0 dB	Formula: Ratio + TT Wanted signal level – interferer level = 30 + 0 dB
6.7.1 EVM	EVM limit =17.5 % for a composite signal modulated only by QPSK EVM limit = 12.5 % for a composite signal modulated by QPSK and 16QAM	0 %	Formula: EVM limit + TT EVM limit = 17.5% for a composite signal modulated only by QPSK EVM limit = 12.5 % for a composite signal modulated by QPSK and 16QAM

6.7.2 Peak code Domain error	Peak code domain error limit = -33 dB	1.0 dB	Formula: Peak code domain error limit + TT Peak code domain error limit = -32 dB
6.7.3 Time alignment error in TX diversity	Max time alignment error = 0.25 T_c Min time alignment error = -0.25 T_c	0.1 T _c	Formula: Max time alignment error + TT Min time alignment error – TT Max time alignment error = 0.35 T _c Min time alignment error = -0.35 T _c
Annex H.3 Transmitted code power (absolute)	Absolute accuracy limit = Pout,code – 3 dB Pout,code + 3 dB	0.9 dB	Formula: Absolute accuracy limit –TT Absolute accuracy limit: minimum power limit = -3.9 dB maximum power limit = +3.9 dB
Annex H.3 Transmitted code power (relative)	Relative accuracy limit = Pout,code1 - Pout,code2 ≤ 2 dB	0.2 dB	Formula: Relative accuracy limit + TT Relative accuracy limit = 2.2 dB
Annex H.4 Transmitted carrier power	total power dynamic range limit = 18 dB	0.3 dB	Formula: total power dynamic range limit – TT total power dynamic range limit = 17.7 dB

Table F.2: Derivation of Test Requirements (Receiver tests)

Test	Minimum Requirement in TS 25.104	Test Tolerance (TT)	Test Requirement in TS 25.141
7.2 Reference sensitivity	Reference sensitivity level = - 121 dBm	0.7 dB	Formula: Reference sensitivity level + TT
	FER/BER limit = 0.001		Reference sensitivity level = -120.3 dBm
			FER/BER limit is not changed
7.3 Dynamic range	Wanted signal level = -91 dBm AWGN level = -73 dBm/3.84 MHz	1.2 dB	Formula: Wanted signal level + TT AWGN level unchanged
	IVII 12		Wanted signal level = -89.8 dBm
7.4 Adjacent channel selectivity	Wanted signal level = -115 dBm W-CDMA interferer level = -52 dBm	0 dB	Formula: Wanted signal level + TT W-CDMA interferer level unchanged
			Wanted signal level = -115 dBm
7.5 Blocking characteristics	Wanted signal level = -115 dBm Interferer level See table 7.4a /	0 dB	Formula: Wanted signal level + TT Interferer level unchanged
	7.4b		Wanted signal level = -115 dBm
7.6 Intermod Characteristics	Wanted signal level = -115 dBm Interferer1 level (10 MHz offset CW) = -48 dBm	0 dB	Formula: Wanted signal level + TT Interferer1 level unchanged Interferer2 level unchanged
	Interferer2 level (20 MHz offset W-CDMA Modulated) = -48 dBm		Wanted signal level = -115 dBm
7.7 Spurious Emissions	Maximum level defined in Table 7.7	0 dB	Formula: Maximum level + TT
			Add TT to Maximum level in table 7.7

Table F.3: Derivation of Test Requirements (Performance tests)

Test	Minimum Requirement in TS 25.104	Test Tolerance (TT)	Test Requirement in TS 25.141
8.2, Demodulation in static propagation condtion	Received E _b /N ₀ values	0.4 dB	Minimum requirement + TT
8.3, Demodulation of DCH in multiplath fading conditions	Received E _b /N ₀ values	0.6 dB	Minimum requirement + TT
8.4 Demodulation of DCH in moving propagation conditions	Received E _b /N ₀ values	0.6 dB	Minimum requirement + TT
8.5 Demodulation of DCH in birth/death propagation conditions	Received E _b /N ₀ values	0.6 dB	Minimum requirement + TT
8.8.1 RACH preamble detection in static propagation conditions	Received E _c /N ₀ values	0.4dB	Minimum requirement + TT
8.8.2 RACH preamble detection in multipath fading case 3	Received E _c /N ₀ values	0.6dB	Minimum requirement + TT
8.8.3 Demodulation of RACH message in static propagation conditions	Received E _b /N ₀ values	0.4dB	Minimum requirement + TT
8.8.4 Demodulation of RACH message in multipath fading case 3	Received E _b /N ₀ values	0.6dB	Minimum requirement + TT
8.9.3 Demodulation of CPCH message in static propagation conditions	Received E _b /N ₀ values	0.4 dB	Minimum requirement + TT
8.9.4 Demodulation of CPCH message in multipath fading case 3	Received E _b /N ₀ values	0.6 dB	Minimum requirement + TT
8.10 Site Selection Diversity Transmission (SSDT) Mode	SIR _{target} + Q _{th} +7.5 SIR _{target} + Q _{th} -7.5	0.4 dB	Q _{th} + 7.5 + TT Q _{th} + 7.5 - TT
8.11.1 ACK false alarm in static propagation conditions	Received E _c /N ₀ values	0.4 dB	Minimum requirement + TT
8.11.2 ACK false alarm in multipath fading conditions	Received E _d /N ₀ values	0.6 dB	Minimum requirement + TT
8.11.3 ACK mis-detection in static propagation conditions	Received E _c /N ₀ values	0.4 dB	Minimum requirement + TT
8.11.4 ACK mis-detection in multipath fading conditions	Received E _d /N₀ values	0.6 dB	Minimum requirement + TT