CHANGE REQUEST

\% 25.433 CR 713 \%rev $3^{\text {\% }}$ Current version: 5.1.0 \%

For HELP on using this form, see bottom of this page or look at the pop-up text over the \& symbols.

Proposed change affects: UICC apps\& \square ME \square Radio Access Network \mathbf{X} Core Network \square

Reason for change: If During RAN3 \#29 a joint meeting with RAN1 was held where it was clarified, that the CQI Feedback Cycle k, the CQI- and ACK-NACK Repetition Factors as well as CQI Power Offset, ACK Power Offset and NACK Power Offset are set as initial values during HS-DSCH setup by the SRNC, and not reported from Node B to CRNC/SRNC. - So these IEs must be made available for the RL SETUP REQUEST and RL RECONFIG PREPARE messages. The values of the IEs are definded according the proposals from RAN1 in the LS to RAN3 (R3-021828).

Summary of change: \& Rev. 3

- ASN. 1 syntax errors are corrected (highlighted in yellow).
- The order of IE is aligned with tabular (highlighted in green).
- Obsolete comment is removed (highlighted in blue).

Rev.0, Rev.1and Rev. 2
These changes are done:

- The CQI Feedback Cycle k IE is included in HS-DSCH Information To Modify IE and HS-DSCH FDD Information IE. It is removed from the HS-DSCH FDD Information Response IE
- CQI Repetition Factor IE is included in HS-DSCH Information To Modify IE and HS-DSCH FDD Information IE. In HS-DSCH FDD Information IE the CQI Repetition Factor IE is set conditional because it should only be signalled if the CQI Feedback Cycle k IE is set >0.
- ACK-NACK Repetition Factor IE is included in HS-DSCH Information To

\begin{tabular}{|c|c|c|c|c|c|}
\hline \& \& \& \begin{tabular}{l}
Modify IE and HS-DSCH F \\
ACK Power Offset IE and \(N\) Information To Modify IE and \\
CQI Power Offset IE is inclu HS-DSCH FDD Information \\
procedure text of the RL R ake the added optional para \\
ct Analysis: \\
act assessment towards the ase): \\
CR has isolated impact with ase) because it affects impl HS-DSCH setup and reconfig CR has an impact under fu \\
impact can be considered mely HSDPA.
\end{tabular} \& Infor
S-
in
NF
ers

evio

e p

nta \& | rmation IE. |
| :--- |
| Power Offset IE are include DSCH FDD Information IE HS-DSCH Information TO |
| IG PREPARATION proce into account |
| us version of the specifica |
| revious version of the spe tions supporting the corre |
| and protocol point of vie |
| because the change affe |

\hline Consequences if not approved: \& \& \& is CR is not approved the CQ correct reception of the ACK \& \& essing cannot be configu can not be guaranteed.

\hline Clauses affected: \& \mathscr{H} \& \& 2.2, 9.2.1.31H, 9.2.2.18D, 9 \& \& E, 9.2.2.21B, 9.2.2.x1, 9.2

\hline Other specs affected: \& \& | \mathbf{Y} | \mathbf{N} |
| :--- | :--- |
| \mathbf{X} | \mathbf{X} |
| | \mathbf{X} |
| | | \& Other core specifications Test specifications O\&M Specifications \& \mathscr{H} \& CR682 TS 25.423 v5.2.0

\hline Other comments: \& \% \& \& \& \&

\hline
\end{tabular}

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found th http://www.3gpp.org/specs/CR.htm. Below is a brief summary:

1) Fill out the above form. The symbols above marked \mathscr{H} contain pop-up help information about the field that they are closest to.
2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.
3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

8.3.2 Synchronised Radio Link Reconfiguration Preparation

8.3.2.1 General

The Synchronised Radio Link Reconfiguration Preparation procedure is used to prepare a new configuration of Radio Link(s) related to one Node B Communication Context.

The Synchronised Radio Link Reconfiguration Preparation procedure shall not be initiated if a Prepared Reconfiguration exists, as defined in subclause 3.1.

8.3.2.2 Successful Operation

Figure 30: Synchronised Radio Link Reconfiguration Preparation procedure, Successful Operation
The Synchronised Radio Link Reconfiguration Preparation procedure is initiated by the CRNC by sending the RADIO LINK RECONFIGURATION PREPARE message to the Node B. The message shall use the Communication Control Port assigned for this Node B Communication Context.

Upon reception, the Node B shall reserve necessary resources for the new configuration of the Radio Link(s) according to the parameters given in the message. Unless specified below, the meaning of parameters is specified in other specifications.

The Node B shall prioritise resource allocation for the RL(s) to be modified according to Annex A.

DCH Modification:

If the RADIO LINK RECONFIGURATION PREPARE message includes any DCHs to Modify IE then the Node B shall treat them each as follows:

- If the DCHs to Modify IE includes the Frame Handling Priority IE, the Node B should store this information for this DCH in the new configuration. The received Frame Handling Priority should be used when prioritising between different frames in the downlink on the radio interface in congestion situations within the Node B once the new configuration has been activated.
- If the DCHs to Modify IE includes the Transport Format Set IE for the UL of a DCH, the Node B shall apply the new Transport Format Set in the Uplink of this DCH in the new configuration.
- If the DCHs to Modify IE includes the Transport Format Set IE for the DL of a DCH, the Node B shall apply the new Transport Format Set in the Downlink of this DCH in the new configuration.
- If the DCHs to Modify IE includes multiple DCH Specific Info IEs, the Node B shall treat the DCHs in the DCHs to Modify IE as a set of co-ordinated DCHs. The Node B shall include these DCHs in the new configuration only if it can include all of them in the new configuration.
- If the DCHs to Modify IE includes the UL FP Mode IE for a DCH or a DCH which belongs to a set of co-ordinated DCHs, the Node B shall apply the new FP Mode in the Uplink of the user plane for the DCH or the set of coordinated DCHs in the new configuration.
- If the DCHs to Modify IE includes the ToAWS IE for a DCH or a DCH which belongs to a set of co-ordinated DCHs, the Node B shall apply the new ToAWS in the user plane for the DCH or the set of co-ordinated DCHs in the new configuration.
- If the DCHs to Modify IE includes the ToAWE IE for a DCH or a DCH which belongs to a set of co-ordinated DCHs, the Node B shall apply the new ToAWE in the user plane for the DCH or the set of co-ordinated DCHs in the new configuration.
- [TDD - If the DCHs to Modify IE includes the CCTrCH ID IE for the DL of a DCH to be modified, the Node B shall apply the new CCTrCH ID in the Downlink of this DCH in the new configuration.]
- [TDD - If the DCHs to Modify IE includes the CCTrCH ID IE for the UL of a DCH to be modified, the Node B shall apply the new CCTrCH ID in the Uplink of this DCH in the new configuration.]

DCH Addition:

If the RADIO LINK RECONFIGURATION PREPARE message includes any DCHs to Add IEs then the Node B shall treat them each as follows:

- If the DCHs to Add IE includes multiple DCH Specific Info IEs, the Node B shall treat the DCHs in the DCHs to $A d d$ IE as a set of co-ordinated DCHs. The Node B shall include these DCHs in the new configuration only if it can include all of them in the new configuration.
- [FDD - For DCHs which do not belong to a set of co-ordinated DCHs with the QE-Selector IE set to "selected", the Transport channel BER from that DCH shall be the base for the QE in the UL data frames. If no Transport channel BER is available for the selected DCH, the Physical channel BER shall be used for the QE, ref. [16]. If the QE-Selector IE is set to "non-selected", the Physical channel BER shall be used for the QE in the UL data frames, ref. [16].]
- For a set of co-ordinated DCHs, the Transport channel BER from the DCH with the QE-Selector IE set to "selected" shall be used for the QE in the UL data frames, ref. [16]. [FDD - If no Transport channel BER is available for the selected DCH, the Physical channel BER shall be used for the QE, ref. [16]. If all DCHs have the QE-Selector IE set to "non-selected", the Physical channel BER shall be used for the QE, ref. [16].]
- The Node B should store the Frame Handling Priority IE received for a DCH to be added in the new configuration. The received Frame Handling Priority should be used when prioritising between different frames in the downlink on the Uu interface in congestion situations within the Node B once the new configuration has been activated.
- The Node B shall use the included UL FP Mode IE for a DCH or a set of co-ordinated DCHs to be added as the new FP Mode in the Uplink of the user plane for the DCH or the set of co-ordinated DCHs in the new configuration.
- The Node B shall use the included ToAWS IE for a DCH or a set of co-ordinated DCHs to be added as the new Time of Arrival Window Start Point in the user plane for the DCH or the set of co-ordinated DCHs in the new configuration.
- The Node B shall use the included ToAWE IE for a DCH or a set of co-ordinated DCHs to be added as the new Time of Arrival Window End Point in the user plane for the DCH or the set of co-ordinated DCHs in the new configuration.
- [TDD - The Node B shall apply the CCTrCH ID IE (for the DL) in the Downlink of this DCH in the new configuration.]
- [TDD - The Node B shall apply the CCTrCH ID IE (for the UL) in the Uplink of this DCH in the new configuration.]

DCH Deletion:

If the RADIO LINK RECONFIGURATION PREPARE message includes any DCHs to Delete IE, the Node B shall not include the referenced DCHs in the new configuration.

If all of the DCHs belonging to a set of co-ordinated DCH s are requested to be deleted, the Node B shall not include this set of co-ordinated DCHs in the new configuration.

Physical Channel Modification:

[FDD - If the RADIO LINK RECONFIGURATION PREPARE message includes an UL DPCH Information IE, then the Node B shall apply the parameters to the new configuration as follows:]

- [FDD - If the UL DPCH Information IE includes the Uplink Scrambling Code IE, the Node B shall apply this Uplink Scrambling Code to the new configuration.]
- [FDD - If the UL DPCH Information IE includes the Min UL Channelisation Code Length IE, the Node B shall apply the value in the new configuration. The Node B shall apply the contents of the Max Number of UL DPDCHs IE (if it is included) in the new configuration.]
- [FDD - If the UL DPCH Information IE includes the UL SIR Target IE, the Node B shall use the value for the UL inner loop power control when the new configuration is being used.]
- [FDD - If the UL DPCH Information IE includes the Puncture Limit IE, the Node B shall apply the value in the uplink of the new configuration.]
- [FDD - The Node B shall use the TFCS IE for the UL (if present) when reserving resources for the uplink of the new configuration. The Node B shall apply the new TFCS in the Uplink of the new configuration.]
- [FDD - If the UL DPCH Information IE includes the UL DPCCH Slot Format IE, the Node B shall set the new Uplink DPCCH Structure to the new configuration.]
- [FDD - If the UL DPCH Information IE includes the Diversity Mode IE, the Node B shall apply diversity according to the given value.]
- [FDD - If the UL DPCH Information IE includes an SSDT Cell Identity Length IE and/or an S-Field Length IE, the Node B shall apply the values in the new configuration.]
[FDD - If the RADIO LINK RECONFIGURATION PREPARE message includes a DL DPCH Information IE, the Node B shall apply the parameters to the new configuration as follows:]
- [FDD - The Node B shall use the TFCS IE for the DL (if it is present) when reserving resources for the downlink of the new configuration. The Node B shall apply the new TFCS in the Downlink of the new configuration.]
- [FDD - If the DL DPCH Information IE includes the TFCI Signalling Mode IE or the TFCI Presence IE, the Node B shall use the information when building TFCIs in the new configuration.]
- [FDD - If the DL DPCH Information IE includes the DL DPCCH Slot Format IE, the Node B shall set the new Downlink DPCCH Structure to the new configuration.]
- [FDD - If the DL DPCH Information IE includes the Multiplexing Position IE, the Node B shall apply the indicated multiplexing type in the new configuration.]
- [FDD - If the DL DPCH Information IE includes the Limited Power Increase IE set to "Used", the Node B shall, if supported, use Limited Power Increase according to ref. [10] subclause 5.2.1 for the inner loop DL power control in the new configuration.]
- [FDD - If the DL DPCH Information IE includes the Limited Power Increase IE set to "Not Used", the Node B shall not use Limited Power Increase for the inner loop DL power control in the new configuration.]
- [FDD - If the DL DPCH Information IE includes the PDSCH Code Mapping IE, then the Node B shall apply the defined mapping between TFCI values and PDSCH channelisation codes.]
- [FDD - If the DL DPCH Information IE includes the PDSCH RL ID IE, then the Node B shall infer that the PDSCH for the specified user will be transmitted on the defined radio link.]
[FDD - If the RADIO LINK RECONFIGURATION PREPARE message includes the Transmission Gap Pattern Sequence Information IE, the Node B shall store the new information about the Transmission Gap Pattern Sequences to be used in the new Compressed Mode Configuration. This new Compressed Mode Configuration shall be valid in the Node B until the next Compressed Mode Configuration is configured in the Node B or Node B Communication Context is deleted.]

[TDD - UL/DL CCTrCH Modification]

[TDD - If the RADIO LINK RECONFIGURATION PREPARE message includes any UL CCTrCH to Modify or DL CCTrCH to Modify IE, then the Node B shall treat them each as follows:]

- [TDD - If the IE includes any of the TFCS IE, TFCI coding IE or Puncture Limit IE, the Node B shall apply these as the new values, otherwise the old values specified for this CCTrCH are still applicable.]
- [TDD - If the IE includes any $U L D P C H$ To Add IE or DL DPCH To Add IE, the Node B shall include this DPCH in the new configuration.]
- [TDD - If the IE includes any UL DPCH To Delete IE or DL DPCH To Delete IE, the Node B shall remove this DPCH in the new configuration.]
- [TDD - If the IE includes any UL DPCH To Modify IE or DL DPCH To Modify IE and includes any of the Repetition Period IE, Repetition Length IE or TDD DPCH Offset IE, or the message includes UL/DL Timeslot Information and includes any of the [3.84Mcps TDD - Midamble Shift And Burst Type IE, Time Slot IE], [1.28Mcps TDD - Midamble Shift LCR IE, Time Slot LCR IE], or TFCI Presence IE or the message includes UL/DL Code information and includes [3.84Mcps TDD - TDD Channelisation Code IE], [1.28Mcps TDD TDD Channelisation Code LCR IE], the Node B shall apply these specified information elements as the new values, otherwise the old values specified for this DPCH configuration are still applicable.]
- [1.28Mcps TDD - If the UL CCTrCH To Modify IE includes the UL SIR Target IE, the Node B shall use the value for the UL inner loop power control according [19] and [21] when the new configuration is being used.]

[TDD - UL/DL CCTrCH Addition]

[TDD - If the RADIO LINK RECONFIGURATION PREPARE message includes any UL CCTrCH To Add IE or DL CCTrCH To Add IE, the Node B shall include this CCTrCH in the new configuration.]
[TDD - If the UL/DL CCTrCH To Add IE includes any UL/DL DPCH Information IE, the Node B shall reserve necessary resources for the new configuration of the UL/DL $\operatorname{DPCH}(\mathrm{s})$ according to the parameters given in the message.]
[TDD - If the RADIO LINK RECONFIGURATION PREPARE message includes a $D L C C T r C H$ To Add IE, the Node B shall set the TPC step size of that CCTrCH to the same value as the lowest numbered DL CCTrCH in the current configuration.]
[1.28Mcps TDD -The Node B shall use the UL SIR Target IE in the UL CCTrCH To Add IE as the UL SIR value for the inner loop power control for this CCTrCH according [19] and [21] in the new configuration.]

[TDD - UL/DL CCTrCH Deletion]

[TDD - If the RADIO LINK RECONFIGURATION PREPARE message includes any UL or DL CCTrCH to be deleted, the Node B shall remove this CCTrCH in the new configuration.]

DL Power Control:

- [FDD - If the RL Information IE includes the DL Reference Power IEs and the power balancing is active, the Node B shall update the reference power of the power balancing in the indicated RL(s), if updating of power balancing parameters by the RADIO LINK RECONFIGURATION PREPARE message is supported, at the CFN in the RADIO LINK RECONFIGURATION COMMIT message, according to subclause 8.3.7, using the $D L$ Reference Power IE. If the CFN modulo the value of the Adjustment Period IE is not equal to 0 , the power balancing continues with the old reference power until the end of the current adjustment period, and the updated reference power shall be used from the next adjustment period.
[FDD - If updating of power balancing parameters by the RADIO LINK RECONFIGURATION PREPARE message is supported by the Node B, the Node B shall include the DL Power Balancing Updated Indicator IE in the $R L$
Information Response IE in the RADIO LINK RECONFIGURATION READY message.]

DSCH Addition/Modification/Deletion:

If the RADIO LINK RECONFIGURATION PREPARE message includes any DSCH To Add, DSCH To Modify or DSCH To Delete IE, then the Node B shall use this information to add/modify/delete the indicated DSCH channels to/from the radio link, in the same way as the DCH info is used to add/modify/release DCHs.

The Node B shall include in the RADIO LINK RECONFIGURATION READY message both the Transport Layer Address IE and the Binding ID IE for the transport bearer to be established for each DSCH.
[FDD - If the RADIO LINK RECONFIGURATION PREPARE message includes the TFCI2 Bearer Information IE, then the Node B shall support the establishment of a transport bearer on which the DSCH TFCI Signaling control frames shall be received if one does not already exist or shall apply the new values if such a bearer does already exist for this Node B Communication Context. The Binding ID IE and Transport Layer Address IE of any new bearer to be
set up for this purpose shall be returned in the RADIO LINK RECONFIGURATION READY message. If the RADIO LINK RECONFIGURATION PREPARE message specifies that the TFCI2 transport bearer is to be deleted, then the Node B shall release the resources associated with that bearer in the new configuration.]
[FDD - If the RADIO LINK RECONFIGURATION PREPARE message includes the TFCI2 Bearer Request Indicator IE in the TFCI2 Bearer Information IE with the value "New Bearer Requested", the Node B shall, if supported, establish a new transport bearer replacing the existing transport bearer on which the DSCH TFCI Signaling control frames shall be received. The Binding ID IE and Transport Layer Address IE of a new bearer to be set up for this purpose shall be returned in the RADIO LINK RECONFIGURATION READY message.]
[FDD - If the TFCI Signalling Mode IE within the RADIO LINK RECONFIGURATION PREPARE message indicates that there shall be a hard split on the TFCI field but a TFCI2 transport bearer has not already been set up and TFCI2 Bearer Information IE is not included in the message, then the Node B shall transmit the TFCI2 field with zero power in the new configuration.]
[FDD - If the TFCI Signalling Mode IE within the RADIO LINK RECONFIGURATION PREPARE message indicates that there shall be a hard split on the TFCI and the TFCI2 Bearer Information IE is included in the message, then the Node B shall transmit the TFCI2 field with zero power until Synchronisation is achieved on the TFCI2 transport bearer and the first valid DSCH TFCI Signalling control frame is received on this bearer in the new configuration (see ref. [24]).]
[FDD - If the RADIO LINK RECONFIGURATION PREPARE message includes the Length Of TFCI2 IE, then the Node B shall apply the length of TFCI (field 2) indicated in the message in the new configuration.]
[FDD - If the RADIO LINK RECONFIGURATION PREPARE message does not include the Length Of TFCI2 IE and the Split Type IE is present with the value "Hard", then the Node B shall assume the length of the TFCI (field 2) is 5 bits in the new configuration.]
[FDD - If the RADIO LINK RECONFIGURATION PREPARE message includes the DSCH Common Information IE, the Node B shall treat it as follows:]

- [FDD - If the Enhanced DSCH PC Indicator IE is included and set to "Enhanced DSCH PC Active in the UE ", the Node B shall activate enhanced DSCH power control in accordance with ref. [10] subclause 5.2.2, if supported, using either:]
- [FDD - the SSDT Cell Identity for EDSCHPC IE in the RL Information IE, if the SSDT Cell Identity IE is not included in the RL Information IE or]
- [FDD - the SSDT Cell Identity IE in the RL Information IE, if both the SSDT Cell Identity IE and the SSDT Cell Identity for EDSCHPC IE are included in the RL Information IE.]
[FDD - together with the SSDT Cell Identity Length IE in UL DPCH Information IE, and Enhanced DSCH PC IE, in the new configuration.]
[FDD - If the enhanced DSCH power control is activated and the TFCI power control in DSCH hard split mode is supported, the primary/secondary status determination in the enhanced DSCH power control is also applied to the TFCI power control in DSCH hard split mode.]
[FDD - If the RADIO LINK RECONFIGURATION PREPARE message includes the Enhanced DSCH PC Indicator IE set to "Enhanced DSCH PC not Active in the UE", the Node B shall deactivate enhanced DSCH power control in the new configuration.]

[TDD - USCH Addition/Modification/Deletion:]

- [TDD - If the RADIO LINK RECONFIGURATION PREPARE message includes USCH information for the USCHs to be added/modified/deleted then the Node B shall use this information to add/modify/delete the indicated USCH channels to/from the radio link, in the same way as the DCH info is used to add/modify/release DCHs.]
- [TDD - The Node B shall include in the RADIO LINK RECONFIGURATION READY message both the Transport Layer Address IE and the Binding ID IE for the transport bearer to be established for each USCH.]

RL Information:

If the RADIO LINK RECONFIGURATION PREPARE message includes the RL Information IE, the Node B shall treat it as follows:

- [FDD - When more than one DL DPDCH are assigned per RL, the segmented physical channel shall be mapped on to DL DPDCHs according to [8]. When p number of DL DPDCHs are assigned to each RL, the first pair of DL Scrambling Code and FDD DL Channelisation Code Number corresponds to "PhCH number 1", the second to "PhCH number 2", and so on until the p th to "PhCH number p ".]
- [FDD - If the RL Information IE includes the SSDT Indication IE set to "SSDT Active in the UE", the Node B may activate SSDT using the SSDT Cell Identity IE in the new configuration.]
- [FDD - If the RL Information IE includes the Qth Parameter IE and the SSDT Indication IE set to "SSDT Active in the UE", the Node B shall use the Qth Parameter IE, if Qth signalling is supported, when SSDT is activated in the new configuration.]
- [FDD - If the RL Information IE includes the SSDT Indication IE set to "SSDT not Active in the UE", the Node B shall deactivate SSDT in the new configuration.]
- [FDD - If the RL Information IE includes a DL Code Information IE, the Node B shall apply the values in the new configuration.]
- [FDD - If the RL Information IE contains the Transmission Gap Pattern Sequence Code Information IE in the DL Code Information IE for any of the allocated DL Channelisation Codes, the Node B shall apply the alternate scrambling code as indicated whenever the downlink compressed mode method $\mathrm{SF} / 2$ is active in the new configuration.]
- If the RL Information IE includes the Maximum DL Power and/or the Minimum DL Power IEs, the Node B shall apply the values in the new configuration. [FDD - During compressed mode, the $P_{S I R}(k)$, as described in ref.[10] subclause 5.2.1.3, shall be added to the maximum DL power in slot k.]
- [TDD - If the RL Information IE includes the Initial DL Transmission Power IE, the Node B shall determine the initial CCTrCH DL power for each CCTrCH by the following rule: If the CCTrCH Initial DL Transmission Power IE is included for that CCTrCH , then the Node B shall use that power for the initial CCTrCH DL power, otherwise the initial CCTrCH DL power is the Initial DL Transmission Power IE included in the RL Information IE. The Node B shall apply the determined initial CCTrCH DL power to the transmission on each DPCH of the CCTrCH when starting transmission on a new CCTrCH until the UL synchronisation on the Uu interface is achieved for the CCTrCH. If no Initial DL Transmission Power IE is included with a new CCTrCH (even if CCTrCH Initial DL Transmission Power IEs are included), the Node B shall use any transmission power level currently used on already existing CCTrCHs when starting transmission for a new CCTrCH . No inner loop power control shall be performed during this period. The DL power shall then vary according to the inner loop power control (see ref.[22], subclause 4.2.3.3).]
- [FDD- If the RL Information IE includes the DL DPCH Timing Adjustment IE, the Node B shall adjust the timing of the radio link accordingly in the new configuration.]

[TDD - PDSCH RL ID]

- [TDD - If the RADIO LINK RECONFIGURATION PREPARE message includes the PDSCH RL ID IE then in the new configuration the Node B shall use the PDSCH and/or PUSCH in this radio link.]

Signalling bearer rearrangement:

If the RADIO LINK RECONFIGURATION PREPARE message includes the Signalling Bearer Request Indicator IE the Node B shall, if supported, allocate a new Communication Control Port for the control of the Node B Communication Context and include the Target Communication Control Port ID IE in the RADIO LINK RECONFIGURATION READY message.

HS-DSCH Addition/Modification/Deletion:

If the RADIO LINK RECONFIGURATION PREPARE message includes any $H S$-DSCH To Add IE or $H S$-DSCH To Modify IE or HS-DSCH To Delete IE, then the Node B shall use this information to add/modify/delete the indicated HSDSCH channel to/from the radio link.
or the CQI Power Offset IE in the HS-DSCH Information To Modify IE, then the DRNS shall use the indicated CQI
Feedback Cycle k value, the CQI Repetition Factor orand the ACK-NACK Repetition Factor, ACK Power Offset, the NACK Power Offset orand the CQI Power Offset in the new configuration.]

If the RADIO LINK RECONFIGURATION PREPARE message includes an HS-PDSCH RL ID IE, then the Node B shall configure the HS-PDSCH in the radio link indicated by this IE, while removing any existing HS-PDSCH resources from other radio links associated with the Node B Communication Context.

If the RADIO LINK RECONFIGURATION PREPARE message includes an $H S$ - $D S C H$-RNTI IE, then the Node B shall use the HS-DSCH-RNTI for the Node B Communication Context.

If the RADIO LINK CONFIGURATION PREPARE message includes an $H S-D S C H$ To Delete IE requesting the deletion of certain HS-DSCH resources for the Node B Communication Context, the Node B shall remove the indicated HS-DSCH in the new configuration.

The Node B shall include the HS-DSCH Initial Capacity Allocation IE in the RADIO LINK RECONFIGURATION READY message for each MAC-d flow, if the Node B allows the CRNC to start transmission of MAC-d PDUs before the Node B has allocated capacity on user plane as described in [24].

General

If the RADIO LINK RECONFIGURATION PREPARE message includes the Transport Layer Address IE and Binding ID IEs in the DSCHs To Modify, DSCHs To Add, [TDD - USCHs To Modify, USCHs To Add], HS-DSCH To Modify, HS-DSCH To Add or in the RL Specific DCH Information IEs, the Node B may use the transport layer address and the binding identifier received from the CRNC when establishing a transport bearer for any Transport Channel or HSDSCH MAC-d flow being added, or any Transport Channel or HS-DSCH MAC-d flow being modified for which a new transport bearer was requested with the Transport Bearer Request Indicator IE.

If the requested modifications are allowed by the Node B and the Node B has successfully reserved the required resources for the new configuration of the Radio Link(s), it shall respond to the CRNC with the RADIO LINK RECONFIGURATION READY message. When this procedure has been completed successfully there exists a Prepared Reconfiguration, as defined in subclause 3.1.

In the RADIO LINK RECONFIGURATION READY message, the Node B shall include the RL Information Response IE for each affected Radio Link.

The Node B shall include in the RADIO LINK RECONFIGURATION READY message the Transport Layer Address IE and the Binding ID IE in the DCH Information Response IE for any Transport Channel or HS-DSCH MAC-d flow being added or any Transport Channel or HS-DSCH MAC-d flow being modified for which a new transport bearer was requested with the Transport Bearer Request Indicator IE.

In case of a DCH requiring a new transport bearer on Iub, the Transport Layer Address IE and the Binding ID IE shall be included in the IE DCH Information Response IE.

In the case of a set of co-ordinated DCHs requiring a new transport bearer on the Iub interface, the Transport Layer Address IE and the Binding ID IE in the DCH Information Response IE shall be included only for one of the DCH in the set of co-ordinated DCHs.

In the case of a Radio Link being combined with another Radio Link within the Node B,the RL Information Response IE shall be included only for one of the combined RLs. The Transport Layer Address IE and the Binding ID IE in the DCH Information Response IE shall be included only for one of the combined Radio Links.
/*Partly omitted*/

9.2.1.31H HS-DSCH Information to modify

The HS-DSCH Information to modify provides information for HS-DSCH to be modified.

IE/Group Name	Presence	Range	IE type and reference	Semantics description	Criticality	Assigned Criticality
HS-DSCH MAC-d Flow Specific Information		0..<Maxno ofMACdFI ows>			-	
>HS-DSCH MAC-d Flow ID	M		9.2.1311		-	
>BLER	0		9.2 .1 .4 A		-	
>Allocation/Retention Priority	0		$9 \cdot 2.1 .1 \mathrm{~A}$		-	
>Priority Queue Information		0..<Maxno ofPrioQue ues>			-	
>>Priority Queue ID	M		9.2.1.49C		-	
>>Scheduling Priority Indicator	0		9.2.1.53H		-	
>>MAC-d PDU Size Index		0..<Maxno ofMACdP DUindexes $>$			-	
>>>SID	M		9.2.1.531		-	
>>>MAC-d PDU Size	0		9.2.1.38A		-	
$>$ Transport Bearer Request Indicator	M		9.2.1.62A		-	
Measurement Reporting cycle	0		$\begin{aligned} & \text { ENUMERA } \\ & \text { IED (k1, } \\ & \text { k2) } \end{aligned}$	For FDD only	-	
CQI Feedback Cycle k	O		9.2.2.21B	$\frac{\text { For FDD }}{\text { only }}$	=	
CQI Repetition Factor	O		9.2.2.x1	$\begin{aligned} & \text { For FDD } \\ & \text { only } \\ & \hline \end{aligned}$	=	
ACK-NACK Repetition Factor	O		9.2.2.x2	$\begin{aligned} & \text { For FDD } \\ & \hline \text { only } \end{aligned}$	=	
CQI Power Offset	O		9.2.2.x3	$\begin{aligned} & \hline \text { For FDD } \\ & \text { only } \\ & \hline \end{aligned}$	$=$	
ACK Power Offset	O		9.2.2.x4	For FDD only	=	
NACK Power Offset	O		9.2.2.x5	For FDD only	=	

/*Partly omitted*/

9.2.2.18D HS-DSCH FDD Information

The HS-DSCH Information provides information for HS-DSCH MAC-d flows to be established.

IE/Group Name	Presence	Range	$\begin{aligned} & \text { IE type } \\ & \text { and } \\ & \text { reference } \\ & \hline \end{aligned}$	Semantics description	Criticality	Assigned Criticality
HS-DSCH MAC-d Flow Specific Information		1..<Maxno ofMACdFI ows>			-	
>HS-DSCH MAC-d Flow ID	M		9.2.1.311		-	
>BLER	M		9.2 .1 .4 A		-	
>Allocation/Retention Priority	M		$9 \cdot 2.1 .1 \mathrm{~A}$		-	
>Priority Queue Information	M	1..<Maxno ofPrioQue ues>			-	
>>Priority Queue ID	M		9.2.1.49C		-	
>>Scheduling Priority Indicator	M		9.2 .1 .53 H		-	
>>MAC-d PDU Size Index		1..<Maxno ofMACdP DUindexes			-	
>>>SID	M		9.2.1.53I		-	
>>>MAC-d PDU Size	M		9.2.1.38A		-	
UE Capabilities information		1			-	
>Max TrCH Bits per HSDSCH TTI	M		ENUMERA TED $(7300$, 14600, 20456, $28800, \ldots$) (-	
>HS-DSCH multi-code capability	M		$\begin{aligned} & \text { ENUMERA } \\ & \text { TED }(5, \\ & 10,15, \ldots) \\ & \hline \end{aligned}$		-	
>Min Inter-TTI Interval	M		$\begin{aligned} & \text { INTEGER } \\ & (1 . .3, \ldots) \end{aligned}$		-	
>MAC-hs reordering buffer size	M		$\begin{aligned} & \text { INTEGER } \\ & (1 . .300, \ldots) \end{aligned}$	Total combined receiving buffer capability in RLC and MAC-hs in kBytes	-	
HARQ memory partitioning		1..<Maxno ofHARQpr ocesses>			-	
>Process memory size	M		$\begin{aligned} & \text { INTEGER } \\ & (1 . .172800, \end{aligned}$...)		-	
Measurement feedback offset	M		$\begin{aligned} & \text { INTEGER } \\ & (0.79, \ldots) \end{aligned}$		-	
CQI Feedback Cycle k	M		9.2.2.21B		=	
CQI Repetition Factor	CCQICyclek		9.2.2.x1		=	
ACK-NACK Repetition Factor	M		9.2.2.x2		-	
CQI Power Offset	M		9.2.2.x3		=	
ACK Power Offset	M		9.2.2. $\times 4$		=	
NACK Power Offset	M		9.2.2.x5		-	

Condition	Explanation
CQICyclek	The IE shall be present if the CQI Feedback Cycle k IE is set to a value greater than 0.

Range bound	Explanation
MaxnoofMACdFlows	Maximum number of HS-DSCH MAC-d flows
MaxnoofPrioQueues	Maximum number of Priority Queues
MaxnoofHARQprocesses	Maximum number of HARQ processes for one UE.
MaxnoofMACdPDUindexes	Maximum number of different MAC-d PDU SIDs
MaxAllowedinterTTI	Maximum Inter-TTI Interval that should be supported by any UE.
MaxRecordBuffSize	Maximum MAC-hs re-ordering buffer size.
MaxProcessMemSize	Maximum HARQ process memory size.

9.2.2.18E HS-DSCH FDD Information Response

The HS-DSCH Information Response provides information for HS-DSCH that have been established or modified.

IE/Group Name	Presence	Range	IE type and reference	Semantics description	Criticality	Assigned Criticality
HS-DSCH MAC-d Flow Specific Information Response		1..<Maxno ofMACdFI ows>			-	
>HS-DSCH MAC-d Flow ID	M		9.2.1.311		-	
>Binding ID	0		9.2.1.4		-	
>Transport Layer Address	0		9.2.1.63		-	
HS-SCCH Code		1..<Maxno ofHSSCC Hcodes>			$=$	
>Code Number	M		$\begin{aligned} & \text { INTEGER } \\ & (0 . .127) \end{aligned}$		=	
Measurement feedback reporting cycle kt	A		Measurem ent Feedback Reporting Cycle 9.2.2.21B	employed by the UE when not in soft handover	-	
Measurement foedback reporting cycle k2	A		Aleasurom ent Feedback Reporting Cycle 9.2.2.21B	employed by the UE when insoft handover	=	

Range bound	Explanation
MaxnoofMACdFlows	Maximum number of HS-DSCH MAC-d flows.
MaxnoofPrioQueues	Maximum number of Priority Queues
MaxnoofMACdPDUindexes	Maximum number of MAC-d PDU Size Indexes
MaxnoofHSSCCHcodes	Maximum number of HS-SCCH codes. MaxCodeNumComp factor, within the complete code tree.

/*Partly omitted*/

9.2.2.21B CQIMeasurement Feedback Reporting-Cycle k

The CQIMeastrement Feedback Reporting Cycle \underline{k} IE provides the duration of the CQI measurement feedback reporting cycle.

IE/Group Name	Presence	Range	IE type and reference	Semantics description
CQIMeasurement Feedback			ENUMERAT	Multiples of 2 ms intervals;
Reporting-Cycle_			ED $(0,1,5$,	
			$10,20,40$,	
		$80, \ldots)$		

9.2.2.x1 CQI Repetition Factor

The CQI Repetiton Factor IE indicates the number of consecutive repetitions of the CQI.

IE/Group Name	Presence	Range	$\frac{\text { IE type and }}{\text { reference }}$	Semantics description
CQI Repetition Factor			$\frac{\text { INTEGER }}{(1.4, \ldots)}$	Step: 1

9.2.2.x2 ACK-NACK Repetition Factor

The ACK-NACK Repetiton Factor IE indicates the number of consecutive repetitions of the ACK and NACK

IE/Group Name	Presence	Range	$\frac{\text { IE type and }}{\text { reference }}$	Semantics description
ACK-NACK Repetition			$\frac{\text { INTEGER }}{(1.4, \ldots)}$	$\underline{\text { Step: } 1}$

9.2.2.x3 CQI Power Offset

The CQI Power Offset IE indicates Power offset used in the UL between the HS-DPCCH slots carrying CQI information and the associated DPCCH.

IE/Group Name	Presence	Range	$\frac{\text { IE type and }}{\text { reference }}$	Semantics description
CQI Power Offset			$\frac{\text { INTEGER }(-}{10.6, \ldots)}$	$\frac{\text { Unit dB }}{}$

9.2.2.x4 ACK Power Offset

The ACK Power Offset IE indicates Power offset used in the UL between the HS-DPCCH slot carrying HARQ ACK information and the associated DPCCH.

IE/Group Name	Presence	Range	$\frac{\text { IE type and }}{\text { reference }}$	Semantics description
ACK Power Offset			$\frac{\text { INTEGER }(-}{10.6, \ldots)}$	$\underline{\text { Unit dB, }}$

9.2.2.x5 NACK Power Offset

The NACK Power Offset IE indicates Power offset used in the UL between the HS-DPCCH slot carrying HARQ NACK information and the associated DPCCH.

IE/Group Name	Presence	Range	$\frac{\text { IE type and }}{\text { reference }}$	Semantics description
NACK Power Offset			$\frac{\text { INTEGER (- }}{10.6, \ldots)}$	$\underline{\text { Unit dB, }}$
		$\underline{S t e p: 2 \mathrm{~dB}}$		

/*Partly omitted*/
CR page 14
9.3.4 Information Elements Definitions

3GPP TS 25.433 v5.1.0 (2002-06)
$-==$
$--~ H$
$--=======================================$
HARQMemoryPartitioningFDD : := SEQUENCE (SIZE
$-==$
$--~ H$
$--=======================================$
HARQMemoryPartitioningFDD : := SEQUENCE (SIZE

$$
\text { \} }
$$

OPTIONAL,
OPTIONAL,

ProtocolextensionContainer \{ \{ HARQMemoryPartitioning-ItemFDD-ExtIEs\} \}
HARQMemoryPartitioning-ItemFDD-ExtIEs NBAP-PROTOCOL-EXTENSION : :=
\quad... \}
HARQMemoryPartitioningFDD : := SEQUENCE (SIZE (1..maxNrOfHARQProcesses)) OF HARQMemoryPartitioning-ItemFDD
HARQMemoryPartitioning-ItemFDD ::= SEQUENCE \{
process-Memory-Size
iE-Extensions iE-Extensions
$\quad \begin{aligned} & \text { f }\end{aligned}$ \square HARQMemoryPartitioningTDD : := SEQUENCE (SIZE (1..maxNrOfHARQProcesses)) OF HARQMemoryPartitioning-ItemTDD
HARQMemoryPartitioning-ItemTDD ::= SEQUENCE \{ process-Memory-Size
iE-Extensions
...
...
HSDSCH-FDD-Information ::= SEQUENCE \{

HARQMemoryPartitioning-ItemTDD-ExtIEs NBAP-PROTOCOL-EXTENSION $::=\{1$
...

ProtocolExtensionContainer \{ \{ HARQMemoryPartitioning-ItemTDD-ExtIEs \} \} CQI-Feedback-Cycle,
CQI-RepetitionFactor OPTIONAL,
Feedback Cycle k is greater than 0
AckNack-RepetitionFactor,
AckNack-RepetitionFactor,
Ack-Power-Offset,

HSDSCH-FDD-Information-ExtIEs NBAP-PROTOCOL-EXTENSION ::= \{
\} $\quad \cdots$

CR page 15

3GPP TS 25.433 v5.1.0 (2002-06)

UE-Capability-InformationTDD,
HARQMemoryPartitioningTDD,
HSDSCH-MACdFlow-Specific-InfoList : := SEQUENCE (SIZE (1..maxNrOfMACdFlows)) OF HSDSCH-MACdFlow-Specific-InfoItem
HSDSCH-MACdFlow-Specific-InfoItem ::= SEQUENCE \{
HSDSCH-TDD-Information-ExtIEs NBAP-PROTOCOL-EXTENSION ::= \{
harqMemoryPartitioningTDD iE-Extensions
HSDSCH-MACdFlow-ID,
BLER,
OPTIONAL,
ProtocolExtensionContainer \{ \{ HSDSCH-MACdFlow-Specific-InfoItem-ExtIEs \} \}
AllocationRetentionPriority,
DSCH-MACdFlow-Specific-InfoItem-ExtIEs NBAP-PROTOCOL-EXTENSION ::=
bler
priorityQueueInfo
iE-Extensions
...
...
HSDSCH-Information-to-Modify ::= SEQUENCE \{
HSDSCH-MACdFlow-Specific-InfoList-to-Modify
OPTIONAL,
OPdback-Reporting
OPTIONAL,
CR page 16

3GPP TS 25.433 v5.1.0 (2002-06)

CR page 17

,.
HSDSCH-MACdFlow-Specific-InfoItem-to-Modify-ExtIEs NBAP-PROTOCOL-EXTENSION ::= \{ \} \quad.
HSDSCH-FDD-Information-Response ::= SEQUENCE \{ hsSCCH-Specific-Information-ResponseFDD HSSCCH-Specific-InformationRespListFDD measFeedbaek-Cyelekl Measurement-Feedback-Reporting-Cyele,
OPTIONAL,

HSSCCH-Specific-InformationRespList TDD
HSSCCH-Specific-InformationResplist TDDLCR
ProtocolExtensionContainer $\{\{$ HSDSCH-TDD
HSDSCH-FDD-Information-Response-ExtIEs NBAP-PROTOCOL-EXTENSION ::=
...
HSDSCH-TDD-Information-Response ::= SEQUENCE \{
HSDSCH-TDD-Information-Response-ExtIEs NBAP-PROTOCOL-EXTENSION ::= \{ \qquad HSDSCH-MACdFlow-Specific-InformationResp ::= SEQUENCE (SIZE (1..maxNrOfMACdFlows)) OF HSDSCH-MACdFlow-Specific-InformationResp-Item
HSDSCH-MACdFlow-Specific-InformationResp-Item ::= SEQUENCE
HSDSCH-MACdFlow-ID,
BindingID
OPTIONAL,
ProtocolExtensionContainer \{ \{ HSDSCH-MACdFlow-Specific-InformationRespItem-ExtIEs \} \}
HSSCCH-Specific-InformationRespListFDD ::= SEQUENCE
INTEGER (1..127),
OPTIONAL,

CR page 17

[^0]TimeSlot, MidambleShiftAndBurstType,
TDD-ChannelisationCode,
ProtocolExtensionContainer \{ \{ HSSCCH-Specific-InformationRespItemTDD-ExtIEs \} \}
HSSICH-Info,
ProtocolExten
HSSCCH-Specific-InformationRespItemTDD-ExtIEs NBAP-PROTOCOL-EXTENSION : := \{
\quad...
HSSCCH-Specific-InformationRespListTDDLCR ::= SEQUENCE

$\begin{array}{ll}\text { HSSCCH-Specific-InformationRespListTDDLCR : }:=\text { SEQUENCE (SIZE (1..maxNrOfHSSCCHCodes)) OF HSSCCH-Specific-InformationRespItemTDDLCR } \\ & \\ \text { HSSCCH-Specific-InformationRespItemTDDLCR : }:= & \text { SEQUENCE \{ } \\ \text { timeslotLCR } & \text { TimeSlotLCR, } \\ \text { midambleShiftLCR } & \text { MidambleShiftLCR, } \\ \text { tDD-ChannelisationCodeLCR } & \text { TDD-ChannelisationCodeLCR, } \\ \text { hSSICH-InfoLCR } & \text { HSSICH-InfoLCR, } \\ \text { iE-Extensions } & \text { ProtocolExtensionContainer \{ \{ HSSCCH-Specific-InformationRespItemTDDLCR-ExtIEs \} } \\ \text {... } & \end{array}$
midambleShiftAndBurstType
tDD-ChannelisationCode
hSSICH-Info
$\begin{array}{ll}\text { HSSCCH-Specific-InformationRespListTDDLCR }::=\text { SEQUENCE (SIZE (1..maxNrOfHSSCCHCodes)) OF HSSCCH-Specific-InformationRespItemTDDLCR } \\ & \\ \text { HSSCCH-Specific-InformationRespItemTDDLCR }::= & \text { SEQUENCE }\{ \\ \text { timeslotLCR } & \text { TimeSlotLCR, } \\ \text { midambleShiftLCR } & \text { MidambleShiftLCR, } \\ \text { tDD-ChannelisationCodeLCR } & \text { TDD-ChannelisationCodeLCR, } \\ \text { hSSICH-InfoLCR } & \text { HSSICH-InfoLCR, } \\ \text { iE-Extensions } & \text { ProtocolExtensionContainer }\{\text { \{ HSSCCH-Specific-InformationRespItemTDDLCR-ExtIEs \} } \\ \text {.. } & \end{array}$
$\begin{array}{ll}\text { HSSCCH-Specific-InformationRespListTDDLCR }::=\text { SEQUENCE (SIZE (1..maxNrOfHSSCCHCodes)) OF HSSCCH-Specific-InformationRespItemTDDLCR } \\ & \\ \text { HSSCCH-Specific-InformationRespItemTDDLCR }::= & \text { SEQUENCE }\{ \\ \text { timeslotLCR } & \text { TimeSlotLCR, } \\ \text { midambleShiftLCR } & \text { MidambleShiftLCR, } \\ \text { tDD-ChannelisationCodeLCR } & \text { TDD-ChannelisationCodeLCR, } \\ \text { hSSICH-InfoLCR } & \text { HSSICH-InfoLCR, } \\ \text { iE-Extensions } & \text { ProtocolExtensionContainer }\{\text { \{ HSSCCH-Specific-InformationRespItemTDDLCR-ExtIEs \} } \\ \text {.. } & \end{array}$
$\begin{array}{ll}\text { HSSCCH-Specific-InformationRespListTDDLCR }::=\text { SEQUENCE (SIZE (1..maxNrOfHSSCCHCodes)) OF HSSCCH-Specific-InformationRespItemTDDLCR } \\ & \\ \text { HSSCCH-Specific-InformationRespItemTDDLCR }::= & \text { SEQUENCE }\{ \\ \text { timeslotLCR } & \text { TimeSlotLCR, } \\ \text { midambleShiftLCR } & \text { MidambleShiftLCR, } \\ \text { tDD-ChannelisationCodeLCR } & \text { TDD-ChannelisationCodeLCR, } \\ \text { hSSICH-InfoLCR } & \text { HSSICH-InfoLCR, } \\ \text { iE-Extensions } & \text { ProtocolExtensionContainer }\{\text { \{ HSSCCH-Specific-InformationRespItemTDDLCR-ExtIEs \} } \\ \text {.. } & \end{array}$
$\begin{array}{ll}\text { HSSCCH-Specific-InformationRespListTDDLCR }::=\text { SEQUENCE (SIZE (1..maxNrOfHSSCCHCodes)) OF HSSCCH-Specific-InformationRespItemTDDLCR } \\ & \\ \text { HSSCCH-Specific-InformationRespItemTDDLCR }::= & \text { SEQUENCE }\{ \\ \text { timeslotLCR } & \text { TimeSlotLCR, } \\ \text { midambleShiftLCR } & \text { MidambleShiftLCR, } \\ \text { tDD-ChannelisationCodeLCR } & \text { TDD-ChannelisationCodeLCR, } \\ \text { hSSICH-InfoLCR } & \text { HSSICH-InfoLCR, } \\ \text { iE-Extensions } & \text { ProtocolExtensionContainer }\{\text { \{ HSSCCH-Specific-InformationRespItemTDDLCR-ExtIEs \} } \\ \text {.. } & \end{array}$
$\begin{array}{ll}\text { HSSCCH-Specific-InformationRespListTDDLCR }::=\text { SEQUENCE (SIZE (1..maxNrOfHSSCCHCodes)) OF HSSCCH-Specific-InformationRespItemTDDLCR } \\ & \\ \text { HSSCCH-Specific-InformationRespItemTDDLCR }::= & \text { SEQUENCE }\{ \\ \text { timeslotLCR } & \text { TimeSlotLCR, } \\ \text { midambleShiftLCR } & \text { MidambleShiftLCR, } \\ \text { tDD-ChannelisationCodeLCR } & \text { TDD-ChannelisationCodeLCR, } \\ \text { hSSICH-InfoLCR } & \text { HSSICH-InfoLCR, } \\ \text { iE-Extensions } & \text { ProtocolExtensionContainer \{ \{ HSSCCH-Specific-InformationRespItemTDDLCR-ExtIEs \} \} } \\ \text {... } & \end{array}$ \} \cdots
HSSCCH-
HSSICH-Info ::= SEQUENCE \{
timeslot
midambleShile thannelisationCode
MidambleShiftAndBurstType,
TDD-ChannelisationCode,
OPTIONAL,
OPTIONAL,
TimeSlotLCR,
MidambleShiftLCR,

CR page 18
CR page 19

[^0]: HSSCCH-Specific-InformationRespItemTDD ::= SEQUENCE

