RP-020615

TSG RAN Meeting #17 Biarritz, France, 3 - 6 September, 2002

TitleCRs (Rel-5 only) for Quality IEs for the UE Positioning measurementsSourceTSG RAN WG3Agenda Item7.3.5

RAN3 Tdoc	Spec	curr.	new Vers.	REL	CR	Rev	Cat	Title	Work item
		Vers.							
R3-022135	25.423	4.5.0	4.6.0	REL-4	721	-	F	Quality les for UE positioning measurements	TEI4
R3-022137	25.433	4.5.0	4.6.0	REL-4	743	-	F	Quality les for UE positioning measurements	TEI4
R3-022136	25.423	5.2.0	5.3.0	REL-5	722	-	Α	Quality les for UE positioning measurements	TEI4
R3-022138	25.433	5.1.0	5.2.0	REL-5	744	-	Α	Quality les for UE positioning measurements	TEI4

3GPP TSG-RAN3 Meeting #31 Stockholm, Sweden, 19th – 23rd August 2002

Tdoc **#***R*3-022135

CHANGE REQUEST									
¥	25.423 CR 721	Current version: 4.5.0	ж						
For HELP on using this form, see bottom of this page or look at the pop-up text over the # symbols.									
Proposed change affects: UICC apps# ME Radio Access Network X Core Network									
Title:	# Quality IEs for the UE Positioning measurements								
Source:	# RAN WG3								
Work item code:	第 <mark>一TEI4</mark>	<i>Date:</i>							
Category:	 F Use <u>one</u> of the following categories: F (correction) A (corresponds to a correction in an earlier release) B (addition of feature), C (functional modification of feature) D (editorial modification) Detailed explanations of the above categories can be found in 3GPP <u>TR 21.900</u>. 	Release: # REL-4 Use <u>one</u> of the following rele 2 (GSM Phase 2) R96 (Release 1996) R97 (Release 1997) R98 (Release 1998) R99 (Release 1999) Rel-4 (Release 4) Rel-5 (Release 5) Rel-6 (Release 6)	pases:						

Reason for change: अ	Currently, there are existing requirements on the accuracy of the measurements in RAN4 specifications. These Quality IEs are tools for optimising the results of UE Positioning algorithms in the RNC by providing more accurate information on the quality of the measurement. As such, they shouldn't be mandatory in the protocol.
Summary of change: ೫	The Quality IEs are made optional in the protocol and appropriate procedure text is added Impact Analysis: Impact assessment towards the previous version of the specification (same release): this CR has isolated impact on the previous version of the specification
	 (same release) because only one function is impacted. This CR has an impact under the protocol point of view. The impact can be considered as isolated as it affects only one function, namely the report of measurements for UE Positioning. This CR is backwards compatible towards Release 99 as it affects only Information Elements introduced in Release 4.
Consequences if भ not approved:	The way the protocol is implemented will mandate in the Node B implementation of mechanisms to estimate parameters suitable only for optimisation of the performances.
Clauses affected: #	8.5.2.2, 8.5.3.2, 9.2.1.52C, 9.2.1.59D, 9.3.4
	ΥΝ

Other specs	ж	X	Other core specifications #	25.423 v 5.2.0	CR 722
Affected:	-		Test specifications	25.433 v 5.1.0	CR 744
Other comments:	æ				

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at <u>http://www.3gpp.org/specs/CR.htm</u>. Below is a brief summary:

- 1) Fill out the above form. The symbols above marked # contain pop-up help information about the field that they are closest to.
- 2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under <u>ftp://ftp.3gpp.org/specs/</u> For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.
- 3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

8.5.2 Common Measurement Initiation

8.5.2.1 General

This procedure is used by an RNC to request the initiation of measurements of common resources to another RNC. The requesting RNC is referred to as RNC_1 and the RNC to which the request is sent is referred to as RNC_2 .

This procedure uses the signalling bearer connection for the relevant Distant RNC Context.

8.5.2.2 Successful Operation

Figure 30A: Common Measurement Initiation procedure, Successful Operation

The procedure is initiated with a COMMON MEASUREMENT INITIATION REQUEST message sent from the RNC₁ to the RNC₂.

Upon reception, the RNC₂ shall initiate the requested measurement according to the parameters given in the request.

Unless specified below, the meaning of the parameters are given in other specifications.

[TDD- If the [3.84 Mcps TDD - *Time Slot* IE] [1.28 Mcps - *Time Slot LCR* IE] is present in the COMMON MEASUREMENT INITIATION REQUEST message, the measurement request shall apply to the requested time slot individually.]

If the *Common Measurement Type* IE is not set to "SFN-SFN Observed Time Difference" and the *SFN Reporting Indicator* IE is set to "FN Reporting Required", the *SFN* IE shall be included in the COMMON MEASUREMENT REPORT message or in theCOMMON MEASUREMENT RESPONSE message, the latter only in the case the *Report Characteristics* IE is set to "On Demand". The reported SFN shall be the SFN at the time when the measurement value was reported by the layer 3 filter, referred to as point C in the measurement model [26]. If the *Common Measurement Type* IE is set to "SFN-SFN Observed Time Difference", then the *SFN Reporting Indicator* IE is ignored.

Common measurement type

If the *Common Measurement Type* IE is set to "SFN-SFN Observed Time Difference", then the RNC₂ shall initiate the SFN-SFN Observed Time Difference measurements between the reference cell identified by *C-ID* IE and the neighbouring cells identified by the *UTRAN Cell Identifier* IE (*UC-Id*).

If the *Common Measurement Type* IE is set to "load", the RNC_2 shall initiate measurements of uplink and downlink load on the measured object. If either uplink or downlink load satisfies the requested report characteristics, the RNC_2 shall report the result of both uplink and downlink measurements.

Report characteristics

The Report Characteristics IE indicates how the reporting of the measurement shall be performed. See also Annex B.

If the *Report Characteristics* IE is set to "On Demand" and if the *SFN* IE is not provided, the RNC₂ shall report the result of the requested measurement immediately. If the *SFN* IE is provided, it indicates the frame for which the measurement value shall be provided. The provided measurement value shall be the one reported by the layer 3 filter, referred to as point C in the measurement model [26]. Furthermore, if the *SFN* IE is present and if the *Common Measurement Object Type* IE is set to "UP Neighbouring Cell", then the *SFN* IE relates to the Radio Frames of the Reference Cell identified by the first *UTRAN Cell Identifier* IE.

If the *Report Characteristics* IE is set to "Periodic", the RNC₂ shall periodically initiate a Common Measurement Reporting procedure for this measurement, with the requested report frequency. Furthermore, if the *Common Measurement Type* IE is set to "SFN-SFN Observed Time Difference", then all the available measurements shall be reported in the *Successful Neighbouring cell SFN-SFN Observed Time Difference Measurement Information* IE and the neighbouring cells with no measurement result available shall be reported in the *Unsuccessful Neighbouring cell SFN-SFN Observed Time Difference Measurement Information* IE. If the *SFN* IE is provided, it indicates the frame for which the first measurement value of a periodic reporting shall be provided. The provided measurement value shall be the one reported by the layer 3 filter, referred to as point C in the measurement model [26]. Furthermore, if the *SFN* IE is present and if the *Common Measurement Object Type* IE is set to "UP Neighbouring Cell", then the *SFN* IE relates to the Radio Frames of the Reference Cell identified by the first *UTRAN Cell Identifier* IE.

If the *Report Characteristics* IE is set to "Event A", the RNC₂ shall initiate a Measurement Reporting procedure when the measured entity rises above the requested threshold and stays there for the requested hysteresis time. If the *Measurement Hysteresis Time* IE is not included, the RNC₂ shall use the value zero for the hysteresis time.

If the *Report Characteristics* IE is set to "Event B", the RNC₂ shall initiate a Measurement Reporting procedure when the measured entity falls below the requested threshold and stays there for the requested hysteresis time. If the *Measurement Hysteresis Time* IE is not included, the RNC₂ shall use the value zero for the hysteresis time.

If the *Report Characteristics* IE is set to "Event C", the RNC₂ shall initiate a Measurement Reporting procedure when the measured entity rises more than the requested threshold within the requested time. After having reported this type of event, the next C event reporting for the same measurement cannot be initiated before the risingtime specified by the *Measurement Change Time* IE has elapsed since the previous event reporting.

If the *Report Characteristics* IE is set to "Event D", the RNC₂ shall initiate a Measurement Reporting procedure when the measured entity falls more than the requested threshold within the requested time. After having reported this type of event, the next D event reporting for the same measurement cannot be initiated before the falling time specified by the *Measurement Change Time* IE has elapsed since the previous event reporting.

If the *Report Characteristics* IE is set to "Event E", the RNC₂ shall initiate the Measurement Reporting procedure when the measured entity rises above the 'Measurement Threshold 1' and stays there for the 'Measurement Hysteresis Time' (Report A). When the conditions for Report A are met and the *Report Periodicity* IE is provided, the RNC₂ shall initiate the Measurement Reporting procedure periodically. If the conditions for Report A have been met and the measured entity falls below the 'Measurement Threshold 2' and stays there for the 'Measurement Hysteresis Time', the RNC₂ shall initiate the Common Measurement Reporting procedure (Report B) as well as terminating any corresponding periodic reporting. If the *Measurement Threshold 2* IE is not present, the RNC₂ shall use the value of the *Measurement Threshold 1* IE instead. If the *Measurement Hysteresis Time* IE is not included, the RNC₂ shall use the value zero as hysteresis times for both Report A and Report B.

If the *Report Characteristics* IE is set to "Event F", the RNC₂ shall initiate the Measurement Reporting procedure when the measured entity falls below the 'Measurement Threshold 1' and stays there for the 'Measurement Hysteresis Time' (Report A). When the conditions for Report A are met and the *Report Periodicity* IE is provided the RNC₂ shall also initiate the Measurement Reporting procedure periodically. If the conditions for Report A have been met and the measured entity rises above the 'Measurement Threshold 2' and stays there for the 'Measurement Hysteresis Time', the RNC₂ shall initiate the Common Measurement Reporting procedure (Report B) as well as terminating any corresponding periodic reporting. If the *Measurement Threshold 2* IE is not present, the RNC₂ shall use the value of the *Measurement Threshold 1* IE instead. If the *Measurement Hysteresis Time* IE is not included, the RNC₂ shall use the value zero as hysteresis times for both Report A and Report B.

If the *Report Characteristics* IE is set to "On Modification" and if the *SFN* IE is not provided, the RNC₂ shall report the result of the requested measurement immediately. If the *SFN* IE is provided, it indicates the frame for which the measurement value shall be provided. The provided measurement value shall be the one reported by the layer 3 filter, referred to as point C in the measurement model [26]. Furthermore, if the *SFN* IE is present and if the *Common Measurement Object Type* IE is set to "UP Neighbouring Cell", then the *SFN* IE relates to the Radio Frames of the Reference Cell identified by the first *UTRAN Cell Identifier* IE. Then the RNC₂ shall initiate the Common Measurement Reporting procedure in accordance to the following conditions:

- 1. If the Common Measurement Type IE is set to "UTRAN GPS Timing of Cell Frames for UE Positioning":
 - If the $T_{UTRAN-GPS}$ Change Limit IE is included in the $T_{UTRAN-GPS}$ Measurement Threshold Information IE, the RNC₂ shall each time a new measurement result is received after point C in the measurement model [25], calculate the change of $T_{UTRAN-GPS}$ value (F_n). The RNC₂ shall initiate the Common Measurement Reporting procedure and set n equal to zero when the absolute value of F_n rises above the threshold indicated by the $T_{UTRAN-GPS}$ Change Limit IE. The change of $T_{UTRAN-GPS}$ value (F_n) is calculated according to the following:

 $F_n=0$ for n=0

 $F_n = (M_n - M_{n-1}) \mod 37158912000000 - ((SFN_n - SFN_{n-1}) \mod 4096) *10*3.84*10^3*16 + F_{n-1}$ for n > 0

 F_n is the change of the T_{UTRAN-GPS} value expressed in unit [1/16 chip] when n measurement results have been received after the first Common Measurement Reporting at initiation or after the last event was triggered.

 M_n is the latest measurement result received after point C in the measurement model [25], measured at SFN_n.

 M_{n-1} is the previous measurement result received after point C in the measurement model [25], measured at SFN_{n-1}.

 M_1 is the first measurement result received after point C in the measurement model [25], after first Common Measurement Reporting at initiation or after the last event was triggered.

 M_0 is equal to the value reported in the first Common Measurement Reporting at initiation or in the Common Measurement Reporting when the event was triggered.

 If the Predicted T_{UTRAN-GPS} Deviation Limit IE is included in the T_{UTRAN-GPS} Measurement Threshold Information IE, the RNC₂ shall, each time a new measurement result is received after point C in the measurement model [25], update the P_n and F_n. The RNC₂ shall initiate the Common Measurement Reporting procedure and set n equal to zero when F_n rises above the threshold indicated by the Predicted T_{UTRAN-GPS} Deviation Limit IE. The P_n and F_n are calculated according to the following:

 $P_n = b \text{ for } n = 0$

 $P_n = ((a/16) * ((SFN_n - SFN_{n-1}) \mod 4096) / 100 + ((SFN_n - SFN_{n-1}) \mod 4096) * 10*3.84*10^{3}*16 + P_{n-1}) \mod 3715891200000 \text{ for } n > 0$

 $F_n = min((M_n - P_n) \mod 37158912000000, (P_n - M_n) \mod 37158912000000)$ for n > 0

 P_n is the predicted T_{UTRAN-GPS} value when n measurement results have been received after the first Common Measurement Reporting at initiation or after the last event was triggered.

a is the last reported T_{UTRAN-GPS} Drift Rate value.

b is the last reported T_{UTRAN-GPS} value.

 F_n is the deviation of the last measurement result from the predicted T_{UTRAN-GPS} value (P_n) when n measurements have been received after the first Common Measurement Reporting at initiation or after the last event was triggered.

 M_n is the latest measurement result received after point C in the measurement model [25, measured at SFN_n.

 M_1 is the first measurement result received after point C in the measurement model [25], after first Common Measurement Reporting at initiation or after the last event was triggered.

The $T_{UTRAN-GPS}$ Drift Rate is determined by the RN₂ in an implementation-dependent way after point B (see model of physical layer measurements in [26]).

- 2. If the Common Measurement Type IE is set to "SFN-SFN Observed Time Difference":
 - If the SFN-SFN Change Limit IE is included in the SFN-SFN Measurement Threshold Information IE, the RNC₂ shall each time a new measurement result is received after point C in the measurement model [25], calculate the change of SFN-SFN value (F_n). The RNC₂ shall initiate the Common Measurement Reporting procedure in order to report the particular SFN-SFN measurement which has triggered the event and set n equal to zero when the absolute value of F_n rises above the threshold indicated by the SFN-SFN Change Limit IE. The change of the SFN-SFN value is calculated according to the following:

 $F_n = 0$ for n = 0

 $[FDD - F_n = (M_n - a) \mod 614400 \quad for n > 0]$

 $[\text{TDD} - F_n = (M_n - a) \mod 40960 \quad for n > 0]$

 F_n is the change of the SFN-SFN value expressed in unit [1/16 chip] when n measurement results have been received after the first Common Measurement Reporting at initiation or after the last event was triggered.

a is the last reported SFN-SFN.

 M_n is the latest measurement result received after point C in the measurement model [25], measured at SFN_n.

 M_1 is the first measurement result received after point C in the measurement model [25], after the first Common Measurement Reporting at initiation or after the last event was triggered.

- If the Predicted SFN-SFN Deviation Limit IE is included in the SFN-SFN Measurement Threshold Information IE, the RNC₂ shall each time a new measurement result is received after point C in the measurement model [25], update the P_n and F_n. The RNC₂ shall initiate the Common Measurement Reporting procedure in order to report the particular SFN-SFN measurement which has triggered the event and set n equal to zero when F_n rises above the threshold indicated by the Predicted SFN-SFN Deviation Limit IE. The P_n and F_n are calculated according to the following:

 $P_n = b$ for n = 0

 $[FDD - P_n = ((a/16) * ((SFN_n - SFN_{n-1}) \mod 4096)/100 + P_{n-1}) \mod 614400 \quad for \quad n > 0]$

 $[FDD - F_n = min((M_n - P_n) \mod 614400, (P_n - M_n) \mod 614400) \quad for n > 0]$

 $[TDD - P_n = ((a/16) * (15*(SFN_n - SFN_{n-1})mod 4096 + (TS_n - TS_{n-1}))/1500 + P_{n-1}) mod 40960 for n>0]$

 $[TDD - F_n = min((M_n - P_n) mod 40960, (P_n - M_n) mod 40960) for n > 0]$

 P_n is the predicted SFN-SFN value when n measurement results have been received after the first Common Measurement Reporting at initiation or after the last event was triggered.

a is the last reported SFN-SFN Drift Rate value.

b is the last reported SFN-SFN value.

 F_n is the deviation of the last measurement result from the predicted *SFN-SFN* value (P_n) when n measurements have been received after the first Common Measurement Reporting at initiation or after the last event was triggered.

 M_n is the latest measurement result received after point C in the measurement model [25], measured at the [TDD – the Time Slot TS_n of] the Frame SFN_n.

 M_1 is the first measurement result received after point C in the measurement model [25], after first Common Measurement Reporting at initiation or after the last event was triggered.

The SFN-SFN Drift Rate is determined by the RNS_2 in an implementation-dependent way after point B (see model of physical layer measurements in [26]).

If the *Report Characteristics* IE is not set to "On-Demand", the RNC_2 is required to perform reporting for a common measurement object, in accordance with the conditions provided in the COMMON MEASUREMENT INITIATION REQUEST message, as long as the object exists. If no common measurement object(s) for which a measurement is defined exists any more the RNC_2 shall terminate the measurement locally without reporting this to RNC_1 .

If at the start of the measurement, the reporting criteria are fulfilled for any of Event A, Event B, Event E or Event F, the RNC_2 shall initiate a Measurement Reporting procedure immediately, and then continue with the measurements as specified in the COMMON MEASUREMENT INITIATION REQUEST message.

Common measurement accuracy

If the *Common Measurement Type* IE is set to "UTRAN GPS Timing of Cell Frames for UE positioning", then the *UTRAN GPS Timing Measurement Minimum Accuracy Class* IE included in the *Report Characteristics* IE indicates the minimum accuracy class required in the measurements.

- If the *UTRAN GPS Timing Measurement Minimum Accuracy Class* IE indicates "Class A", then the concerned RNC₂ shall perform the measurement with the highest supported accuracy according to any of the accuracy classes A, B or C.
- If the UTRAN GPS Timing Measurement Minimum Accuracy Class IE indicates the "Class B", then the concerned RNC₂ shall perform the measurements with the highest supported accuracy according to class B or C.

- If the *UTRAN GPS Timing Measurement Minimum Accuracy Class* IE indicates "Class C", then the concerned RNC₂ shall perform the measurements with the highest supported accuracy according to class C only.
- If the *Common Measurement Type* IE is set to "SFN-SFN Observed Time Difference", then the concerned RNC₂ shall initiate the SFN-SFN observed Time Difference measurements between the reference cell identified by *UC-ID* IE and the neighbouring cells identified by their UC-ID. The *Report Characteristics* IE applies to each of these measurements.

Higher layer filtering

The *Measurement Filter Coefficient* IE indicates how filtering of the measurement values shall be performed before measurement event evaluation and reporting.

The averaging shall be performed according to the following formula.

$$F_n = (1-a) \cdot F_{n-1} + a \cdot M_n$$

The variables in the formula are defined as follows

 F_n is the updated filtered measurement result

 F_{n-1} is the old filtered measurement result

 M_n is the latest received measurement result from physical layer measurements, the unit used for M_n is the same unit as the reported unit in the COMMON MEASUREMENT INITIATION RESPONSE, COMMON MEASUREMENT REPORT messages or the unit used in the event evaluation (i.e. same unit as for Fn).

 $a = 1/2^{(k/2)}$ -, where k is the parameter received in the *Measurement Filter Coefficient* IE. If the *Measurement Filter Coefficient* IE is not present, *a* shall be set to 1 (no filtering).

In order to initialise the averaging filter, F_0 is set to M_1 when the first measurement result from the physical layer measurement is received.

Response message

If the RNC₂ was able to initiate the measurement requested by RNC₁ it shall respond with the COMMON MEASUREMENT INITIATION RESPONSE message sent. The message shall include the same Measurement ID that was used in the measurement request. Only in the case where the *Report Characteristics* IE is set to "On-Demand" or "On Modification", the COMMON MEASUREMENT INITIATION RESPONSE message shall contain the measurement result. It shall also include the *Common Measurement Achieved Accuracy* IE if the *Common Measurement Type* IE is set to "UTRAN GPS Timing of Cell Frames for UE Positioning".

Furthermore, if the *Common Measurement Type* IE is set to "SFN-SFN Observed Time Difference", then all the available measurements shall be reported in the *Successful Neighbouring cell SFN-SFN Observed Time Difference Measurement Information* IE and the neighbouring cells with no measurement result available shall be reported in the *Unsuccessful Neighbouring cell SFN-SFN Observed Time Difference Measurement Information* IE. For all available measurement results, the RNC₂ shall include in the *Successful Neighbouring Cell SFN-SFN Observed Time Difference Measurement Information* IE the *SFN-SFN Quality* IE and the *SFN-SFN Drift Rate Quality* IE, if available.

If the Common Measurement Type IE is set to "UTRAN GPS Timing of Cell Frames for UE Positioning" and the Report Characteristics IE is set to "On Demand" or "On Modification", the RNC₂ shall include in the $T_{UTRAN-GPS}$ Measurement Value Information IE the $T_{UTRAN-GPS}$ Quality IE and the $T_{UTRAN-GPS}$ Drift Rate Quality IE, if available.

8.5.2.3 Unsuccessful Operation

Figure 30B: Common Measurement Initiation procedure, Unsuccessful Operation

If the requested measurement cannot be initiated, the RNC₂ shall send a COMMON MEASUREMENT INITIATION FAILURE message. The message shall include the same Measurement ID that was used in the COMMON MEASUREMENT INITIATION REQUEST message and the *Cause* IE set to an appropriate value.

Typical cause values are as follows:

Radio Network Layer Cause

- Measurement not supported for the object.
- Measurement Temporarily not Available

8.5.2.4 Abnormal Conditions

If the COMMON MEASUREMENT INITIATION REQUEST message contains the *SFN-SFN Measurement Threshold Information* IE (in the *Measurement Threshold* IE contained in the *Report Characteristics* IE) and it does not contain at least one IE, the RNC₂ shall reject the procedure using the COMMON MEASUREMENT INITIATION FAILURE message.

If the COMMON MEASUREMENT INITIATION REQUEST message contains the $T_{UTRAN-GPS}$ Measurement Threshold Information IE (in the Measurement Threshold IE contained in the Report Characteristics IE) and it does not contain at least one IE, the RNC₂ shall reject the procedure using the COMMON MEASUREMENT INITIATION FAILURE message.

If the *Common Measurement Type* IE is set to "UTRAN GPS Timing of Cell Frames for UE Positioning", but the $T_{UTRAN-GPS}$ Measurement Minimum Accuracy Class IE in the Common Measurement Accuracy IE is not received in the COMMON MEASUREMENT INITIATION REQUEST message, the RNC₂ shall regard the Common Measurement Initiation procedure as failed.

If the Common Measurement Type received in the *Common Measurement Type* IE is not "load", and if the Common Measurement Type received in the *Common Measurement Type* IE is not defined in ref. [11] or [15] to be measured on the Common Measurement Object Type received in the COMMON MEASUREMENT INITIATION REQUEST message the RNC₂ shall regard the Common Measurement Initiation procedure as failed.

If the *Common Measurement Type* IE is set to "SFN-SFN Observed Time Difference", but the *Neighbouring Cell Measurement Information* IE is not received in the COMMON MEASUREMENT INITIATION REQUEST message, the RNC₂ shall regard the Common Measurement Initiation procedure as failed.

The allowed combinations of the Common measurement type and Report characteristics type are shown in the table below marked with "X". For not allowed combinations, the RNS_2 shall regard the Common Measurement Initiation procedure as failed.

Table 4: Allowed Common measurement type and Report characteristics type combinations

Common	Report characteristics type								
measurement type	On Demand	Periodic	Event A	Event B	Event C	Event D	Event E	Event F	On Modification
Received total wide band power	Х	Х	Х	Х	Х	Х	Х	Х	
Transmitted Carrier Power	Х	Х	Х	Х	Х	Х	Х	Х	
UL Timeslot ISCP	Х	Х	Х	Х	Х	Х	Х	Х	
Load	Х	Х	Х	Х	Х	Х	Х	Х	
UTRAN GPS Timing of Cell Frames for UE positioning	x	X							x
SFN-SFN Observed Time Difference	х	X							X

[TDD - If the common measurement type requires the Time Slot Information but the [3.84Mcps TDD - *Time Slot IE*] [1.28Mcps TDD – *Time Slot LCR* IE] is not provided in the COMMON MEASUREMENT INITIATION REQUEST message the RNS₂ shall regard the Common Measurement Initiation procedure as failed.]

If the *SFN* IE is included in the COMMON MEASUREMENT INITIATION REQUEST message and the *Report Characteristics* IE is other than "Periodic", "On Demand" or "On Modification", the RNS₂ shall regard the Common Measurement Initiation procedure as failed.

8.5.3 Common Measurement Reporting

8.5.3.1 General

This procedure is used by an RNC to report the result of measurements requested by another RNC using the Common Measurement Initiation.

This procedure uses the signalling bearer connection for the relevant Distant RNC Context.

8.5.3.2 Successful Operation

Figure 30C: Common Measurement Reporting procedure, Successful Operation

If the requested measurement reporting criteria are met, the RNC_2 shall initiate a Measurement Reporting procedure. Unless specified below, the meaning of the parameters are given in other specifications.

The *Measurement ID* IE shall be set to the Measurement ID provided by RNC_1 when initiating the measurement with the Common Measurement Initiation procedure.

If the achieved measurement accuracy does not fulfil the given accuracy requirement, the Measurement not available shall be reported.

For measurements included in the *Successful Neighbouring Cell SFN-SFN Observed Time Difference Measurement Information* IE, the RNC₂ shall include the *SFN-SFN Quality* IE and the *SFN-SFN Drift Rate Quality* IE if available.

If the Common Measurement Type provided by RNC_1 when initiating the measurement with the Common Measurement Initiation procedure was "UTRAN GPS Timing of Cell Frames for UE Positioning", then the RNC_2 shall include in the $T_{UTRAN-GPS}$ Measurement Value Information IE the $T_{UTRAN-GPS}$ Quality IE and the $T_{UTRAN-GPS}$ Drift Rate Quality IE, if available.

8.5.3.3 Abnormal Conditions

9.2.1.52C SFN-SFN Measurement Value Information

The SFN-SFN Measurement Value Information IE indicates the measurement result related to SFN-SFN Observed Time Difference measurements as well as other related information.

IE/Group Name	Presence	Range	IE Type and Reference	Semantics Description
Successful Neighbouring cell SFN-SFN Observed Time Difference Measurement Information		1 <maxnoofmeasn Cell></maxnoofmeasn 	Reference	
>UTRAN Cell Identifier	М		9.2.1.71	
>SFN-SFN Value	М		9.2.1.77	
>SFN-SFN Quality	0		INTEGER(0. .255)	Indicates the standard deviation (std) of the SFN-SFN otd (observed time difference) measurements in 1/16 chip. SFN-SFN Quality = $\sqrt{E[(x-\mu)^2]}$ = std of reported SFN-SFN Value, where x is the reported SFN- SFN Value and $\mu = E[x]$ is the expectation value of x.
>SFN-SFN Drift Rate	М		INTEGER(- 100100)	Indicates the SFN-SFN drift rate in 1/256 chip per second. A positive value indicates that the Reference cell clock is running at a greater frequency than the measured neighbouring cell.
>SFN-SFN Drift Rate Quality	<u>O</u> M		INTEGER(0. .100)	Indicates the standard deviation (std) of the SFN-SFN drift rate measurements in 1/256 chip per second. SFN-SFN Drift Rate Quality = $\sqrt{E[(x-\mu)^2]}$ = std of reported SFN-SFN Drift Rate, where x is the reported SFN- SFN Drift Rate and μ = E[x] is the expectation value of x.
>SFN-SFN Measurement	М		9.2.1.76	
Unsuccessful Neighbouring cell SFN- SFN Observed Time Difference Measurement Information		0 <maxnoofmeasn Cell-1></maxnoofmeasn 		
>UTRAN Cell Identifier	M		9.2.1.71	

Range bound	Explanation
maxnoofMeasNCell	Maximum number of neighbouring cells on which
	measurements can be performed.

9.2.1.59D T_{UTRAN-GPS} Measurement Value Information

The T_{UTRAN-GPS} *Measurement Value Information* IE indicates the measurement results related to the UTRAN GPS Timing of Cell Frames for UE Positioning measurements.

IE/Group Name	Presence	Range	IE Type and Reference	Semantics Description
Tutran-gps		1		Indicates the UTRAN GPS Timing of Cell Frames for UE Positioning. According to mapping in [23] and [24]; significant values range from 0 to 37158911999999.
>MS	М		INTEGER (016383)	Most Significant Part
>LS	М		INTEGER (04294967 295)	Least Significant Part
T _{UTRAN-GPS} Quality	<u>O</u> M		INTEGER(0. .255)	Indicates the standard deviation (std) of the T _{UTRAN-GPS} measurements in 1/16 chip. T _{UTRAN-GPS} Quality = $\sqrt{E[(x-\mu)^2]}$ = std of reported T _{UTRAN-GPS} Value, where x is the reported T _{UTRAN-GPS} Value and μ = E[x] is the expectation value of x.
T _{UTRAN-GPS} Drift Rate	М		INTEGER(- 5050)	Indicates the T _{UTRAN-GPS} drift rate in 1/256 chip per second. A positive value indicates that the UTRAN clock is running at a lower frequency than GPS clock.
T _{UTRAN-GPS} Drift Rate Quality	<u>O</u> M		INTEGER(0. .50)	Indicates the standard deviation (std) of the T _{UTRAN-GPS} drift rate measurements in 1/256 chip per second. T _{UTRAN-GPS} Drift Rate Quality = $\sqrt{E[(x-\mu)^2]}$ = std of reported T _{UTRAN-GPS} Drift Rate, where x is the reported T _{UTRAN-GPS} Drift Rate and $\mu = E[x]$ is the expectation value of x.

CR page 13

9.3.4 Information Elements Definitions

UNCHANGED TEXT IS REMOVED

}

```
SFNSFNMeasurementValueInformation ::= SEQUENCE {
    successfullNeighbouringCellSFNSFNObservedTimeDifferenceMeasurementInformation
                                                                                          SEQUENCE (SIZE(1..maxNrOfMeasNCell)) OF
        SEQUENCE {
            uC-ID
                        UC-ID.
            sFNSFNValue
                                        SFNSFNValue,
            sFNSFNQuality
                                        SFNSFNQuality
                                                                     OPTIONAL,
            sFNSFNDriftRate
                                        SFNSFNDriftRate,
            sFNSFNDriftRateQuality
                                        SFNSFNDriftRateQuality
                                                                     OPTIONAL,
            sFNSFNTimeStampInformation SFNSFNTimeStampInformation,
            iE-Extensions
                                        ProtocolExtensionContainer { {
SuccessfullNeighbouringCellSFNSFNObservedTimeDifferenceMeasurementInformationItem-ExtIEs } }
                                                                                                  OPTIONAL.
            . . .
        },
    unsuccessfullNeighbouringCellSFNSFNObservedTimeDifferenceMeasurementInformation
                                                                                         SEQUENCE (SIZE(0..maxNrOfMeasNCell-1)) OF
        SEOUENCE ·
            uC-ID
                        UC-ID.
                                ProtocolExtensionContainer { {    UnsuccessfullNeighbouringCellSFNSFNObservedTimeDifferenceMeasurementInformationItem-
            iE-Extensions
ExtIEs} }
                OPTIONAL,
            . . .
        },
    iE-Extensions
                       ProtocolExtensionContainer { { SFNSFNMeasurementValueInformationItem-ExtIEs } }
                                                                                                            OPTIONAL.
    . . .
}
SFNSFNMeasurementValueInformationItem-ExtIEs RNSAP-PROTOCOL-EXTENSION ::= {
    . . .
UNCHANGED TEXT IS REMOVED
TUTRANGPSMeasurementValueInformation ::= SEQUENCE {
        tUTRANGPS
                                        TUTRANGPS,
        tUTRANGPSQuality
                                        TUTRANGPSQuality
                                                                         OPTIONAL,
        tUTRANGPSDriftRate
                                        TUTRANGPSDriftRate,
        tUTRANGPSDriftRateQuality
                                        TUTRANGPSDriftRateQuality
                                                                         OPTIONAL,
        iEe-Extensions
                                        ProtocolExtensionContainer { { TUTRANGPSMeasurementValueInformationItem-ExtIEs } }
                                                                                                                               OPTIONAL,
        . . .
}
TUTRANGPSMeasurementValueInformationItem-ExtIEs RNSAP-PROTOCOL-EXTENSION ::= {
    . . .
```

UNCHANGED TEXT IS REMOVED

CR page 14

3GPP TSG-RAN3 Meeting #31 Stockholm, Sweden, 19th – 23rd August 2002

Tdoc **#***R*3-022136

CHANGE REQUEST										
æ	25.423 CR 722 # rev - ^{# 0}	Current vers	ion: 5.2.0 [#]							
For HELP on using this form, see bottom of this page or look at the pop-up text over the # symbols.										
<i>Proposed change affects:</i> UICC apps# ME Radio Access Network X Core Network										
Title:	# Quality IEs for the UE Positioning measurements									
Source:	# RAN WG3									
Work item code:	# TEI4	<i>Date:</i>	22/08/2002							
Category:	 A Use <u>one</u> of the following categories: F (correction) A (corresponds to a correction in an earlier release) B (addition of feature), C (functional modification of feature) D (editorial modification) Detailed explanations of the above categories can be found in 3GPP <u>TR 21.900</u>. 	Release: % Use <u>one</u> of 2 R96 R97 R98 R99 Rel-4 Rel-5 Rel-6	REL-5 the following releases: (GSM Phase 2) (Release 1996) (Release 1997) (Release 1998) (Release 1999) (Release 4) (Release 5) (Release 6)							

Reason for change: ೫	Currently, there are existing requirements on the accuracy of the measurements in RAN4 specifications. These Quality IEs are tools for optimising the results of UE Positioning algorithms in the RNC by providing more accurate information on the quality of the measurement. As such, they shouldn't be mandatory in the protocol.					
Summary of change: ₩	The Quality IEs are made optional in the protocol and appropriate procedure text is added Impact Analysis: Impact assessment towards the previous version of the specification (same release): this CR has isolated impact on the previous version of the specification (same release) because only one function is impacted. This CR has an impact under the protocol point of view. The impact can be considered as isolated as it affects only one function, namely the report of measurements for UE Positioning.					
Consequences if % not approved:	The way the protocol is implemented will mandate in the Node B implementation of mechanisms to estimate parameters suitable only for optimisation of the					
Clauses affected: #	8.5.2.2, 8.5.3.2, 9.2.1.52C, 9.2.1.59D, 9.3.4					
Other specs %	Y N X Other core specifications % 25.423 v 4.5.0 CR 721 25.433 v 4.5.0 CR 743					

Affected:	X X X X X X X X X	25.433 v 5.1.0 CR 744
Other comments:	¥	

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at <u>http://www.3gpp.org/specs/CR.htm</u>. Below is a brief summary:

- 1) Fill out the above form. The symbols above marked **#** contain pop-up help information about the field that they are closest to.
- 2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under <u>ftp://ftp.3gpp.org/specs/</u> For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.
- 3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

8.5.2 Common Measurement Initiation

8.5.2.1 General

This procedure is used by an RNC to request the initiation of measurements of common resources to another RNC. The requesting RNC is referred to as RNC_1 and the RNC to which the request is sent is referred to as RNC_2 .

This procedure uses the signalling bearer connection for the relevant Distant RNC Context.

8.5.2.2 Successful Operation

Figure 30A: Common Measurement Initiation procedure, Successful Operation

The procedure is initiated with a COMMON MEASUREMENT INITIATION REQUEST message sent from the RNC₁ to the RNC₂.

Upon reception, the RNC₂ shall initiate the requested measurement according to the parameters given in the request.

Unless specified below, the meaning of the parameters are given in other specifications.

[TDD- If the [3.84 Mcps TDD - *Time Slot* IE] [1.28 Mcps - *Time Slot LCR* IE] is present in the COMMON MEASUREMENT INITIATION REQUEST message, the measurement request shall apply to the requested time slot individually.]

If the *Common Measurement Type* IE is not set to "SFN-SFN Observed Time Difference" and the *SFN Reporting Indicator* IE is set to "FN Reporting Required", the *SFN* IE shall be included in the COMMON MEASUREMENT REPORT message or in the COMMON MEASUREMENT RESPONSE message, the latter only in the case the *Report Characteristics* IE is set to "On Demand". The reported SFN shall be the SFN at the time when the measurement value was reported by the layer 3 filter, referred to as point C in the measurement model [26]. If the *Common Measurement Type* IE is set to "SFN-SFN Observed Time Difference", then the *SFN Reporting Indicator* IE is ignored.

Common measurement type

If the *Common Measurement Type* IE is set to "SFN-SFN Observed Time Difference", then the RNC₂ shall initiate the SFN-SFN Observed Time Difference measurements between the reference cell identified by *C-ID* IE and the neighbouring cells identified by the *UTRAN Cell Identifier* IE (*UC-Id*).

If the *Common Measurement Type* IE is set to "load", the RNC₂ shall initiate measurements of uplink and downlink load on the measured object. If either uplink or downlink load satisfies the requested report characteristics, the RNC₂ shall report the result of both uplink and downlink measurements.

If the *Common Measurement Type* IE is set to "RT load", the RNC₂ shall initiate measurements of uplink and downlink estimated share of RT (Real Time) traffic of the load of the measured object. If either uplink or downlink RT load satisfies the requested report characteristics, the RNC₂ shall report the result of both uplink and downlink measurements.

If the *Common Measurement Type* IE is set to "NRT load Information", the RNC₂ shall initiate measurements of uplink and downlink NRT (Non Real Time) load situation on the measured object. If either uplink or downlink NRT load satisfies the requested report characteristics, the RNC₂ shall report the result of both uplink and downlink measurements.

Report characteristics

The Report Characteristics IE indicates how the reporting of the measurement shall be performed. See also Annex B.

If the *Report Characteristics* IE is set to "On Demand" and if the *SFN* IE is not provided, the RNC₂ shall report the result of the requested measurement immediately. If the *SFN* IE is provided, it indicates the frame for which the measurement value shall be provided. The provided measurement value shall be the one reported by the layer 3 filter, referred to as point C in the measurement model [26]. Furthermore, if the *SFN* IE is present and if the *Common Measurement Object Type* IE is set to "UP Neighbouring Cell", then the *SFN* IE relates to the Radio Frames of the Reference Cell identified by the first *UTRAN Cell Identifier* IE.

If the *Report Characteristics* IE is set to "Periodic", the RNC₂ shall periodically initiate a Common Measurement Reporting procedure for this measurement, with the requested report frequency. Furthermore, if the *Common Measurement Type* IE is set to "SFN-SFN Observed Time Difference", then all the available measurements shall be reported in the *Successful Neighbouring cell SFN-SFN Observed Time Difference Measurement Information* IE and the neighbouring cells with no measurement result available shall be reported in the *Unsuccessful Neighbouring cell SFN-SFN Observed Time Difference Measurement Information* IE. If the *SFN* IE is provided, it indicates the frame for which the first measurement value of a periodic reporting shall be provided. The provided measurement value shall be the one reported by the layer 3 filter, referred to as point C in the measurement model [26]. Furthermore, if the *SFN* IE is present and if the *Common Measurement Object Type* IE is set to "UP Neighbouring Cell", then the *SFN* IE relates to the Radio Frames of the Reference Cell identified by the first *UTRAN Cell Identifier* IE.

If the *Report Characteristics* IE is set to "Event A", the RNC₂ shall initiate a Measurement Reporting procedure when the measured entity rises above the requested threshold and stays there for the requested hysteresis time. If the *Measurement Hysteresis Time* IE is not included, the RNC₂ shall use the value zero for the hysteresis time.

If the *Report Characteristics* IE is set to "Event B", the RNC₂ shall initiate a Measurement Reporting procedure when the measured entity falls below the requested threshold and stays there for the requested hysteresis time. If the *Measurement Hysteresis Time* IE is not included, the RNC₂ shall use the value zero for the hysteresis time.

If the *Report Characteristics* IE is set to "Event C", the RNC₂ shall initiate a Measurement Reporting procedure when the measured entity rises more than the requested threshold within the requested time. After having reported this type of event, the next C event reporting for the same measurement cannot be initiated before the rising time specified by the *Measurement Change Time* IE has elapsed since the previous event reporting.

If the *Report Characteristics* IE is set to "Event D", the RNC_2 shall initiate a Measurement Reporting procedure when the measured entity falls more than the requested threshold within the requested time. After having reported this type of event, the next D event reporting for the same measurement cannot be initiated before the falling time specified by the *Measurement Change Time* IE has elapsed since the previous event reporting.

If the *Report Characteristics* IE is set to "Event E", the RNC₂ shall initiate the Measurement Reporting procedure when the measured entity rises above the 'Measurement Threshold 1' and stays there for the 'Measurement Hysteresis Time' (Report A). When the conditions for Report A are met and the *Report Periodicity* IE is provided, the RNC₂ shall initiate the Measurement Reporting procedure periodically. If the conditions for Report A have been met and the measured entity falls below the 'Measurement Threshold 2' and stays there for the 'Measurement Hysteresis Time', the RNC₂ shall initiate the Common Measurement Reporting procedure (Report B) as well as terminating any corresponding periodic reporting. If the *Measurement Threshold 2* IE is not present, the RNC₂ shall use the value of the *Measurement Threshold 2* IE is not present, the RNC₂ shall use the value zero as hysteresis times for both Report A and Report B.

If the *Report Characteristics* IE is set to "Event F", the RNC₂ shall initiate the Measurement Reporting procedure when the measured entity falls below the 'Measurement Threshold 1' and stays there for the 'Measurement Hysteresis Time' (Report A). When the conditions for Report A are met and the *Report Periodicity* IE is provided the RNC₂ shall also initiate the Measurement Reporting procedure periodically. If the conditions for Report A have been met and the measured entity rises above the 'Measurement Threshold 2' and stays there for the 'Measurement Hysteresis Time', the RNC₂ shall initiate the Common Measurement Reporting procedure (Report B) as well as terminating any corresponding periodic reporting. If the *Measurement Threshold 2* IE is not present, the RNC₂ shall use the value of the *Measurement Threshold 1* IE instead. If the *Measurement Hysteresis Time* IE is not included, the RNC₂ shall use the value zero as hysteresis times for both Report A and Report B.

If the *Report Characteristics* IE is set to "On Modification" and if the *SFN* IE is not provided, the RNC₂ shall report the result of the requested measurement immediately. If the *SFN* IE is provided, it indicates the frame for which the measurement value shall be provided. The provided measurement value shall be the one reported by the layer 3 filter, referred to as point C in the measurement model [26]. Furthermore, if the *SFN* IE is present and if the *Common Measurement Object Type* IE is set to "UP Neighbouring Cell", then the *SFN* IE relates to the Radio Frames of the

Reference Cell identified by the first *UTRAN Cell Identifier* IE. Then the RNC₂ shall initiate the Common Measurement Reporting procedure in accordance to the following conditions:

- 1. If the Common Measurement Type IE is set to " UTRAN GPS Timing of Cell Frames for UE Positioning ":
 - If the $T_{UTRAN-GPS}$ Change Limit IE is included in the $T_{UTRAN-GPS}$ Measurement Threshold Information IE, the RNC₂ shall each time a new measurement result is received after point C in the measurement model [25], calculate the change of $T_{UTRAN-GPS}$ value (F_n). The RNC₂ shall initiate the Common Measurement Reporting procedure and set n equal to zero when the absolute value of F_n rises above the threshold indicated by the $T_{UTRAN-GPS}$ Change Limit IE. The change of $T_{UTRAN-GPS}$ value (F_n) is calculated according to the following:

 $F_n=0$ for n=0

 $F_n = (M_n - M_{n-1}) \mod 37158912000000 - ((SFN_n - SFN_{n-1}) \mod 4096) *10*3.84*10^3*16 + F_{n-1}$ for n > 0

 F_n is the change of the T_{UTRAN-GPS} value expressed in unit [1/16 chip] when n measurement results have been received after the first Common Measurement Reporting at initiation or after the last event was triggered.

 M_n is the latest measurement result received after point C in the measurement model [25], measured at SFN_n.

 M_{n-1} is the previous measurement result received after point C in the measurement model [25], measured at SFN_{n-1}.

 M_1 is the first measurement result received after point C in the measurement model [25], after first Common Measurement Reporting at initiation or after the last event was triggered.

 M_0 is equal to the value reported in the first Common Measurement Reporting at initiation or in the Common Measurement Reporting when the event was triggered.

 If the Predicted T_{UTRAN-GPS} Deviation Limit IE is included in the T_{UTRAN-GPS} Measurement Threshold Information IE, the RNC₂ shall, each time a new measurement result is received after point C in the measurement model [25], update the P_n and F_n. The RNC₂ shall initiate the Common Measurement Reporting procedure and set n equal to zero when F_n rises above the threshold indicated by the Predicted T_{UTRAN-GPS} Deviation Limit IE. The P_n and F_n are calculated according to the following:

 $P_n = b \text{ for } n = 0$

 $P_n = ((a/16) * ((SFN_n - SFN_{n-1}) \mod 4096) / 100 + ((SFN_n - SFN_{n-1}) \mod 4096) * 10 * 3.84 * 10^3 * 16 + P_{n-1}) \mod 3715891200000 \text{ for } n > 0$

 $F_n = min((M_n - P_n) \mod 37158912000000, (P_n - M_n) \mod 37158912000000)$ for n > 0

 P_n is the predicted T_{UTRAN-GPS} value when n measurement results have been received after the first Common Measurement Reporting at initiation or after the last event was triggered.

a is the last reported T_{UTRAN-GPS} Drift Rate value.

b is the last reported T_{UTRAN-GPS} value.

 F_n is the deviation of the last measurement result from the predicted T_{UTRAN-GPS} value (P_n) when n measurements have been received after the first Common Measurement Reporting at initiation or after the last event was triggered.

 M_n is the latest measurement result received after point C in the measurement model [25, measured at SFN_n.

 M_1 is the first measurement result received after point C in the measurement model [25], after first Common Measurement Reporting at initiation or after the last event was triggered.

The $T_{UTRAN-GPS}$ Drift Rate is determined by the RNS₂ in an implementation-dependent way after point B (see model of physical layer measurements in [26]).

- 2. If the Common Measurement Type IE is set to "SFN-SFN Observed Time Difference":
 - If the *SFN-SFN Change Limit* IE is included in the *SFN-SFN Measurement Threshold Information* IE, the RNC₂ shall each time a new measurement result is received after point C in the measurement model [25], calculate the change of SFN-SFN value (F_n). The RNC₂ shall initiate the Common Measurement Reporting

procedure in order to report the particular SFN-SFN measurement which has triggered the event and set n equal to zero when the absolute value of F_n rises above the threshold indicated by the *SFN-SFN Change Limit* IE. The change of the SFN-SFN value is calculated according to the following:

$$F_n=0$$
 for $n=0$

 $[FDD - F_n = (M_n - a) \mod 614400 \quad for \ n > 0]$ $[TDD - F_n = (M_n - a) \mod 40960 \quad for \ n > 0]$

 F_n is the change of the SFN-SFN value expressed in unit [1/16 chip] when n measurement results have been received after the first Common Measurement Reporting at initiation or after the last event was triggered.

a is the last reported SFN-SFN.

 M_n is the latest measurement result received after point C in the measurement model [25], measured at SFN_n.

 M_1 is the first measurement result received after point C in the measurement model [25], after the first Common Measurement Reporting at initiation or after the last event was triggered.

 If the *Predicted SFN-SFN Deviation Limit* IE is included in the *SFN-SFN Measurement Threshold Information* IE, the RNC₂ shall each time a new measurement result is received after point C in the measurement model [25], update the P_n and F_n. The RNC₂ shall initiate the Common Measurement Reporting procedure in order to report the particular SFN-SFN measurement which has triggered the event and set n equal to zero when F_n rises above the threshold indicated by the *Predicted SFN-SFN Deviation Limit* IE. The P_n and F_n are calculated according to the following:

 $P_n = b$ for n = 0

 $[FDD - P_n = ((a/16) * ((SFN_n - SFN_{n-1}) \mod 4096)/100 + P_{n-1}) \mod 614400 \quad for \quad n > 0]$

 $[FDD - F_n = min((M_n - P_n) \mod 614400, (P_n - M_n) \mod 614400) \quad for n > 0]$

 $[\text{TDD} - P_n = ((a/16) * (15*(SFN_n - SFN_{n-1})mod \ 4096 + (TS_n - TS_{n-1}))/1500 + P_{n-1}) \ mod \ 40960 \ for \ n>0]$

 $[TDD - F_n = min((M_n - P_n) \mod 40960, (P_n - M_n) \mod 40960) \quad for n > 0]$

 P_n is the predicted SFN-SFN value when n measurement results have been received after the first Common Measurement Reporting at initiation or after the last event was triggered.

a is the last reported *SFN-SFN* Drift Rate value.

b is the last reported SFN-SFN value.

 F_n is the deviation of the last measurement result from the predicted *SFN-SFN* value (P_n) when n measurements has been received after first Common Measurement Reporting at initiation or after the last event was triggered.

 M_n is the latest measurement result received after point C in the measurement model [25], measured at the [TDD – the Time Slot TS_n of] the Frame SFN_n.

 M_1 is the first measurement result received after point C in the measurement model [25], after first Common Measurement Reporting at initiation or after the last event was triggered.

The SFN-SFN Drift Rate is determined by the RNS_2 in an implementation-dependent way after point B (see model of physical layer measurements in [26]).

If the *Report Characteristics* IE is not set to "On Demand", the RNC_2 is required to perform reporting for a common measurement object, in accordance with the conditions provided in the COMMON MEASUREMENT INITIATION REQUEST message, as long as the object exists. If no common measurement object(s) for which a measurement is defined exists any more the RNC_2 shall terminate the measurement locally without reporting this to RNC_1 .

If at the start of the measurement, the reporting criteria are fulfilled for any of Event A, Event B, Event E or Event F, the RNC_2 shall initiate a Measurement Reporting procedure immediately, and then continue with the measurements as specified in the COMMON MEASUREMENT INITIATION REQUEST message.

Common measurement accuracy

If the *Common Measurement Type* IE is set to "UTRAN GPS Timing of Cell Frames for UE positioning", then the *UTRAN GPS Timing Measurement Minimum Accuracy Class* IE included in the *Report Characteristics* IE indicates the minimum accuracy class required in the measurements.

- If the *UTRAN GPS Timing Measurement Minimum Accuracy Class* IE indicates "Class A", then the concerned RNC₂ shall perform the measurement with the highest supported accuracy according to any of the accuracy classes A, B or C.
- If the *UTRAN GPS Timing Measurement Minimum Accuracy Class* IE indicates the "Class B", then the concerned RNC₂ shall perform the measurements with the highest supported accuracy according to class B or C.
- If the *UTRAN GPS Timing Measurement Minimum Accuracy Class* IE indicates "Class C", then the concerned RNC₂ shall perform the measurements with the highest supported accuracy according to class C only.
- If the *Common Measurement Type* IE is set to "SFN-SFN Observed Time Difference", then the concerned RNC₂ shall initiate the SFN-SFN observed Time Difference measurements between the reference cell identified by *UC-ID* IE and the neighbouring cells identified by their UC-ID. The *Report Characteristics* IE applies to each of these measurements.

Higher layer filtering

The *Measurement Filter Coefficient* IE indicates how filtering of the measurement values shall be performed before measurement event evaluation and reporting.

The averaging shall be performed according to the following formula.

 $F_n = (1-a) \cdot F_{n-1} + a \cdot M_n$

The variables in the formula are defined as follows

 F_n is the updated filtered measurement result

 F_{n-1} is the old filtered measurement result

 M_n is the latest received measurement result from physical layer measurements, the unit used for M_n is the same unit as the reported unit in the COMMON MEASUREMENT INITIATION RESPONSE, COMMON MEASUREMENT REPORT messages or the unit used in the event evaluation (i.e. same unit as for Fn).

 $a = 1/2^{(k/2)}$ -, where k is the parameter received in the *Measurement Filter Coefficient* IE. If the *Measurement Filter Coefficient* IE is not present, *a* shall be set to 1 (no filtering).

In order to initialise the averaging filter, F_0 is set to M_1 when the first measurement result from the physical layer measurement is received.

Response message

If the RNC₂ was able to initiate the measurement requested by RNC₁ it shall respond with the COMMON MEASUREMENT INITIATION RESPONSE message sent. The message shall include the same Measurement ID that was used in the measurement request. Only in the case where the *Report Characteristics* IE is set to "On-Demand" or "On Modification", the COMMON MEASUREMENT INITIATION RESPONSE message shall contain the measurement result. It shall also include the *Common Measurement Achieved Accuracy* IE if the *Common Measurement Type* IE is set to 'UTRAN GPS Timing of Cell Frame for UE positioning '.

Furthermore, if the *Common Measurement Type* IE is set to "SFN-SFN Observed Time Difference", then all the available measurements shall be reported in the *Successful Neighbouring cell SFN-SFN Observed Time Difference Measurement Information* IE and the neighbouring cells with no measurement result available shall be reported in the *Unsuccessful Neighbouring cell SFN-SFN Observed Time Difference Measurement Information* IE. For all available measurement results, the RNC₂ shall include in the *Successful Neighbouring Cell SFN-SFN Observed Time Difference Measurement Information* IE the *SFN-SFN Quality* IE and the *SFN-SFN Drift Rate Quality* IE, if available.

If the Common Measurement Type IE is set to "UTRAN GPS Timing of Cell Frames for UE Positioning" and the Report Characteristics IE is set to "On Demand" or "On Modification", the RNC₂ shall include in the $T_{UTRAN-GPS}$ Measurement Value Information IE the $T_{UTRAN-GPS}$ Quality IE and the $T_{UTRAN-GPS}$ Drift Rate Quality IE, if available.

8.5.2.2.1 Successful Operation for lur-g

The procedure is initiated with a COMMON MEASUREMENT INITIATION REQUEST message sent from the RNC_1 to the BSS_2 or from the BSS_1 to the RNC_2/BSS_2 .

Upon reception, the RNC_2/BSS_2 shall initiate the requested measurement according to the parameters given in the request.

Common measurement type on Iur-g

If the *Common Measurement Type* IE is set to "load", the RNC₂/BSS₂ shall initiate measurements and report results as described in section 8.5.2.2.

If the *Common Measurement Type* IE is set to "RT load", the RNC₂/BSS₂ shall initiate measurements and report results as described in section 8.5.2.2.

If the *Common Measurement Type* IE is set to "NRT load Information", the RNC₂/BSS₂ shall initiate measurements and report results as described in section 8.5.2.2.

Report characteristics on Iur-g

The *Report Characteristics* IE indicates how the reporting of the measurement shall be performed. This IE is used as described in section 8.5.2.2.

Response message for Iur-g

If the RNC₂/BSS₂ was able to initiate the measurement requested by RNC₁/BSS₁ it shall respond with the COMMON MEASUREMENT INITIATION RESPONSE message sent. The message shall include the same Measurement ID that was used in the measurement request. Only in the case when the *Report Characteristics* IE is set to "On-Demand", the COMMON MEASUREMENT INITIATION RESPONSE message shall contain the measurement result.

8.5.2.3 Unsuccessful Operation

Figure 30B: Common Measurement Initiation procedure, Unsuccessful Operation

If the requested measurement cannot be initiated, the RNC₂ shall send a COMMON MEASUREMENT INITIATION FAILURE message. The message shall include the same Measurement ID that was used in the COMMON MEASUREMENT INITIATION REQUEST message and the *Cause* IE set to an appropriate value.

Typical cause values are as follows:

Radio Network Layer Cause

- Measurement not supported for the object.
- Measurement Temporarily not Available

8.5.2.4 Abnormal Conditions

If the COMMON MEASUREMENT INITIATION REQUEST message contains the *SFN-SFN Measurement Threshold Information* IE (in the *Measurement Threshold* IE contained in the *Report Characteristics* IE) and it does not contain at least one IE, the RNC₂ shall reject the procedure using the COMMON MEASUREMENT INITIATION FAILURE message. If the COMMON MEASUREMENT INITIATION REQUEST message contains the $T_{UTRAN-GPS}$ Measurement Threshold Information IE (in the Measurement Threshold IE contained in the Report Characteristics IE) and it does not contain at least one IE, the RNC₂ shall reject the procedure using the COMMON MEASUREMENT INITIATION FAILURE message.

If the *Common Measurement Type* IE is set to "UTRAN GPS Timing of Cell Frame for UE positioning", but the $T_{UTRAN-GPS}$ Measurement Minimum Accuracy Class IE in the Common Measurement Accuracy IE is not received in the COMMON MEASUREMENT INITIATION REQUEST message, the RNC₂ shall regard the Common Measurement Initiation procedure as failed.

If the Common Measurement Type received in the *Common Measurement Type* IE is not "load", "RT load" or "NRT load Information", and if the Common Measurement Type received in the *Common Measurement Type* IE is not defined in ref. [11] or [15] to be measured on the Common Measurement Object Type received in the COMMON MEASUREMENT INITIATION REQUEST message the RNC₂ shall regard the Common Measurement Initiation procedure as failed.

If the *Common Measurement Type* IE is set to "SFN-SFN Observed Time Difference", but the *Neighbouring Cell Measurement Information* IE is not received in the COMMON MEASUREMENT INITIATION REQUEST message, the RNC₂ shall regard the Common Measurement Initiation procedure as failed.

The allowed combinations of the Common measurement type and Report characteristics type are shown in the table below marked with "X". For not allowed combinations, the RNS_2 shall regard the Common Measurement Initiation procedure as failed.

Common				Report c	haracteri	stics typ	e		
measurement type	On Demand	Periodic	Event A	Event B	Event C	Event D	Event E	Event F	On Modification
Received total wide band power	Х	Х	Х	Х	Х	Х	Х	Х	
Transmitted Carrier Power	х	х	Х	Х	Х	Х	Х	Х	
UL Timeslot ISCP	Х	Х	Х	Х	Х	Х	Х	Х	
Load	Х	Х	Х	Х	Х	Х	Х	Х	
UTRAN GPS Timing of Cell Frames for UE Positioning	X	X							Х
SFN-SFN Observed Time Difference	Х	X							Х
RT load	Х	Х	Х	Х	Х	Х	Х	Х	
NRT load Information	Х	X	X	X	X	X	X	X	

Table 5: Allowed Common measurement type and Report characteristics type combinations

[TDD - If the common measurement type requires the Time Slot Information but the [3.84Mcps TDD - *Time Slot* IE] [1.28Mcps TDD – *Time Slot LCR* IE] is not provided in the COMMON MEASUREMENT INITIATION REQUEST message the RNS₂ shall regard the Common Measurement Initiation procedure as failed.]

If the *SFN* IE is included in the COMMON MEASUREMENT INITIATION REQUEST message and the *Report Characteristics* IE is other than "Periodic", "On Demand" or "On Modification", the RNS₂ shall regard the Common Measurement Initiation procedure as failed.

8.5.2.4.1 Abnormal Conditions for lur-g

The measurements which can be requested on the Iur and Iur-g interfaces are shown in the table below marked with "X".

Table 6: Allowed Common measurement type on lur and lur-g interfaces

Common Measurement Type	Interface				
	lur	lur-g			
Received total wide band power	Х				
Transmitted Carrier Power	Х				
UL Timeslot ISCP	Х				
Load	Х	Х			
UTRAN GPS Timing of Cell Frames for LCS	Х				
SFN-SFN Observed Time	Х				
Difference					
RT load	Х	Х			
NRT load Information	X	X			

If the RNC_2 receives from the BSS_1 a COMMON MEASUREMENT INITIATION REQUEST message where a measurement, which is not applicable on the Iur-g interface, is requested, the RNC_2 shall regard the Common Measurement Initiation procedure as failed.

If the BSS_2 receives from the BSS_1 / RNC_1 a COMMON MEASUREMENT INITIATION REQUEST message where a measurement, which is not applicable on the Iur-g interface, is requested, the BSS_2 shall regard the Common Measurement Initiation procedure as failed.

If the RNC₂ receives from the BSS₁ a COMMON MEASUREMENT INITIATION REQUEST message where the *SFN reporting indicator* IE is set to "FN Reporting Required", the RNC₂ shall ignore that IE.

If the BSS₂ receives from the BSS₁/RNC₁ a COMMON MEASUREMENT INITIATION REQUEST message where the *SFN reporting indicator* IE is set to "FN Reporting Required", the BSS₂ shall ignore that IE.

The allowed combinations of the Common measurement type and Report characteristics type are shown in the table in section 8.5.2.4 marked with "X". For not allowed combinations, the RNC_2/BSS_2 shall regard the Common Measurement Initiation procedure as failed.

8.5.3 Common Measurement Reporting

8.5.3.1 General

This procedure is used by an RNC to report the result of measurements requested by another RNC using the Common Measurement Initiation.

This procedure uses the signalling bearer connection for the relevant Distant RNC Context.

8.5.3.2 Successful Operation

Figure 30C: Common Measurement Reporting procedure, Successful Operation

If the requested measurement reporting criteria are met, the RNC_2 shall initiate a Measurement Reporting procedure. Unless specified below, the meaning of the parameters are given in other specifications.

The *Measurement ID* IE shall be set to the Measurement ID provided by RNC_1 when initiating the measurement with the Common Measurement Initiation procedure.

If the achieved measurement accuracy does not fulfil the given accuracy requirement, the Measurement not available shall be reported.

For measurements included in the *Successful Neighbouring Cell SFN-SFN Observed Time Difference Measurement Information* IE, the RNC₂ shall include the *SFN-SFN Quality* IE and the *SFN-SFN Drift Rate Quality* IE if available.

If the Common Measurement Type provided by RNC_1 when initiating the measurement with the Common Measurement Initiation procedure was "UTRAN GPS Timing of Cell Frames for UE Positioning", then the RNC_2 shall include in the $T_{UTRAN-GPS}$ Measurement Value Information IE the $T_{UTRAN-GPS}$ Quality IE and the $T_{UTRAN-GPS}$ Drift Rate Quality IE, if available.

8.5.3.2.1 Successful Operation for lur-g

If the requested measurement reporting criteria are met, the RNC₂/BSS₂ shall initiate a Measurement Reporting procedure. Unless specified below, the meaning of the parameters are given in other specifications.

The *Common Measurement ID* IE shall be set to the Common Measurement ID provided by RNC₁/BSS₁ when initiating the measurement with the Common Measurement Initiation procedure.

8.5.3.3 Abnormal Conditions

9.2.1.52C SFN-SFN Measurement Value Information

The SFN-SFN Measurement Value Information IE indicates the measurement result related to SFN-SFN Observed Time Difference measurements as well as other related information.

IE/Group Name	Presence	Range	IE Type and Reference	Semantics Description
Successful Neighbouring cell SFN-SFN Observed Time Difference Measurement Information		1 <maxnoofmeasn Cell></maxnoofmeasn 		
>UTRAN Cell Identifier			9.2.1.71	
>SFN-SFN Value	М		9.2.1.77	
>SFN-SFN Quality	0		INTEGER(0. .255)	Indicates the standard deviation (std) of the SFN-SFN otd (observed time difference) measurements in 1/16 chip. SFN-SFN Quality = $\sqrt{E[(x-\mu)^2]}$ = std of reported SFN-SFN Value, where x is the reported SFN- SFN Value and $\mu = E[x]$ is the expectation value of x.
>SFN-SFN Drift Rate	М		INTEGER(- 100100)	Indicates the SFN-SFN drift rate in 1/256 chip per second. A positive value indicates that the Reference cell clock is running at a greater frequency than the measured neighbouring cell.
>SFN-SFN Drift Rate Quality	<u>O</u> M		INTEGER(0. .100)	Indicates the standard deviation (std) of the SFN-SFN drift rate measurements in 1/256 chip per second. SFN-SFN Drift Rate Quality = $\sqrt{E[(x-\mu)^2]}$ = std of reported SFN-SFN Drift Rate, where x is the reported SFN- SFN Drift Rate and $\mu = E[x]$ is the expectation value of x.
>SFN-SFN Measurement Time Stamp	М		9.2.1.76	
Unsuccessful Neighbouring cell SFN- SFN Observed Time Difference Measurement Information		0 <maxnoofmeasn Cell-1></maxnoofmeasn 		
>UTRAN Cell Identifier	M		9.2.1.71	

Range bound	Explanation
maxnoofMeasNCell	Maximum number of neighbouring cells on which
	measurements can be performed.

9.2.1.59D T_{UTRAN-GPS} Measurement Value Information

The T_{UTRAN-GPS} *Measurement Value Information* IE indicates the measurement results related to the UTRAN GPS Timing of Cell Frames for UE Positioning measurements.

IE/Group Name	Presence	Range	IE Type and Reference	Semantics Description
Tutran-gps		1		Indicates the UTRAN GPS Timing of Cell Frames for UE Positioning. According to mapping in [23] and [24]; significant values range from 0 to 37158911999999.
>MS	М		INTEGER (016383)	Most Significant Part
>LS	М		INTEGER (04294967 295)	Least Significant Part
T _{UTRAN-GPS} Quality	<u>O</u> M		INTEGER(0. .255)	Indicates the standard deviation (std) of the T _{UTRAN-GPS} measurements in 1/16 chip. T _{UTRAN-GPS} Quality = $\sqrt{E[(x-\mu)^2]}$ = std of reported T _{UTRAN-GPS} Value, where x is the reported T _{UTRAN-GPS} Value and μ = E[x] is the expectation value of x.
T _{UTRAN-GPS} Drift Rate	М		INTEGER(- 5050)	Indicates the T _{UTRAN-GPS} drift rate in 1/256 chip per second. A positive value indicates that the UTRAN clock is running at a lower frequency than GPS clock.
T _{UTRAN-GPS} Drift Rate Quality	<u>O</u> M		INTEGER(0. .50)	Indicates the standard deviation (std) of the T _{UTRAN-GPS} drift rate measurements in 1/256 chip per second. T _{UTRAN-GPS} Drift Rate Quality = $\sqrt{E[(x-\mu)^2]}$ = std of reported T _{UTRAN-GPS} Drift Rate, where x is the reported T _{UTRAN-GPS} Drift Rate and $\mu = E[x]$ is the expectation value of x.

CR page 14

9.3.4 Information Elements Definitions

UNCHANGED TEXT IS REMOVED

}

```
SFNSFNMeasurementValueInformation ::= SEQUENCE {
    successfullNeighbouringCellSFNSFNObservedTimeDifferenceMeasurementInformation
                                                                                          SEQUENCE (SIZE(1..maxNrOfMeasNCell)) OF
        SEQUENCE {
            uC-ID
                        UC-ID.
            sFNSFNValue
                                         SFNSFNValue,
            sFNSFNQuality
                                         SFNSFNQuality
                                                                          OPTIONAL,
            sFNSFNDriftRate
                                         SFNSFNDriftRate,
            sFNSFNDriftRateQuality
                                         SFNSFNDriftRateQuality,
            sFNSFNTimeStampInformation SFNSFNTimeStampInformation
                                                                          OPTIONAL,
            iE-Extensions
                                         ProtocolExtensionContainer { {
SuccessfullNeighbouringCellSFNSFNObservedTimeDifferenceMeasurementInformationItem-ExtIEs } }
                                                                                                  OPTIONAL.
            . . .
        },
    unsuccessfull {\tt NeighbouringCellSFNSFNObservedTimeDifferenceMeasurementInformation}
                                                                                          SEQUENCE (SIZE(0..maxNrOfMeasNCell-1)) OF
        SEOUENCE ·
            uC-ID
                        UC-ID.
                                ProtocolExtensionContainer { {    UnsuccessfullNeighbouringCellSFNSFNObservedTimeDifferenceMeasurementInformationItem-
            iE-Extensions
ExtIEs} }
                OPTIONAL,
            . . .
        },
    iE-Extensions
                        ProtocolExtensionContainer { { SFNSFNMeasurementValueInformationItem-ExtIEs } }
                                                                                                             OPTIONAL.
    . . .
}
SFNSFNMeasurementValueInformationItem-ExtIEs RNSAP-PROTOCOL-EXTENSION ::= {
    . . .
UNCHANGED TEXT IS REMOVED
TUTRANGPSMeasurementValueInformation ::= SEQUENCE {
        tUTRANGPS
                                         TUTRANGPS,
        tUTRANGPSQuality
                                         TUTRANGPSQuality
                                                                          OPTIONAL,
        tUTRANGPSDriftRate
                                         TUTRANGPSDriftRate,
        tUTRANGPSDriftRateQuality
                                        TUTRANGPSDriftRateQuality
                                                                          OPTIONAL,
        iEe-Extensions
                                         ProtocolExtensionContainer { { TUTRANGPSMeasurementValueInformationItem-ExtIEs } }
                                                                                                                               OPTIONAL,
        . . .
}
TUTRANGPSMeasurementValueInformationItem-ExtIEs RNSAP-PROTOCOL-EXTENSION ::= {
    . . .
```

UNCHANGED TEXT IS REMOVED

CR page 15

3GPP TSG-RAN3 Meeting #31 Stockholm, Sweden, 19th – 23rd August 2002

Tdoc **#***R*3-022137

CHANGE REQUEST											
¥		25.433 CR 743 #1	rev	-	ж	Current vers	ion:	4.5.0	ж		
For <u>HELP</u> or	า นร	sing this form, see bottom of this pa	age or l	ook	at th	e pop-up text	over	the ¥ syr	nbols.		
Proposed change affects: UICC apps# ME Radio Access Network X Core Network											
Title:	ж	Quality IEs for the UE Positioning	measu	irem	ents						
Source:	Ж	RAN WG3									
							10				
Work item code:	ж	I E14				Date: #	19/	08/2002			
Category:	ж	F				Release: ೫	RE	L-4			
		Use <u>one</u> of the following categories: F (correction) A (corresponds to a correction in B (addition of feature), C (functional modification of feature) D (editorial modification) Detailed explanations of the above cate be found in 3GPP <u>TR 21.900</u> .	an earl ure) egories	<i>ier re</i> can	eleas	Use <u>one</u> of 2 (R96 (R97 (R98 (R99 (Rel-4 (Rel-5 (Rel-6)	the fc (GSN (Rele (Rele (Rele (Rele (Rele <u>(Rele</u>	A Phase 2) (A Phase 2) (ase 1996) (ase 1997) (ase 1998) (ase 1999) (ase 4) (ase 5) (ase 6)	eases:		

Reason for change: ೫	Currently, there are existing requirements on the accuracy of the measurements in RAN4 specifications. These Quality IEs are tools for optimising the results of UE Positioning algorithms in the RNC by providing more accurate information on the quality of the measurement. As such, they shouldn't be mandatory in the protocol.
Summary of change: #	The Quality IEs are made optional in the protocol and appropriate procedure text is added
	Impact Analysis:
	Impact assessment towards the previous version of the specification (same release): this CR has isolated impact on the previous version of the specification (same release) because only one function is impacted. This CR has an impact under the protocol point of view. The impact can be considered as isolated as it affects only one function, namely the report of measurements for UE Positioning. This CR is backwards compatible towards Release 99 as it affects only Information Elements introduced in Release 4.
Consequences if #	The way the protocol is implemented will mandate in the Node B implementation
not approved:	of mechanisms to estimate parameters suitable only for optimisation of the performances.
0	
Clauses affected: #	δ.Ζ.δ.Ζ, δ.Ζ.Ϋ.Ζ, Ϋ.Ζ.1.53E, Ϋ.Ζ.1.64A, Ϋ.3.4
	YN

Other specs	Ж	X		Other core specifications #	25.433 v 5.1.0 CR 744 25.423 v 4.5.0 CR 721
Affected:	-		X X	Test specifications O&M Specifications	25.423 v 5.2.0 CR 722
Other comments:	ж			•	

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at <u>http://www.3gpp.org/specs/CR.htm</u>. Below is a brief summary:

- 1) Fill out the above form. The symbols above marked # contain pop-up help information about the field that they are closest to.
- 2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under <u>ftp://ftp.3gpp.org/specs/</u> For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.
- 3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

8.2.8 Common Measurement Initiation

8.2.8.1 General

This procedure is used by a CRNC to request the initiation of measurements on common resources in a Node B.

8.2.8.2 Successful Operation

Figure 11: Common Measurement Initiation procedure, Successful Operation

The procedure is initiated with a COMMON MEASUREMENT INITIATION REQUEST message sent from the CRNC to the Node B using the Node B Control Port.

Upon reception, the Node B shall initiate the requested measurement according to the parameters given in the request. Unless specified below, the meaning of the parameters are given in other specifications.

[TDD - If the [3.84Mcps TDD – *Time Slot* IE] [1.28Mcps TDD – *Time Slot LCR* IE] is present in the COMMON MEASUREMENT INITIATION REQUEST message, the measurement request shall apply to the requested time slot individually.]

[FDD - If the *Spreading Factor* IE is present in the COMMON MEASUREMENT INITIATION REQUEST message, the measurement request shall apply to the PCPCHs whose minimum allowed spreading factor (Min UL Channelisation Code Length) is equal to the value of the *Spreading Factor* IE.

If the *Common Measurement Type* IE is not set to "SFN-SFN Observed Time Difference" and the *SFN Reporting Indicator* IE is set to "FN Reporting Required", the *SFN* IE shall be included in the COMMON MEASUREMENT REPORT message or in the COMMON MEASUREMENT RESPONSE message, the latter only in the case the *Report Characteristics* IE is set to "On Demand". The reported SFN shall be the SFN at the time when the measurement value was reported by the layer 3 filter, referred to as point C in the measurement model [25]. If the *Common Measurement Type* IE is set to "SFN-SFN Observed Time Difference" and the *SFN Reporting Indicator* IE is ignored.

Common measurement type

If the *Common Measurement Type* IE is set to "SFN-SFN Observed Time Difference", then the Node B shall initiate the SFN-SFN Observed Time Difference measurements between the reference cell identified by *C-ID* IE and the neighbouring cells identified by the *UTRAN Cell Identifier(UC-Id)* IE.

Report characteristics

The Report Characteristics IE indicates how the reporting of the measurement shall be performed. See also Annex B.

If the *Report Characteristics* IE is set to "On-Demand" and if the *SFN* IE is not provided, the Node B shall return the result of the requested measurement immediately. If the *SFN* IE is provided, it indicates the frame for which the measurement value shall be provided. The provided measurement value shall be the one reported by the layer 3 filter, referred to as point C in the measurement model [25].

If the *Report Characteristics* IE is set to "Periodic", the Node B shall periodically initiate a Common Measurement Reporting procedure for this measurement, with the requested report frequency. If the *Common Measurement Type* IE is set to "SFN-SFN Observed Time Difference", all the available measurement results shall be reported in the *Successful Neighbouring Cell SFN-SFN Observed Time Difference Measurement Information* IE in the *SFN-SFN Measurement Value Information* IE and the Node B shall indicate in the *Unsuccessful Neighbouring Cell SFN-SFN Observed Time Difference Measurement Information* IE all the remaining neighbouring cells with no measurement result available in the Common Measurement Reporting procedure. If the *SFN* IE is provided, it indicates the frame for which the first measurement value of a periodic reporting shall be provided. The provided measurement value shall be the one reported by the layer 3 filter, referred to as point C in the measurement model [25].

If the *Report Characteristics* IE is set to "Event A", the Node B shall initiate the Common Measurement Reporting procedure when the measured entity rises above the requested threshold and stays there for the requested hysteresis time. If the *Measurement Hysteresis Time* IE is not included, the Node B shall use the value zero for the hysteresis time.

If the *Report Characteristics* IE is set to "Event B", the Node B shall initiate the Common Measurement Reporting procedure when the measured entity falls below the requested threshold and stays there for the requested hysteresis time. If the *Measurement Hysteresis Time* IE is not included, the Node B shall use the value zero for the hysteresis time.

If the *Report Characteristics* IE is set to "Event C", the Node B shall initiate the Common Measurement Reporting procedure when the measured entity rises by an amount greater than the requested threshold within the requested time. After having reported this type of event, the next C event reporting for the same measurement cannot be initiated before the rising time specified by the *Measurement Change Time* IE has elapsed since the previous event reporting.

If the *Report Characteristics* IE is set to "Event D", the Node B shall initiate the Common Measurement Reporting procedure when the measured entity falls by an amount greater than the requested threshold within the requested time. After having reported this type of event, the next D event reporting for the same measurement cannot be initiated before the falling time specified by the *Measurement Change Time* IE has elapsed since the previous event reporting.

If the *Report Characteristics* IE is set to "Event E", the Node B shall initiate the Common Measurement Reporting procedure when the measured entity rises above the 'Measurement Threshold 1' and stays there for the 'Measurement Hysteresis Time' (Report A). When the conditions for Report A are met and the *Report Periodicity* IE is provided, the Node B shall initiate the Common Measurement Reporting procedure periodically. If the conditions for Report A have been met and the measured entity falls below the 'Measurement Threshold 2' and stays there for the 'Measurement Hysteresis Time', the Node B shall initiate the Common Measurement Reporting procedure (Report B) as well as terminating any corresponding periodic reporting. If the *Measurement Threshold 2* IE is not present, the Node B shall use the value of the *Measurement Threshold 1* IE instead. If the *Measurement Hysteresis Time* IE is not included, the Node B shall use the value zero as hysteresis times for both Report A and Report B.

If the *Report Characteristics* IE is set to "Event F", the Node B shall initiate the Common Measurement Reporting procedure when the measured entity falls below the 'Measurement Threshold 1' and stays there for the 'Measurement Hysteresis Time' (Report A). When the conditions for Report A are met and the *Report Periodicity* IE is provided the Node B shall also initiate the Common Measurement Reporting procedure periodically. If the conditions for Report A have been met and the measured entity rises above the 'Measurement Threshold 2' and stays there for the 'Measurement Hysteresis Time', the Node B shall initiate the Common Measurement Reporting procedure (Report B) as well as terminating any corresponding periodic reporting. If the *Measurement Threshold 2* IE is not present, the Node B shall use the value of the *Measurement Threshold 1* IE instead. If the *Measurement Hysteresis Time* IE is not included, the Node B shall use the value zero as hysteresis times for both Report A and Report B.

If the *Report Characteristics* IE is set to "On Modification" and if the *SFN* IE is not provided, the Node B shall report the result of the requested measurement immediately. If the *SFN* IE is provided, it indicates the frame for which the measurement value shall be provided. The provided measurement value shall be the one reported by the layer 3 filter, referred to as point C in the measurement model [25]. Then, the Node B shall initiate the Common Measurement Reporting procedure in accordance to the following conditions:

- 1. If the Common Measurement Type IE is set to "UTRAN GPS Timing of Cell Frames for UE Positioning":
 - If the $T_{UTRAN-GPS}$ Change Limit IE is included in the $T_{UTRAN-GPS}$ Measurement Threshold Information IE, the Node B shall each time a new measurement result is received after point C in the measurement model [25], calculate the change of $T_{UTRAN-GPS}$ value (F_n). The Node B shall initiate the Common Measurement Reporting procedure and set n equal to zero when the absolute value of F_n rises above the threshold indicated by the $T_{UTRAN-GPS}$ Change Limit IE. The change of $T_{UTRAN-GPS}$ value (F_n) is calculated according to the following:

$$F_n = 0 \text{ for } n = 0$$

$$F_n = (M_n - M_{n-1}) \mod 3715291200000 - ((SFN_n - SFN_{n-1}) \mod 4096) *10*3.84*10^{3}*16 + F_{n-1}$$

for n>0

 F_n is the change of the T_{UTRAN-GPS} value expressed in unit [1/16 chip] when n measurement results have been received after the first Common Measurement Reporting at initiation or after the last event was triggered.

 M_n is the latest measurement result received after point C in the measurement model [25], measured at SFN_n.

 M_{n-1} is the previous measurement result received after point C in the measurement model [25], measured at SFN_{n-1}.

 M_1 is the first measurement result received after point C in the measurement model [25], after the first Common Measurement Reporting at initiation or after the last event was triggered.

 M_0 is equal to the value reported in the first Common Measurement Reporting at initiation or in the Common Measurement Reporting when the event was triggered.

- If the *Predicted* $T_{UTRAN-GPS}$ *Deviation Limit* IE is included in the $T_{UTRAN-GPS}$ *Measurement Threshold Information* IE, the Node B shall each time a new measurement result is received after point C in the measurement model [25], update the P_n and F_n The Node B shall initiate the Common Measurement Reporting procedure and set n equal to zero when F_n rises above the threshold indicated by the *Predicted* $T_{UTRAN-GPS}$ *Deviation Limit* IE. The P_n and F_n are calculated according to the following:

 $P_n = b$ for n = 0

 $P_n = ((a/16) * ((SFN_n - SFN_{n-1}) \mod 4096)/100 + ((SFN_n - SFN_{n-1}) \mod 4096) * 10 * 3.84 * 10^{3} * 16 + P_{n-1}) \mod 37158912000000 \quad \text{for } n > 0$

 $F_n = min((M_n - P_n) \mod 37158912000000, (P_n - M_n) \mod 37158912000000)$ for n > 0

 P_n is the predicted T_{UTRAN-GPS} value when n measurement results have been received after the first Common Measurement Reporting at initiation or after the last event was triggered.

a is the last reported T_{UTRAN-GPS} Drift Rate value.

b is the last reported T_{UTRAN-GPS} value.

 F_n is the deviation of the last measurement result from the predicted T_{UTRAN-GPS} value (P_n) when n measurements have been received after the first Common Measurement Reporting at initiation or after the last event was triggered.

 M_n is the latest measurement result received after point C in the measurement model [25], measured at SFN_n.

 M_1 is the first measurement result received after point C in the measurement model [25], after the first Common Measurement Reporting at initiation or after the last event was triggered.

The T_{UTRAN-GPS} Drift Rate is determined by the Node B in an implementation-dependent way after point B in the measurement model [26].

- 2. If the Common Measurement Type IE is set to "SFN-SFN Observed Time Difference":
 - If the *SFN-SFN Change Limit* IE is included in the *SFN-SFN Measurement Threshold Information* IE, the Node B shall each time a new measurement result is received after point C in the measurement model [25], calculate the change of SFN-SFN value (F_n). The Node B shall initiate the Common Measurement Reporting procedure in order to report the particular SFN-SFN measurment which has triggred the event and set n equal to zero when F_n rises above the threshold indicated by the *SFN-SFN Change Limit* IE. The change of the SFN-SFN value is calculated according to the following:

 $F_n=0$ for n=0

 $[FDD - F_n = (M_n - a) \mod 614400 \quad for \ n > 0]$ $[TDD - F_n = (M_n - a) \mod 40960 \quad for \ n > 0]$

 F_n is the change of the SFN-SFN value expressed in unit [1/16 chip] when n measurement results have been received after the first Common Measurement Reporting at initiation or after the last event was triggered.

a is the last reported SFN-SFN.

 M_n is the latest measurement result received after point C in the measurement model [25], measured at SFN_n.

 M_1 is the first measurement result received after point C in the measurement model [25] after the first Common Measurement Reporting at initiation or after the last event was triggered.

- If the *Predicted SFN-SFN Deviation Limit* IE is included in the *SFN-SFN Measurement Threshold Information* IE, the Node B shall each time a new measurement result is received after point C in the measurement model [25], update the P_n and F_n. The Node B shall initiate the Common Measurement Reporting procedure in order to report the particular SFN-SFN measurement which has triggered the event and set n equal to zero when the F_n rises above the threshold indicated by the *Predicted SFN-SFN Deviation Limit* IE. The P_n and F_n are calculated according to the following:

 $P_n = b$ for n = 0

 $[FDD - P_n = ((a/16) * ((SFN_n - SFN_{n-1}) \mod 4096)/100 + P_{n-1}) \mod 614400 \quad for \ n>0]$ $[FDD - F_n = \min((M_n - P_n) \mod 614400, (P_n - M_n) \mod 614400) \quad for \ n>0]$

 $[TDD - P_n = ((a/16) * (15*(SFN_n - SFN_{n-1})mod \ 4096 + (TS_n - TS_{n-1}))/1500 + P_{n-1}) \ mod \ 40960 \ for \ n>0]$

 $[TDD - F_n = min((M_n - P_n) \mod 40960, (P_n - M_n) \mod 40960) \quad for n > 0]$

 P_n is the predicted *SFN-SFN* value when n measurement results have been received after the first Common Measurement Reporting at initiation or after the last event was triggered.

a is the last reported SFN-SFN Drift Rate value.

b is the last reported SFN-SFN value.

abs denotes the absolute value.

 F_n is the deviation of the last measurement result from the predicted *SFN-SFN* value (P_n) when n measurements have been received after the first Common Measurement Reporting at initiation or after the last event was triggered.

 M_n is the latest measurement result received after point C in the measurement model [25], measured at [TDD - the Time Slot TS_n of] the Frame SFN_n.

 M_1 is the first measurement result received after point C in the measurement model [25] after the first Common Measurement Reporting at initiation or after the last event was triggered.

The SFN-SFN Drift Rate is determined by the Node B in an implementation-dependent way after point B in the measurement model [26].

If the *Report Characteristics* IE is not set to "On Demand", the Node B is required to perform reporting for a common measurement object, in accordance with the conditions provided in the COMMON MEASUREMENT INITIATION REQUEST message, as long as the object exists. If no common measurement object(s) for which a measurement is defined exists anymore, the Node B shall terminate the measurement locally, i.e. without reporting this to the CRNC.

If at the start of the measurement, the reporting criteria are fulfilled for any of Event A, Event B, Event E or Event F, the Node B shall initiate the Common Measurement Reporting procedure immediately, and then continue with the measurements as specified in the COMMON MEASUREMENT INITIATION REQUEST message.

Higher layer filtering

The *Measurement Filter Coefficient* IE indicates how filtering of the measurement values shall be performed before measurement event evaluation and reporting.

The averaging shall be performed according to the following formula.

 $F_n = (1-a) \cdot F_{n-1} + a \cdot M_n$

The variables in the formula are defined as follows:

 F_n is the updated filtered measurement result

 F_{n-1} is the old filtered measurement result

 M_n is the latest received measurement result from physical layer measurements, the unit used for M_n is the same unit as the reported unit in the COMMON MEASUREMENT INITIATION RESPONSE, COMMON MEASUREMENT REPORT messages or the unit used in the event evaluation (i.e. same unit as for Fn)

 $a = 1/2^{(k/2)}$, where k is the parameter received in the *Measurement Filter Coefficient* IE. If the *Measurement Filter Coefficient* IE is not present, *a* shall be set to 1 (no filtering)

In order to initialise the averaging filter, F_0 is set to M_1 when the first measurement result from the physical layer measurement is received.

Common measurement accuracy

If the *Common Measurement Type* IE is set to "UTRAN GPS Timing of Cell Frames for UE Positioning", then the Node B shall use the *UTRAN GPS Timing Measurement Accuracy Class* IE included in the *Common Measurement Accuracy* IE according to the following:

- If the *UTRAN GPS Timing Measurement Accuracy Class* IE indicates "Class A", then the Node B shall perform the measurement with highest supported accuracy within the accuracy classes A, B and C.
- If the *UTRAN GPS Timing Measurement Accuracy Class* IE indicates "Class B", then the Node B shall perform the measurement with highest supported accuracy within the accuracy classes B and C.
- If the *UTRAN GPS Timing Measurement Accuracy Class* IE indicates "Class C", then the Node B shall perform the measurements with the accuracy according to class C.

Response message

If the Node B was able to initiate the measurement requested by the CRNC, it shall respond with the COMMON MEASUREMENT INITIATION RESPONSE message sent over the Node B Control Port. The message shall include the same Measurement ID that was used in the measurement request. Only in the case where the *Report Characteristics* IE is set to "On Demand" or "On Modification", the COMMON MEASUREMENT INITIATION RESPONSE message shall contain the measurement result and also the *Common Measurement Achieved Accuracy* IE if the *Common Measurement Type* IE is set to "UTRAN GPS Timing of Cell Frames for UE Positioning".

If the *Common Measurement Type* IE is set to "SFN-SFN Observed Time Difference" and the *Report Characteristics* IE is set to "On Demand" or "On Modification", all the available measurement results shall be reported in the *Successful Neighbouring Cell SFN-SFN Observed Time Difference Measurement Information* IE in the *SFN-SFN Measurement Value Information* IE and the Node B shall indicate in the *Unsuccessful Neighbouring Cell SFN-SFN Observed Time Difference Measurement Information* Cell SFN-SFN Observed Time Difference Measurement results with no measurement result available in the COMMON MEASUREMENT INITIATION RESPONSE message. For all available measurement results, the Node B shall include in the *Successful Neighbouring Cell SFN-SFN Observed Time Difference Measurement Information* IE the *SFN-SFN Observed Time Difference Measurement Time* Difference Measurement results, the Node B shall include in the *Successful Neighbouring Cell SFN-SFN Observed Time Difference Measurement Information* IE the *SFN-SFN Observed Time* Difference Measurement Information IE shall include in the *SFN-SFN Drift Rate Quality* IE, if available.

If the Common Measurement Type IE is set to "UTRAN GPS Timing of Cell Frames for UE Positioning" and the Report Characteristics IE is set to "On Demand" or "On Modification", the Node B shall include in the T_{UTRAN-GPS} Measurement Value Information IE the T_{UTRAN-GPS} Quality IE and the T_{UTRAN-GPS} Drift Rate Quality IE, if available.

8.2.8.3 Unsuccessful Operation

Figure 12: Common Measurement Initiation procedure, Unsuccessful Operation

If the requested measurement cannot be initiated, the Node B shall send a COMMON MEASUREMENT INITIATION FAILURE message over the Node B Control Port. The message shall include the same Measurement ID that was used in the COMMON MEASUREMENT INITIATION REQUEST message and the *Cause* IE set to an appropriate value.

Typical cause values are as follows:

Radio Network Layer Cause

- Measurement not supported for the object.
- Measurement Temporarily not Available

8.2.8.4 Abnormal Conditions

If the Common Measurement Type received in the *Common Measurement Type* IE is not defined in ref. [4] or [5] to be measured on the Common Measurement Object Type received in the COMMON MEASUREMENT INITIATION REQUEST message, the Node B shall regard the Common Measurement Initiation procedure as failed.

[TDD - If the Common Measurement Type requires the Time Slot Information but the [3.84Mcps TDD - *Time Slot* IE] [1.28Mcps TDD - *Time Slot LCR* IE] is not present in the COMMON MEASUREMENT INITIATION REQUEST message, the Node B shall regard the Common Measurement Initiation procedure as failed.]

If the COMMON MEASUREMENT INITIATION REQUEST message contains the *SFN-SFN Measurement Threshold Information* IE (in the *Measurement Threshold* IE contained in the *Report Characteristics* IE) and it does not contain at least one IE, the Node B shall reject the procedure using the COMMON MEASUREMENT INITIATION FAILURE message.

If the COMMON MEASUREMENT INITIATION REQUEST message contains the $T_{UTRAN-GPS}$ Measurement Threshold Information IE (in the Measurement Threshold IE contained in the Report Characteristics IE) and it does not contain at least one IE, the Node B shall reject the procedure using the COMMON MEASUREMENT INITIATION FAILURE message.

If the *Common Measurement Type* IE is set to "SFN-SFN Observed Time Difference", but the *Neighbouring Cell Measurement Information* IE is not received in the COMMON MEASUREMENT INITIATION REQUEST message, the Node B shall regard the Common Measurement Initiation procedure as failed.

If the *Common Measurement Type* IE is set to "UTRAN GPS Timing of Cell Frames for UE Positioning", but the $T_{UTRAN-GPS}$ Measurement Accuracy Class IE in the Common Measurement Accuracy IE is not received in the COMMON MEASUREMENT INITIATION REQUEST message, the Node B shall regard the Common Measurement Initiation procedure as failed.

The allowed combinations of the Common Measurement Type and Report Characteristics Type are shown in the table below marked with "X". For not allowed combinations, the Node B shall regard the Common Measurement Initiation procedure as failed.

Common	Report Characteristics Type								
Measurement Type	On Demand	Periodic	Event A	Event B	Event C	Event D	Event E	Event F	On Modification
Received Total Wide Band Power	Х	х	Х	Х	Х	Х	Х	Х	
Transmitted Carrier Power	X	X	Х	Х	Х	Х	Х	х	
Acknowledged PRACH Preambles	Х	Х	х	Х	Х	Х	Х	х	
UL Timeslot ISCP	Х	Х	Х	Х	Х	Х	Х	Х	
Acknowledged PCPCH Access Preambles	X	X	X	X	X	X	X	X	
Detected PCPCH Access Preambles	х	х	х	Х	Х	Х	Х	х	
UTRAN GPS Timing of Cell Frames for UE Positioning	X	X							X
SFN-SFN Observed Time Difference	X	X							X

Table 4: Allowed Common Measurement Type and Report Characteristics Type combinations

If the *SFN* IE is included in the COMMON MEASUREMENT INITIATION REQUEST message and the *Report Characteristics* IE is other than "Periodic", "On Demand" or "On Modification", the Node B shall regard the Common Measurement Initiation procedure as failed.

8.2.9 Common Measurement Reporting

8.2.9.1 General

This procedure is used by the Node B to report the result of measurements requested by the CRNC with the Common Measurement Initiation procedure.

8.2.9.2 Successful Operation

Figure 13: Common Measurement Reporting procedure, Successful Operation

If the requested measurement reporting criteria are met, the Node B shall initiate the Common Measurement Reporting procedure. The COMMON MEASUREMENT REPORT message shall use the Node B Control Port.

The *Measurement ID* IE shall be set to the Measurement ID provided by the CRNC when initiating the measurement with the Common Measurement Initiation procedure.

If the achieved measurement accuracy does not fulfil the given accuracy requirement (see ref.[22] and [23]), the Measurement not available shall be reported.

For measurements included in the *Successful Neighbouring Cell SFN-SFN Observed Time Difference Measurement Information* IE, the Node B shall include the *SFN-SFN Quality* IE and the *SFN-SFN Drift Rate Quality* IE if available.

If the Common Measurement Type provided by RNC when initiating the measurement with the Common Measurement Initiation procedure was "UTRAN GPS Timing of Cell Frames for UE Positioning", then the Node B shall include in the *T_{UTRAN-GPS} Measurement Value Information* IE the *T_{UTRAN-GPS} Quality* IE and the *T_{UTRAN-GPS} Drift Rate Quality* IE, if available.

8.2.9.3 Abnormal Conditions

9.2.1.53E SFN-SFN Measurement Value Information

The *SFN-SFN Measurement Value Information* IE indicates the measurement result related to SFN-SFN Observed Time Difference measurements.

IE/Group Name	Presence	Range	IE Type and Reference	Semantics Description
Successful Neighbouring Cell SFN-SFN Observed Time Difference Measurement Information		1 <maxno MeasNCell ></maxno 		
>UC-Id	М		9.2.1.65B	
>SFN-SFN Value	М		9.2.1.53F	
>SFN-SFN Quality	0		INTEGER (0255)	Indicates the standard deviation (std) of the SFN-SFN Observed Time Difference measurements in 1/16 chip. SFN-SFN Quality = $\sqrt{E[(x-\mu)^2]}$ = std of reported SFN-SFN Value, where x is the reported SFN-SFN Value and $\mu = E[x]$ is the expectation value of x.
>SFN-SFN Drift Rate	М		INTEGER (-100+100)	Indicates the SFN-SFN drift rate in 1/256 chip per second. A positive value indicates that the Reference cell clock is running at a greater frequency than the measured neighbouring cell.
>SFN-SFN Drift Rate Quality	<u>O</u> M		INTEGER (0100)	Indicates the standard deviation (std) of the SFN-SFN drift rate measurements in 1/256 chip per second. SFN-SFN Drift Rate Quality = $\sqrt{E[(x-\mu)^2]}$ = std of reported SFN-SFN Drift Rate, where x is the reported SFN-SFN Drift Rate and $\mu = E[x]$ is the expectation value of x.
>SFN-SFN Measurement	М		9.2.1.53D	
Unsuccessful Neighbouring Cell SFN-SFN Observed Time Difference Measurement Information		0 <maxno MeasNCell -1></maxno 		
>UC-Id	M		9.2.1.65B	

Range Bound	Explanation				
maxnoMeasNCell	Maximum number of neighbouring cells that can be measured on.				

9.2.1.64A T_{UTRAN-GPS} Measurement Value Information

The T_{UTRAN-GPS} *Measurement Value Information* IE indicates the measurement results related to the UTRAN GPS Timing of Cell Frames for UE Positioning measurements.

IE/Group Name	Presence	Range	IE Type and	Semantics Description
			Reference	
Tutran-gps		1		Indicates the UTRAN GPS Timing of Cell Frames forUE Positioning. According to mapping in [22]. Significant values range from 0 to 37158911999999.
>MS	М		INTEGER (016383)	Most Significant Part
>LS	М		INTEGER (04294967295)	Least Significant Part
Tutran-gps Quality	<u>0</u> ₩		INTEGER (0255)	Indicates the standard deviation (std) of the T _{UTRAN-} _{GPS} measurements in 1/16 chip. T _{UTRAN-GPS} Quality = $\sqrt{E[(x-\mu)^2]}$ = std of reported T _{UTRAN-GPS} Value, where x is the reported T _{UTRAN-GPS} Value and $\mu = E[x]$ is the expectation value of x.
T _{UTRAN-GPS} Drift Rate	М		INTEGER (-50+50)	Indicates the T _{UTRAN-GPS} drift rate in 1/256 chip per second. A positive value indicates that the UTRAN clock is running at a lower frequency than GPS clock.
T _{UTRAN-GPS} Drift Rate Quality	<u>O</u> ₩		INTEGER (050)	Indicates the standard deviation (std) of the T _{UTRAN-} _{GPS} drift rate measurements in 1/256 chip per second. T _{UTRAN-GPS} Drift Rate Quality = $\sqrt{E[(x-\mu)^2]}$ = std of reported T _{UTRAN-GPS} Drift Rate, where x is the reported T _{UTRAN-GPS} Drift Rate and μ = E[x] is the expectation value of x.

CR page 13

9.3.4 Information Elements Definitions

UNCHANGED TEXT IS REMOVED

}

```
SFNSFNMeasurementValueInformation ::= SEQUENCE {
    successfullNeighbouringCellSFNSFNObservedTimeDifferenceMeasurementInformation
                                                                                          SEQUENCE (SIZE(1..maxNrOfMeasNCell)) OF
        SEOUENCE {
            uC-Id
                                        UC-Id.
            sFNSFNValue
                            SFNSFNValue,
            sFNSFNQuality
                                SFNSFNQuality
                                                                     OPTIONAL,
            sFNSFNDriftRate
                                SFNSFNDriftRate,
            sFNSFNDriftRateQuality
                                        SFNSFNDriftRateQuality
                                                                     OPTIONAL,
            sFNSFNTimeStampInformation
                                                     SFNSFNTimeStampInformation,
            iE-Extensions
                                ProtocolExtensionContainer { { SuccessfullNeighbouringCellSFNSFNObservedTimeDifferenceMeasurementInformationItem-
ExtIEs} }
                OPTIONAL,
            . . .
        },
    unsuccessfullNeighbouringCellSFNSFNObservedTimeDifferenceMeasurementInformation
                                                                                         SEQUENCE (SIZE(0..maxNrOfMeasNCell-1)) OF
        SEOUENCE ·
            uC-Id
                                        UC-Id.
            iE-Extensions
                                ProtocolExtensionContainer { {    UnsuccessfullNeighbouringCellSFNSFNObservedTimeDifferenceMeasurementInformationItem-
ExtIEs} }
                OPTIONAL,
                . . .
        },
    iE-Extensions
                        ProtocolExtensionContainer { { SFNSFNMeasurementValueInformationItem-ExtIEs } }
                                                                                                                         OPTIONAL.
    . . .
}
SFNSFNMeasurementValueInformationItem-ExtIEs NBAP-PROTOCOL-EXTENSION ::= {
    . . .
}
UNCHANGED TEXT IS REMOVED
TUTRANGPSMeasurementValueInformation ::= SEQUENCE {
        tUTRANGPS
                                        TUTRANGPS,
        tUTRANGPSQuality
                                        TUTRANGPSQuality
                                                                         OPTIONAL,
        tUTRANGPSDriftRate
                                        TUTRANGPSDriftRate,
        tUTRANGPSDriftRateQuality
                                        TUTRANGPSDriftRateQuality
                                                                         OPTIONAL,
        iE-Extensions
                                        ProtocolExtensionContainer { { TUTRANGPSMeasurementValueInformationItem-ExtIEs } }
                                                                                                                              OPTIONAL,
        . . .
}
TUTRANGPSMeasurementValueInformationItem-ExtIEs NBAP-PROTOCOL-EXTENSION ::= {
    . . .
```

UNCHANGED TEXT IS REMOVED

CR page 14

3GPP TSG-RAN3 Meeting #31 Stockholm, Sweden, 19th – 23rd August 2002

Tdoc **#***R*3-022138

CHANGE REQUEST									
x	25.433 CR 744 #rev - [#]	Current vers	^{ion:} 5.1.0 [#]						
For HELP on using this form, see bottom of this page or look at the pop-up text over the # symbols.									
Proposed chang	Proposed change affects: UICC apps# ME Radio Access Network X Core Network								
Title:	# Quality IEs for the UE Positioning measurements								
Source:	# RAN WG3								
Work item code:	# TEI4	<i>Date:</i>	22/08/2002						
Category:	 A Use <u>one</u> of the following categories: F (correction) A (corresponds to a correction in an earlier release B (addition of feature), C (functional modification of feature) D (editorial modification) Detailed explanations of the above categories can be found in 3GPP <u>TR 21.900</u>. 	Release: ¥ Use <u>one</u> of 2 9) R96 R97 R98 R99 Rel-4 Rel-5 Rel-6	REL-5 the following releases: (GSM Phase 2) (Release 1996) (Release 1997) (Release 1998) (Release 1999) (Release 4) (Release 4) (Release 5) (Release 6)						

Reason for change: #	Currently, there are existing requirements on the accuracy of the measurements in RAN4 specifications. These Quality IEs are tools for optimising the results of UE Positioning algorithms in the RNC by providing more accurate information on the quality of the measurement. As such, they shouldn't be mandatory in the protocol.							
Summary of change: #	The Quality IEs are made optional in the protocol and appropriate procedure text is added Impact Analysis: Impact assessment towards the previous version of the specification (same release): this CR has isolated impact on the previous version of the specification (same release) because only one function is impacted. This CR has an impact under the protocol point of view. The impact can be considered as isolated as it affects only one function, namely the report of measurements for UE Positioning.							
Consequences if % not approved:	The way the protocol is implemented will mandate in the Node B implementation of mechanisms to estimate parameters suitable only for optimisation of the performances.							
Clauses affected: #	8.2.8.2, 8.2.9.2, 9.2.1.53E, 9.2.1.64A, 9.3.4							
Other specs [#]	Y N X Other core specifications # 25.433 v 4.5.0 CR 743 25.423 v 4.5.0 CR 721							

Affected:	X Test specifications X O&M Specifications	25.423 v 5.2.0 CR 722
Other comments:	x	

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at <u>http://www.3gpp.org/specs/CR.htm</u>. Below is a brief summary:

- 1) Fill out the above form. The symbols above marked **#** contain pop-up help information about the field that they are closest to.
- 2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under <u>ftp://ftp.3gpp.org/specs/</u> For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.
- 3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

8.2.8 Common Measurement Initiation

8.2.8.1 General

This procedure is used by a CRNC to request the initiation of measurements on common resources in a Node B.

8.2.8.2 Successful Operation

Figure 11: Common Measurement Initiation procedure, Successful Operation

The procedure is initiated with a COMMON MEASUREMENT INITIATION REQUEST message sent from the CRNC to the Node B using the Node B Control Port.

Upon reception, the Node B shall initiate the requested measurement according to the parameters given in the request. Unless specified below, the meaning of the parameters are given in other specifications.

[TDD - If the [3.84Mcps TDD – *Time Slot* IE] [1.28Mcps TDD – *Time Slot LCR* IE] is present in the COMMON MEASUREMENT INITIATION REQUEST message, the measurement request shall apply to the requested time slot individually.]

[FDD - If the *Spreading Factor* IE is present in the COMMON MEASUREMENT INITIATION REQUEST message, the measurement request shall apply to the PCPCHs whose minimum allowed spreading factor (Min UL Channelisation Code Length) is equal to the value of the *Spreading Factor* IE.

If the *Common Measurement Type* IE is not set to "SFN-SFN Observed Time Difference" and the *SFN Reporting Indicator* IE is set to "FN Reporting Required", the *SFN* IE shall be included in the COMMON MEASUREMENT REPORT message or in the COMMON MEASUREMENT RESPONSE message, the latter only in the case the *Report Characteristics* IE is set to "On Demand". The reported SFN shall be the SFN at the time when the measurement value was reported by the layer 3 filter, referred to as point C in the measurement model [25]. If the *Common Measurement Type* IE is set to "SFN-SFN Observed Time Difference" and the *SFN Reporting Indicator* IE is ignored.

Common measurement type

If the *Common Measurement Type* IE is set to "SFN-SFN Observed Time Difference", then the Node B shall initiate the SFN-SFN Observed Time Difference measurements between the reference cell identified by *C-ID* IE and the neighbouring cells identified by the *UTRAN Cell Identifier(UC-Id)* IE.

Report characteristics

The Report Characteristics IE indicates how the reporting of the measurement shall be performed. See also Annex B.

If the *Report Characteristics* IE is set to "On Demand" and if the *SFN* IE is not provided, the Node B shall return the result of the requested measurement immediately. If the *SFN* IE is provided, it indicates the frame for which the measurement value shall be provided. The provided measurement value shall be the one reported by the layer 3 filter, referred to as point C in the measurement model [25].

If the *Report Characteristics* IE is set to "Periodic", the Node B shall periodically initiate a Common Measurement Reporting procedure for this measurement, with the requested report frequency. If the *Common Measurement Type* IE is set to "SFN-SFN Observed Time Difference", all the available measurement results shall be reported in the *Successful Neighbouring Cell SFN-SFN Observed Time Difference Measurement Information* IE in the *SFN-SFN Measurement Value Information* IE and the Node B shall indicate in the *Unsuccessful Neighbouring Cell SFN-SFN Observed Time Difference Measurement Information* IE all the remaining neighbouring cells with no measurement result available in the Common Measurement Reporting procedure. If the *SFN* IE is provided, it indicates the frame for which the first measurement value of a periodic reporting shall be provided. The provided measurement value shall be the one reported by the layer 3 filter, referred to as point C in the measurement model [25].

If the *Report Characteristics* IE is set to "Event A", the Node B shall initiate the Common Measurement Reporting procedure when the measured entity rises above the requested threshold and stays there for the requested hysteresis time. If the *Measurement Hysteresis Time* IE is not included, the Node B shall use the value zero for the hysteresis time.

If the *Report Characteristics* IE is set to "Event B", the Node B shall initiate the Common Measurement Reporting procedure when the measured entity falls below the requested threshold and stays there for the requested hysteresis time. If the *Measurement Hysteresis Time* IE is not included, the Node B shall use the value zero for the hysteresis time.

If the *Report Characteristics* IE is set to "Event C", the Node B shall initiate the Common Measurement Reporting procedure when the measured entity rises by an amount greater than the requested threshold within the requested time. After having reported this type of event, the next C event reporting for the same measurement cannot be initiated before the rising time specified by the *Measurement Change Time* IE has elapsed since the previous event reporting.

If the *Report Characteristics* IE is set to "Event D", the Node B shall initiate the Common Measurement Reporting procedure when the measured entity falls by an amount greater than the requested threshold within the requested time. After having reported this type of event, the next D event reporting for the same measurement cannot be initiated before the falling time specified by the *Measurement Change Time* IE has elapsed since the previous event reporting.

If the *Report Characteristics* IE is set to "Event E", the Node B shall initiate the Common Measurement Reporting procedure when the measured entity rises above the 'Measurement Threshold 1' and stays there for the 'Measurement Hysteresis Time' (Report A). When the conditions for Report A are met and the *Report Periodicity* IE is provided, the Node B shall initiate the Common Measurement Reporting procedure periodically. If the conditions for Report A have been met and the measured entity falls below the 'Measurement Threshold 2' and stays there for the 'Measurement Hysteresis Time', the Node B shall initiate the Common Measurement Reporting procedure (Report B) as well as terminating any corresponding periodic reporting. If the *Measurement Threshold 2* IE is not present, the Node B shall use the value of the *Measurement Threshold 1* IE instead. If the *Measurement Hysteresis Time* IE is not included, the Node B shall use the value zero as hysteresis times for both Report A and Report B.

If the *Report Characteristics* IE is set to "Event F", the Node B shall initiate the Common Measurement Reporting procedure when the measured entity falls below the 'Measurement Threshold 1' and stays there for the 'Measurement Hysteresis Time' (Report A). When the conditions for Report A are met and the *Report Periodicity* IE is provided the Node B shall also initiate the Common Measurement Reporting procedure periodically. If the conditions for Report A have been met and the measured entity rises above the 'Measurement Threshold 2' and stays there for the 'Measurement Hysteresis Time', the Node B shall initiate the Common Measurement Reporting procedure (Report B) as well as terminating any corresponding periodic reporting. If the *Measurement Threshold 2* IE is not present, the Node B shall use the value of the *Measurement Threshold 1* IE instead. If the *Measurement Hysteresis Time* IE is not included, the Node B shall use the value zero as hysteresis times for both Report A and Report B.

If the *Report Characteristics* IE is set to "On Modification" and if the *SFN* IE is not provided, the Node B shall report the result of the requested measurement immediately. If the *SFN* IE is provided, it indicates the frame for which the measurement value shall be provided. The provided measurement value shall be the one reported by the layer 3 filter, referred to as point C in the measurement model [25]. Then, the Node B shall initiate the Common Measurement Reporting procedure in accordance to the following conditions:

- 1. If the Common Measurement Type IE is set to "UTRAN GPS Timing of Cell Frames for UE Positioning":
 - If the $T_{UTRAN-GPS}$ Change Limit IE is included in the $T_{UTRAN-GPS}$ Measurement Threshold Information IE, the Node B shall each time a new measurement result is received after point C in the measurement model [25], calculate the change of $T_{UTRAN-GPS}$ value (F_n). The Node B shall initiate the Common Measurement Reporting procedure and set n equal to zero when the absolute value of F_n rises above the threshold indicated by the $T_{UTRAN-GPS}$ Change Limit IE. The change of $T_{UTRAN-GPS}$ value (F_n) is calculated according to the following:

$$F_n = 0 \text{ for } n = 0$$

$$F_n = (M_n - M_{n-1}) \mod 3715291200000 - ((SFN_n - SFN_{n-1}) \mod 4096) *10*3.84*10^{3}*16 + F_{n-1}$$

for n>0

 F_n is the change of the T_{UTRAN-GPS} value expressed in unit [1/16 chip] when n measurement results have been received after the first Common Measurement Reporting at initiation or after the last event was triggered.

 M_n is the latest measurement result received after point C in the measurement model [25], measured at SFN_n.

 M_{n-1} is the previous measurement result received after point C in the measurement model [25], measured at SFN_{n-1}.

 M_1 is the first measurement result received after point C in the measurement model [25], after the first Common Measurement Reporting at initiation or after the last event was triggered.

 M_0 is equal to the value reported in the first Common Measurement Reporting at initiation or in the Common Measurement Reporting when the event was triggered.

- If the *Predicted* $T_{UTRAN-GPS}$ *Deviation Limit* IE is included in the $T_{UTRAN-GPS}$ *Measurement Threshold Information* IE, the Node B shall each time a new measurement result is received after point C in the measurement model [25], update the P_n and F_n The Node B shall initiate the Common Measurement Reporting procedure and set n equal to zero when F_n rises above the threshold indicated by the *Predicted* $T_{UTRAN-GPS}$ *Deviation Limit* IE. The P_n and F_n are calculated according to the following:

 $P_n = b$ for n = 0

 $P_n = ((a/16) * ((SFN_n - SFN_{n-1}) \mod 4096)/100 + ((SFN_n - SFN_{n-1}) \mod 4096) * 10 * 3.84 * 10^{3} * 16 + P_{n-1}) \mod 37158912000000 \quad \text{for } n > 0$

 $F_n = min((M_n - P_n) \mod 37158912000000, (P_n - M_n) \mod 37158912000000)$ for n > 0

 P_n is the predicted T_{UTRAN-GPS} value when n measurement results have been received after the first Common Measurement Reporting at initiation or after the last event was triggered.

a is the last reported T_{UTRAN-GPS} Drift Rate value.

b is the last reported T_{UTRAN-GPS} value.

 F_n is the deviation of the last measurement result from the predicted T_{UTRAN-GPS} value (P_n) when n measurements have been received after the first Common Measurement Reporting at initiation or after the last event was triggered.

 M_n is the latest measurement result received after point C in the measurement model [25], measured at SFN_n.

 M_1 is the first measurement result received after point C in the measurement model [25], after the first Common Measurement Reporting at initiation or after the last event was triggered.

The T_{UTRAN-GPS} Drift Rate is determined by the Node B in an implementation-dependent way after point B in the measurement model [26].

- 2. If the Common Measurement Type IE is set to "SFN-SFN Observed Time Difference":
 - If the *SFN-SFN Change Limit* IE is included in the *SFN-SFN Measurement Threshold Information* IE, the Node B shall each time a new measurement result is received after point C in the measurement model [25], calculate the change of SFN-SFN value (F_n). The Node B shall initiate the Common Measurement Reporting procedure in order to report the particular SFN-SFN measurement which has triggered the event and set n equal to zero when F_n rises above the threshold indicated by the *SFN-SFN Change Limit* IE. The change of the SFN-SFN value is calculated according to the following:

 $F_n=0$ for n=0

 $[FDD - F_n = (M_n - a) \mod 614400 \quad for \ n > 0]$ $[TDD - F_n = (M_n - a) \mod 40960 \quad for \ n > 0]$

 F_n is the change of the SFN-SFN value expressed in unit [1/16 chip] when n measurement results have been received after the first Common Measurement Reporting at initiation or after the last event was triggered.

a is the last reported SFN-SFN.

 M_n is the latest measurement result received after point C in the measurement model [25], measured at SFN_n.

 M_1 is the first measurement result received after point C in the measurement model [25] after the first Common Measurement Reporting at initiation or after the last event was triggered.

- If the *Predicted SFN-SFN Deviation Limit* IE is included in the *SFN-SFN Measurement Threshold Information* IE, the Node B shall each time a new measurement result is received after point C in the measurement model [25], update the P_n and F_n. The Node B shall initiate the Common Measurement Reporting procedure in order to report the particular SFN-SFN measurement which has triggered the event and set n equal to zero when the F_n rises above the threshold indicated by the *Predicted SFN-SFN Deviation Limit* IE. The P_n and F_n are calculated according to the following:

 $P_n = b$ for n = 0

 $[FDD - P_n = ((a/16) * ((SFN_n - SFN_{n-1}) \mod 4096)/100 + P_{n-1}) \mod 614400 \quad for \ n>0]$ $[FDD - F_n = \min((M_n - P_n) \mod 614400, (P_n - M_n) \mod 614400) \quad for \ n>0]$

 $[TDD - P_n = ((a/16) * (15*(SFN_n - SFN_{n-1})mod \ 4096 + (TS_n - TS_{n-1}))/1500 + P_{n-1}) \ mod \ 40960 \ for \ n>0]$

 $[TDD - F_n = min((M_n - P_n) \mod 40960, (P_n - M_n) \mod 40960) \quad for n > 0]$

 P_n is the predicted *SFN-SFN* value when n measurement results have been received after the first Common Measurement Reporting at initiation or after the last event was triggered.

a is the last reported SFN-SFN Drift Rate value.

b is the last reported SFN-SFN value.

abs denotes the absolute value.

 F_n is the deviation of the last measurement result from the predicted *SFN-SFN* value (P_n) when n measurements have been received after the first Common Measurement Reporting at initiation or after the last event was triggered.

 M_n is the latest measurement result received after point C in the measurement model [25], measured at [TDD - the Time Slot TS_n of] the Frame SFN_n.

 M_1 is the first measurement result received after point C in the measurement model [25] after the first Common Measurement Reporting at initiation or after the last event was triggered.

The SFN-SFN Drift Rate is determined by the Node B in an implementation-dependent way after point B in the measurement model [26].

If the *Report Characteristics* IE is not set to "On Demand", the Node B is required to perform reporting for a common measurement object, in accordance with the conditions provided in the COMMON MEASUREMENT INITIATION REQUEST message, as long as the object exists. If no common measurement object(s) for which a measurement is defined exists anymore, the Node B shall terminate the measurement locally, i.e. without reporting this to the CRNC.

If at the start of the measurement, the reporting criteria are fulfilled for any of Event A, Event B, Event E or Event F, the Node B shall initiate the Common Measurement Reporting procedure immediately, and then continue with the measurements as specified in the COMMON MEASUREMENT INITIATION REQUEST message.

Higher layer filtering

The *Measurement Filter Coefficient* IE indicates how filtering of the measurement values shall be performed before measurement event evaluation and reporting.

The averaging shall be performed according to the following formula.

$$F_n = (1-a) \cdot F_{n-1} + a \cdot M_n$$

The variables in the formula are defined as follows:

 F_n is the updated filtered measurement result

 F_{n-1} is the old filtered measurement result

 M_n is the latest received measurement result from physical layer measurements, the unit used for M_n is the same unit as the reported unit in the COMMON MEASUREMENT INITIATION RESPONSE, COMMON MEASUREMENT REPORT messages or the unit used in the event evaluation (i.e. same unit as for Fn)

 $a = 1/2^{(k/2)}$, where k is the parameter received in the *Measurement Filter Coefficient* IE. If the *Measurement Filter Coefficient* IE is not present, a shall be set to 1 (no filtering)

In order to initialise the averaging filter, F_0 is set to M_1 when the first measurement result from the physical layer measurement is received.

Common measurement accuracy

If the *Common Measurement Type* IE is set to "UTRAN GPS Timing of Cell Frames for UE Positioning", then the Node B shall use the *UTRAN GPS Timing Measurement Accuracy Class* IE included in the *Common Measurement Accuracy* IE according to the following:

- If the *UTRAN GPS Timing Measurement Accuracy Class* IE indicates "Class A", then the Node B shall perform the measurement with highest supported accuracy within the accuracy classes A, B and C.
- If the *UTRAN GPS Timing Measurement Accuracy Class* IE indicates "Class B", then the Node B shall perform the measurement with highest supported accuracy within the accuracy classes B and C.
- If the *UTRAN GPS Timing Measurement Accuracy Class* IE indicates "Class C", then the Node B shall perform the measurements with the accuracy according to class C.

Response message

If the Node B was able to initiate the measurement requested by the CRNC, it shall respond with the COMMON MEASUREMENT INITIATION RESPONSE message sent over the Node B Control Port. The message shall include the same Measurement ID that was used in the measurement request. Only in the case where the *Report Characteristics* IE is set to "On Demand" or "On Modification", the COMMON MEASUREMENT INITIATION RESPONSE message shall contain the measurement result and also the *Common Measurement Achieved Accuracy* IE if the *Common Measurement Type* IE is set to "UTRAN GPS Timing of Cell Frames for UE Positioning".

If the *Common Measurement Type* IE is set to "SFN-SFN Observed Time Difference" and the *Report Characteristics* IE is set to "On Demand" or "On Modification", all the available measurement results shall be reported in the *Successful Neighbouring Cell SFN-SFN Observed Time Difference Measurement Information* IE in the *SFN-SFN Measurement Value Information* IE and the Node B shall indicate in the *Unsuccessful Neighbouring Cell SFN-SFN Observed Time Difference Measurement Information* Cell SFN-SFN Observed Time Difference Measurement results with no measurement result available in the COMMON MEASUREMENT INITIATION RESPONSE message. For all available measurement results, the Node B shall include in the *Successful Neighbouring Cell SFN-SFN Observed Time Difference Measurement Information* IE the *SFN-SFN Observed Time Difference Measurement Time* Difference Measurement results, the Node B shall include in the *Successful Neighbouring Cell SFN-SFN Observed Time Difference Measurement Information* IE the *SFN-SFN Observed Time* Difference Measurement Information IE shall include in the *SFN-SFN Drift Rate Quality* IE, if available.

If the Common Measurement Type IE is set to "UTRAN GPS Timing of Cell Frames for UE Positioning" and the Report Characteristics IE is set to "On Demand" or "On Modification", the Node B shall include in the T_{UTRAN-GPS} Measurement Value Information IE the T_{UTRAN-GPS} Quality IE and the T_{UTRAN-GPS} Drift Rate Quality IE, if available.

8.2.8.3 Unsuccessful Operation

Figure 12: Common Measurement Initiation procedure, Unsuccessful Operation

If the requested measurement cannot be initiated, the Node B shall send a COMMON MEASUREMENT INITIATION FAILURE message over the Node B Control Port. The message shall include the same Measurement ID that was used in the COMMON MEASUREMENT INITIATION REQUEST message and the *Cause* IE set to an appropriate value.

Typical cause values are as follows:

Radio Network Layer Cause

- Measurement not supported for the object.
- Measurement Temporarily not Available

8.2.8.4 Abnormal Conditions

If the Common Measurement Type received in the *Common Measurement Type* IE is not defined in ref. [4] or [5] to be measured on the Common Measurement Object Type received in the COMMON MEASUREMENT INITIATION REQUEST message, the Node B shall regard the Common Measurement Initiation procedure as failed.

[TDD - If the Common Measurement Type requires the Time Slot Information but the [3.84Mcps TDD - *Time Slot* IE] [1.28Mcps TDD - *Time Slot LCR* IE] is not present in the COMMON MEASUREMENT INITIATION REQUEST message, the Node B shall regard the Common Measurement Initiation procedure as failed.]

If the COMMON MEASUREMENT INITIATION REQUEST message contains the *SFN-SFN Measurement Threshold Information* IE (in the *Measurement Threshold* IE contained in the *Report Characteristics* IE) and it does not contain at least one IE, the Node B shall reject the procedure using the COMMON MEASUREMENT INITIATION FAILURE message.

If the COMMON MEASUREMENT INITIATION REQUEST message contains the $T_{UTRAN-GPS}$ Measurement Threshold Information IE (in the Measurement Threshold IE contained in the Report Characteristics IE) and it does not contain at least one IE, the Node B shall reject the procedure using the COMMON MEASUREMENT INITIATION FAILURE message.

If the *Common Measurement Type* IE is set to "SFN-SFN Observed Time Difference", but the *Neighbouring Cell Measurement Information* IE is not received in the COMMON MEASUREMENT INITIATION REQUEST message, the Node B shall regard the Common Measurement Initiation procedure as failed.

If the *Common Measurement Type* IE is set to "UTRAN GPS Timing of Cell Frames for UE Positioning", but the $T_{UTRAN-GPS}$ Measurement Accuracy Class IE in the Common Measurement Accuracy IE is not received in the COMMON MEASUREMENT INITIATION REQUEST message, the Node B shall regard the Common Measurement Initiation procedure as failed.

The allowed combinations of the Common Measurement Type and Report Characteristics Type are shown in the table below marked with "X". For not allowed combinations, the Node B shall regard the Common Measurement Initiation procedure as failed.

Common	Report Characteristics Type								
Measurement Type	On Demand	Periodic	Event A	Event B	Event C	Event D	Event E	Event F	On Modification
Received Total Wide Band Ppower	Х	Х	Х	Х	Х	Х	Х	Х	
Transmitted Carrier Power	х	х	Х	Х	Х	Х	Х	Х	
Acknowledged PRACH Preambles	Х	Х	Х	х	Х	Х	Х	Х	
UL Timeslot ISCP	Х	Х	Х	Х	Х	Х	Х	Х	
Acknowledged PCPCH Access Preambles	X	X	X	X	X	X	X	X	
Detected PCPCH Access Preambles	Х	Х	Х	Х	Х	Х	Х	Х	
UTRAN GPS Timing of Cell Frames for UE Positioning	X	X							X
SFN-SFN Observed Time Difference	X	X							X

Table 4: Allowed Common Measurement Type and Report Characteristics Type combinations

If the *SFN* IE is included in the COMMON MEASUREMENT INITIATION REQUEST message and the *Report Characteristics* IE is other than "Periodic", "On Demand" or "On Modification", the Node B shall regard the Common Measurement Initiation procedure as failed.

8.2.9 Common Measurement Reporting

8.2.9.1 General

This procedure is used by the Node B to report the result of measurements requested by the CRNC with the Common Measurement Initiation procedure.

8.2.9.2 Successful Operation

Figure 13: Common Measurement Reporting procedure, Successful Operation

If the requested measurement reporting criteria are met, the Node B shall initiate the Common Measurement Reporting procedure. The COMMON MEASUREMENT REPORT message shall use the Node B Control Port.

The *Measurement ID* IE shall be set to the Measurement ID provided by the CRNC when initiating the measurement with the Common Measurement Initiation procedure.

If the achieved measurement accuracy does not fulfil the given accuracy requirement (see ref.[22] and [23]), the Measurement not available shall be reported.

For measurements included in the *Successful Neighbouring Cell SFN-SFN Observed Time Difference Measurement Information* IE, the Node B shall include the *SFN-SFN Quality* IE and the *SFN-SFN Drift Rate Quality* IE if available.

If the Common Measurement Type provided by RNC when initiating the measurement with the Common Measurement Initiation procedure was "UTRAN GPS Timing of Cell Frames for UE Positioning", then the Node B shall include in the *T_{UTRAN-GPS} Measurement Value Information* IE the *T_{UTRAN-GPS} Quality* IE and the *T_{UTRAN-GPS} Drift Rate Quality* IE, if available.

8.2.9.3 Abnormal Conditions

9.2.1.53E SFN-SFN Measurement Value Information

The SFN-SFN Measurement Value Information IE indicates the measurement result related to SFN-SFN Observed Time Difference measurements.

IE/Group Name	Presence	Range	IE Type and Reference	Semantics Description
Successful Neighbouring Cell SFN-SFN Observed Time Difference Measurement Information		1 <maxno MeasNCell ></maxno 		
>UC-Id	М		9.2.1.65B	
>SFN-SFN Value	М		9.2.1.53F	
>SFN-SFN Quality	0		INTEGER (0255)	Indicates the standard deviation (std) of the SFN-SFN Observed Time Difference measurements in 1/16 chip. SFN-SFN Quality = $\sqrt{E[(x-\mu)^2]}$ = std of reported SFN-SFN Value, where x is the reported SFN-SFN Value and $\mu = E[x]$ is the expectation value of x.
>SFN-SFN Drift Rate	М		INTEGER (-100+100)	Indicates the SFN-SFN drift rate in 1/256 chip per second. A positive value indicates that the Reference cell clock is running at a greater frequency than the measured neighbouring cell.
>SFN-SFN Drift Rate Quality	<u>O</u> M		INTEGER (0100)	Indicates the standard deviation (std) of the SFN-SFN drift rate measurements in 1/256 chip per second. SFN- SFN Drift Rate Quality = $\sqrt{E[(x-\mu)^2]}$ = std of reported SFN-SFN Drift Rate, where x is the reported SFN-SFN Drift Rate and μ = E[x] is the expectation value of x.
>SFN-SFN Measurement	М		9.2.1.53D	
Unsuccessful Neighbouring Cell SFN-SFN Observed Time Difference Measurement Information		0 <maxno MeasNCell -1></maxno 		
>UC-Id	М		9.2.1.65B	

Range Bound	Explanation		
maxnoMeasNCell	Maximum number of neighbouring cells that can be measured on		

9.2.1.64A T_{UTRAN-GPS} Measurement Value Information

The T_{UTRAN-GPS} *Measurement Value Information* IE indicates the measurement results related to the UTRAN GPS Timing of Cell Frames for UE Positioning measurements.

IE/Group Name	Presence	Range	IE Type and Reference	Semantics Description
Tutran-gps		1		Indicates the UTRAN GPS Timing of Cell Frames forUE Positioning. According to mapping in [22]. Significant values range from 0 to 37158911999999.
>MS	Μ		INTEGER (016383)	Most Significant Part
>LS	М		INTEGER (04294967295)	Least Significant Part
Tutran-gps Quality	<u>O</u> M		INTEGER (0255)	Indicates the standard deviation (std) of the T _{UTRAN-} _{GPS} measurements in 1/16 chip. T _{UTRAN-GPS} Quality = $\sqrt{E[(x-\mu)^2]}$ = std of reported T _{UTRAN-GPS} Value, where x is the reported T _{UTRAN-GPS} Value and $\mu = E[x]$ is the expectation value of x.
T _{UTRAN-GPS} Drift Rate	М		INTEGER (-50+50)	Indicates the T _{UTRAN-GPS} drift rate in 1/256 chip per second. A positive value indicates that the UTRAN clock is running at a lower frequency than GPS clock.
Tutran-gps Drift Rate Quality	<u>O</u> M		INTEGER (050)	Indicates the standard deviation (std) of the T _{UTRAN-} _{GPS} drift rate measurements in 1/256 chip per second. T _{UTRAN-GPS} Drift Rate Quality = $\sqrt{E[(x-\mu)^2]}$ = std of reported T _{UTRAN-GPS} Drift Rate, where x is the reported T _{UTRAN-GPS} Drift Rate and μ = E[x] is the expectation value of x.

CR page 13

9.3.4 Information Elements Definitions

UNCHANGED TEXT IS REMOVED

}

```
SFNSFNMeasurementValueInformation ::= SEQUENCE {
    successfullNeighbouringCellSFNSFNObservedTimeDifferenceMeasurementInformation
                                                                                          SEQUENCE (SIZE(1..maxNrOfMeasNCell)) OF
        SEOUENCE {
            uC-Id
                                        UC-Id.
            sFNSFNValue
                            SFNSFNValue,
            sFNSFNQuality
                                SFNSFNQuality
                                                                     OPTIONAL,
            sFNSFNDriftRate
                                SFNSFNDriftRate,
            sFNSFNDriftRateQuality
                                        SFNSFNDriftRateQuality
                                                                     OPTIONAL,
            sFNSFNTimeStampInformation
                                                     SFNSFNTimeStampInformation,
            iE-Extensions
                                ProtocolExtensionContainer { { SuccessfullNeighbouringCellSFNSFNObservedTimeDifferenceMeasurementInformationItem-
ExtIEs} }
                OPTIONAL,
            . . .
        },
    unsuccessfullNeighbouringCellSFNSFNObservedTimeDifferenceMeasurementInformation
                                                                                         SEQUENCE (SIZE(0..maxNrOfMeasNCell-1)) OF
        SEOUENCE ·
            uC-Id
                                        UC-Id.
            iE-Extensions
                                ProtocolExtensionContainer { {    UnsuccessfullNeighbouringCellSFNSFNObservedTimeDifferenceMeasurementInformationItem-
ExtIEs} }
                OPTIONAL,
                . . .
        },
    iE-Extensions
                        ProtocolExtensionContainer { { SFNSFNMeasurementValueInformationItem-ExtIEs } }
                                                                                                                        OPTIONAL.
    . . .
}
SFNSFNMeasurementValueInformationItem-ExtIEs NBAP-PROTOCOL-EXTENSION ::= {
    . . .
}
UNCHANGED TEXT IS REMOVED
TUTRANGPSMeasurementValueInformation ::= SEQUENCE {
        tUTRANGPS
                                        TUTRANGPS,
        tUTRANGPSQuality
                                        TUTRANGPSQuality
                                                                         OPTIONAL,
        tUTRANGPSDriftRate
                                        TUTRANGPSDriftRate,
        tUTRANGPSDriftRateQuality
                                        TUTRANGPSDriftRateQuality
                                                                         OPTIONAL,
        iE-Extensions
                                        ProtocolExtensionContainer { { TUTRANGPSMeasurementValueInformationItem-ExtIEs } }
                                                                                                                              OPTIONAL,
        . . .
}
TUTRANGPSMeasurementValueInformationItem-ExtIEs NBAP-PROTOCOL-EXTENSION ::= {
    . . .
```

UNCHANGED TEXT IS REMOVED

CR page 14